
Differentially Private Summaries for Sparse Data

Graham Cormode, Cecilia Procopiuc, Divesh Srivastava
AT&T Labs–Research

{graham,magda,divesh}@research.att.com

Thanh T. L. Tran
University of Massachusetts, Amherst

ttran@cs.umass.edu

ABSTRACT
Differential privacy is fast becoming the method of choice for re-
leasing data under strong privacy guarantees. A standard mech-
anism is to add noise to the counts in contingency tables derived
from the dataset. However, when the dataset is sparse in its under-
lying domain, this vastly increases the size of the published data, to
the point of making the mechanism infeasible.

We propose a general framework to overcome this problem. Our
approach releases a compact summary of the noisy data with the
same privacy guarantee and with similar utility. Our main result is
an efficient method for computing the summary directly from the
input data, without materializing the vast noisy data. We instan-
tiate this general framework for several summarization methods.
Our experiments show that this is a highly practical solution: The
summaries are up to 1000 times smaller, and can be computed in
less than 1% of the time compared to standard methods. Finally,
our framework works with various data transformations, such as
wavelets or sketches.

General Terms
Algorithms, Security

Categories and Subject Descriptors
G.3 [Probability and Statistics]; H.2.0 [Database Management]:
General—Security

Keywords
Differential privacy, anonymization, sparse data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0791-8/11/0003 ...$10.00.

1. INTRODUCTION
A fundamental problem in data management is how to share

datasets without compromising the privacy of the individuals who
contribute to the data. A growing science of “anonymization” en-
ables data owners to share sanitized data with the public, external
collaborators, or other groups within an organization (the risk of
private information leaking guides the amount of masking applied
to the data). It also allows businesses to retain detailed information
about their customers, while complying with data protection and
privacy legislation.

Different techniques are relevant to different threat models: ‘syn-
tactic’ privacy definitions, such as k-anonymity and l-diversity, pre-
serve more detail at the microdata level, but can be susceptible to
attack by determined adversaries [13]. Differential privacy [7] is
a more semantic definition, which has gained considerable traction
due to its precise privacy guarantees. See recent tutorials on data
anonymization for further background and definitions [3, 4, 9].

The original model for differential privacy assumed an interac-
tive scenario: queries are posed to a “gatekeeper,” who computes
the true answer, adds random noise and returns the result. The
random noise is drawn from a particular distribution, whose pa-
rameter is determined by the impact any individual can have on the
query answer. Other approaches, such as the exponential mech-
anism [18], also achieve differential privacy and are particularly
suited to queries with non-numeric answers.

No matter the privacy mechanism, however, the above scheme
can only tolerate a certain number of queries before the “privacy
budget” is exhausted and the gatekeeper stops answering. To avoid
this restriction, one can release statistics about the data en masse.
Effectively, the data owner chooses a collection of representative
queries to ask, and answers them all with appropriate privacy guar-
antees. Most often, this is done in the form of histograms or contin-
gency tables, with appropriate noise added to each entry [1]. This is
equivalent to releasing the result of groupby/count(*) queries over
the original data (with noise).

EXAMPLE 1. Figure 1(a) shows a table with 5 rows. Its columns
represent, respectively, education level (HS = High School Diploma,
BS = Bachelor’s Degree, PhD = Doctoral Degree), marital status
(M = Married, S = Single, D = Divorced), and sex. Figure 1(b)
shows the resulting contingency table M and its noisy contingency
table M ′. Column cnt of M is the actual number of tuples with
the respective triplet of attribute values. To meet the requirements
of differential privacy, we release a noisy count M ′.ncnt for every
triplet in M . Note that, although cnt is sparse (it has 15 zero-
entries), column M ′.ncnt is dense. This is because the noise has
low probability of being zero.

299

tid Educ Status Sex
1 HS S M
2 HS S M
3 BS M F
4 BS M F
5 PhD D M

(a) Original table with 5 tuples

cid (Educ,Status,Sex) cnt ncnt
1 (HS,S,M) 2 4
2 (HS,S,F) 0 3
3 (HS,M,M) 0 -1
· · · · · · · · · · · ·
10 (BS,M,F) 2 1
11 (BS,D,M) 0 5
· · · · · · · · · · · ·
17 (PhD,D,M) 1 2
18 (PhD,D,F) 0 -3

(b) Contingency table M with column cnt
and table M ′ with column ncnt

Figure 1: Table M ′ is the noisy contingency table for M (column cnt is not published). The density of M is ρ = 3/18.

Dataset Density ρ Source
OnTheMap 1-5% lehd.did.census.gov
Census Income 0.02-5% www.ipums.org
UCI Adult Data 0.14% archive.ics.uci.edu/ml
Warehouse Data 0.5-2% proprietary

Table 1: Examples of datasets and their densities.

Scalability Problem. As the above example illustrates, a differen-
tially private (or noisy) contingency table M ′ can be much larger
than the original data. Moreover, M ′ is also dense, so we cannot
represent it compactly (e.g., as a list of non-zero entries).

Let n be the number of non-zero entries in M and m be the total
number of rows in M . It is easy to see that if m is computed over
attributesA1, . . . , Ak ofM , thenm = Πk

i=1|Ai|,where |Ai| is the
number of distinct values of Ai. In other words, m is the domain
size of M . In Figure 1, n = 3 and m = 3× 3× 2 = 18.

Assuming a fixed set of attributes Ai over which M ′ is com-
puted, we define the density of M to be ρ = n/m. Hence, apply-
ing differential privacy as above generates an output which is about
1/ρ times larger than the data size. As we see below, for almost any
dataset of reasonable complexity, this makes the method too time
and space consuming; in some cases, it is virtually infeasible.

Table 1 shows several examples of widely-used datasets with
density in the single-digits or less. (Further details on these datasets,
and our density calculations, are in the Appendix.) Thus, a differen-
tially private version of these datasets is 2 to 3 orders of magnitude
larger. It is not difficult to see that such examples are the norm,
rather than the exception: any data with several attributes Ai of
moderately high cardinality |Ai| leads to huge contingency tables
of sizem = Πi|Ai| � n. Since modern DBMS’s often store tables
of hundreds of gigabytes or more, computing a privacy preserving
version that is hundreds or thousands of times larger is impractical.

Moreover, the 1/ρ-factor blow-up also applies to the computa-
tion time. Most of the recent results on differential privacy [1, 21,
15] state their running time as (quasi)linear inm, implicitly assum-
ing that m ≈ n. In fact, as discussed above, this is not the case.
For many datasets, m� n and the methods are impractical.

In recent years, there have been a few attempts to incorporate dif-
ferential privacy into data management systems. McSherry’s PINQ
system [17] adds privacy as an overlay (in the “gatekeeper” model),
by automating the addition of noise to query outputs. Closer to
the publishing model, Machanavajjhala et al. propose a technique
tailored for certain types of census data [16]. They design a syn-
thetic data generator based on parameters derived privately from
real datasets. The approach produces output data of size compara-

ble to the input size, when direct application of noise mechanisms
would generate a dense, noisy output. The synthetic data satisfies a
weaker (ε, δ)-privacy guarantee, for a larger value of ε than what we
wish to tolerate. Instead, we aim to produce output directly from
the original microdata, with high levels of privacy.

