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ABSTRACT

Graph data models received much attention lately due to
applications in social networks, semantic web, biological
databases and other areas. Typical query languages for graph
databases retrieve their topology, while actual data stored
in them is usually queried using standard relational mech-
anisms.

Our goal is to develop techniques that combine these two
modes of querying, and give us query languages that can ask
questions about both data and topology. As the basic query-
ing mechanism we consider regular path queries, with the
key difference that conditions on paths between nodes now
talk not only about labels but also specify how data changes
along the path. Paths that combine edge labels with data
values are closely related to data words, so for stating condi-
tions in queries, we look at several data-word formalisms de-
veloped recently. We show that many of them immediately
lead to intractable data complexity for graph queries, with
the notable exception of register automata, which can spec-
ify many properties of interest, and have NLOGSPACE data
and PSPACE combined complexity. As register automata
themselves are not easy to use in querying, we define two
types of extensions of regular expressions that are more user-
friendly, and develop query evaluation techniques for them.
For one class, regular expressions with memory, we achieve
the same bounds as for automata, and for the other class,
regular expressions with equality, we also obtain tractable
combined complexity of query evaluation. In addition, we
show that results extends to analogs of conjunctive regular
path queries.
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1. INTRODUCTION

Querying graph-structured data has been actively studied
in recent years, due to numerous applications in areas in-
cluding biological networks [31, 32, 36], social networks
[38, 39], and the semantic Web [27, 37]. Such databases are
represented as graphs in which nodes are objects, and edge
labels specify relationships between them [1, 3]. Typical
queries over such databases look for reachability patterns.
A very common and well studied class of queries is that of
regular path queries, or RPQs. An RPQ selects nodes con-
nected by a path that belongs to a regular language over the
labeling alphabet [13, 14, 15]. Their extensions have been
studied extensively too; for example, conjunctive RPQs state
the existence of several paths [12, 18, 22], and extended con-
junctive RPQs add comparisons of paths [4].

These standard queries over graph databases talk about
their topology, and do not mention data values. But graph
databases do contain data. For example, in a social network,
one would expect each node to correspond to a person, with
his/her attributes such as name, age, city, email, etc.; la-
bels can specify types of connections between people, e.g.,
like/dislike, professional, etc. The querying mechanisms one
deals with are generally of one of these categories:

• queries about topology such as finding nodes con-
nected by a path with a certain label (e.g., people who
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are connected via professional links), or

• queries about data, i.e., essentially relational queries
(e.g., finding pairs of people of the same age).

What these languages are incapable of doing is combining
data and topology. As an example of a query that involves
such a combination, consider a query looking for people who
are connected via professional links and are of the same age.
This query states the existence of a path with a certain prop-
erty and then relates data values at the end of the path. An-
other example is a query that finds people who are connected
via professional links restricted to people of the same age. In
this case, comparison of data values (having the same age)
is done for every node along the path.

Extending languages that handle structure to languages
that handle both structure and data is not new in database
theory. For very simple types of paths it was considered in
graph object-oriented models [42], but most notably it hap-
pened in the study of XML [8, 40, 41]. For example, lan-
guages such as XPath exist in their structural variants as well
as extensions that handle data comparisons [6, 9, 20, 34]. A
standard abstraction one uses for extending from structure
to data in the case of XML is data trees, in which data val-
ues are attached to tree nodes [9, 29, 40]. The focus of the
study of such extensions has been both on querying, where
one is concerned with efficient evaluation [7, 24], and on
reasoning, where one is concerned with the decidability of
the satisfiability problem [9, 10].

So likewise, we consider graph databases where nodes can
carry data values. An example of such a graph database is
shown in Fig. 1. It has five nodes, v1, . . . , v5; data values are
shown inside the nodes, and edge labels next to the edges. As
an initial assumption, we assume that each node carries just
one data value. This is not a real restriction for two reasons.
First, if a node has a tuple of data values (e.g., person’s name,
age, email, etc., in a social network) this could be modeled
by extra edges to nodes with those data values. And second,
the way we design languages for querying graph databases
with data values will make it very easy to extend them to
such a setting.

An RPQ may ask for pairs of nodes connected by a path
from the regular language (ab)∗. In the graph in Fig. 1, one
possible answer is (v1, v3), another – (v1, v5). To combine
this with data values, we may ask queries of the following
kind:

• Find nodes connected by a path from (ab)∗ such that
the data values at the beginning and at the end of the
path are the same. In this case, (v1, v3) is still in the
answer but (v1, v5) is not.

• We may extend comparisons to other nodes on the
path, not only to the first and last nodes. For example,
we may ask for nodes connected by paths along which
the data value remains the same, or on which all data
values are different from the first one. The pair (v1, v3)
is in the answer to the first query (the path v1v4v3 wit-
nesses it), while the pair (v1, v5) is in the answer to the
second, as witnessed by the path v1v2v5.
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Figure 1: A graph database with data values

What kind of languages can we use in place of regular lan-
guages to specify paths with data? To answer this, consider,
for example, a path v1v2v5v3 in the graph. If we traverse it
by starting in v1, reading its data value, then reading the label
of (v1, v2), then the data value in v2, etc., we end up with the
following sequence: 1a2b3a1. We shall refer to them as data
paths. They are extremely close to an object that has been
actively studied in the XML context – namely, data words
[8, 10, 40, 41]. A data word is a word in which every posi-
tion is labeled by both a letter from a finite alphabet (e.g., a
or b) and a data value (e.g., a number). Data paths are essen-
tially data words with an extra data value. We can represent
the data path 1a2b3a1 as a data word

(
#
1

)(
a
2

)(
b
3

)(
a
1

)
, where

# is a special symbol reserved for the extra data value.

We can thus use multiple formalisms developed for data
words (with a minor adjustment for the extra value) to spec-
ify data paths. Such formalisms abound in the literature, and
include first-order and monadic second-order logic with data
comparisons [9, 10], LTL with freeze quantifiers [16], XPath
fragments [8, 20], and various automata models such as peb-
ble and register automata [11, 28, 29, 30, 33].

The question is then, which one to choose? To answer
this, we look at data complexity of query answering for each
of these formalisms. We show that as long as the formalism
is capable of expressing what is perhaps the most primitive
language with data value comparisons (two data values are
equal) and is closed under complementation, then data com-
plexity is NP-hard. Clearly one cannot tolerate such high
data complexity, and this rules out most of the formalisms
except register automata.

