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ABSTRACT
A universal model of a database D and a set Σ of integrity
constraints is a database that extends D, satisfies Σ, and
is most general in the sense that it contains sound and
complete information. Universal models have a number of
applications including answering conjunctive queries, and
deciding containment of conjunctive queries, with respect to
databases with integrity constraints. Furthermore, they are
used in slightly modified form as solutions in data exchange.
In general, it is undecidable whether a database possesses
a universal model, but in the past few years researchers
identified various settings where this problem is decidable,
and even efficiently solvable.

This paper focuses on computing universal models under fi-
nite sets of guarded TGDs, non-conflicting keys, and negative
constraints. Such constraints generalize inclusion dependen-
cies, and were recently shown to be expressive enough to
capture certain members of the DL-Lite family of description
logics. The main result is an algorithm that, given a database
without null values and a finite set Σ of such constraints,
decides whether there is a universal model, and if so, outputs
such a model. If Σ is fixed, the algorithm runs in polynomial
time. The algorithm can be extended to cope with databases
containing nulls; however, in this case, polynomial running
time can be guaranteed only for databases with bounded
block size.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computation
on discrete structures; H.2.4 [Database Management]:
Systems—Relational databases, rule-based databases, query
processing
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Keywords
data exchange, chase, core, guarded Datalog +/-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2012 March 26–30, 2012, Berlin, Germany
Copyright 2012 ACM 978-1-4503-0791-8/11/0003 ...$10.00.

1. INTRODUCTION
Since its introduction in the late seventies, the chase pro-
cedure [1, 33, 4] has become an indispensable tool with
numerous applications in database theory. Initially, it was
developed to decide the implication problem for various types
of data dependencies (see, e.g., [1, 33, 4]). Then researchers
realized that the chase is not only useful to solve the implica-
tion problem, but also a number of other problems including
containment of conjunctive queries in the presence of data de-
pendencies [28]; answering conjunctive queries on databases
with data dependencies [28], in data integration [31], and
over ontologies [7]; and computing universal solutions in data
exchange [17].

The chase is a procedure that “repairs” a given database
instance I so that the resulting database satisfies a set Σ
of constraints. Typical constraints the chase is able to deal
with are tuple-generating dependencies (TGDs) and equality-
generating dependencies (EGDs) [4] (which together capture
most of the data dependencies in the literature, including
inclusion dependencies, functional dependencies, join depen-
dencies, and multivalued dependencies). TGDs enforce the
presence of certain tuples based on certain other tuples in
the database, while EGDs assert that certain values that
occur in certain tuples are equal. Given I and Σ as input, the
chase adds tuples to I and identifies values as enforced by the
TGDs and EGDs in Σ in order to arrive at a model of I and
Σ, that is, a database J ⊇ I such that J |= Σ (if I contains
nulls, then J ⊇ I must be replaced by the existence of a
homomorphism from I to J). If this procedure terminates,
it yields not only a model J of I and Σ. The distinguishing
feature of the chase is that this model J is universal in the
sense that it admits homomorphisms into all models of I and
Σ [4, 17, 15].

So, a universal model of an database I and a set Σ of
constraints is a finite model J of I and Σ that admits homo-
morphisms into all models K of I and Σ [15]. It is important
here that J itself is finite, while the models K might well
be infinite. If we require only homomorphisms into finite
models, as is usually done in data exchange [17], J is called
weak universal model. Universal models (strong or weak)
may exist, even if the chase does not terminate.

Having access to an arbitrary universal model J of I and
Σ is often enough in situations where, traditionally, the chase
procedure was used (see, e.g., [15]).

Example 1.1. We consider the problem of answering a
Boolean conjunctive query q on I with respect to Σ. This
problem asks whether q is true in all models of I and Σ,
which is denoted by I ∪ Σ |= q. If J is a universal model of
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I and Σ, then I ∪ Σ |= q is equivalent to J |= q. Indeed, if
J |= q, then for all models K of I and Σ we have K |= q,
since there is a homomorphism from J to any such model K,
and conjunctive queries are preserved under homomorphisms.
Therefore, I∪Σ |= q. On the other hand, if we have I∪Σ |= q,
then, clearly, J |= q.

It should be mentioned, however, that the chase procedure
cannot always be replaced by a universal model. For exam-
ple, there are efficient algorithms for evaluating conjunctive
queries on the possibly infinite result of the chase procedure
if the set of constraints has certain structural properties [28,
11, 5, 6, 7, 9, 8] (see also Section 3). The main idea underly-
ing these algorithms is that, in order to evaluate a Boolean
conjunctive query on the possibly infinite chase result, it
suffices to run the chase procedure for a finite number of
steps (which can be determined from the set of constraints),
and to evaluate the query on the resulting database (which
might turn out to be not a model). A universal model might
still be of interest in such a case. If it is possible to compute a
universal model, then one could evaluate conjunctive queries
directly on that model, without recomputing the finite initial
portion of the chase result each time; if this is not possible,
then one could use the techniques proposed in the above-cited
papers.

A slight variation of the concept of a universal model is
even an essential part of the theory of data exchange [17].
Data exchange is the problem of translating databases from a
source schema into a target schema, whereby providing access
to the source database through a materialized database over
the target schema. Formally, we are given a source schema
σ, a target schema τ , a source database I over σ, and a
set Σ of constraints over the union of the two schemas σ
and τ that describes the relationship between source and
target. Typically, the constraints in Σ are particular TGDs
and EGDs—source-to-target TGDs which enforce certain
tuples in the target if certain other tuples in the source are
present, and target TGDs and target EGDs which are TGDs
and EGDs expressed over the target schema. The goal is to
compute a solution for I under Σ, which is a finite database J
over τ such that the union I∪J of the two databases I and J
is a model of I and Σ. A universal solution for I under Σ is a
solution that admits homomorphisms into all solutions for I
under Σ. In [17], the case was made that universal solutions
have many properties that make them the preferable solutions
in data exchange. For the settings typically considered in
data exchange, there is a tight relationship between universal
solutions and weak universal models: a solution J for I under
Σ is a universal solution if and only if I∪J is a weak universal
model of I and Σ.

In this light, an important problem is to decide whether a
database and a set of constraints admits a strong (resp., weak)
universal model, and if so, to compute one. Unfortunately,
it is undecidable whether a strong (resp., weak) universal
model of a database and a set of TGDs and EGDs exists.
This is even true if we restrict attention to some fixed finite
set of TGDs [27] (see also [26, Section 2.3] for a proof tailored
directly for universal models). On the other hand, there is
a long line of research on finding more and more general
structural properties of sets Σ of TGDs and EGDs such that
for all databases I, the chase terminates on input I and Σ
[4, 14, 17, 15, 35, 29, 30, 22, 19]. For all these properties, it
is possible to decide whether there is a universal model of I
and Σ, and if so, to compute one, in time O(nk), where n is

the size of I and k depends only on Σ. Thus, if Σ is fixed,
these properties guarantee polynomial-time algorithms for
computing universal models.

There are still important classes C of constraints such
that given Σ ⊆ C, the chase may not terminate for all
databases I and Σ, hence Σ does not exhibit any of the above
structural properties. For example, this is true for the class
of inclusion dependencies (see, e.g., Section 2.4). According
to [24], together with functional dependencies, inclusion
dependencies are the most widely used integrity constraints
in practice. Recently, it was shown that sets of linear TGDs
(which includes sets of inclusion dependencies), together with
certain other constraints, called negative constraints and non-
conflicting keys (a definition will be given in Section 6.1), are
expressive enough to capture two members of the DL-Lite
family of description logics [7]. Furthermore, [7] shows that
it is possible to evaluate conjunctive queries on the possibly
infinite chase result in time O(nk), where n is the size of I
and k depends only on Σ and the query. This result holds for
other, more expressive sets of constraints like sets of guarded
TGDs or sticky TGDs together with negative constraints
and non-conflicting keys [9, 8].

Results. In this paper, we study the complexity of the
following problem: Given a database I and a finite set Σ of
guarded TGDs (and possibly other constraints like negative
constraints and non-conflicting keys), decide whether there
is a universal model of I and Σ, and if so, compute such
a model. We focus mainly on the data complexity, which
measures the complexity as a function of the size of I.

The main result (Theorem 5.1) is that the following prob-
lem can be solved in time O(nk), where n is the size of I,
and k depends only on Σ:

Input: a database instance I without null values,
and a finite set Σ of guarded TGDs

Task: Decide whether there a universal model of
I and Σ. If so, compute a core model of I
and Σ.

Here, a core model is the core of the universal models in-
troduced in [18], which, informally, is the smallest universal
model of I and Σ.

We generalize the main result to more general sets of
constraints, and to databases with nulls. On the one hand,
we show that it is not problematic if Σ additionally contains
negative constraints and non-conflicting keys (Theorem 6.5).
On the other hand, we show that databases with nulls can be
handled, at the price of an increased complexity: the problem
becomes NP-hard. However, if we restrict our attention to
databases with bounded block size, which typically arise in
data exchange as the result of “applying” the source-to-target
TGDs, the problem can still be solved in time O(nk), where
k now depends both on Σ and on the maximum number of
nulls in a block of the input database.

As an additional result, we show that for the sets Σ of
constraints considered in the above results, strong universal
models and weak universal models coincide, so that the
algorithms can be used both to decide the existence of strong
universal models as well as weak universal models, and to
compute such a model if it exists (Proposition 7.2).