Our Contributions. In this paper we propose a general framework
for making differential privacy scalable over sparse datasets, i.e.,
datasets for which n � m. Our algorithms compute outputs with
strong privacy guarantees, such that the output size is controlled by
the data owner. Usually, this is chosen to be close to the size of
the original data, or smaller. The running time is proportional to
the output size and independent of m. In addition, our output has
similar utility to that of the noisy contingency table. We believe
this is a crucial step towards making differential privacy practical
in database applications.

Our general approach is as follows. Assume first that we com-
puted the noisy table M ′. We can reduce the output size from m
to a user-specified size s by returning only a sample of size s from
M ′. We refer to this sample as the differentially private summary of
the data. This approach relies on the well-known property that any
post-processing of differentially private output remains differen-
tially private [14, 15]. Of course, while this post-process sampling
reduces the storage requirements of the output, it does not help
the overall computation cost: we must still compute M ′. Hence,
this approach is effective for the data recipient, but not for the data
owner.

Instead, we propose a novel framework: we show how to di-
rectly generate the summary from the original data, without com-
puting the huge contingency table M ′. This requires some care:
The (random) two-step process of generating M ′, then applying
some sampling method over it, implies a probability distribution
over possible summaries. Our goal is to provide one-step meth-
ods that create summaries with the same output distribution, while
being much more efficient. We design several one-step summary
generation methods, which are provably correct and run in expected
time Θ(s + n), where s is the output size. In general, s = Θ(n)
so our algorithms are linear in the size of the original data, but
independent of the domain size m.

The algorithms depend on the specific sampling method em-
ployed. There is a wealth of work on data reduction techniques.
We focus on some of the best known methods, such as filtering and
priority sampling [6]. They enable vast quantities of data to be re-
duced to much more manageable sizes, while still allowing a vari-
ety of queries to be answered accurately. We also show how to com-
bine our techniques with data transformations, such as wavelets [21],

300

sketches [2] and dyadic ranges [11], that can be used to improve
query accuracy. To summarize:

• We formalize the problem of computing private summaries of
sparse data, and describe appropriate target summaries: filters
and samples.

• We show techniques to efficiently generate these summaries, by
drawing directly from an implicit distribution over summaries.

• We perform an experimental study over a variety of datasets. We
compare the utility of our summaries to that of the noisy con-
tingency tables, by running a large number of queries over both,
and comparing their relative accuracies. We conclude that our
significantly smaller summaries have similar utility to the large
contingency tables, and in some cases, they even improve on it.

• We discuss extensions to combine these techniques with data
transformations, such as dyadic ranges, wavelets and sketches.

2. BACKGROUND
Differential Privacy. This privacy model was developed over a
series of papers in the 2000s, culminating in Dwork’s paper which
coined the term [7]. The definition is as follows.

DEFINITION 1 (FROM [7]). A randomized algorithmK gives
ε-differential privacy if for all data setsD1 andD2 differing on one
element (denoted |D1 −D2| = 1), and all S ⊂ Range(K):

Pr[K(D1) ∈ S] ≤ exp(ε) · Pr[K(D2) ∈ S]

Intuitively, differential privacy guarantees that no individual tu-
ple can significantly affect the released information: the output dis-
tribution generated by K is nearly the same, whether or not that
tuple is present in the dataset.

For numeric queries, there is a simple recipe for generating dif-
ferentially private outputs: compute the true answer, then add noise
drawn from a specific distribution, as follows.

DEFINITION 2. Let q(D) be a query over dataset D with nu-
meric output. The sensitivity of q, denoted ∆q , is the maximum
change in q when any single tuple of D changes:

∆q = max
D1,D2:|D1−D2|=1

|q(D1)− q(D2)|.

An ε-differentially private mechanism for answering q is to publish
K(D) = q(D) +X, where X is a random variable as follows:

(i) Laplace mechanism [7]: X is drawn from the Laplace dis-
tribution with parameter (ε/∆q).

(ii) Geometric mechanism [10]: When q(D) is integer-valued,
X can be drawn from the geometric distribution Pr[X = x] =
1− α
1 + α

α|x|, where α = e−ε/∆q , x ∈ Z.

Both mechanisms achieve ε-differential privacy [7, 10]. How-
ever, the geometric mechanism adds integer noise, and is usually
preferred for queries q with integer answers, e.g., COUNT queries.
Therefore we use the geometric mechanism in this paper.

We focus on collections of count queries, such as those required
for computing contingency tables. A count query q has sensitiv-
ity ∆q = 1, since adding or removing one individual affects the
answer to q by at most one. Moreover, the queries we consider
are mutually disjoint (unless otherwise specified); i.e., they are
groupby/count(*) queries such that the groupby conditions partition
the input dataset. For example, in Figure 1(b), column cnt contains
the answers to the collection of queries SELECT COUNT(*) FROM

Employees GROUP BY Educ, Status, Sex. In this case, the sensitiv-
ity of the entire collection is 1: adding or removing one individual
changes one count value in the collection by one.

Data Reduction. The topic of data summarization is vast, generat-
ing many surveys and books on different approaches to the problem
[19, 8, 20]. In this paper, we focus on some of the key techniques.
We describe them below in the context of applying them to the
noisy contingency table M ′. Each row i in M ′ is associated with a
value wi, which depends on its noisy count. Section 3 details how
wi is defined in each case.

Filters are deterministic procedures that prune away parts of the
data which are thought to contribute little to the overall query re-
sults. The canonical filter is the high-pass filter: data elements
with low frequencies (below the filter threshold) are dropped, while
the elements with high frequencies (aka the ‘heavy hitters’) are re-
tained. Applying this to M ′ means that we retain the rows i for
which wi is above the threshold, and drop the other rows.

Sampling is perhaps the most commonly used data reduction
technique. It selects a subset of elements from the input data via a
random process. In general, it also assigns a weight to each element
in the sample. Queries over the full dataset are then approximated
by answering them over the (weighted) sample. The following two
sampling procedures have been widely studied.

Threshold sampling [5] is based on a parameter τ . The sam-
ple includes each row i with probability pi = min(wi/τ, 1). If
sampled, the sample’s weight is assigned to be max(wi, τ). An
important property of threshold sampling is that it is unbiased for
subset queries (i.e., queries that sum the counts of a subset of rows
satisfying a given predicate). That is, the answer is correct in ex-
pectation, compared to the answer over the contingency table M ′.
Since that is also correct in expectation (the noise has mean zero), it
follows that the threshold sample of M ′ returns correct answers in
expectation. However, a limitation of threshold sampling is that it
does not allow a strict control over the size of the resulting sample:
In expectation, the size is

P
i pi =

P
i min(wi/τ, 1), but it may

deviate somewhat.
Priority sampling [6] fixes the sample size to be s, and offers

strong guarantees about the quality of the sample relative to any
other method that generates samples of size exactly s . Each row is
assigned a priority Pi = wi/r, where r is drawn uniformly in the
range (0,1]. The s elements with the largest Pi values are retained
to form the sample. The sample weights are defined based on the
(s + 1)th priority value, denoted τs; the adjusted weight of the
sampled row i is max(wi, τs).