We then study query answering with register automata
(adjusted for data paths from data words). We present an
algorithm that is based, as expected, on computing prod-
ucts of automata; with nonemptiness performed on-the-fly,
this gives us an NLOGSPACE data complexity bound, and
PSPACE-completeness for combined complexity. The bound
for data complexity is good (it matches the usual RPQs) and
the bound for combined complexity is tolerable (equivalent
to that of FO, but higher than the NP bound for conjunctive
RPQs or the PTIME bound for RPQs).

However, automata are not an ideal way of specifying con-
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ditions in queries. In RPQs, we use regular expressions
rather than NFAs. While some regular expressions have
been considered for register automata [30], they are very far
from intuitive. So we propose two types of regular expres-
sions that can be used in queries.

The first, close in spirit to automata themselves, lets one
bind a data value and use it later. For example, to express the
query “connected by a path along which the data value re-
mains the same”, we would use the expression ↓x.(Σ[x=])∗.
This expression says: bind x in the beginning of the path
(i.e., to the first data value), and then go along, if labels are
arbitrary (Σ) and the condition x=, meaning that the value
is equal to x, holds. These expressions are much easier to
write than the automata, and at the same time they can be
translated into register automata; thus data complexity of
queries remains in NLOGSPACE. We show that the com-
bined complexity remains the same as for automata, i.e.,
PSPACE-complete (except in a rather limited case when the
Kleene star is not used: then it drops to NP-complete).

This motivates a second class of expressions that restrict
the ability to compare data values along the path; instead,
one can only do comparisons for chosen subexpressions. A
simple example of such an expression is Σ+

=, which denotes
nonempty data paths that have same data value at the be-
ginning and at the end of the path: Σ+ indicates the label
of the path, and the subscript = states the condition for the
first and the last data values. A slightly more elaborate ex-
ample is Σ∗ · Σ+

= · Σ∗. It says that a subpath conforms to
Σ+

=, i.e., it denotes data paths on which two data values are
equal. For expressions of this kind, we give a polynomial-
time algorithm for combined complexity. The key idea is to
translate expressions into push-down automata and then take
the product with an automaton obtained efficiently from the
graph database.

Finally, we show that our results extend to analogs of
conjunctive regular path queries that use data comparisons.
There is no penalty to pay in terms of complexity except one
case, where we have to deal with the same increase of com-
plexity as in going from the usual RPQs to their conjunctive
analogs [12, 14].

Organization In Section 2 we define data graphs and
generic queries over them. In Section 3 we rule out sev-
eral formalisms for specifying data paths due to prohibitively
high data complexity for them. In Section 4 we define reg-
ister automata and study complexity of query evaluation for
them. We do the same in Section 5 for regular expressions
with memory and in Section 6 for regular expressions with
equality. Finally in Section 7 we look at conjunctive queries
based on the formalisms proposed in the previous sections.
Due to space limitations, most proofs are only sketched, and
complete proofs are given in the appendix.

2. PRELIMINARIES

Let Σ be a finite alphabet, and D a countably infinite set of
data values. Data graphs will have edges labeled by letters

from Σ and nodes that store data values from D.

DEFINITION 2.1 (DATA GRAPHS). A data graph (over
Σ and D) is a triple G = ⟨V,E, ρ⟩, where:

• V is a finite set of nodes;
• E ⊆ V × Σ× V is a set of labeled edges; and
• ρ : V → D is a function that assigns a data value to

each node in V .

A path between nodes v1 and vn in a graph is a sequence

π = v1a1v2a2v3 . . . vn−1an−1vn (1)

such that each (vi, ai, vi+1), for i < n, is an edge in E.
Corresponding to the path π (1) we have a data path

wπ = ρ(v1)a1ρ(v2)a2ρ(v3) . . . ρ(vn−1)an−1ρ(vn) (2)

which is a sequence of alternating data values and labels,
starting and ending with data values. The set of all data
paths, i.e., such alternating sequences over Σ and D, will be
denoted by Σ[D]∗. For both paths and data paths, we use the
notation λ(π) or λ(wπ) to denote their label, i.e. the word
a1 . . . an−1 ∈ Σ∗.

Returning to Figure 1 from the Introduction, one exam-
ple that we used was the path π = v1av2bv5av3. The cor-
responding data path wπ is 1a2b3a1 since data values of
v1, v2, v5, and v3 are 1, 2, 3, and 1, respectively. Its label
is aba.

Recall that regular path queries, or RPQs, over usual la-
beled graphs are queries of the form Q = x

L−→ y, where
L ⊆ Σ∗ is a regular language. Given a graph G (the data
part is irrelevant for RPQs), Q(G) is the set of pairs of nodes
(v, v′) such that there is a path π from v to v′ whose label
λ(π) is in L.

By analogy, we define data path queries. Syntactically
they are expressions Q = x

L−→ y, as before, but now L ⊆
Σ[D]∗ is a set of data paths. If G is a data graph, then Q(G)
is the set of pairs of nodes (v, v′) such that there is a path π
from v to v′ whose associated data path wπ is in L.

As with relational queries and RPQs, we will be interested
in data and combined complexity of query evaluation prob-
lem, i.e. checking, for a data path query Q, a data graph G
and a pair of nodes (v, v′), whether (v, v′) ∈ Q(G) (for data
complexity, of course, the query Q will be fixed).

3. LANGUAGE FOR PATHS: RULING OUT
BAD ALTERNATIVES

To talk about data path queries, as just defined, we need to
express properties of paths with data. As we already men-
tioned, these are essentially data words, with an extra data
value attached. Quite a few languages and automata mod-
els have been developed for data words over the past few
years, mainly in connection with the study of XML, espe-
cially XPath. We now give a quick overview of them. A
more extensive survey can be found in [40].
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FO(∼) and MSO(∼) These are first-order logic and
monadic second-order logic extended with the binary
predicate ∼ saying that data values in two positions
are the same. For example, ∃x∃y a(x)∧ a(y)∧ x ∼ y
says that there are two a-labeled positions with the
same data value. Two-variable fragments of FO(∼)
and existential MSO with the ∼ predicate have been
shown to have decidable satisfiability problem [9, 10].

Pebble automata These are basically finite state automata
equipped with a finite set of pebbles. To ensure regular
behavior pebbles are required to adhere to a stack dis-
cipline. The automata are modeled in such a way that
the last placed pebble acts as the automaton head and
we are allowed to drop and lift pebbles over the current
position. In addition to this we can also compare the
current data value to the one that already has a pebble
placed over it. Algorithmic properties and connections
with logics have been extensively studied in [33].