Organization. The paper is structured as follows. Section 2
presents basic notation and results. Section 3 gives a brief
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overview of related work on computing universal models.
Section 4 introduces an important technical tool: guarded
chase forests. Using guarded chase forests, we then prove in
Section 5 that for databases I without null values, and finite
sets Σ of guarded TGDs, universal models can be computed
in time O(nk), where n is the size of I and k depends only on
Σ. This result is extended in Section 6 to more general sets
of constraints, and to databases with nulls. Furthermore, in
Section 7 we show that strong and weak universal models
coincide under finite sets of guarded TGDs.

2. BASICS
This section gives basic notation and results needed through-
out the paper. We let [m,n] be the set of all integers p
with m ≤ p ≤ n, and we define [n] := [1, n]. Mappings
f : A→ B are extended to tuples ā = (a1, . . . , ak) over A via
f(ā) := (f(a1), . . . , f(ak)).

2.1 Databases
A schema is a finite set σ of relation symbols R, where
each R ∈ σ has an arity ar(R) ≥ 1. A σ-instance I maps
each R ∈ σ to a relation RI of arity ar(R). Instances are
finite if not indicated otherwise. The active domain of I
(i.e., the set of all values that occur in I) is denoted by
dom(I). We assume that dom(I) ⊆ Dom, where Dom is the
union of two fixed disjoint infinite sets—the set Const of all
constants, and the set Null of all (labeled) nulls. Constants
are denoted by letters c, d, e and variants like c′, c1. Nulls
serve as placeholders, or variables, for unknown constants,
and we will denote them by ⊥ and variants like ⊥′,⊥1. Let
const(I) := dom(I) ∩ Const and nulls(I) := dom(I) ∩ Null.
A ground instance is an instance without nulls. The size of
an instance I is ‖I‖ :=

∑
R∈σ ar(R) · |RI |.

An atom is an expression of the form R(ā), where R is

a relation symbol, and ā ∈ Domar(R). We often view an
instance I as the set of all atoms R(ā) with ā ∈ RI . This
enables us to apply set theoretic notation to instances. For
example, we write I ∪ J , I ∩ J , and I \ J for the union,
intersection, and difference of two instances I and J , and
I ⊆ J if I is a subinstance of J . Given a mapping f : Dom→
Dom, we let f(I) be the instance {R(f(ā)) | R(ā) ∈ I}.

Let I and J be σ-instances. A homomorphism from I to J
is a mapping h : dom(I)→ dom(J) such that h(I) ⊆ J , and
h(c) = c for all c ∈ const(I). We write I → J if there is a
homomorphism from I to J . If I → J and J → I, we call I
and J homomorphically equivalent. An isomorphism from I
to J is a bijective homomorphism h from I to J such that h−1

is a homomorphism from J to I. If there is an isomorphism
from I to J , we say that I and J are isomorphic, and denote
this by I ∼= J . An instance J ⊆ I is a core of I if I → J
and I 6→ K for every K ( J . Each finite instance has a
core, and cores of homomorphically equivalent instances are
isomorphic [25]. In particular, every two cores of an instance
are isomorphic.

For a σ-instance I, let qI be the canonical query of I. That
is, fix an enumeration ⊥1, . . . ,⊥k of all the nulls in I, and an
enumeration R1(ū1), . . . , Rn(ūn) of all the atoms in I. Then
qI is the Boolean conjunctive query ∃x1 · · · ∃xk

∧n
i=1 Ri(v̄i),

where each v̄i is obtained from ūi by replacing each occur-
rence of a null ⊥j in ūi with xj . There is a tight connec-
tion between canonical queries and homomorphisms, first
observed by Chandra and Merlin [13]: J |= qI iff I → J .

2.2 Constraints
We write ϕ(x1, . . . , xk) to denote a formula ϕ with free
variables {x1, . . . , xk}. Given such a formula ϕ(x1, . . . , xk),
values a1, . . . , ak ∈ Dom, and an instance I, we write I |=
ϕ(a1, . . . , ak) if ϕ is satisfied in I under the assignment
mapping xi to ai for every i ∈ [k]. By referring to the
atoms of ϕ(a1, . . . , ak), where ϕ is a conjunction of relational
atomic formulas, we mean the set of all atoms obtained from
an atomic formula in ϕ by replacing each xi with ai. Let
dom(ϕ) be the set of all constants that occur in ϕ.

As constraints we consider tuple-generating dependencies
(TGDs) and equality-generating dependencies (EGDs) [4].
A TGD over σ is an FO-sentence θ = ∀x̄∀ȳ (ϕ(x̄, ȳ) →
∃z̄ ψ(x̄, z̄)) over σ, where ϕ and ψ are conjunctions of rela-
tional atomic formulas. We call body(θ) = ϕ the body of θ,
and head(θ) = ψ its head. A tgd θ is guarded if there is an
atom in body(θ), called guard, that contains all variables that
occur in body(θ) [6]. A linear TGD (also known as local-as-
view TGD) is a TGD that contains precisely one atom in its
body [6]. An inclusion dependency (ID) is a TGD of the form
∀x̄∀ȳ (R(ū) → ∃z̄ S(v̄)) such that no variable occurs twice
in ū or v̄. Note that IDs are linear, and that linear TGDs
are guarded. An equality-generating dependency (EGD) over
σ is an FO-sentence over σ of the form ∀x̄ (ϕ(x̄)→ y = z),
where ϕ is a conjunction of relational atomic formulas, and
y, z are variables in x̄.

To simplify the presentation, we will assume that TGDs
do not contain any constants. It is not hard to adapt this
paper’s results to TGDs with constants.

2.3 Universal Models
Given a σ-instance I and a set Σ of constraints over σ, a
model of I and Σ is a possibly infinite σ-instance J such that
I → J and J |= Σ. Note that I → J boils down to I ⊆ J if
I is ground.

A universal model of I and Σ is a finite model J of I and
Σ such that for all models K of I and Σ we have J → K
[15]. It is important here that J is finite, but it must admit
homomorphisms into all models, including infinite ones. If J
is not required to be finite, we call J quasi-universal model
of I and Σ. Universal models are sometimes called strong
universal models. Certain applications (e.g., data exchange)
require weak universal models, which are only required to
admit homomorphisms into all finite models. More precisely,
a weak universal model of I and Σ is a finite model J of I
and Σ such that for all finite models K of I and Σ we have
J → K [15]. Every (strong) universal model of I and Σ is
a weak universal model of I and Σ, but not necessarily vice
versa [15]. We shall see in Section 7 that the converse is true
if Σ is a finite set of guarded TGDs.

In general, there may be no universal model (strong or
weak) for I and Σ, even when Σ is a finite set of IDs.

Example 2.1. Consider θ := ∀x∀y(E(x, y)→ ∃z E(y, z))
and the instance I := {E(c, d)}, where c and d are distinct
constants. It is not hard to see that there is no weak universal
model (and hence no strong one) of I and Σ := {θ}.

Suppose, to the contrary, that J is a weak universal
model of I and Σ. Since J is finite and J |= θ, there is
a largest integer n ≥ 1 such that there are distinct values
a0, a1, . . . , an ∈ dom(J) with a0 = c, a1 = d, (ai−1, ai) ∈ EJ
for every i ∈ [n], and (an, ai) ∈ EJ for some i ≤ n. Let
K be a cycle on n + 2 nodes. That is, pick a sequence
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e0, e1, . . . , en+1 of distinct constants with e0 = c and e1 = d,
and let K = {E(ei−1, ei) | i ∈ [n+ 1]} ∪ {E(en+1, e0)}. Then
it is clear that J 6→ K, which, since K is a finite model of I
and Σ, means that J is not weakly universal.

Furthermore, there is a schema σ, and a finite set Σ of
TGDs over σ such that it is undecidable whether there is
a (strong or weak) universal model of a given ground σ-
instance I and Σ [27] (see [26] for a proof tailored directly
for universal models). Nevertheless, universal models can
often be computed via the chase, which we introduce below.

Note that every two universal models of I and Σ are
homomorphically equivalent. Consequently, the cores of
universal models of I and Σ are isomorphic. Hence, if there
is at least one universal model of I and Σ, then there is
an instance that is isomorphic to the cores of all universal
models of I and Σ. If Σ is a set of TGDs and EGDs, this
instance is a universal model of I and Σ [18] (this may not be
true if Σ contains constraints other than TGDs and EGDs).
This suggests the following definition:

A core model of I and Σ is a model of I and Σ that is
isomorphic to every core of every universal model of I and
Σ. Up to isomorphism there is a unique core model of I and
Σ, and core models of I and Σ exist if and only if universal
models of I and Σ exist.

2.4 The Chase
The chase [4] is a procedure which, given an instance I and
a finite set Σ of TGDs and EGDs, adds tuples to I and
identifies values in order to obtain a universal model of I
and Σ. There are several flavors of the chase (see, e.g., [28,
4, 6]), of which we use mainly the oblivious chase [6].

We first introduce the oblivious chase for TGDs. Let Σ
be a finite set of TGDs. The oblivious chase starts with the
input instance, and applies the following TGD chase rule for
TGDs in Σ in a breadth-first fashion:

TGD chase rule: A TGD θ = ∀x̄∀ȳ (ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄))
applies to an instance I with an assignment α for the variables
in ϕ if I |= ϕ(α). The result of applying θ to I with α is the
instance J obtained from I as follows: Let β be an assignment
for the variables in ψ such that β coincides with α on all
variables in ϕ, and β(z̄) is a tuple of distinct nulls that do
not occur in I. Then J is the union of I and the atoms of
ψ(β).1 We write I `θ,α J if θ applies to I with α, and J is
the result of applying θ to I with α.