Data Transformations. Methods such as Fourier or Wavelet trans-
forms have been widely applied in many areas of computer science.
Here, we focus specifically on transforms in the context of privacy.
Barak et al. [1] manipulate Fourier transforms of contingency ta-
bles to ensure integrality and consistency. Xiao et al. [21] observe
that directly applying the Laplace mechanism (see Definition 2(i))
to contingency tables yields poor answers to range queries, since
the error (defined as query variance) grows with the size of the
range. Their solution is to add noise in the wavelet domain to pro-
vide the same privacy guarantees, while reducing the error for large
range queries, due to cancellations. Similar techniques are ana-
lyzed by Hay et al. [11] using dyadic ranges instead of the wavelet
transform. A more general approach is given by Li et al. [15], who
compute query strategies—in the form of linear sums of the input
data—that the data owner can release (with appropriate noise) so
as to minimize the errors of an expected query workload.

A key difference of these prior results is that they publish output
datasets of size Ω(m). In contrast, we want to publish data of user-

301

specified size s � m. In Section 5.2 we discuss how to apply our
general framework to these approaches, so they become efficient
on sparse data.

Finally, sketching techniques summarize the whole data set. The
Count sketch hashes each row i to one of B possible buckets via
a hash function h, and applies a second hash function g to map
each element to either +1 or -1. Each bucket maintains the sumP
wig(i) over all rows imapped to that bucket by h. Given a target

row i, the sum in bucket h(i) multiplied by g(i) is an unbiased
estimate for wi with bounded variance. Taking the mean or median
of d independent repetitions further reduces the variance [2]. We
describe how to compute private sketches in Section 5.1.

3. COMPUTING PRIVATE SUMMARIES
We now describe how to efficiently compute private summaries

for sparse datasets. Recall that a sparse dataset means that its con-
tingency table contains a large portion of zero entries. In other
words, if n is the number of non-zero entries in the contingency
table M and m is the domain size, or the total number of rows in
M , then n� m. We note that in this setting M can be stored as a
list of non-zero entries and design our techniques accordingly. For
example, in Figure 1, the compact representation of M consists of
rows 1, 10 and 17 of the table in Figure 1(b) (including field cnt,
but excluding field ncnt). Any row not present in this representa-
tion is a zero entry. Note that transforming an original table (as
in Figure 1(a)) into this compact representation can be done in lin-
ear time, and n is at most, but usually smaller than, the size of the
original table.

We denote by M(i), resp. M ′(i), the count, resp. noisy count,
corresponding to row i in table M , resp. M ′. With the above con-
vention, i ranges from 1 to m for both tables.

Because the noise can be negative, M ′ can contain negative en-
tries, which may be undesirable in many applications. A typical
adjustment is to replace the negative values by 0. Let M ′+ denote
the table obtained from M ′ via this procedure. For queries with
small selectivity (e.g., point queries), using M ′+ tends to be more
accurate than M ′. However, for large queries it is better to use M ′,
since noise values cancel out. More precisely, the sum of noise
values is zero in expectation (but has non-trivial variance).

We present a general framework for computing private summaries
for both M ′ and M ′+. The decision of which contingency table to
summarize rests with the data owner, and should depend on the
expected query workload over the published summaries.

3.1 The Shortcut Approach
Our aim is to publish M ′′, a compact summary of M ′ (or of

M ′+). To compute summaries, we need to define a value wi for
each row i; see Section 2. We will either define wi = |M ′(i)| or
wi = M ′(i). In the first case, we generate the summmary for M ′,
and in the second case, the summary for M ′+.

The naive (laborious) approach is as follows: Compute the en-
tire M ′ by first representing M explicitly as a (large, sparse) con-
tingency table, then adding noise to each count to obtain the (large,
dense)M ′.Afterwards, summarizeM ′ to obtainM ′′.As discussed
in Section 1, this is costly to the point of impracticality, even though
M ′′ is expected to be small, e.g., |M ′′| = Θ(n).

Instead, we compute M ′′ directly from the compact representa-
tion of M , without materializing the intermediate table M ′. We
illustrate this process schematically in Figure 2, which contrasts
the laborious approach to our proposed shortcut approach. The
following observation is crucial for designing our algorithms.

Figure 2: Anonymization process: (1) adding Geomet-
ric/Laplace noise, (2) filtering negative entries, (3) sampling, (I)
shortcut to generate M ′′ directly from M .

REMARK 1. For all summarization techniques we study, each
zero entry in M has the same probability p to be chosen in M ′′.
This is because the summarization methods depend only on the
values of the counts in M ′, not their positions; and because the
noise added to each zero entry is drawn from the same distribution.
Hence, out of the m − n zero entries of M , we include k of them
in the summary M ′′, where k is a random variable that follows the
Binomial distribution Bin(m− n, p).

In the subsequent sections, we develop shortcut approaches for
several summarization methods. Each method requires careful anal-
ysis, to show that the resultingM ′′ is distributed as if it were gener-
ated via summarization of M ′, and that the shortcut approach can
be implemented efficiently. We also state how to use the result-
ing summaries to accurately estimate common queries (subset and
range queries), and how to choose parameters such as sample size.

We interchangeably refer to entries in M as items, consistent
with sampling terminology. Thus, we say that M has m items, of
which n are non-zero. For simplicity, we assume that the values n
and ‖M‖1 =

P
i |M(i)| are not sensitive. Otherwise, it is straight-

forward to add the necessary noise to mask their true values.

3.2 High-pass Filter
The simplest form of data reduction we consider is to apply a

high-pass filter to M ′: it only retains the large values, and drops
the small ones. If we choose an appropriate cut-off to distinguish
“small” from “large,” the result is to drop a large portion of the data.

We detail the procedure for wi = |M ′(i)|, i.e., we compute the
summary for M ′. The case wi = M ′(i), which computes the
summary for M ′+, can be derived in a similar manner.

Let θ be the cut-off value (θ ≥ 0). If an item i has value
|M ′(i)| ≥ θ, then we include it in M ′′, else we drop it. We call
this a two-sided filter (since it allows both large negative and large
positive values). Our approach for generating M ′′ is to consider
the non-zero entries of M separately from the zero-entries. First,
inO(n) time, we filter the non-zero entries inM : generate and add
noise, then determine whether the resulting value passes the filter.
For the m − n zero entries of M , this procedure is too slow, since
n � m. Therefore, we design a statistical process which achieves
the same distribution over outputs, without explicitly adding noise
to each zero entry, as follows.