LTL↓ This is the standard LTL expanded with a freeze op-
erator that allows us to store the current data value into
a memory location and use it for future comparisons.
The full logic has undecidable satisfiability problem,
but various decidable restrictions are known [16, 17].

Register automata These are in essence finite state au-
tomata extended with a finite set of registers allowing
us to store data values. Although first studied only on
words over infinite alphabet [28, 33, 35] they are eas-
ily extended to handle data words, as illustrated in [16,
40]. They act as usual finite state automata in the sense
that they move from one position to another by read-
ing the appropriate letter from the finite alphabet, but
are also allowed to compare the current data value with
ones already stored in the registers.

XPath fragments XPath is the standard language for navi-
gating in XML documents, i.e., for describing paths in
a way that may also include conditions on data values
that occur in documents. Fragments of XPath (with
and without data values) have been extensively stud-
ied, see, e.g., [6, 9]. While in general the satisfiability
problem is undecidable, several decidable restrictions
are known, e.g., [20, 21].

In deciding which formalism to choose, we look at the
data complexity of evaluating data path queries, and try to
rule out those for which data complexity is intractable. Tech-
nically, a formalism just defines a set of allowed languages
L ⊆ Σ[D]∗. It turns out that most of the formalisms for
data words/paths are actually not suitable for graph query-
ing. This is implied by the following result. Let Leq be the
language of data paths that contain two equal data values.

THEOREM 3.1. Assume that we have a formalism for
data paths that can define Leq . Then data complexity of eval-
uating data path queries is NP-hard.

PROOF. The proof is by showing that with Leq , one can
encode the 2-disjoint-paths problem which is NP-complete
[23]. This problem is to check, for a graph G and four nodes

s1, t1, s2, t2 in G, whether there exist two paths in G, one
from s1 to t1 and the other from s2 to t2 that have no nodes
in common.

Assume that G = ⟨V,E⟩ is a graph and s1, t1, s2, t2 are
four nodes in G. Here we assume that all four nodes are dis-
tinct. It is easy to see that with this assumption the problem
remains NP-complete, because we can always add two new
nodes for each repeated node and connect them with all the
nodes the repeated node was connected to, thus modifying
our problem to have all source and target nodes different.

We let our query be Q = x
Leq−→ y. Since our query will

disregard edge labels we can take Σ = {a}. We will con-
struct a data graph G′ and two nodes s, t ∈ G′ such that
(s, t) ∈ Q(G′) if and only if there are two disjoint paths in
G from s1 to t1 and from s2 to t2.

Let V = {v1, . . . , vn}. The graph G′ will contain two
disjoint isomorphic copies of G (with data values and labels
attached) connected by a single edge. We define the two iso-
morphic copies G1 = ⟨V1, E1, ρ1⟩ and G2 = ⟨V2, E2, ρ2⟩
by:

• V1 = {v′1, . . . , v′n},

• V2 = {v′′1 , . . . , v′′n},

• E1 = {(v′i, a, v′j) : (vi, vj) ∈ E},

• E2 = {(v′′i , a, v′′j ) : (vi, vj) ∈ E}and

• ρ1(v
′
i) = ρ2(v

′′
i ) = i, for i = 1 . . . n,

and then let G′ = ⟨V ′, E′, ρ′⟩, where

• V ′ = V1 ∪ V2,

• E′ = E1 ∪ E2 ∪ {(t′1, a, s′′2)} and

• ρ′ = ρ1 ∪ ρ2.

Note that ρ′ is well defined since V1 and V2 are disjoint.

Finally we define s = s′1 and t = t′′2 .

We claim that (s, t) ∈ Q(G′) if and only if there are two
disjoint paths in G from s1 to t1 and from s2 to t2 in G. To
see this assume first that (s, t) ∈ Q(G′). This means that
we have a path in G′ which starts in s′1 and ends in t′′2 . In
particular, it must pass the edge between t′1 and s′′2 , since this
is the only edge connecting the two graphs. Also, since all
data values on this path are different we know that no node
can repeat. But then we simply split this path into two dis-
joint paths in G since the structure of edges in G′ is the same
as the one in G with the exception of edge between t′1 and
s′′2 . Also, no node can be repeated, since the corresponding
nodes in G1 and G2 have the same data values.

Conversely, if we have two disjoint paths from s1 to t1
and from s2 to t2 in G, we simply follow the corresponding
path from s′1 to t′1 in G1 (and thus in G′), traverse the edge
between t′1 and s′′2 and then follow the path in G2 (and thus
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in G′) from s′′2 to t′′2 corresponding to the path from s2 to t2
in G.

This completes the proof.

Note that Leq is about the simplest property one can ex-
press about data paths/words; it would be hard to imagine a
formalism that cannot check for the equality of data values.
The corollary below effectively rules out closure under com-
plement for such formalisms if they are to be used in graph
querying.

COROLLARY 3.2. Assume that we have a formalism for
data paths that can define Leq and that is closed under
complement. Then data complexity of evaluating data path
queries is NP-hard.

This immediately rules out FO(∼) and its two-variable
fragment, LTL with the freeze quantifier, XPath fragments
closed under complement, and pebble automata.

The only hope we have among standard formalisms is reg-
ister automata, since they are not closed under complemen-
tation [28]. In the next sections we show that we can achieve
good query answering complexity with them, as well as suf-
ficient expressivity.

4. DATA PATH QUERIES WITH REGIS-
TER AUTOMATA

As stated in the previous section, register automata are the
only standard formalism for defining classes of data words
that does not immediately lead to NP-hard data complex-
ity of queries on graphs with data. In this section we de-
fine them and study query evaluation for data path queries
based on these automata. We will slightly alter the defini-
tion of register automata used in e.g. [16, 40] to work on
data paths rather than data words, without affecting their de-
sirable properties.

As mentioned earlier register automata move from one
state to another by reading the appropriate letter from the
finite alphabet and comparing the data value to one previ-
ously stored into the registers. Our version of register au-
tomata will use slightly more involved comparisons which
will be boolean combinations of atomic =, ̸= comparisons
of data values.

To define such conditions formally, assume that, for each
k > 0, we have variables x1, . . . , xk. Then conditions in Ck
are given by the grammar:

c := x=
i | x̸=

i | c ∧ c | c ∨ c | ¬c, 1 ≤ i ≤ k.

The satisfaction is defined with respect to a data value d ∈ D
and a tuple τ = (d1, . . . , dk) ∈ Dk as follows:

• d, τ |= x=
i iff d = di;

• d, τ |= x̸=
i iff d ̸= di;

• d, τ |= c1∧c2 iff d, τ |= c1 and d, τ |= c2 (and likewise
for c1 ∨ c2);

• d, τ |= ¬c iff d, τ 2 c.