More precisely, the oblivious chase for I and Σ starts with
IΣ
0 := I, and proceeds in steps i = 1, 2, . . . . In step i ≥ 1,

let (θ1, α1), . . . , (θk, αk) be an enumeration of all pairs (θ, α)
consisting of a TGD θ ∈ Σ, and an assignment α such that θ
applies to IΣ

i−1 with α, and θ was not applied with α before.
If no such pair exists, we define IΣ

i := IΣ
i−1. Otherwise, IΣ

i is
obtained by applying each θi with αi. That is, we define IΣ

i

such that IΣ
i−1 `θ1,α1 J1 `θ2,α2 · · · `θk,αk I

Σ
i .

2 The result of
the oblivious chase for I and Σ is IΣ :=

⋃
i≥0 I

Σ
i , which is

1Although the choice of nulls is not important here, we can
make J well-defined as follows: We assume a linear order
on Null. With respect to this linear order, we pick the first
k := |z̄| nulls ⊥1, . . . ,⊥k that are not in dom(I). Then β
could map the ith variable in z̄ to ⊥i.
2As with applications of TGDs, the order in which the TGDs
are applied is not important here. We obtain a deterministic
chase as follows. First, we fix a linear order on Σ and a linear
order on Dom. The two orderings induce an ordering ≤ on

unique up to isomorphism. We say that the oblivious chase
terminates if there is some i ≥ 0 with IΣ

i = IΣ
i+1.

Example 2.2. Let Σ consist of the guarded TGDs

θ1 := ∀x, y
(
R(x, y) ∧Q(y)→ ∃z

(
S(x, z, y) ∧ S(y, x, z)

))
,

θ2 := ∀x, y, z
(
S(x, y, z)→

(
R(x, z) ∧ P (z)

))
,

θ3 := ∀x
(
P (x)→ Q(x)

)
,

and let I = {R(c, d), P (d)}. Then we have IΣ
1 = I ∪ {Q(d)}

and IΣ
2 = IΣ

1 ∪ {S(c,⊥1, d), S(d, c,⊥1)}. Now, θ2 is applied
to IΣ

2 with the assignment mapping x, y, z to c,⊥1, d, respec-
tively. This generates the atoms R(c, d) and P (d). Note that
these atoms belong to I. Moreover, θ2 is applied to IΣ

2 with
the assignment sending x, y, z to d, c,⊥1. This generates the
new atoms R(d,⊥1) and P (⊥1). Hence, IΣ

3 = IΣ
2 ∪{R(d,⊥1),

P (⊥1)}. Altogether, IΣ will be infinite.

The oblivious chase can be extended to finite sets Σ of
TGDs and EGDs. To obtain IΣ

i+1 from IΣ
i , we first apply all

TGDs as before to Ii, resulting in an instance ĨΣ
i . Then we

apply all possible EGDs in Σ to ĨΣ
i until the resulting instance

IΣ
i+1 satisfies the EGDs in Σ. Here, an EGD θ = ∀x̄ (ϕ(x̄)→
y = z) applies to an instance K with α if K |= ϕ(α) and
α(y) 6= α(z). The application of θ to K with α fails if both
α(y) and α(z) are constants. If the application does not fail,
then the result of applying θ to K with α is the instance
obtained from K by identifying α(y) and α(z) in K, that is,
by replacing one of the nulls in {α(y), α(z)} with the other
value in {α(y), α(z)}. In particular, if exactly one of α(y)
or α(z) is a null, say α(y), then every occurrence of α(y)
in K is replaced by the constant α(z). If for some i ≥ 0,

an application of an EGD to ĨΣ
i fails, then we say that the

oblivious chase for I and Σ fails, and we let IΣ be undefined.
Otherwise the result of the oblivious chase for I and Σ is
IΣ := {A | there is an i ≥ 0 such that A ∈ IΣ

j for all j ≥ i}.

Theorem 2.3 ([4, 17]). Let I be a σ-instance, and let
Σ be a finite set of TGDs and EGDs over σ. If IΣ is defined,
then IΣ is a quasi-universal model of I and Σ. In particular,
if IΣ is finite, it is a universal model of I and Σ.

The restricted chase is defined like the oblivious chase with
the exception that a TGD is applied only if its head is not
satisfied. Theorem 2.3 remains true if we replace IΣ by the
result of the restricted chase.

3. RELATED WORK
There is a long line of research on finding more and more
general structural properties of a set Σ of TGDs and EGDs
such that for all instances I, the restricted chase for I and Σ
terminates [4, 14, 17, 15, 35, 29, 30, 22, 19]. For example,
[14] studies acyclic sets of IDs for which the restricted chase
is guaranteed to terminate. A much more general property is
weak acyclicity [17]. If Σ is the union of a weakly acyclic set of
TGDs, and a set of EGDs, then a universal model of I and Σ
exists if and only if the restricted chase for I and Σ terminates
and does not fail (and in this case, its result is a universal
model for I and Σ). Furthermore, the number of steps of the
restricted chase until a fixed point is reached is bounded by a

pairs (θ, α) consisting of a TGD θ ∈ Σ, and an assignment
α for the variables in θ’s body. When defining IΣ

i we then
order the pairs (θ1, α1), . . . , (θk, αk) according to ≤.
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polynomial in the size of I (where the polynomial depends on
Σ). Hence, if Σ is fixed, there is a polynomial time algorithm
that, given an instance I, decides whether there is a universal
model of I and Σ, and if so, outputs such a model. What
has been said about weak acyclicity above is true for most
of the other chase termination conditions mentioned above.
Exceptions are stratification [15] and the initial proposal of
inductive restriction in [29]. These properties ensure chase
termination for at least one order of applying the TGDs in
the chase, which can be determined from the set of TGDs. In
[30], alternative definitions are proposed which resolve this
issue. An excellent overview of the above chase termination
conditions is given in [22].

All structural properties of TGDs and EGDs mentioned
in the preceding paragraph ensure that the restricted chase
terminates for all instances. On the other hand, if Σ is a
finite set of IDs, the restricted chase may not terminate on
some instances (e.g., recall Example 2.1). So, while some
sets of IDs (and, more generally, linear TGDs or guarded
TGDs) exhibit some of these structural properties, there is a
large number of such sets which do not possess any of them.
Moreover, there are finite sets of linear TGDs, where the
restricted chase does not terminate, even though a universal
model exists:

Example 3.1. Consider the set Σ consisting of the follow-
ing TGDs: ∀x∀y∀z∀u (R(x, y, z, u) → ∃v R(x, y, u, v)) and
∀x∀y∀z (R(x, y, y, z)→ R(x, y, y, x)). Let I = {R(c, d, c, d)},
where c, d are distinct constants. Then J := I∪{R(c, d, d, c)}
is a universal model of I and Σ, since I ⊆ J , J |= Σ, and
all models of I and Σ must contain the atoms of J (since
these are contained in IΣ). However, the restricted chase
for I and Σ does not terminate. Intuitively, this is true
since the atom R(c, d, d, c) that could prevent the chase from
generating an atom R(c, d, d,⊥) with ⊥ ∈ Null is produced
only after R(c, d, d,⊥) is generated. It is not hard to see
that the presence of R(c, d, d,⊥) enforces a nonterminating
restricted chase for I and Σ.

Interestingly, it is often possible to deal with infinite chase
results. For example, there is a wealth of research on eval-
uating conjunctive queries on the possibly infinite result of
the oblivious chase [28, 11, 5, 6, 7, 9, 8]. Several researchers
identified structural properties of sets Σ of TGDs and EGDs
such that given an instance I and a Boolean conjunctive
query q, we can decide whether IΣ |= q, and that this can
be done in polynomial time if Σ and q are fixed. Note that
if there is at least one universal model of I and Σ, then
this problem is equivalent to evaluating q on some universal
model of I and Σ. Johnson and Klug [28] dealt with certain
finite sets of IDs and functional dependencies. Their result
was improved in [5] to a more general class of sets of IDs and
functional dependencies, in [6, 7] to finite sets of guarded
TGDs, EGDs, and negative constraints such that the EGDs
“do not interfere” with the TGDs (see Section 6.1 for a precise
definition), and in [9] to so-called sticky sets of TGDs, which
are incomparable to sets of linear TGDs (EGDs that “do not
interfere” with the TGDs, and negative constraints may also
be added).

The basic idea behind all these results goes back to Johnson
and Klug [28]. One shows that IΣ |= q implies IΣ

i |= q, where
i is bounded by a number s depending only on Σ and q (s
can be computed from Σ and q). To decide whether IΣ |= q,
it then suffices to evaluate q on IΣ

s , which can be computed

in polynomial time if Σ and q are fixed. In Section 5 we use
roughly the same basic idea to prove that universal models
can be computed for finite sets of guarded TGDs: We show
that if there is a universal model of a ground instance I and
a finite set Σ of guarded TGDs, then such a model can be
obtained from IΣ

i , where i is bounded by a number depending
only on Σ.

4. GUARDED CHASE FORESTS
An important basic technical tool used in [6, 7] are guarded
chase forests. In this section, we review guarded chase forest
and collect a few basic results.