Let pθ denote the probability that a zero entry in M passes the
filter θ; pθ is computed below. We draw the number of entries k that
pass the filter from the distribution Bin(m−n, pθ), per Remark 1.
We then choose uniformly at random k zero entries in M . For
each such entry i, we generate the value M ′(i) by drawing noise,
conditional on the fact that the noise exceeds θ. This may seem
like a lot of effort just to generate noise in the output data, but it is
a necessary step: we must simulate exactly the output of filtering
over the full table M ′, in order to preserve the differential privacy
guarantee. Algorithm FILTER summarizes the algorithm for this
shortcut process.

302

Algorithm FILTER(M): Generates M ′′ via high-pass filter.

1. For every non-zero entry M(i), add geometric noise with pa-
rameter α to get M ′(i). If |M ′(i)| ≥ θ, add M ′(i) to M ′′.

2. For zero entries, sample a value k from the binomial distribu-
tion Bin(m− n, pθ), where pθ , 2αθ

1+α
.

3. Uniformly at random select k locations i from M such that
M(i) = 0. For each of these k locations, draw the value of
|M ′(i)| from the distribution

Pr[|X| ≤ x] = (1− αx−θ+1).

Flip a coin to choose the sign ofM ′(i), and addM ′(i) toM ′′.

THEOREM 1. Algorithm FILTER generates a summary with the
same distribution as the laborious approach under high-pass filter-
ing with parameter θ ≥ 1.

PROOF. Clearly, on the n non-zero entries of M , FILTER acts
the same as the laborious approach and thus has the same distri-
bution. We therefore focus on the distribution of entries which are
zero in M and are represented in M ′′. For any entry i such that
M(i) = 0, the probability that it passes the filter is:

Pr[|M ′(i)| ≥ θ] =
X
|x|≥θ

1− α
1 + α

α|x| = 2
1− α
1 + α

αθ
X
x≥0

αx

= 2
1− α
1 + α

αθ
1

1− α =
2αθ

1 + α
, pθ

By Remark 1, the number k of zero entries “upgraded,” i.e., which
pass the filter after noise is added, follows a binomial distribution
Bin(m − n, pθ). Once a zero entry i is chosen, the distribution of
its noise M ′(i), subject to passing the filter, is:

Pr[|M ′(i)| = b| |M ′(i)| ≥ θ] =
Pr[|M ′(i)| = b]

Pr[|M ′(i)| ≥ θ]
= (1− α)αb−θ,

for all b ≥ θ; and 0 for all b < θ. The corresponding CDF is:

Pr[|M ′(i)| ≤ x] =
X
b≤x

Pr[|M ′(i)| = b| |M ′(i)| ≥ θ]

=

xX
b=θ

(1− α)αb−θ = 1− αx−θ+1, ∀x ≥ θ

Hence the algorithm using this distribution operates as claimed.

Given this form of the CDF, it is straightforward to draw from it:
we draw a uniform random value r in (0, 1), and invert the equation
to find for which x is Pr[|X| ≤ x] = r. This value of x is then
used as the value |M ′(i)|; after flipping a coin for the sign, we add
either x or −x to the summary M ′′.

The one-sided filter, which passes values M ′(i) ≥ θ, is very
similar. The only differences are that pθ is now equal to αθ

1+α
, and

the CDF is Pr[X ≤ x] = 1− αx−θ+1. So we draw from the same
distribution as before, but no longer flip a coin for the sign.

Time and Space Analysis. The running time of this algorithm
consists of the time to process the n non-zero entries of M , which
is O(n); and the time to upgrade the k zero entries.

Rejection sampling. Selecting the locations of the k zero entries
requires some care, since M is stored as a list of non-zero entries.
We perform the following rejection sampling: uniformly at ran-
dom pick a location i ∈ {1, . . . ,m}, and accept it if M(i) = 0;

otherwise, reject and repeat. The number of trials per selected lo-
cation follows the geometric distribution with success probability
(m − n)/m. Thus, the expected number of trials to choose one
zero entry is m/(m − n) ≤ 2, since n � m. Checking whether
M(i) = 0 for a given i also takes (expected) constant time, if M is
stored as a hash table of non-zero entries. Thus, selecting one zero
entry takes expected time O(1). Drawing a noise value for it also
takes constant time. The expected time to upgrade all zero entries
is O(k), and the overall expected time is O(n+ k).

The value k depends on pθ , which in turn depends on θ. More
precisely, E[k] = (m − n)pθ . Since m − n is assumed to be
large, k is tightly concentrated around its expectation. Suppose we
have a target output size of s tuples; e.g., s = Θ(n). How should
we choose θ? Assume we can tolerate an output of size at most
s + n = Θ(n). It is thus sufficient to focus on the zeros: if we
pick pθ ≈ s/(m−n), then we expect s zeros to be upgraded. This
leads us to pick

θ =
log((1+α)s

2(m−n)
)

logα
,

for two-sided filters. We apply this threshold, and consider the out-
put of the FILTER algorithm: if it is sufficiently close to s, we ac-
cept the output. Otherwise, we choose a higher θ. Rather than
re-running the algorithm, we can simply take its output and apply
a higher filter θ′ on it until we reach the desired sample size. If
the output of the algorithm is too small, we re-run the FILTER al-
gorithm with the same θ value until we obtain a sufficiently large
summary. Since Bin(m− n, pθ) is highly concentrated around its
mean, it is highly likely that we generate a summary of (close to)
the desired size s in only a constant number of such trials.

Query Answering. Naively, the filtered output can be used directly
to answer queries. This is clearly biased, since small values in M ′

are replaced with zero. However, it may work well in practice if
θ is chosen so that values below θ are mostly noise, while most of
the original non-zero values in M were comfortably above θ. One
can also consider other heuristic corrections to the output, such as
assuming that all values absent from M ′′ are, e.g., θ/2 or some
other calibrated value. The subsequent methods we consider avoid
this issue by providing unbiased estimators for query answering.

3.3 Threshold and Priority Sampling
More sophisticated data reduction techniques are based on sam-

pling. In this section and the next, we discuss how to generate
M ′′ as a random sample of M ′, without explicitly generating M ′.
There are many sampling procedures. The simplest is to uniformly
sample items in M , then create M ′′ by adding noise to them. This
is easy to implement, but unlikely to have much utility: since M is
sparse, we would sample almost exclusively entries with M(i) =
0, making the sample virtually useless. Instead, we extend the intu-
ition from the high-pass filter: items inM ′ with high (noisy) values
are more likely to correspond to non-zero entries inM , i.e., to orig-
inal data. We should include them in our sample with higher proba-
bility. The filtering approach achieved this deterministically: items
below the threshold had zero chance of being included. When sam-
pling, we now allow every item a chance of being in the summary,
but set the probability proportional to its (noisy) count.

In the following, we provide a detailed description of how to
sample from M ′ (i.e., we set wi = |M ′(i)|). A similar procedure
can be used for sampling from M ′+; the formulas are in fact easier
to derive in that case, so we omit them here.