In what follows, [k] is a shorthand for {1, . . . , k}.

DEFINITION 4.1 (REGISTER DATA PATH AUTOMATA).
Let Σ be a finite alphabet, and k a natural number. A k-
register data path automaton is a tuple A = (Q, q0, F, τ0, δ),
where:

• Q = Qw∪Qd, where Qw and Qd are two finite disjoint
sets of word states and data states;

• q0 ∈ Qd is the initial state;
• F ⊆ Qw is the set of final states;
• τ0 ∈ Dk is the initial configuration of the registers;
• δ = (δw, δd) is a pair of transition relations:

– δw ⊆ Qw×Σ×Qd is the word transition relation;
– δd ⊆ Qd × Ck × 2[k] ×Qw is the data transition

relation.

The intuition behind this definition is that since we alter-
nate between data values and word symbols in data paths, we
also alternate between data states (which expect data value
as the next symbol) and word states (which expect alphabet
letters as the next symbol). We start with a data value, so
q0 is a data state, end with a data value, so final states, seen
after reading that value, are word states.

In a word state the automaton behaves like the usual NFA
(but moves to a data state). In a data state, the automaton
checks if the current data value and the configuration of the
registers satisfy a condition, and if they do, moves to a word
state and updates some of the registers with the read data
value.

Given a data path w = d0a0d1a1 . . . an−1dn, where each
di is a data value and each al is a letter, a configuration of A
on w is a tuple (j, q, τ), where j is the current position of the
symbol in w that A reads, q is the current state and τ ∈ Dk

is the current state of the registers. The initial configuration
is (0, q0, τ0) and any configuration (j, q, τ) with q ∈ F is a
final configuration.

From a configuration C = (j, q, τ) we can move to a con-
figuration C ′ = (j + 1, q′, τ ′) if one of the following holds:

• the jth symbol is a letter a, there is a transition
(q, a, q′) ∈ δw, and τ ′ = τ ; or

• the current symbol is a data value d, and there is a tran-
sition (q, c, I, q′) ∈ δd such that d, τ |= c and τ ′ coin-
cides with τ except that the ith component of τ ′ is set
to d whenever i ∈ I .

A data path w is accepted by A if A can move from the
initial configuration to a final configuration after reading w.
The language of data paths accepted by A is denoted by
L(A).
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Data paths vs data words

Register automata have been previously studied for data
words [16, 40] and we now briefly explain the connection.
A data word is a word in (Σ×D)∗, i.e., each position carries
a label from Σ and a data value from D. A k-register data
word automaton A is a tuple (Q, q0, F, τ0, T ) where Q is a
finite set of states (no longer split into two), q0 ∈ Q is the
initial state, F ⊆ Q is the set of final states, τ0 ∈ Dk is the
initial register assignment, and T is a finite set of transitions
of the form (q, a, c) → (I, q′), where q, q′ are states, a is a
label, I ⊆ [k], and c is a condition in Ck.

The automaton traverses a data word from left to right,
starting in q0 with τ0 as the register configuration. If it reads(
a
d

)
in state q with register configuration τ , it may apply a

transition (q, a, c) → (I, q′) if d, τ |= c; it then enters state
q′ and changes contents of registers i, with i ∈ I , to d.

The relationship between automata models, as needed for
our purposes, is described by the lemma below. With each
data path w = d1a1 . . . an−1dn ∈ Σ[D]∗ we associate a data
word sw =

(
#
d1

)(
a1

d2

)
. . .

(
an−1

dn

)
over (Σ ∪ {#})×D, where

# ̸∈ Σ is a new alphabet symbol.

LEMMA 4.2. Given a k-register data path automaton A,
one can construct, in DLOGSPACE, a k-register data word
automaton A′ such that a data path w is in L(A) iff the data
word sw is in L(A′).

It is known [16] that nonemptiness problem for data word
register automata is PSPACE-complete. The above lemma
shows that the PSPACE upper bound applies to data path au-
tomata. Moreover, one can verify that the PSPACE-hardness
reduction applies to such automata as well. Hence, we have

COROLLARY 4.3. The nonemptiness problem for regis-
ter data path automata is PSPACE-complete.

4.1 Regular data path queries

Our basic class of regular path queries on graphs with data
is based on register data path automata.

DEFINITION 4.4. A regular data path query (RDPQ) is
an expression Q = x

A−→ y where A is a register data path
automaton.

Given a data graph G, the result of the query Q(G) con-
sists of pairs of nodes (v, v′) such that there is a data path
w from v to v′ that belongs to L(A).

To evaluate RDPQs, we transform both a data graph G
and a k-register data path automaton A into NFAs over
an extended alphabet and reduce query evaluation to NFA
nonemptiness. More precisely, to evaluate Q(G), we do the
following:

1. Let D be the set of all data values in G.

2. Transform G = ⟨V,E, ρ⟩ into a graph G′ = ⟨V ′, E′⟩
over the alphabet Σ ∪D as follows:
• V ′ = {vs, vt | v ∈ V }
• E′ = {(vt, a, v′s) | (v, a, v′) ∈ E}∪

{(vs, ρ(v), vt) | v ∈ V }
Basically, we split each node v with a data value d into
a source node vs and a target node vt and add a d-
labeled edge between them; after that we restore the
edges from E so that they go from target to source
nodes. This is illustrated below.

v′t

d d′
a

⇓v v′

d a d′
vs vt v′s

3. Transform the automaton A = (Q, q0, F, τ0, (δw, δd))
into an NFA AD = (Q′, q′0, F

′, δ′) as follows:

• Q′ = Q×Dk;
• q′0 = (q0, τ0);
• F ′ = F ×Dk;
• δ′ includes two types of transitions.

(a) Whenever we have a transition (q, a, q′) in
δw, we add transitions ((q, τ), a, (q′, τ)) to δ′

for all τ ∈ Dk.
(b) Whenever we have a transition (q, c, I, q′) in

δd, we add transitions ((q, τ), d, (q′, τ ′)) if
d, τ |= c and τ ′ is obtained from τ by putting
d in positions from the set I .

For two nodes v, v′ of G, we turn G′ into an NFA AG′,v,v′

by letting vs be its initial state and v′t be its final state. Then
we have the following.

PROPOSITION 4.5. Let Q = x
A−→ y be an RDPQ, and

G a data graph whose data values form a set D ⊆ D. Then

(v, v′) ∈ Q(G) ⇔ L(AG′,v,v′ ×AD) ̸= ∅.