4.1 Definition and Basic Properties
Basically, the guarded chase forest for an instance I and
a set Σ of guarded TGDs is obtained by taking the atoms
of IΣ as nodes, and introducing an edge from an atom A
to an atom B if, in the oblivious chase for I and Σ, B is
the result of applying a TGD θ ∈ Σ with an assignment α
such that A = R(α(ū)), where R(ū) is the guard of θ. Note,
however, that this may not yield a forest, since different
applications of TGDs may introduce the same atom (recall
Example 2.2). Therefore, we modify the construction of
guarded chase forests as follows.

Definition 4.1. Let I be an instance, and let Σ be a
finite set of guarded TGDs. The guarded chase forest GI,Σ
for I and Σ is inductively constructed as follows.

We start with the forest F0 that contains, for each atom
A ∈ I, a unique node v with label A, and no edges.

Let i ≥ 0. The forest Fi+1 is obtained from Fi by adding
new nodes and edges as follows. Let atoms(Fi) be the set of
all labels of nodes of Fi. For each TGD θ ∈ Σ with guard
R(ū), each assignment α for the variables in body(θ), and
each node v in Fi we do the following: We say that θ applies
to v with α if θ applies to atoms(Fi) with α, and R(α(ū)) is
the label of v. If θ applies to v with α, then we apply θ to
v with α unless this has been done before. That is, we pick
an assignment β for the variables in head(θ) as in the TGD
chase rule, and add, for each atom S(v̄) in head(θ), a new
child with label S(β(v̄)) to v.
GI,Σ is the union of all the forests Fi, over all i ≥ 0. This

is well-defined, since each Fi+1 is an extension of Fi.

For example, if I and Σ are as in Example 2.2, then, up to
renaming of nulls, the first four levels of GI,Σ are as shown
in Figure 1.

R(c, d)

S(c,⊥1, d)

R(c, d)

S(c,⊥2, d) S(d, c,⊥2)

P (d)

Q(d)

S(d, c,⊥1)

R(d,⊥1)

S(d,⊥3,⊥1) S(⊥1, d,⊥3)

P (⊥1)

Q(⊥1)

P (d)

Q(d)

Figure 1: The first four levels of the guarded chase
forest for I and Σ from Example 2.2.

For each node v of GI,Σ, let λ(v) be the label of v. Similarly,
for a subforest F of GI,Σ, let λ(F) be the set of all labels
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of nodes in F . The depth of a node v in GI,Σ, denoted by
depth(v), is the length of the unique path from a root of
GI,Σ to v. The depth of an atom A in GI,Σ is the minimum
depth of a node in GI,Σ with label A. In particular, each
atom in I has depth 0 in GI,Σ. Let GdI,Σ be the subforest of
GI,Σ induced by all nodes of depth at most d.

Notice that, in general, λ(GI,Σ) contains more atoms than
IΣ. For example, in Figure 1, the atoms S(c,⊥2, d) and
S(d, c,⊥2) would not be present in IΣ (since θ1 was applied
before with the assignment mapping x, y to c, d). However,
it is easy to see that:

Proposition 4.2. Let I be an instance, and let Σ be a
finite set of guarded TGDs. Then λ(GI,Σ) is homomorphically
equivalent to IΣ.

We now recall a few key results from [7]. First, we need
to give a few definitions. The cloud of an atom A in λ(GI,Σ),
denoted cloud(A), is the set of all atoms B in λ(GI,Σ) such
that dom({B}) ⊆ dom({A}).3 Two atoms A,B ∈ λ(GI,Σ)
are X-equivalent for some X ⊆ Dom if there is a bijective
mapping f : dom(cloud(A)) → dom(cloud(B)) such that
f({A}) = {B}, f(cloud(A)) = cloud(B), f(x) = x for all
x ∈ X∩dom({A}), and f−1(x) = x for all x ∈ X∩dom({B}).

Lemma 4.3 ([7]). Let I be an instance, let Σ be a finite
set of guarded TGDs, let v,w be nodes in GI,Σ, and let Tv
and Tw be the subtrees of GI,Σ rooted at v and w, respectively.
If λ(v) and λ(w) are ∅-equivalent, then there is a bijec-
tion f : dom(λ(Tv)) → dom(λ(Tw)) such that f({λ(v)}) =
{λ(w)} and f(λ(Tv)) = λ(Tw).

Lemma 4.4 ([7]). Let σ be a schema, let I be a σ-in-
stance, let Σ be a finite set of guarded TGDs over σ, and let
A ∈ λ(GI,Σ). If P ⊆ λ(GI,Σ) contains more than

δ := (2w)w · 2(2w)w·|σ| (w := max{ar(R) | R ∈ σ})

atoms, then P contains two dom({A})-equivalent atoms.

From Lemma 4.4, the authors of [7] infer the following:

Lemma 4.5 ([7]). Let σ be a schema, let I and J be
σ-instances, and let Σ be a finite set of guarded TGDs over

σ. Suppose that J → λ(GI,Σ). Then, J → λ(G|J|·δI,Σ ), where δ
is as in Lemma 4.4.

Remark 4.6. In [7], the authors assume that all TGDs
have single-atom heads. In fact, in [6, Lemma 10], they show
that, as far as their results are concerned, this assumption
can be made without loss of generality. Specifically, they
show that a TGD θ = ∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) can be
safely replaced by the following TGDs: ∀x̄∀ȳ (ϕ(x̄, ȳ) →
∃z̄ Rθ(x̄z̄)), where Rθ is a fresh relation symbol, and for each
atom A in ψ a TGD ∀x̄∀z̄ (Rθ(x̄z̄) → A). Therefore, the
above-mentioned three lemmas from [7] also hold for sets of
TGDs with multiple-atom heads.

Note that the above-mentioned reduction to sets of TGDs
with single-atom heads does not preserve existence of univer-
sal solutions. For example, let I = {E(c, c)}, and let Σ consist
of the TGD ∀x∀y

(
E(x, y)→ ∃z∃u (E(y, z)∧E(z, u))

)
. Then

3In [7], clouds are called types. We use “cloud” here in order
to avoid confusion with FO-types introduced later. It should
also be noted that clouds are called restricted clouds in [6].

I is a universal model of I and Σ, but it is not hard to
see that there is no universal model of I and Σ′, where Σ′

consists of the three TGDs ∀x∀y (E(x, y)→ ∃z∃uR(y, z, u)),
∀x∀y∀u (R(y, z, u) → E(y, z)), and ∀x∀y∀u (R(y, z, u) →
E(z, u)) resulting from the reduction. Therefore, we cannot
make this simplifying assumption in Section 5, where we
prove this paper’s main result.

It is not obvious how to obtain the first d levels of the
guarded chase forest for I and Σ. The naive approach of
computing consecutive levels of GI,Σ in a breadth-first fashion
until level d is reached may fail (although it succeeds for
sets of linear TGDs), because the application of a guarded
TGD generating an atom at depth ≤ d may require an atom
at depth > d. However, [7] shows that there is a constant
∆ that is computable from Σ such that all atoms needed
to generate an atom at depth ≤ d can be found in the first
d+ ∆ levels of GI,Σ. This leads to:

Lemma 4.7 ([7], see the revised version). There is
an algorithm that, given a schema σ, a ground σ-instance I,
a finite set Σ of guarded TGDs over σ, and a number d as
input, computes GdI,Σ in time O(‖I‖k), where k depends only
on Σ and d.

4.2 Core Computation
We will later need to compute the core of λ(G`I,Σ) for some
constant `. To show that for fixed Σ this is possible in time
polynomial in the size of G`I,Σ, we use a result of [21]. To
apply this result, we need to show that guarded chase forests
have hypertree decompositions of small width.

Definition 4.8 ([20]). Let I be an instance. A hyper-
tree decomposition of I is a triple (T, χ, λ), where T = (V,E)
is a rooted tree, χ is a mapping from V to subsets of nulls(I),
and λ is a mapping from V to subsets of I such that:

1. For each atom A ∈ I there is a node v ∈ V such that
all nulls in A occur in χ(v).

2. For each ⊥ ∈ nulls(I) the subgraph of T induced by
the nodes v ∈ V with ⊥ ∈ χ(v) is a rooted tree.

3. For each v ∈ V we have χ(v) ⊆ nulls(λ(v)).

4. For each v ∈ V we have nulls(λ(v)) ∩ χ(Tv) ⊆ χ(v),
where χ(Tv) is the union of the χ(w) over all nodes w
in the subtree of T rooted at v.

The width of (T, χ, λ) is defined as min {|λ(v)| | v ∈ V }.

It is easy to turn GI,Σ into a hypertree decomposition of
λ(GI,Σ) whose width is at most the maximum number of
atoms in the head of a TGD in Σ. Specifically, construct the
following tree T ∗ and labeling λ∗. We start with an empty
tree and add all nodes of GI,Σ. Then, for each node v of GI,Σ,
we do the following: We set λ∗(v) := λ(v). Furthermore,
if during the construction of GI,Σ, a TGD θ is applied to v
with α (using an assignment β for the variables in head(θ)),
we add a new node v∗, label it with λ∗(v∗) := {S(β(v̄)) |
S(v̄) is an atom in head(θ)}, add an edge from v to v∗, and
add edges from v∗ to the children w of v in GI,Σ that are the
result of applying θ to v with α. We let χ∗(v) := nulls(λ∗(v))
for all nodes v of T ∗. It is now easy to verify that (T ∗, χ∗, λ∗)
is a hypertree decomposition of GI,Σ whose width is at most
the maximum number of atoms in the head of a TGD in Σ.
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Together with the following result, it is possible to compute
the core of λ(G`I,Σ) in time polynomial in the size of G`I,Σ
(and exponential in the maximum number of atoms in the
head of a TGD in Σ).