Threshold Sampling. Let wi = |M ′(i)|. The threshold sampling
procedure [5] with parameter τ is as follows: include item i in the

303

sample with probability pi = min(|M
′(i)|
τ

, 1). This means that
truly heavy items that have |M ′(i)| > τ are included in the sample
with probability 1.

Algorithm THRESHOLD. Generate M ′′ via threshold sampling.

1. For every non-zero entry in M(i), add geometric noise to get
M ′(i) and add it toM ′′ with probability pi = min(|M

′(i)|
τ

, 1).

2. For the zero entries, sample a number k from the binomial
distribution Bin((m− n), pτ), where

pτ ,
2α(1− ατ)

τ(1− α2)

3. Uniformly at random select k entries i fromM such thatM(i) =
0. For each of these k entries, draw the value of M ′(i) from
the distribution Pr[X ≤ ν] given by:

τα−νCτ (1− α), if ν ≤ −τ
Cτ (−να−ν + (ν + 1)α−ν+1 − ατ+1), if − τ < ν ≤ 0
1
2

+ αCτ (1− (ν + 1)αν + ναν+1), if 0 < ν ≤ τ
1
2

+ αCτ (1− ατ − ταν(1− α)), if ν > τ

where Cτ = 1
2α(1−ατ)

is a constant depending on τ, α. Add
M ′(i) to M ′′.

THEOREM 2. Algorithm THRESHOLD generates a summary with
the same distribution as the laborious approach under threshold
sampling with parameter τ > 0.

PROOF. The non-zero entries are sampled with the probabilities
defined for threshold sampling, so both approaches have the same
distribution on the n non-zero entries of M .

Let S be the set of zero entries included in M ′′. A zero entry i
is included with probability pi = min(|M

′(i)|
τ

, 1). Then:

Pr[i ∈ S|M ′(i) = ν] = min(|ν|
τ
, 1)

The next two summations follow by standard algebra:
vX
x=0

αx =
1− αv+1

1− α (1)

vX
x=0

xαx =
α

(1− α)2
(1− (v + 1)αv + vαv+1) (2)

Using (1) and (2), the probability that zero entry i is included is:

Pr[i ∈ S] =
X
ν

Pr[i ∈ S|M ′(i) = ν]Pr[M ′(i) = ν]

=
X
|ν|≤τ

|ν|
τ

1− α
1 + α

α|ν| +
X
|ν|>τ

1− α
1 + α

α|ν|

=2

1− α

τ(1 + α)

τX
ν=0

ναν +
X
ν>τ

1− α
1 + α

αν
!

=2

„
α

τ(1− α2)
(1− (τ + 1)ατ + τατ+1) +

ατ+1

1 + α

«
=

2α(1− ατ)

τ(1− α2)
, pτ

By Remark 1, the number of upgraded zeros follows the bino-
mial distribution Bin(m− n, pτ). Given that i is chosen, its value
M ′(i) is conditioned on the fact that it was sampled:

Pr[M ′(i) = ν|i ∈ S] =
Pr[i ∈ S|M ′(i) = ν]Pr[M ′(i) = ν]

Pr[i ∈ S]

=
min(|ν|

τ
, 1) · 1−α

1+α
α|ν|

pτ

Substituting pτ in the above, we have:
If |ν| > τ , Pr[M ′(i) = ν|i ∈ S] = τ(1−α)2α|ν|

2α(1−ατ)

If |ν| ≤ τ , Pr[M ′(i) = ν|i ∈ S] = (1−α)2|ν|α|ν|
2α(1−ατ)

Let Cτ = 1
2α(1−ατ)

; then the CDF of this distribution, at any ν,
can be computed by summing the probability of Pr[M ′(i) = x|i ∈
S], ∀x ≤ ν, given by the above two expressions. It can be broken
into four pieces and written as follows.

Pr[X = ν ≤ −τ] = τα−νCτ (1− α)

Pr[−τ < X = ν ≤ 0] = Cτ (τατ (1− α)− να−ν − τατ
+(ν + 1)α−ν+1 + (τ − 1)ατ+1)

= Cτ (−να−ν+ (ν + 1)α−ν+1− ατ+1)

Pr[0 < X = ν ≤ τ] = 1
2

+ αCτ (1− (ν + 1)αν + ναν+1)

Pr[τ < X = ν] = 1
2

+ Cτ (α(1− (τ + 1)ατ + τατ+1)
+τατ+1(1− αν−τ)(1− α))

= 1
2

+ αCτ (1− ατ − ταν(1− α))

So picking M ′(i) via this CDF has the correct distribution.

Time and Space Analysis. It follows immediately from the de-
scription of the algorithm that the sample can be generated in ex-
pected time O(n + k) = O(n + pτ (m − n)). (For step 3, we
use rejection sampling as in Section 3.2). We now analyze how to
choose τ given a desired sample size s. We could proceed as in
Section 3.2. However, we can make a more accurate estimation by
taking into account the statistics of the non-zeros, as follows. The
expected threshold sample size is t =

P
i min(|M ′(i)|/τ, 1). For

large τ , this can be approximated byX
i

|M ′(i)|
τ

≤ 1

τ

X
i

(|M(i)|+ |G(α)|)

where G(α) is the geometric distribution with parameter α. Then

E[|G(α)|] = 2

∞X
j=0

1− α
1 + α

jαj =
1− α
1 + α

2α

(1− α)2
=

2α

1− α2
,

using (2) (for v → ∞). Hence, in expectation this approximation
is ‖M‖1/τ +mE[|G(α)|]/τ = (‖M‖1 + 2mα/(1− α2))/τ.

Rearranging this suggests that we should pick τ in the region of
1
s
(‖M‖1+2mα/(1−α2)) for a desired sample size s. As with the

high-pass filter, we can draw a sample based on an estimate of τ ,
then refine our choice of τ to achieve a desired sample size. How-
ever, this is taken care of more directly when we build a priority
sample of fixed size, as discussed below.

Query Answering. Each element is sampled with probability pi =
min(|M ′(i)|/τ, 1). For each sampled i, we adjust its value in M ′′

to M ′(i)/pi. This yields an unbiased Horvitz-Thompson estimator
for subset queries [5]. The data owner can scale all values before
release. This allows queries to be answered by evaluating them
over the sample, using the adjusted values. However, for very small
queries (e.g., point queries), it can be more accurate to use the (bi-
ased) estimator of the unadjusted values.

Priority Sampling has been advocated as a method to generate
a sample of fixed size, with strong accuracy properties [6]. The
sampling scheme is defined as follows. Each entry is assigned a
priority Pi = |M′(i)|

ri
, where ri is a random value chosen uniformly

from the range (0,1]. The scheme draws a sample of size s by

304

picking the items with the s largest priorities, and also retaining the
(s+ 1)th largest priority for estimation purposes.