Thus, query evaluation, like in the case of the usual RPQs,
is reduced to automata nonemptiness, although this time the
automata are over larger alphabets. Since the construction
is polynomial in the size of G and exponential in the size
of A (as k gets into the exponent), we immediately get a
PTIME upper bound for data complexity and an EXPTIME
upper bound for combined complexity. By performing on-
the-fly nonemptiness checking for the product, we can lower
these bounds.

THEOREM 4.6. Data complexity of RDPQs over data
graphs is in NLOGSPACE, and the combined complexity of
RDPQs over data graphs is PSPACE-complete.

The bound for data complexity cannot be lowered as
there exist simple RPQs for which data complexity is
NLOGSPACE-complete.
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5. QUERIES BASED ON REGULAR EX-
PRESSIONS WITH MEMORY

Regular data path queries based on register automata have
acceptable complexity bounds: data complexity is the same
as for RPQs, and combined complexity, although exceeding
the bounds on conjunctive queries and RPQs, is the same
as for relational calculus or for RPQs extended with regu-
lar relations. Despite this, RDPQs as we defined them have
no chance to lead to a practical language as it is inconceiv-
able that the user will specify a register automaton over data
words. Even for queries such as RPQs and their extensions,
conditions are normally specified via regular expressions.

Our goal now is to introduce regular expressions that can
be used in place of register automata in data path queries.
Note that as long as they express languages accepted by reg-
ister automata, we shall achieve an NLOGSPACE bound on
data complexity by Theorem 4.6.

The first class of queries, studied in this section, is based
on an extension of regular expressions with memory that lets
us specify when data values are remembered and when they
are used. The basic idea is this: we can write expressions
like ↓x.a+[x=] saying: store the current data value in x and
check that after reading a word from a+ we see the same data
value (condition x= is true). This will define data words of
the form da . . . ad. Such expressions are relatively easy to
write and understand (much easier than automata), and the
complexity of their query evaluation will not exceed that of
register automata.

DEFINITION 5.1 (EXPRESSIONS WITH MEMORY).
Let Σ be a finite alphabet and x1, . . . , xk a set of variables.
Then regular expressions with memory are defined by the
grammar:

e := ε | a | e+ e | e · e | e+ | e[c] | ↓ x̄.e (3)

where a ranges over alphabet letters, c over conditions in
Ck, and x̄ over tuples of variables from x1, . . . , xk.

A regular expression with memory e is well-formed if it
satisfies two conditions:

• Subexpressions e+, e[c], and ↓ x̄.e are not allowed if e
reduces to ε. Formally, e reduces to ε if it is ε, or it is
e1+e2 or e1 ·e2 or e+1 or e1[c] or ↓ x̄.e1 where e1 (and
e2) reduce to ε.

• No variable appears in a condition before it appears
in ↓ x̄.

The class of well-formed regular expressions with memory
is denoted by REG(Σ[x1, . . . , xk]).

The extra condition of being well-formed is to rule out
pathological cases like ε[c] for checking conditions over
empty subexpressions, or a[x=] for checking equality with
a variable that has not been defined. In what follows we al-
ways assume that regular expressions with memory are well-
formed.

The intuition behind the expressions is that they process a
data path in the same way that the register automaton would,
by storing data values in variables, using these variables for
comparisons and moving through the word by reading a let-
ter from the finite alphabet. Note that when we bound a vari-
able we do not specify the scope of this binding. This means
that the variable can be used at any point after it was bounded
till the end of the expression and is analogous to how register
automata store and use data values.

EXAMPLE 5.2. We now give four examples of such ex-
pressions and languages they recognize, before formally
defining their semantics.

1. The expression ↓x.(a[x̸=])+ defines the language of
data paths where all edges are labeled a and the first
data value is different from all other data values. It
starts by binding x to the first data value; then it pro-
ceeds checking that the letter is a and condition x̸= is
satisfied, which is expressed by a[x ̸=]; the expression
is then put in the scope of + to indicate that the number
of such values is arbitrary.

2. The expression ↓x.(ab)+[x̸=] denotes the language of
data paths whose label is of the form ab . . . ab and for
which the first data value is different from the last.
Note that the order of + and condition is now differ-
ent: the condition is checked after verifying that the
label is in (ab)+, i.e., at the end of the word.

3. The expression ↓x.a+[x=] + ε denotes the language
of data paths where all labels are a and the first data
value is equal to the last. Note that one such data path
is simply of the form d, for d ∈ D, with label ε.

4. The language Leq of data paths in which two data val-
ues are the same (see Section 3) is given by the expres-
sion Σ∗ · ↓x.Σ+[x=] ·Σ∗, where Σ is the shorthand for
a1+. . .+al, whenever Σ = {a1, . . . , al} and Σ∗ is the
shorthand for Σ+ + ε. It says: at some point, bind x,
and then check that after one or more edges, we have
the same data value.

Semantics First, we define the concatenation of two data
paths w = d1a1 . . . an−1dn and w′ = dnan . . . am−1dm as
w·w′ = d1a1 . . . an−1dnan . . . am−1dm. Note that it is only
defined if the last data value of w equals the first data value
of w′. The definition naturally extends to concatenation of
several data paths. If w = w1 · · ·wl, we shall refer to it as a
splitting of a data path (into w1, . . . , wl).

The semantics is defined by means of a relation (e, w, σ) ⊢
σ′, where e ∈ REG(Σ[x1, . . . , xk]) is a regular expression
with memory, w is a data path, and both σ and σ′ are k-tuples
over D ∪ {⊥} (the symbol ⊥ means that a register has not
been assigned yet). The intuition is as follows: one can start
with a memory configuration σ (i.e., values of x1, . . . , xk)
and parse w according to e in such a way that at the end
the memory configuration is σ′. The language of e is then
defined as

L(e) = {w | (e, w, ⊥̄) ⊢ σ for some σ},
where ⊥̄ is the tuple of k values ⊥.
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The relation ⊢ is defined inductively on the structure of
expressions. Recall that the empty word corresponds to a
data path with a single data value d (i.e., a single node in
a data graph). We use the notation σx̄=d for the valuation
obtained from σ by setting all the variables in x̄ to d.