Theorem 4.9 ([21]). Let I be an instance, and (T, χ, λ)
a hypertree decomposition of I of width k. Then a core of I
can be computed in time O(t · nk+1), where t is the number
of nodes of T , and n is the size of I.

Corollary 4.10. Let I be an instance, let Σ be a finite
set of guarded TGDs, and let ` ≥ 0. Then a core of λ(G`I,Σ)

can be computed in time O(t ·nk+1), where t is the number of
nodes of G`I,Σ, n is the size of λ(G`I,Σ), and k is the maximum
number of atoms in the head of a TGD in Σ.

5. UNIVERSAL MODELS OF GROUND
INSTANCES AND GUARDED TGDS

In this section we prove the key result of this paper:

Theorem 5.1. There is an algorithm that, given a schema
σ, a ground σ-instance I, and a finite set Σ of guarded TGDs
over σ as input, decides whether there is a universal model of
I and Σ, and if so, computes a core model of I and Σ. The
running time of the algorithm is O(‖I‖k), where k depends
only on Σ.

The remaining part of this section is devoted to a proof of
Theorem 5.1. Let us start with an overview.

5.1 Proof Overview and Basic Results
Let σ be a schema, let I be a ground σ-instance, and let Σ
be a finite set of guarded TGDs over σ. How can we decide
whether a universal model of I and Σ exists?

Recall from Section 2.3 that a universal model of I and Σ
exists if and only if a core model of I and Σ exists, and that
a core model of I and Σ is a particular universal model of I
and Σ. Therefore, rather than deciding whether a universal
model of I and Σ exists, we decide whether a core model of
I and Σ exists, and if so, we compute one. It is easy to see:

Proposition 5.2.

1. If there is a core model of I and Σ, then λ(GI,Σ) has a
finite core (equivalently, all cores of λ(GI,Σ) are finite).

2. If J is a finite core of λ(GI,Σ), then J is a core model
of I and Σ.

Hence, to decide whether a core model of I and Σ exists,
it suffices to check whether there is a finite core of J∗ :=
λ(GI,Σ). To check whether such a core exists, we check for
a homomorphism h from J∗ to J∗ such that K := h(J∗)
is finite. Then K has a finite core, and this core is a core
of J∗. We show that if a homomorphism h as above exists,
then there is a homomorphism from J∗ to λ(GdI,Σ), where d
is bounded by a number depending only on Σ (Lemma 5.6).
This is the key part of the whole proof. Hence, all that
remains is to check whether there is a homomorphism from
J∗ to λ(GdI,Σ), and if so, to compute a core of λ(GdI,Σ). This

is easy: All we need to do is to compute a core J of λ(GdI,Σ),
and to check whether J |= Σ. If so, J is a core model of I
and Σ. Otherwise, no such core model exists.

Let us summarize what we have established so far:

Proposition 5.3. Let d ≥ 0.

1. If λ(GI,Σ) → λ(GdI,Σ), then there is a core of λ(GdI,Σ)

that satisfies Σ (or, equivalently, all cores of λ(GdI,Σ)
satisfy Σ).

2. If J is a core of λ(GdI,Σ) with J |= Σ, then J is a core
model of I and Σ.

5.2 FO-Types
We recall the notion of FO-types, which is used in the proof
of the main lemma, Lemma 5.6, below.

The quantifier rank of a FO-formula ϕ, denoted by qr(ϕ),
is the maximum nesting depth of quantifiers in ϕ. It is
defined by induction on the structure of ϕ as follows: If ϕ is
atomic, then qr(ϕ) = 0; otherwise we have qr(¬ϕ) = qr(ϕ),
qr(ϕ ? ψ) = max{qr(ϕ), qr(ψ)} for ? ∈ {∧,∨,→,↔}, and
qr(∃xϕ) = qr(∀xϕ) = 1 + qr(ϕ) (see, e.g., [16, 32]).

Let k ≥ 0. If k ≥ 1, let us also fix pairwise distinct
variables x1, . . . , xk. Let I be a σ-instance, and let ā =
(a1, . . . , ak) ∈ Domk. Construct a logical structure AI,ā with
universe dom(I) ∪ {a1, . . . , ak} and relations RI for each
R ∈ σ. The FOq,k-type of ā in I, denoted tpq(I, ā), is the set
of all constant-free FO-formulae ϕ(x1, . . . , xk) over σ such
that qr(ϕ) ≤ q and AI,ā |= ϕ(ā).

Up to logical equivalence, there are only finitely many
FOq,k-types (see, e.g., [16, 32]). To give a more precise
bound, let us define tow: N2 → N such that for all x, y ∈ N,
tow(0, y) := y, and tow(x+ 1, y) := 2tow(x,y). Then:

Lemma 5.4. Let σ be a schema, let q, k ∈ N, and let
Tσ,q,k be the set containing precisely one representative of
each FOq,k-type. Then |Tσ,q,k| ≤ tow(q + 1, t), where t =
2(|σ|+1)(k+q)w and w is the maximum of 2 and the maximal
arity of a relation symbol in σ.

We need the following composition lemma. A proof of this
lemma can be found, for example, in [34, 23].

Lemma 5.5 (see, e.g., [34, 23]). Let σ be a schema,
let I, J be σ-instances, and let ā = (a1, . . . , ak) ∈ Domk such
that dom(I) ∩ dom(J) ⊆ {a1, . . . , ak}. Then for all q ≥ 0,
tpq(I ∪ J, ā) is determined by tpq(I, ā) and tpq(J, ā).

5.3 Main Lemma
We are now ready to prove the main technical lemma of this
section.

Lemma 5.6. Let σ be a schema, let I be a ground σ-
instance, and let Σ be a finite set of guarded TGDs over
σ. If λ(GI,Σ) has a finite core, then there is a homomor-
phism from λ(GI,Σ) to λ(GdI,Σ), where d depends only on Σ
(and can be computed from Σ).

The remaining part of the present section is devoted to a
proof of Lemma 5.6.

Consider a ground σ-instance I and a finite set Σ of guarded
TGDs over σ. Suppose λ(GI,Σ) has a finite core. Then there
is a homomorphism h from λ(GI,Σ) to λ(GI,Σ) such that
h(λ(GI,Σ)) is such a finite core. In particular, there is a finite
subforest F of GI,Σ such that:

(F1) F is closed under ancestors, that is, for each node v in
F , all ancestors of v in GI,Σ are nodes of F , and
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(F2) λ(F) contains a core of λ(GI,Σ) (since λ(F) ⊆ λ(GI,Σ),
this means that λ(F) and λ(GI,Σ) have isomorphic
cores)

(e.g., take F to be GdI,Σ, where d is the maximum depth of
an atom in a finite core of λ(GI,Σ)).

Let us pick a finite subforest F of GI,Σ with properties (F1)
and (F2) such that

∑
v∈V (F) depth(v) is minimal among all

such forests. Here, V (F) denotes the set of nodes of F . More
generally, given any graph G, we let V (G) be the set of nodes
of G.

Let K be a core of λ(F). Note that K is, in particular, a
core of λ(GI,Σ).

Lemma 5.7. For each atom A ∈ K there is a unique node
v in F with λ(v) = A.

Proof. For a contradiction, suppose that there exists
an atom A ∈ K and distinct nodes v1, v2 in F such that
λ(v1) = λ(v2) = A. Without loss of generality, we assume
that depth(v1) ≥ depth(v2). Let T1 and T2 be the subtrees
of GI,Σ rooted at v1 and v2, respectively.

By the construction of GI,Σ, there is an isomorphism f
from T1 to T2 with

f(v1) = v2, (5.1)

and an isomorphism g from λ(T1) to λ(T2) such that for each
node v of T1 we have

g(λ(v)) = λ(f(v)). (5.2)

Let T ′1 be the subtree of F induced by the nodes in T1. Fur-
thermore, let F ′ be the forest obtained from F by removing
from F all nodes (and edges) of T ′1, and adding all nodes
and edges of f(T ′1), where f(T ′1) is the tree obtained from
T ′1 by renaming each node v in T ′1 to f(v). See Figure 2 for
an illustration.

F :

v1
A

T ′
1

v2
A

f(T ′
1)

g

Figure 2: Construction of the forest F ′ from F . The
subtree T ′1 below v1 is removed from F , and an iso-
morphic copy f(T ′1) of T ′1 is glued to F below v2.

Clearly, F ′ is a finite subforest of GI,Σ. Furthermore, it is
easy to see that F ′ satisfies property (F1).

We claim that F ′ also satisfies property (F2). First we
extend g to a homomorphism g′ from λ(F) to λ(F ′). Consider
the mapping g′ : dom(λ(F))→ dom(λ(F ′)) defined as

g′(a) :=

{
g(a), if a ∈ dom(λ(T ′1)),

a, if a ∈ dom(λ(F) \ λ(T ′1)).

This mapping is well-defined. First, (5.1) and (5.2) imply
that g(λ(v1)) = λ(v2) = λ(v1). Therefore, we have g(a) = a

for all values that occur in λ(v1), and these are all values
that could occur both in an atom of λ(T ′1) and in an atom
of λ(F) \ λ(T ′1). Note that g′(λ(T ′1)) = λ(f(T ′1)) ⊆ λ(F ′)
and g′(λ(F) \ λ(T ′1)) = λ(F) \ λ(T ′1) ⊆ F ′. Hence, g′ is a
homomorphism from λ(F) to λ(F ′).