To efficiently build a priority sample of M ′, suppose that we
knew τs, the (s+ 1)th largest priority. Then M ′(i) is sampled if

Pi =
|M ′(i)|
ri

> τs ⇐⇒ ri <
|M ′(i)|
τs

.

Since ri is uniform over (0,1], the probability of this event is
min(|M ′(i)|/τs, 1). In other words, this procedure can be seen as
equivalent to threshold sampling with threshold τs. (Therefore, we
omit its full description here.) We next discuss how to choose τs.
The crucial difference from threshold sampling is that τs is data-
dependent, so we do not know it in advance. However, we can
guess a good value: one which will yield a sample of size s′ =
Θ(s), where the constant hidden by the Θ notation is small (but ≥
1). We first use our guess for τs to draw a corresponding threshold
sample. We then augment each item in the resulting sample with
an assigned priority ri. That is, conditional on item i being in the
sample, we draw an ri consistent with this outcome. For i, we
must have 0 < ri ≤ |M ′(i)|/τs (else i would not have passed the
threshold), but beyond this there are no additional constraints, so ri
is picked uniformly in the range (0, |M ′(i)|/τs], and subsequently
its value is held fixed.

Given these priorities for a sample of size s′ = Θ(s) (which is
distributed exactly as the s′ largest priorities over all of M ′), we
reduce the sample size to s by picking the s largest priorities (and
retaining the (s+1)th priority). The running time isO(s′) = O(s)
(in expectation). The result has the desired distribution; it follows
from the above discussion and results on threshold sampling.

THEOREM 3. A priority sample of M ′ of size s can be gener-
ated via the shortcut approach in expected time O(s+ n).

Query Answering. As with threshold sampling, we adjust the sam-
pled values for query answering: letting τs be the (s + 1)th prior-
ity, we assign each item a value with magnitude max(τs, |M ′(i)|)
while keeping the sign of M ′(i). This is unbiased, and has lowest
variance for arbitrary subset queries compared to any other scheme
that draws a sample of s items [6].

3.4 Combining Sampling with Filtering
We have argued that both sampling and filtering are useful ways

to summarize data. In particular, filtering removes small counts
which are most likely noise. Setting the threshold θ too low re-
moves a lot of noise, but will still pass too many items, while setting
it too high will remove too many true data items. A natural com-
promise is to combine sampling with filtering: generate M ′′ from
M ′ by first filtering out low values, then sampling over the result.
We expect this to give us the best properties of both methods: noise
removal and bounded output size. For clarity, we describe the com-
bination of high-pass filter and threshold sampling. We can support
filter and priority sampling via the observation in Section 3.3, that
we can extract a priority sample from a threshold sample. In prac-
tice, both combinations perform similarly. In Section 4 we report
results only on filtering and priority sampling, which achieves out-
put size exactly s.

There are two parameters: θ for filtering and τ for sampling.
When τ ≤ θ, every item which passes the filter enters the sample,
i.e., we have just filtering. When θ = 0, every item passes the
(two-sided) filter, i.e., we have just sampling. The interesting range
occurs when 0 < θ < τ : items in M ′ with absolute weights below
θ are dropped, above τ are always included in M ′′, and in between
are included with probability proportional to their weight.

As in previous cases, the non-zero elements of M are handled
directly: we add noise drawn from the geometric distribution to
obtainM ′(i), and first filter then sample the element. It is the large
number of zero elements which we must treat more carefully to
keep the process efficient.

We follow the outline from previous sections. Let S be the set
of zero entries selected in M ′′, and let pθ,τ = Pr[i ∈ S] be the
probability that the zero entry i is selected, i.e., it passes both the
filter and the sampling. Then

pθ,τ =
X
|ν|≥θ

Pr[i ∈ S|M ′(i) = ν]Pr[M ′(i) = ν]

=
X
|ν|>τ

1− α
1 + α

α|ν| +
X

θ≤|ν|≤τ

1− α
1 + α

α|ν|
|ν|
τ

= 2

0@X
ν>τ

1− α
1 + α

αν +
X

θ≤ν≤τ

1− α
1 + α

αν
ν

τ

1A
= 2

„
ατ+1

1 + α
+

α

τ(1− α2)
(θαθ−1 − (θ − 1)αθ

−(τ + 1)ατ + τατ+1)
´

=
2

τ(1− α2)
(θαθ − (θ − 1)αθ+1 − ατ+1)

Observe that for the case θ = 0, this simplifies to 2α(1−ατ)

τ(1−α2)
, i.e.,

the expression for pτ for threshold sampling in Section 3.3. We
draw from Bin(m − n, pθ,τ) to determine the number of zero en-
tries from M to sample. Given such a location i, conditioned on it
being included in the sample, the distribution of its value is now

Pr[M ′(i) = ν|i ∈ S] =
Pr[i ∈ S|M ′(i) = ν]Pr[M ′(i) = ν]

Pr[i ∈ S]

= τCθ,τ (1− α)2α|v|min(
|ν|
τ
, 1)

where the constant Cθ,τ = (2(θαθ − (θ − 1)αθ+1 − ατ+1))−1.

The CDF of the sampled values has four cases, Pr[X ≤ ν] =

τCτ,θ(1− α)α−ν , if ν ≤ −τ
Cτ,θ(−να−ν + (ν + 1)α−ν+1 − ατ+1), if − τ < ν ≤ −θ
1
2

+ Cτ,θ(θα
θ − (θ − 1)αθ+1

−(ν + 1)αν+1 + ναν+2), if θ ≤ ν ≤ τ
1− τCτ,θ(1− α)αv+1, if ν > τ

Query Answering. We adjust the values in M ′′ the same way as
for threshold sampling. This provides unbiased estimates for subset
queries over the underlying data. In this case, the underlying data
is the filtered version of M ′. Since filtering with a low threshold
removes much of the noise, being unbiased over the filtered M ′

may be a good approximation of the original M data.

4. EXPERIMENTAL STUDY

4.1 Experimental Setup
We evaluate our methods on a mixture of real and synthetic data.

We first use synthetic data, where we can observe the impact of
varying data characteristics on the quality of summaries produced.
We then report experiments on two real datasets in Section 4.4.

Default Setup. Unless otherwise specified, we use a synthetic
dataset generated as follows. We set the domain size to m = 106,
so that it is feasible to apply the standard geometric mechanism,

305

 100

 1000

 10000

 100000

50000 100000 400000

A
b
so

lu
te

 E
rr

o
r

Output Size s

Filter (one-sided)
Filter (two-sided)

(a) Filtering: Varying sample size

 0

 1000

 2000

 3000

 4000

 5000

100000 200000 300000 400000 500000

A
b
so

lu
te

 E
rr

o
r

Output Size s

Threshold sampling
Priority sampling

(b) Threshold and Priority sampling

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70

A
b
so

lu
te

 E
rr

o
r

Threshold θ

query_size=5000
query_size=50000

query_size=100000

(c) Filter-Priority sampling

Figure 3: Impact of parameter choice for each method

which materializes the noisy contingency table M ′ of size m. This
is included as a baseline to which we compare our techniques,
though it is not practical for the sparse datasets of interest. Ta-
ble M is generated as a list of non-zero entries. The non-zero data
entries are drawn from a Gaussian distribution with mean µ = 100,
standard deviation σ = 20, and they are then rounded to the near-
est positive integer. The default data density is ρ = 0.1 (hence,
n = 105), and the non-zero values are uniformly distributed in the
domain.