• (ε, w, σ) ⊢ σ′ iff w = d for some d ∈ D and σ′ = σ.
• (a,w, σ) ⊢ σ′ iff w = d1ad2 and σ′ = σ.
• (e1 · e2, w, σ) ⊢ σ′ iff there is a splitting w = w1 · w2

of w and a valuation σ′′ such that (e1, w1, σ) ⊢ σ′′ and
(e2, w2, σ

′′) ⊢ σ′.
• (e1 + e2, w, σ) ⊢ σ′ iff (e1, w, σ) ⊢ σ′ or (e2, w, σ) ⊢
σ′.

• (e+, w, σ) ⊢ σ′ iff there are a splitting w = w1 · · ·wm

of w and valuations σ = σ0, σ1, . . . , σm = σ′ such
that (w,wi, σi−1) ⊢ σi for all i ∈ [m].

• (↓ x̄.e, w, σ) ⊢ σ′ iff (e, w, σx̄=d) ⊢ σ′, where d is the
first data value of w.

• (e[c], w, σ) ⊢ σ′ iff (e, w, σ) ⊢ σ′ and σ′, d |= c,
where d is the last data value of w.

Take note that in the last item we require that σ′, and not σ,
satisfies c. The reason for this is that our initial assignment
might change before reaching the end of the expression and
we want this change to be reflected when we check that con-
dition c holds.

Translation into automata We now show that regular ex-
pressions with memory can be efficiently translated into reg-
ister automata.

PROPOSITION 5.3. For each regular expression with
memory e ∈ REG(Σ[x1, . . . , xk]) one can construct, in
DLOGSPACE, a k-register data path automaton Ae such that
L(e) = L(Ae).

More precisely, the automaton Ae = (Q, q0, F, ⊥̄, δ)
(over data domain D ∪ {⊥}) has the property that for any
two valuations σ, σ′ and a data path w, we have (e, w, σ) ⊢
σ′ iff the automaton (Q, q0, F, σ, δ) has an accepting run on
w that ends with the register configuration σ′.

5.1 Query evaluation

We now deal with the following queries.

DEFINITION 5.4. A regular data path query with memory
is an expression Q = x

e−→ y, where e is regular expression
with memory.

Given a data graph G, the result of the query Q(G) con-
sists of pairs of nodes (v, v′) such that there is a data path
w from v to v′ that belongs to L(e).

The class of these queries is denoted by RDPQmem.

Using Proposition 5.3 combined with Theorem 4.6 we im-
mediately obtain:

COROLLARY 5.5. Data complexity of RDPQmem
queries is in NLOGSPACE.

From the same connection we also get the upper bound
(PSPACE) for combined complexity. It turns out that we
can achieve PSPACE-hardness with expressions with mem-
ory (see the appendix for the proof). Thus, we have

THEOREM 5.6. Combined complexity of evaluating
RDPQmem queries is PSPACE-complete.

The question is whether we can reduce this complexity –
ideally to PTIME, but at least to NP, to match the combined
complexity of conjunctive queries. The following corollary
(to the proof of Theorem 5.6) shows that many restrictions
will not work.

COROLLARY 5.7. Combined complexity of evaluating
RDPQmem queries remains PSPACE-hard for expressions
that use at most one + and ̸= symbol, are specified over a
singleton alphabet Σ = {a}, and are evaluated over a fixed
graph.

In one case, we can lower the complexity.

PROPOSITION 5.8. Combined complexity of RDPQmem
queries whose regular expressions do not have subexpres-
sions of the form e+ is NP-complete.

The restriction, while achieving better combined complex-
ity, is too strong, as it effectively restricts one to languages of
data paths whose projections on Σ∗ are finite. All the exam-
ples we saw earlier use subexpressions e+. So if we want to
achieve tractability, we need to look at a very different way
of restricting expressions. This is what we do in the next
section.

6. QUERIES BASED ON REGULAR EX-
PRESSIONS WITH EQUALITY

The class of regular expressions for data paths that lets us
lower the combined complexity of queries to PTIME permits
testing for equality or inequality of data values at the begin-
ning or the end of a data (sub)path. For example, (Σ+)̸=
denotes the set of all data paths having different first and last
data values. The language Leq of data paths on which two
data values are the same is given by Σ∗ · (Σ+)= · Σ∗: it
checks for the existence of a nonempty subpath (with label
in Σ+) such that the nodes at the beginning and at the end of
this subpath have the same data value, indicated by subscript
=.

DEFINITION 6.1 (EXPRESSIONS WITH EQUALITY).
Let Σ be a finite alphabet. Then regular expressions with
equality are defined by the grammar:

e := ε | a | e+ e | e · e | e+ | e= | e̸= (4)

where a ranges over alphabet letters.

The language L(e) of data paths denoted by a regular ex-
pression with equality e is defined as follows.
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• L(ε) = {d | d ∈ D}.
• L(a) = {dad′ | d, d′ ∈ D}.
• L(e · e′) = L(e) · L(e′).
• L(e+ e′) = L(e) ∪ L(e′).
• L(e+) = {w1 · · ·wk | k ≥ 1 and each wi ∈ L(e)}.
• L(e=) = {d1a1 . . . an−1dn ∈ L(e) | d1 = dn}.
• L(e ̸=) = {d1a1 . . . an−1dn ∈ L(e) | d1 ̸= dn}.

These expressions sacrifice the ability to check condi-
tions as one goes along the path, making it only possible to
check conditions at the start and the end of chosen subex-
pressions. Looking at Example 5.2, all languages except
the first can be defined by regular expressions with mem-
ory. We already saw how to do the language Leq; the ex-
pression ↓x.(ab)+[x ̸=] is equivalent to (ab)+̸=. The expres-
sion ↓x.(a[x̸=])+ describing the language of data paths in
which all data values are different from the first one, requires
checking a condition multiple times. We now show that this
goes beyond the power of expressions with equality, which
are strictly weaker than expressions with memory.

PROPOSITION 6.2. 1. For each regular expression
with equality, there is an equivalent regular expression
with memory.

2. For the regular expression with memory ↓x.(a[x̸=])+

there is no equivalent regular expression with equality.

6.1 Query evaluation

We now deal with the following queries.

DEFINITION 6.3. A regular data path query with equality
is an expression Q = x

e−→ y, where e is regular expression
with equality.

Given a data graph G, the result of the query Q(G) con-
sists of pairs of nodes (v, v′) such that there is a data path
w from v to v′ that belongs to L(e).

The class of these queries is denoted by RDPQ=.

Combining Propositions 5.3 and 6.2 we see that the power
of regular expressions with equality is subsumed by register
automata; hence combined with Theorem 4.6 we immedi-
ately obtain:

COROLLARY 6.4. Data complexity of RDPQ= queries
is in NLOGSPACE.