Since λ(F ′) ⊆ λ(GI,Σ) and λ(GI,Σ) → λ(F), there is a
homomorphism from λ(F ′) to λ(F). It follows that λ(F)
and λ(F ′) are homomorphically equivalent, so they have
isomorphic cores. Therefore, since F satisfies property (F2),
F ′ satisfies property (F2), too.

Altogether, F ′ is a finite subforest of GI,Σ with proper-
ties (F1) and (F2). We now show that∑

v∈V (F′)
depth(v) <

∑
v∈V (F)

depth(v), (5.3)

which is impossible by the choice of F , and thus leads to
the desired contradiction. Since depth(v1) ≥ depth(v2), and
v1, v2 are the roots of T ′1 and f(T ′1), respectively, we have∑

v∈V (f(T ′1))

depth(v) ≤
∑

v∈V (T ′1)

depth(v). (5.4)

Note that V (F ′) \ V (f(T ′1)) ⊆ V (F) \ V (T ′1), and since v2 ∈
V (f(T ′1)) and v2 /∈ V (T ′1), the inclusion is strict. Therefore,∑
v∈V (F′)\V (f(T ′1))

depth(v) <
∑

v∈V (F)\V (T ′1)

depth(v). (5.5)

From (5.4) and (5.5), it is not hard to obtain (5.3).

By Lemma 5.7, we can pick for each atom A ∈ K a unique
node vA of F such that λ(vA) = A. Let VK := {vA | A ∈ K}.
Let B be the set of all nodes of F that belong to VK or have
at least two children. Note that by the choice of F , we have:

(P1) All roots of F (i.e., those nodes that represent atoms
of I) belong to VK , since I ⊆ K.

(P2) All leaves of F belong to VK .

Nodes with exactly one child in F either belong to VK ⊆ B,
or do not belong to B at all. On the other hand, nodes with
at least two children in F either belong to VK or to B \ VK .
Figure 3 illustrates this situation.

F :

Figure 3: A possible configuration of the nodes in B.
Black nodes represent nodes in VK , white nodes are
nodes in B \ VK .

In what follows we bound, for every path P in F , the
number of nodes in B that occur on P , and the number
of nodes between any two consecutive B-nodes on P . This
enables us to bound the overall depth of F .

Recall the definition of X-equivalent from Section 4. For
atoms A,B ∈ GI,Σ, we write A ∼ B if they are ∅-equivalent.
From Lemma 4.4 it follows that:

Proposition 5.8. For any set P ⊆ λ(GI,Σ) with |P | > δ,
where δ is as in Lemma 4.4, there are distinct atoms A,B ∈ P
with A ∼ B.
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Let w be the maximum arity of a relation symbol in σ.
Define q := max{qr(θ) | θ ∈ Σ}, and denote by t the number
of FOq,w-types. Also define

s := δ · t.

Note that s depends only on Σ, and that an upper bound
on s can be computed from Σ (cf. Lemma 4.4 for δ, and
Lemma 5.4 for an upper bound on t).

Lemma 5.9. Every path in F contains ≤ s nodes from B.

Proof. For a contradiction, suppose that P is a path in
F with more than s nodes from B. Let v1, v2, . . . , vs+1 be
the first s+ 1 nodes from B on P .

Let i ∈ [s+ 1]. Denote by Ti the subtree of GI,Σ rooted at
vi, and by T ′i the subtree of F rooted at vi. Define

Ki := K ∩ λ(T ′i ).

Furthermore, let Xi := dom({λ(vi)}), and let āi be the tuple
of values in λ(vi), so that λ(vi) = R(āi) for some R ∈ σ.

By the choice of s (and Proposition 5.8), there are i, j ∈
[s+ 1] with i < j such that

λ(vi) ∼ λ(vj), (5.6)

tpq
(
Ki, āi

)
= tpq

(
Kj , āj

)
. (5.7)

In particular, (5.6) and (5.7) imply:

There is a unique bijective mapping f : Xj → Xi
with f(āj) = āi. For each a ∈ Xj , we have
a ∈ dom(Kj) if and only if f(a) ∈ dom(Ki).

(5.8)

The latter statement in (5.8) is an easy consequence of the
definition of tpq(·, ·).

We now prune K by replacing Ki with an isomorphic copy
of Kj . Then we show that the pruned instance is a universal
model of I and Σ, but has at least one atom less than K.
This is the desired contradiction, since K is the smallest
universal model of I and Σ.

Step 1: Construction of the pruned instance J .

Let h : dom(λ(Tj)) → Dom be such that h(āj) = āi, and
h(a) = a for all values a ∈ dom(λ(Tj)) that do not occur
in āj (i.e., for all nulls a created in Tj). By (5.8), such a
mapping h exists. We now remove Ki from K, and add
h(Kj) instead:

J := (K \Ki) ∪ h(Kj).

See Figure 4 for an illustration.

Step 2: J is a universal model of I and Σ.

Recall that h is bijective, and that h(āj) = āi. Furthermore,
by (5.8), for each a ∈ Xj , we have a ∈ dom(Kj) if and only
if h(a) ∈ dom(Ki). Therefore,

tpq
(
h(Kj), āi

)
= tpq

(
h(Kj), h(āj)

)
= tpq

(
Kj , āj

)
,

which, by (5.7), implies tpq(Ki, āi) = tpq(h(Kj), āi). Note
that āi contains all values that might occur both in Ki

(resp., h(Kj)) and K \Ki. Thus, by Lemma 5.5, we have
tpq(K, āi) = tpq(J, āi). Since K |= Σ, and q is the maximum
quantifier rank of a TGD in Σ, this implies J |= Σ. It is also
clear that I ⊆ J . Therefore, J is a model of I and Σ.

To show that J is a universal model of I and Σ, it suffices
to show that J → λ(GI,Σ), since λ(GI,Σ) is quasi-universal
by Proposition 4.2.

From (5.6) and Lemma 4.3, we know that there is a bijec-
tion f : dom(λ(Tj))→ dom(λ(Ti)) such that f({λ(vj)}) =
{λ(vi)} and f(λ(Tj)) = λ(Ti). In particular, f(āj) = āi. Let
g := f ◦ h−1. Then,

g is an isomorphism from h(λ(Tj)) to λ(Ti)
with g(āi) = āi.

Now,

g(h(Kj)) ⊆ g
(
h
(
λ(Tj)

))
⊆ λ(Ti) ⊆ λ(GI,Σ). (5.9)

To obtain a homomorphism from J to λ(GI,Σ), we extend g
so that g(c) = c for all c ∈ dom(K \Ki). This is possible
since āi contains all values in dom(K \Ki) ∩ dom(h(Kj)),
and g(āi) = āi. Then

g(K \Ki) = K \Ki ⊆ λ(GI,Σ). (5.10)

Altogether, (5.9) and (5.10) imply that g is a homomorphism
from J to λ(GI,Σ), as desired.

Step 3: J has less atoms than K.

It remains to show that |J | < |K|. Recall that vi ∈ B. This
means that vi ∈ VK , or vi has at least two children in F .

If vi ∈ VK , then Kj ( Ki, since Kj ⊆ Ki, λ(vi) ∈ Ki, and
λ(vi) /∈ Kj (the latter follows from vi 6= vj and Lemma 5.7).
Consequently, |h(Kj)| = |Kj | < |Ki|, and hence,

|J | ≤ |K \Ki|+ |h(Kj)| < |K \Ki|+ |Ki| = |K|.

Now assume that vi has at least two children in F . Pick
distinct children w1, w2 of vi such that there is a path from
w1 to vj . By property (P2), there is an atom A ∈ K such
that vA is reachable from w2 (we only have to pick a leaf in
the subtree of F rooted at w2). Using Lemma 5.7, we obtain
A ∈ Ki \Kj . This yields Kj ( Ki, and it follows as above
that |J | < |K|.

Altogether, we have constructed a universal model J of I
and Σ with |J | < |K|. But since K is a universal model of I
and Σ with a minimal number of atoms, this is impossible,
and we have the desired contradiction.

Lemma 5.10. If P is a path in F without nodes from B,
then P contains at most δ nodes, where δ is as in Lemma 4.4.

Proof. Follows from Lemma 4.4 in the same way as in
the proof of Lemma 4 in [7].

From the preceding two lemmas it follows that all nodes in
F have depth at most d := (δ+1)·s, where d depends only on
Σ. By property (F2), λ(F) contains a core of λ(GI,Σ). Hence,
there is a homomorphism from λ(GI,Σ) to λ(F) ⊆ λ(GdI,Σ).
Since δ and s can be computed from Σ, d can be computed
from Σ. This completes the proof of Lemma 5.6.

5.4 The Algorithm
Given a schema σ, a ground σ-instance I, and a finite set
Σ of guarded TGDs over σ, the following algorithm decides
whether there is a universal model of I and Σ, and if so,
computes a core model of I and Σ:

1. Compute the number d from Lemma 5.6 (which
depends only on Σ).

2. Compute F := GdI,Σ.

3. Compute a core K of λ(F).

4. If K |= Σ, then output K; otherwise output
“There is no universal model of I and Σ”.
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Figure 4: Construction of J from K. The subinstance Ki is removed from K, and an isomorphic copy h(Kj)
of Kj is glued to K.