The default privacy parameter is ε = 0.1. Experiments were run
on a machine with Intel Xeon 3GHz processor and 4GB of memory.
Each accuracy result was averaged from 50 runs where the data is
generated with different random seeds.

We measure utility by computing the absolute errors for various
queries, i.e., the L1 difference between the true query answer (on
M) and that estimated from the published data (M ′′). To compare
the utility of the resulting summaries, we often discuss the relative
error of a set of queries, computed as the sum of absolute errors di-
vided by the sum of true answers. This indicates the general perfor-
mance, while avoiding distortion of results by queries whose true
answer is zero or near-zero. We focus on the important class of
subset queries, which estimate the sum of counts associated with a
subset of locations in M . For each query of size r, we choose r
random locations in {1, . . . ,m}. We report results averaged over
O(m) queries.

4.2 Filtering and Sampling Parameter Setting
Figure 3 shows the observed error as we vary the parameters θ for
filtering and τ for threshold sampling, which affects the sample
size. For clarity, we plot absolute errors, since the relative errors
are small (see below).

Filtering. We compare the two high-pass filters: one-sided (pass
only positive values above θ) and two-sided (pass all items whose
absolute value is above θ). We fix the subset size of queries to
5000 and adjust the filtering threshold θ to get different summary
sizes. Figure 3(a) shows the accuracy on a log scale, as it varies by
several orders of magnitude. Two-sided filtering is generally more
accurate than one-sided filtering. When most of the (originally)
non-zero data points are in the sample, query answers using two-
sided filtering estimates are unbiased. In this case the relative error
is very low: consistently around 1%. One-sided filtering is more
likely to over-estimate because some data points which were orig-
inally zero are now positive entries in the sample. When the sum-
mary size is small, we expect it to be dominated by the non-zeros
and hence both techniques have similar accuracy. The minimal er-
ror occurs when the sample contains most of the true data points
and few originally zero entries. But this may require a θ value that
results in a larger than desired summary. As we observed the same

behavior across a variety of query sizes and datasets, we henceforth
only use two-sided filtering, which is more robust.

Threshold and priority sampling. Figure 3(b) shows the accu-
racy of threshold sampling and priority sampling, over queries with
subset size 5000. The parameter τ for threshold sampling is set to
get a desired sample size s (see Section 3.3). This corresponds to
relative errors in the range 1% to 7%. The behavior of threshold
sampling is very similar to that of priority sampling, as expected
from our analysis. The only difference is that priority sampling re-
turns a sample with fixed size s as required, but needs more time
to find the (s+ 1)th priority and adjust the weights accordingly, as
shown in Figure 4. Since threshold and priority sampling behaved
similarly across all other query sizes we tested, we show only the
latter in the below experiments.

Filter-priority sampling. Figure 3(c) shows the accuracy for the
combination of two-sided filtering with priority sampling (which
we dub Filter-Priority) for θ between 5 and 70. We fix the priority
sample size to s = 105, equal to the cardinality of the original
input data. The relative errors measured are within [0.3%, 6%]. For
this setting, we find that θ = 40 is best, which is in the region of
half of the mean µ of the non-zero data values. In general, setting
the threshold θ should filter most of the (upgraded) zeros while
retaining a large number of the original non-zero data. For queries
on larger subsets, we set θ smaller to ensure more non-zeros appear
in the sample, so we rely more on the unbiased properties of priority
sampling. The choice of θ is also affected by the data density.

4.3 Comparing Summarization Techniques
We next compare the performance of our techniques to the base-

line method, denoted Geometric, of generating M ′ by adding geo-
metric noise to all its m entries.

Running time. Our main motivation for this research was that
methods like the geometric mechanism over contingency tables do
not scale well for sparse data. To illustrate this scalability issue,
we measure the time to create a summary of input data of cardi-
nality n = 106 as we vary the domain size m, obtaining different
data density values, from 10−1 to 10−5. This spans the range of
densities mentioned in Section 1. The sample size is s = n.

Figure 4 shows the running time of Geometric, as well as that
of our various shortcut approaches. We also include the Wavelet
approach, discussed in more detail in Section 5. Among all meth-
ods, Filter is the fastest, while Priority and Filter-Priority have a
higher cost due to the extra effort to find the (s+ 1)th priority and
adjust the weights. Under the very densest setting, ρ = 0.1, the
running time is about the same for all methods. However, as the
data becomes more sparse, all our techniques are orders of mag-
nitude faster than Geometric. This demonstrates that the standard

306

 0.1

 1

 10

 100

 1000

 10000

 100000

10
7

10
8

10
9

10
10

10
11

T
im

e
(s

)

Domain Size m

Filter
Priority

Filter-Priority
Geometric

Wavelet

Figure 4: Running time when varying the domain size

approach, which materializes the huge table M ′, is infeasible in
most cases. The wavelet approach also processes every cell in the
domain of M , and fails to scale for large domains.

Query accuracy. We create summaries of size s = n = 105

over the default dataset. Figure 5(a) shows the accuracy of Filter,
Priority, Filter-Priority, and Geometric, for both medium and large
subset queries over the default dataset. Apart from Priority, all
techniques have relative error between 5-10% for subsets of size
100, and this decreases as the subset size increases.

Note that Geometric publishes the entire noisy table M ′, while
our techniques release much smaller summaries of M ′. Thus, we
use the accuracy of Geometric as a benchmark against which we
evaluate our summaries. For small and medium size queries, Filter
with θ = 50 performs best, while Priority is more accurate when
the query touches more than 10,000 entries. Filter-Priority (here
using θ = 40) combines the advantages of the two techniques,
having accuracy slightly better than Geometric.

This is a somewhat surprising outcome: at best, we hoped to
equal the accuracy of the (impractical) geometric mechanism with
a compact summary; but here and in the next section, we see exam-
ples with better accuracy. The reason is that summarization helps
us: the noise introduced by the privacy mechanism is less likely to
reach the output summary, so we get somewhat more accurate an-
swers. This does not alter privacy guarantees—as the user is free to
do any post-processing of the output of the geometric mechanism,
such as apply a filter to it—rather, this indicates that the summa-
rization techniques maintain the same privacy and can improve the
utility of the released data.

Figure 5(b) shows the corresponding plot over a different dataset:
the non-zero entries are drawn from a Gaussian with higher stan-
dard deviation σ = 40. Filter performs less well, as it is harder to
separate the true data from the noise introduced in M ′. In this ex-
periment, the summary techniques are generally less accurate than
Geometric. The gap is narrowed for larger summaries: picking a
sample size of 2 × 105 (twice as large) was sufficient to make the
accuracy of Filter-Priority comparable to that of Geometric.