We now show that combined complexity for RDPQ=
queries is tractable, i.e., is even better than the combined
complexity of conjunctive queries. Our outline of the
polynomial-time algorithm is as follows. We start with a
data graph G = ⟨V,E, ρ⟩ whose data values form a (finite)
set D ⊂ D and a regular expression with equality e.

1. We first show that we can efficiently generate a
context-free grammar Ge,D whose language corre-
sponds to the set of all data paths from L(e)

whose data values are in D. More precisely,
every word in L(Ge,D) will be of the form
d1a1d2d2a2d3d3 . . . dn−1dn−1an−1dn, where di ∈ D
and ai ∈ Σ. We say that this word, in which each
data value, except the first and the last, appears twice,
corresponds to the data path d1a1d2a2d3 . . . an−1dn.

2. We then convert Ge,D, in polynomial time, into an
equivalent PDA A(Ge,D).

3. Given two nodes v, v′ in G, we construct an NFA
AG,v,v′ . To do so we first define a graph G′ = ⟨V ′, E′⟩
that will reflect the fact that all data values from G have
to be doubled if they appear on a path as intermediate
nodes. We define G′ = ⟨V ′, E′⟩ as follows:
• V ′ = V ∪ {ũ, û | u ∈ V } ∪ {s, t}
• E′ = {(v1, a, ṽ2) | (v1, a, v2) ∈ E}∪

{(ũ, ρ(u), û), (û, ρ(u), u) | u ∈ V }
Similarly as when dealing with register automata we
triple each node and add an edge between new nodes
that will reflect the fact that every intermediate data
value will have to be doubled. This is illustrated below.

d1 d1 a d2 d2

a

ṽ1 v̂1 v1 ṽ2 v̂2 v2

v1 v2

d2d1

⇓

In addition, we also add edges (s, ρ(v), v) and
(ṽ′, ρ(v′), t) to E′. We now get the automaton AG,v,v′

as the automaton obtained from G′ by setting s as the
initial and t as the final state. Note that the construction
of the automaton AG,v,v′ is polynomial.

4. Finally, for Q = x
e−→ y we have (v, v′) ∈ Q(G) iff

the language AG,v,v′ has nonempty intersection with
the language generated by the grammar Ge,D. This fol-
lows by an argument similar to the proof of Proposition
4.5.
Since the intersection of a context-free language and
a regular language is context-free and can be obtained
by the product construction of a PDA and an NFA, this
means that (v, v′) ∈ Q(G) iff the product A(Ge,D) ×
AG,v,v′ defines a nonempty language. This product is
a PDA, so we can check its nonemptiness in polyno-
mial time, giving us a polynomial algorithm for query
evaluation.

Steps 2, 3, and 4 above use the standard constructions of
converting CFGs into PDAs, taking products, and checking
PDAs for nonemptiness. So what is missing is the construc-
tion of the CFG Ge,D, which we show next.

Regular expressions with equality into CFGs Assume that
we have a finite set D of data values. We now inductively
construct CFGs Ge,D for all regular expressions with equal-
ity. The terminal symbols of these CFGs will be Σ plus
all elements of D. All nonterminals in Ge,D will be of the
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form Ae′ and Add′

e′ , where e′ ranges over subexpressions of
e and d, d′ ∈ D. Intuitively, words derived from Add′

e′ will
correspond to (in a way previously described) data paths in
L(e′) with data values from D that start with d and end with
d′; words derived from Ae′ will correspond to data paths in
L(e′) with data values from D. The start symbol for the
grammar corresponding to the expression e will be Ae.

The productions of the grammars Ge,D are now defined
inductively as follows.

• If e = ε, we have productions Aε →
∨

d∈D Add
ε and

Add
ε → d for each d ∈ D.

• If e = a, for a ∈ Σ, we have productions Ae →∨
d,d′∈D Add′

e and Add′

e → dad′ for all d, d′ ∈ D.

• If e = e1 · e2, we have productions Ae →∨
d,d′∈D Add′

e and Add′

e →
∨

d′′∈D Add′′

e1 Ad′′d′

e2 for all
d, d′ ∈ D together with all the productions of the
grammars Ge1,D and Ge2,D.

• If e = e1 + e2, we have productions Ae →∨
d,d′∈D Add′

e and Add′

e → Add′

e1 |Add′

e2 for all d, d′ ∈
D together with all the productions of the grammars
Ge1,D and Ge2,D.

• If e = (e1)
+, we have productions Ae →∨

d,d′∈D Add′

e and Add′

e → Add′

e1 |
∨

d′′∈D Add′′

e1 Ad′′d′

e

for all d, d′ ∈ D together with all the productions of
the grammar Ge1,D.

• If e = (e1)=, we have productions Ae →
∨

d∈D Add
e

and Add
e → Add

e1 for all d ∈ D together with all the
productions of the grammar Ge1,D.

• If e = (e1)̸=, we have productions Ae →∨
d,d′∈D, d̸=d′ Add′

e and Add′

e → Add′

e1 for all d, d′ ∈ D

with d ̸= d′, together with all the productions of the
grammar Ge1,D.

It is clear from the construction that all words generated
by this grammar(with the sole exception of the empty word)
have all of their intermediate data values (i.e. letters corre-
sponding to values in D) doubled, except the first and the
last one.

Note that with these expressions we assume that ε can
appear only when denoting the empty word and will be re-
moved otherwise. We require this, so that we would not get
productions that produce objects that are not data paths, such
as e.g. ddd for the expression ε · ε · ε. Note that this is not a
problem, since all expressions can be rewritten to be of this
form in DLOGSPACE.

The main result connecting these CFGs with languages of
regular expressions with equality is this. Recall that when
we say that a word over Σ and D corresponds to a data path
with values in D, we mean that it equals the data path with
all the data values, except the first and the last, doubled.

PROPOSITION 6.5. The language of words derived by
each CFG Ge,D corresponds to the set of data paths in L(e)

whose data values come from D. Furthermore, the set of
words derived from each nonterminal Add′

e corresponds to
the set of data paths in L(e) which start with d, end with d′,
and whose data values come from D.

Moreover, the CFG Ge,D can be constructed in polynomial
time from e and D.

This, together with the algorithm shown above, finally
gives us tractability of combined complexity.

THEOREM 6.6. Combined complexity of RDPQ=
queries is in PTIME.

The correctness of the procedure shown in this section is
proved in the appendix.