By Lemma 5.6 and Proposition 5.3, the algorithm is correct
and complete. It remains to show that the algorithm can be
implemented so that it runs in time O(‖I‖k) for a number
k that depends only on Σ. To this end, we show that each

of the four steps needs at most time O(‖I‖k
′
), for a number

k′ that depends only on Σ. This is certainly true for the
first and the last step, and for steps 2 and 3 it follows from
Lemma 4.7 and Corollary 4.10, respectively. Altogether, this
proves Theorem 5.1.

6. EXTENSIONS
In this section, we generalize Theorem 5.1 to more general
sets of constraints, and to instances with nulls.

6.1 Adding Negative Constraints and EGDs
We begin by extending Theorem 5.1 to the case where the
set Σ contains not only guarded TGDs, but also negative
constraints and certain EGDs, including non-conflicting keys
considered in [7]. Such sets of constraints were recently
shown to be expressive enough to capture several members
of the DL-Lite family of description logics [7].

6.1.1 Negative Constraints
A negative constraint as defined in [7] is a FO-sentence of
the form ∀x̄ (ϕ→ ⊥), where ϕ is a conjunction of relational
atomic formulae. Here, ⊥ is interpreted as “false”. So, a
negative constraint ∀x̄ (ϕ→ ⊥) is satisfied in an instance I

if for all tuples ā ∈ (dom(I) ∪ dom(ϕ))|x̄| we have I 6|= ϕ(ā).
Extending Theorem 5.1 to finite sets Σ of guarded TGDs

and negative constraints is very easy. It boils down to decid-
ing whether there is a universal model J with respect to the
set of TGDs in Σ such that J satisfies all negative constraints
in Σ. If so, J is a universal model of I and Σ. This is similar
to (and in fact follows from) the corresponding result in [7]
which shows that to answer a Boolean conjunctive query
with respect to Σ, it suffices to check that the query is true
with respect to the TGDs in Σ, and that none of the negative
constraints in Σ holds with respect to those TGDs.

Proposition 6.1. Let I be a ground σ-instance, let Σ be
a finite set of TGDs and EGDs over σ, and let ΣN be a finite
set of negative constraints over σ. Then for all σ-instances
J the following are equivalent:

1. J is a universal model of I and Σ ∪ ΣN .

2. J is a universal model of I and Σ, and J |= ΣN .

6.1.2 EGDs
Next we incorporate EGDs. The interaction of EGDs and
TGDs often leads to undecidability. For example, answering
conjunctive queries with respect to finite sets of keys and
IDs is undecidable [10]. To this end, Cal̀ı, Lembo, and
Rosati [11] studied sets of keys and IDs that are non-key-
conflicting, that is, they “do not conflict” with the keys.
An example of such sets are sets of foreign key constraints.
The notion of non-key-conflicting IDs has been generalized
by Cal̀ı, Gottlob, and Lukasiewicz [7] to TGDs. Before
we present their generalization, we introduce the following
stronger property introduced in [7].

Definition 6.2 ([7]). Let σ be a schema, let ΣT be a
set of TGDs over σ, and let ΣE be a set of EGDs over σ. We
call ΣE separable from ΣT if for all σ-instances I,

1. If I |= ΣE , then IΣT∪ΣE is defined.

2. If IΣT∪ΣE is defined, then for all Boolean conjunctive
queries q we have IΣT∪ΣE |= q if and only if IΣT |= q.

Proposition 6.3. Let σ be a schema, let ΣT be a set of
TGDs over σ, and let ΣE be a set of EGDs over σ that is
separable from ΣT . Then for all σ-instances I and J such
that I is ground we have: J is a universal model of I and
ΣT ∪ΣE iff J is a universal model of I and ΣT , and J |= ΣE.

Proof. “Only if”: Suppose J is a universal model of I
and ΣT ∪ ΣE . Then J is a model of I and ΣT , and J |= ΣE .
It remains to show that J → K for each model K of I
and ΣT . To this end, let qJ be the canonical query of
J . Note that IΣT∪ΣE is defined. This is an immediate
consequence of J |= ΣE and I ⊆ J , which imply I |= ΣE ,
and Definition 6.2(1). Since J is a universal model of I and
ΣT ∪ΣE , we have J → IΣT∪ΣE , and therefore IΣT∪ΣE |= qJ .
Now, property 2 in Definition 6.2 tells us that IΣT |= qJ ,
that is, J → IΣT . Since IΣT is a quasi-universal model of
I and ΣT , we conclude that J → K for each model K of I
and ΣT , as desired.

“If”: Suppose J is a universal model of I and ΣT , and J |= ΣE .
Then J is a model of I and ΣT ∪ ΣE . Since all models of I
and ΣT ∪ ΣE are models of ΣT , we also have that J → K
for all models K of I and ΣT ∪ ΣE . Hence, J is a universal
model of I and ΣT ∪ ΣE .

As an immediate consequence of Proposition 6.1 and 6.3,
we obtain:
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Corollary 6.4. Let σ be a schema, and let Σ be a finite
set of TGDs, EGDs, and negative constraints over σ. Suppose
the set of all EGDs in Σ is separable from the set ΣT of all
TGDs in Σ. Then for all ground σ-instances I we have:

1. If there is a universal model of I and Σ, then the core
model of I and ΣT satisfies Σ.

2. If the core model of I and ΣT satisfies Σ, then it is a
universal model of I and Σ.

Proof. Ad 1: Suppose J is a universal model of I and Σ.
Let J∗ be the core of J . Then, J∗ is a universal model of I
and Σ. By Proposition 6.1, J∗ is a universal model of I and
Σ \ ΣN , and furthermore, J∗ |= ΣN , where ΣN is the set of
all negative constraints in Σ. Let ΣE be the set of all EGDs
in Σ. Then, by Proposition 6.3, J∗ is a universal model of I
and ΣT = (Σ \ ΣN ) \ ΣE , and J∗ |= ΣE . Altogether, J∗ is
the core model of I and ΣT , and J∗ |= Σ, as desired.

Ad 2: Immediately from Propositions 6.1 and 6.3.

Corollary 6.4 enables us to lift Theorem 5.1 from finite sets
of guarded TGDs to finite sets Σ of guarded TGDs, EGDs,
and negative constraints such that the set of EGDs in Σ
is separable from the set of TGDs in Σ. It implies that to
decide whether a given ground instance I has a universal
model under such a set Σ, it suffices to do the following:

1. Check whether there is a universal model of I and the
set ΣT of TGDs in Σ (using an algorithm as guaranteed
by Theorem 5.1). If so, let J be the core model of I
and ΣT ; otherwise reject.

2. If J |= Σ, then output J ; otherwise reject.

Thus, we have:

Theorem 6.5. There is an algorithm that solves

Input: a ground instance I; a finite set Σ of guarded
TGDs, EGDs, and negative constraints such
that the set of EGDs in Σ is separable from
the set of TGDs in Σ

Task: Decide whether there is a universal model of
I and Σ. If so, compute a core model of I
and Σ.

in time O(‖I‖k), where k depends only on Σ.

As a sufficient syntactic condition for sets of TGDs and
keys that implies separability, [7] introduces non-key-conflict-
ing TGDs which are a generalization of non-key-conflicting
IDs from [11]. Recall that a key of a relation R is a set
K ⊆ [ar(R)]. A σ-instance I satisfies a key K of R if for
every two tuples ā = (a1, . . . , aar(R)) and b̄ = (b1, . . . , bar(R))

in RI , where ai = bi for all i ∈ K, we have ā = b̄. A key K
of R, r := ar(R), can be written as a set of EGDs, e.g., as{
∀x̄ (∀yi)i∈[r]\K

(
R(x̄) ∧R(z̄)→ xj = yj

)
| j ∈ [r] \K

}
where we let x̄ = (x1, . . . , xar(R)), and z̄ = (z1, . . . , zar(R))
with zi := xi if i ∈ K, and zi := yi otherwise. In the
following, we view sets of keys as sets of EGDs.

Definition 6.6 ([7], see revised version). LetK be
a key of R, and let θ be a TGD of the form

∀x̄∀ȳ
(
ϕ(x̄, ȳ)→ ∃z̄

(
R1(ū1) ∧ · · · ∧Rk(ūk)

))
.

K is said to be non-conflicting with θ if for all i ∈ [k] with
Ri = R we have:

• the set Xi of positions in ūi, where a variable from x̄
occurs, is not a proper superset of K,

• if Xi = K, then each variable from z̄ that occurs in ūi
occurs exactly once in head(θ).

A set ΣK of keys is non-conflicting with a set ΣT of TGDs if
every key in ΣK is non-conflicting with every TGD in ΣT .

In [7] it is shown that if ΣK is a set of keys that is non-
conflicting with a set ΣT of TGDs, then ΣK is separable
from ΣT . Thus, Theorem 6.5 leads to a polynomial time
algorithm for computing universal models with respect to
finite sets of guarded TGDs, keys, and negative constraints,
where the keys are non-conflicting with the TGDs.

6.2 Instances with Nulls
Theorem 5.1 can also be extended to certain instances with
nulls. It is impossible, however, to obtain a polynomial time
algorithm, unless PTIME = NP. Such an algorithm could
be easily turned into a polynomial time algorithm to decide
whether an undirected graph is 3-colorable:

Proposition 6.7. There is a schema σ and a set Σ of
IDs such that it is NP-hard to decide, for a given σ-instance
I, whether there is a universal model of I and Σ.