7. CONJUNCTIVE REGULAR PATH
QUERIES WITH DATA

A standard extension of RPQs is that to conjunctive RPQs,
or CRPQs [12, 18, 22]. These add conjunctions of RPQs
and existential quantification over variables, in the same way
as conjunctive queries extend atomic formulae of relational
calculus. We now look at similar extensions of RPQs with
data.

Formally, a conjunctive regular data path query (CRDPQ)
is an expression of the form

Ans(z̄) :=
∧

1≤i≤m

xi
Li−→ yi, (5)

where m > 0, each xi
Li−→ yi is a regular data path query (in

one of the formalisms studied here), and z̄ is a tuple of vari-
ables among x̄ and ȳ. A query with the head Ans() (i.e., no
variables in the output) is called a Boolean query. Depend-
ing on which RDPQs are used in (5) we shall be referring
to CRDPQs, or CRDPQs with memory, or CRDPQs with
equality.

These queries extend RDPQs with conjunction, as well as
existential quantification: variables that appear in the body
but not in the head (i.e., variables in x̄ and ȳ but not z̄) are
assumed to be existentially quantified.

The semantics of a CRDPQ Q of the form (5) over a data
graph G = ⟨V,E, ρ⟩ is defined as follows. Given a valu-
ation ν :

∪
1≤i≤m{xi, yi} → V , we write (G, ν) |= Q if

(ν(xi), ν(yi)) is in the answer of xi
Li−→ yi on G, for each

i = 1, . . . ,m. Then Q(G) is defined as the set of all tuples
ν(z̄) such that (G, ν) |= Q. If Q is Boolean, we let Q(G) be
true if (G, ν) |= Q for some ν (that is, as usual, the empty
tuple models the Boolean constant true, and the empty set
models the Boolean constant false).

As with RDPQs, we study data and combined complexity
of the query evaluation problem, i.e. checking, for a CRDPQ
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Query answering RDPQ RDPQmem
RDPQmem

over finite words RDPQ=

data complexity NLOGSPACE-c. NLOGSPACE-c. NLOGSPACE-c. NLOGSPACE-c.
combined complexity PSPACE-c. PSPACE-c. NP-c. PTIME

(a) for single data path query

Query answering CRDPQ CRDPQmem CRDPQ=

data complexity NLOGSPACE-c. NLOGSPACE-c. NLOGSPACE-c.
combined complexity PSPACE-c. PSPACE-c. NP-c.

(b) for conjunctive queries

Figure 2: Summary of complexity results for classes of queries

Q, a data graph G and a tuple of nodes v̄, whether v̄ ∈ Q(G)
(for data complexity the query Q is fixed).

First, we show that for all the three formalisms based on
register automata and regular expressions for them, no cost
is incurred by going from RDPQs to CRDPQs as far as data
complexity is concerned.

THEOREM 7.1. Data complexity of conjunctive regular
data path queries remains NLOGSPACE-complete if they are
specified using register automata, regular expressions with
memory, or regular expressions with equality.

PROOF. Consider a query of the form (5) and let z̄′ be the
tuple of variables from x̄ and ȳ that is not present in z̄. To
check whether v̄ ∈ Q(G), we need to check whether there
exists a valuation v̄′ for z̄′ so that under that valuation each
of the RDPQs in the conjunction in (5) is true.

We know from the previous sections that checking
whether v

L−→ v′ evaluates to true for some nodes v, v′

can be done with NLOGSPACE data complexity for all the
formalisms mentioned in the theorem. Thus, given a data
graph G = ⟨V,E, ρ⟩, we can enumerate all the tuples from
V |z̄′|, and for each of them check the truth of all the RD-
PQs in conjunction (5). Since we deal with data complexity,
|z̄′| is fixed, and thus such an enumeration can be done in
logarithmic space, showing that query evaluation remains in
NLOGSPACE.

For combined complexity, we have the same bounds for
CRDPQs given by register automata and expressions with
memory as in the case of a single RDPQ. For regular expres-
sions with equality we get NP-completeness, which matches
the combined complexity of conjunctive queries and CR-
PQs.

THEOREM 7.2. Combined complexity of conjunctive reg-
ular data path queries remains PSPACE-complete if they are
specified using register automata or regular expressions with
memory. It is NP-complete if they are specified using regular
expressions with equality.

PROOF. PSPACE-hardness follows from the correspond-
ing results for RDPQs and RDPQs with memory, and NP-
hardness follows from NP-hardness of relational conjunc-
tive queries. Thus we show upper bounds. The algorithm

(using notations from the proof of Theorem 7.1) is the same
in all three cases: guess a tuple v̄′ of nodes for z̄′, and check
whether all the RDPQs in conjunction (5) are true. We know
that for register automata and regular expressions with mem-
ory the latter can be done in PSPACE; since PSPACE is closed
under nondeterministic guesses we have the PSPACE upper
bound for combined complexity. For regular expressions
with equality, an NP upper bound for the algorithm follows
from the PTIME bound for combined complexity for RDPQs
with equality.

8. SUMMARY AND FUTURE WORK

The tables in Figure 2 give the summary of data and com-
bined complexity for various query languages studied in this
paper. As we introduced models that expand the usual RPQs
and CRPQs that handle only edge labels and can now ma-
nipulate data in the nodes, we get, as expected, a slightly
higher complexity bounds for combined complexity. How-
ever, using a large class of regular expressions that can ex-
press many properties of interest, we can match the usual
bound of RPQs. For CRPQs with data, the bounds are only
slightly higher than those for data-free CRPQs; in some
cases they coincide with bounds for CRPQs extended with
comparisons of paths, and for some, there is no price to pay
for incorporating data comparisons into queries.

This is an initial investigation on combining data and
topology in graph query languages, and we plan to extend
this work in several directions. One of them has to do with
optimizing queries, in particular, with studying containment
and equivalence as in [18, 25]. We are also interested in han-
dling constraints in graph query languages [2, 26]. Another
direction is to study extensions with path comparisons as in
[4], combined with querying data. We also plan to study
incomplete data, by extending patterns in [5] with data, po-
tentially incomplete.

Yet another direction we intend to pursue is to define our
expressions over data words, a setting usually treated in the
literature, and try to study their classical language theoretic
properties, such as membership testing, nonemptiness, con-
tainment, etc. To lower complexity we might even consider
restricting regular expressions with memory in such a way
that equality tests are more explicit, while still allowing them
to be far more expressive than expressions with equality. We
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would also like to specify a class of expressions that pre-
cisely capture register automata in the same manner that
regular expressions capture finite state automata. We have
strong indications that we will be able to do so with regular
expressions with memory.
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