However, it is possible to obtain a polynomial time al-
gorithm if all blocks of the input instance are of constant
size.

Definition 6.8 ([18]). The Gaifman graph of the nulls
of an instance I is the undirected graph GI whose nodes are
all nulls of I, and which has an edge between two nulls ⊥,⊥′
if ⊥ 6= ⊥′ and there is an atom A ∈ I such that both ⊥ and
⊥′ occur in A. A block of I is the set of nulls in a connected
component of GI .

For example, the size of blocks of instances that arise
in data exchange typically is bounded by a constant [18].
We can now extend the main technical lemma of Section 5,
Lemma 5.6, to instances with nulls.

Lemma 6.9. Let σ be a schema, and let I be a σ-instance
whose largest block has size b. let Σ be a finite set of guarded
TGDs over σ. If λ(GI,Σ) has a finite core, then there is a
homomorphism from λ(GI,Σ) to λ(GdI,Σ), where d depends
only on Σ and b (and can be computed from Σ and b).

Proof. Let I be a σ-instance with blocks B1, . . . , Bn such
that |Bi| ≤ b for all i ∈ [n]. Suppose that λ(GI,Σ) has a finite
core. Let h be a homomorphism from λ(GI,Σ) to λ(GI,Σ)
such that J := h(λ(GI,Σ)) is a finite core.

Let i ∈ [n]. We write I[Bi] for the subinstance of I
consisting of all atoms of I that contain a null from Bi.
Since h(I[Bi]) ⊆ J ⊆ λ(GI,Σ), we have h(I[Bi])→ λ(GI,Σ).
Lemma 4.5 implies h(I[Bi]) → λ(Gb·δI,Σ), where δ is as in
Lemma 4.4.

We can now use Lemma 5.6 to show that there is a homo-
morphism h′ from λ(GI,Σ) to λ(GI,Σ) such that h′(λ(GI,Σ))
is a core, and the maximum depth of an atom in h′(λ(GI,Σ))
is at most b · δ + d, where d is as in Lemma 5.6.

Using Lemma 6.9 and the results from Section 6.1, we
obtain that Theorem 6.5 is still true if whenever all blocks
in I have size bounded by b, then the constant k depends
not only on Σ, but also on b.

232



7. WEAK UNIVERSAL MODELS
Much like strong universal models play an important role
for reasoning over all models, including infinite ones, weak
universal models are useful for reasoning over finite mod-
els. In this section, we show that for finite sets of guarded
TGDs, strong universal models and weak universal models
are one and the same concept, whereby proving the analog
of Theorem 5.1 for weak universal models.

Equivalence of strong and weak universality under finite
sets of guarded TGDs can be inferred rather easily from a
recent result by Bárány, Gottlob, and Otto [3] on the finite
controllability of query answering over finite sets of guarded
FO-sentences. Let me briefly recall this result. Guarded
first logic (guarded FO), introduced in [2], is a restriction
of first-order logic FO. It requires existential and universal
quantification to be of the form ∃x̄ (ϕ ∧ ψ) and ∀x̄ (ϕ→ ψ),
respectively, where ϕ is an atomic FO-formula (this includes
equality atoms) containing all the variables in x̄, and ψ is
a guarded FO-formula whose free variables occur in ϕ. A
guarded FO-sentence is a guarded FO-formula without free
variables. For a set Σ of FO-sentences over a schema σ, and
a Boolean query q over σ, we write Σ |= q if q is true in
every possibly infinite σ-instance satisfying Σ, and we write
Σ |=fin q if q is true in every finite σ-instance satisfying Σ.
Now, extending earlier work by Rosati [36], Bárány, Gottlob,
and Otto were able to show:

Theorem 7.1 ([3]). If Σ is a finite set of guarded FO-
sentences over a schema σ, and q is a union of conjunctive
queries over σ, then Σ |= q if and only if Σ |=fin q.

Thanks to Theorem 7.1, it is not hard to prove:

Proposition 7.2. Let Σ be a finite set of guarded TGDs,
and let I, J be instances. Then, J is a weak universal model
of I and Σ iff J is a strong universal model of I and Σ.

Proof. Since strong universal models are weak, it suffices
to show that if J is a weak universal model of I and Σ, then
J is strongly universal.

Suppose J is a weak universal model of I and Σ. Then
for every finite model K of I and Σ we have J → K. Notice
that the finite models K of I and Σ are precisely the finite
σ-instances K satisfying {qI} ∪ Σ (recall from Section 2.1
that qI denotes the canonical query of I). Hence,

{qI} ∪ Σ |=fin qJ . (7.1)

We would now like to apply Theorem 7.1 to deduce {qI}∪Σ |=
qJ , proving that J is a strong universal model of I and
Σ. However, qI and the sentences in Σ are not necessarily
guarded FO-sentences (qI is if I is ground).

To this end, we transform qI into a guarded FO-sentence q′I
as follows. We pick an injective mapping h : dom(I)→ Const
that is the identity on const(I), and maps no null in I to a
constant that occurs in J or in Σ. Then we define q′I := qh(I).
Note that q′I is a guarded FO-sentence, since the instance
h(I) is ground, so that qh(I) is quantifier-free. Furthermore,
for every possibly infinite σ-instance K with K |= q′I we
have h(I) ⊆ K. Therefore, for every such K, there is a
homomorphism from I to K, namely h, and since I → K
implies K |= qI , we have

q′I |= qI . (7.2)

Here, we write q′I |= qI as abbreviation for {q′I} |= qI .

The next step is to transform Σ into a finite set Σ′ of
guarded FO-sentences as described in [6, Lemma 10]; see
also the description of this transformation in Remark 4.6.
By construction,

Σ′ |= Σ, (7.3)

where we write Γ |= Γ′, for finite sets Γ,Γ′ of logical sentences,
to express that every possibly infinite instance satisfying Γ
also satisfies Γ′.

It now follows from (7.1)–(7.3) that {q′I} ∪ Σ′ |=fin qJ .
Hence, Theorem 7.1 yields {q′I} ∪ Σ′ |= qJ . But this implies
{qI} ∪ Σ |= qJ . To see this, observe that {q′I} ∪ Σ′ |= qJ

implies that qJ is true in h(I)Σ′ . Indeed, h(I)Σ′ is a model

of h(I) and Σ′. Therefore, h(I)Σ′ |= {q′I} ∪ Σ′, and thus,

h(I)Σ′ |= qJ . By the choice of h, we have IΣ′ |= qJ , and
it is easy to see that this implies IΣ |= qJ . Therefore, by
Theorem 2.3, {qI} ∪ Σ |= qJ . Altogether, this proves that J
is a strong universal model of I and Σ.

Proposition 7.2 still holds in the presence of negative con-
straints, as introduced in Section 6.1. It is unclear whether
it holds for sets of guarded TGDs, negative constraints, and
non-conflicting keys. The fact that such constraints can
express knowledge bases in the description logic DL-LiteF
[12], and that there are DL-LiteF knowledge bases that only
have infinite models [37] implies that, in general, over sets
of guarded TGDs, negative constraints, and non-conflicting
keys, query answering over finite models differs from query
answering in the unrestricted case. However, this does not
rule out the possibility that weak universal models and strong
universal ones coincide for such sets of constraints. I leave
this as an open question.

8. CONCLUDING REMARKS
This paper’s main result is an algorithm for computing uni-
versal models under finite sets Σ of guarded TGDs, negative
constraints, and non-conflicting keys. The algorithm’s run-
ning time is polynomial if Σ is fixed and the input database
has bounded block size:

Theorem (Summary of the main result). There is
an algorithm which solves the following problem in time
O(‖I‖k), where k depends only on Σ and the maximum size
of a block of I.

Input: an instance I, and a finite set Σ of guarded
TGDs, EGDs, and negative constraints such
that the set of EGDs in Σ is separable from
the set of TGDs in Σ

Task: Decide whether there is a universal model
of I and Σ. If so, compute a core model of
I and Σ.

The algorithm should be seen as a proof of concept. Very
likely, more efficient algorithms exist.

For one thing, the constant d provided by the proof of
Lemma 5.6 cannot be bounded by an elementary function,
say in the maximum number of universally or existentially
quantified variables in a TGD in Σ, since the number of
logically non-equivalent FOq,k-types grows non-elementary
with q. This leads to a running time which is non-elementary
in the size of I and Σ. One can do better here, by replacing
FOq,k-types with other notions of type, yielding considerably
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smaller complexity bounds (a lower bound of 2-EXPTIME
follows from results in [7]). Precise bounds for the combined
complexity (which considers the set Σ as part of the input)
are subject to work in progress.

Let me emphasize that, while the algorithm presented in
this paper also computes weak universal models under finite
sets of guarded TGDs and negative constraints, the question
of how to compute weak universal models in the presence
of guarded TGDs, negative constraints, and non-conflicting
keys (or just guarded TGDs and non-conflicting keys) is open.
Another interesting open question is whether it is possible to
compute universal models under sticky sets of TGDs. Sticky
sets of TGDs were introduced in a recent paper by Cal̀ı,
Gottlob, and Pieris [8], where they showed that—just like
sets of guarded TGDs—together with non-conflicting keys
and negative constraints, they capture certain members of
the DL-Lite family of description logics. Sticky sets of TGDs
seem to require a completely different machinery than the
one used in this paper.
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