Impact of data density. Next, we reduce the data density to ρ =
0.01 while using the same domain size m = 106; hence, n = 104.
We also set the sample size s = n. Figure 5(c) shows that Fil-
ter outperforms Priority and Filter-Priority for most sample sizes:
since there are more zero entries in M , the probability of a zero
appearing in the sample increases, and the proportion of sampled
non-zero values decreases. But Filter-Priority (with θ = 50) still
has higher accuracy than Geometric across the whole spectrum of
subset sizes, due to efficiently canceling most of the noise from

zero entries. This result suggests that, across a range of datasets and
query sizes, this combined Filter-Priority method has the best of all
worlds: it uses filtering to prune away pure noise, and sampling to
favor more significant data entries without bias, and it produces a
summary of fixed size. This also confirms that our techniques can
create accurate summaries for data of low density.

4.4 Evaluation on Real Data
Having studied the performance of our techniques on synthetic

data where we can vary parameters, we now apply them to two real
datasets.

OnTheMap Data. The “OnTheMap” data, described in the Ap-
pendix, is actually synthesized from a real dataset on commuting
patterns. It is designed to represent realistic commuting patterns.
For the purposes of our study, we treat it as the sensitive table
M and compare our techniques for protecting the privacy of these
(synthetic) individuals. For this data, the domain size m is about
2.2×109, and the data size n is 1.7×107. We aim to publish a sam-
ple with size s = n for our methods, and compare them with the
Geometric approach. Figure 6(a) shows that our summary methods
are up to an order of magnitude faster. Equally significant, Fig-
ure 6(b) shows that the output size of our summaries is bounded,
meeting the target s = n; while the output size of Geometric, equal
to m, is hundreds of times larger.

Figure 6(c) shows the corresponding accuracy for summaries of
size 3× 106 on an aggregated version of the data. We observe that
Filter is accurate for small subset queries, but becomes inaccurate
for larger ones, This is due to the high variance in the magnitude
of non-zero entries: deleting too many small values actually wipes
out a lot of the original data. Priority and Filter-Priority with a
small threshold have better accuracy, comparable to Geometric for
most queries, while generating more compact summaries. In terms
of relative errors, all queries for subsets of 5% or more of the data
have errors less than 0.8%.

We also compared to the method of Machanavajjhala et al. [16]
to anonymize data via synthetic data generation. We applied their
method using parameters ε = 1, δ = 10−4, to satisfy (ε, δ)-
probabilistic differential privacy. While this approach has been
shown to approximately preserve features such as the distribution
of commuting distance in the data [16], it does not seem to help in
accurately answering our queries. For example, over the same set
of queries we observe absolute error over three times larger than for
Geometric with the same privacy parameters. Furthermore, it does
not seem possible to find a setting of the parameters α(i) required
by the method to obtain stricter privacy guarantees (i.e., ε < 1). By
comparison, our experiments are carried out with the even stronger
privacy guarantee of ε = 0.1.

Census Income Data. We next consider the census income dataset
described in the Appendix. Figures 7(a) and 7(b) show the run-
ning time and the output size under a fine-grained gridding where
income is rounded to every thousand. The resulting data set has
domain size m = 1.6 × 1010 and cardinality n = 3.8 × 106. For
this sparse data, our sampling and filtering techniques are faster
than Geometric by about two orders of magnitude, and publish a
significantly smaller output.

Figure 7(c) shows the accuracy of the different techniques for a
slightly coarser gridding. For this data, queries have to touch quite
a large number of entries before they become accurate. Methods
which involve a filter step perform well on this data, and are sub-
stantially more accurate than the baseline Geometric method for
nearly all query sizes.

307

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

R
el

at
iv

e
E

rr
o

r

Subset Query Size

Filter
Priority

Filter-Priority
Geometric

(a) Subset queries, (µ=100, σ=20, ρ=0.1)

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

R
el

at
iv

e
E

rr
o

r

Subset Query Size

Filter
Priority

Filter-Priority
Geometric

(b) Subset queries, (µ=100, σ=40, ρ=0.1)

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000

R
el

at
iv

e
E

rr
o

r

Subset Query Size

Filter
Priority

Filter-Priority
Geometric

(c) Subset queries, (µ=100, σ=20, ρ=0.01)

Figure 5: Experimental results on subset queries

 50

 100

 150

 200

 250

 300

Filter Priority Filter-Priority Geometric

R
u

n
n

in
g

 T
im

e
(s

)

(a) Running time

10
6

10
7

10
8

10
9

10
10

Filter Priority Filter-Priority Geometric

O
u

tp
u

t
S

iz
e

(b) Output size

 0.001

 0.01

 0.1

 1

 10

1 10 10
2

10
3

10
4

10
5

10
6

R
el

at
iv

e
E

rr
o

r

Subset Query Size

Filter
Priority

Filter-Priority
Geometric

(c) Accuracy

Figure 6: Experimental results using “OnTheMap” data

5. DATA TRANSFORMATIONS
In this section, we discuss how our methods are compatible with

various popular data transformations: randomized sketching and
dyadic/wavelet transforms for range queries.

5.1 Sketch Summarization
Both filtering and sampling keep information about a selected

subset of locations in the original data space, and drop information
about the remaining locations. In contrast, sketch techniques bring
together information about every point in the original data. A first
approach is to generate the noisy data M ′, and produce the sketch
of this: using the Count Sketch (described in Section 2), we would
have significant noise in each bucket in the sketch. We can im-
prove on this considerably by observing that, viewing the sketch as
a query, the sketch has low sensitivity. That is, we can view sketch-
ing as a mechanism for publishing data similar to histograms: once
we fix the hash function h, each bucket contains the sum of counts
of a set of individuals, and this forms a partition of the input data.
Thus, over d rows of the sketch, the sensitivity is ∆s = d, and we
can achieve privacy by adding the appropriate amount of random
noise to each entry in the sketch. Consequently:

LEMMA 4. The sketch mechanism generates a sketch of size
B × d in time O((n+B)d). The variance of point estimates from
the sketch is O(‖M‖2/Bd+ d/ε2).

PROOF. The time cost follows from the fact that we have to map
each non-zero location in the input to d rows of the sketch, and then
add noise to each entry. Since the sketch is typically much smaller
than the input domain, there is no need for subsequent sampling or
filtering. The variance of each estimate, due to sketching, is pro-
portional to the Euclidean norm of the data scaled by the number of
buckets, ‖M‖2/B [2]. The noise added for privacy simply adds to
this variance, in the amount of O(d2/ε2) for noise with parameter
(ε/d). Taking the average of d repetitions scales the variance down
by a factor of d to O(‖M‖2/Bd+ d/ε2).

Thus there is a tradeoff for setting the parameter d: increasing
d reduces the sketching error, but increases the privacy error. In
an experimental study, we were able to use large values of B, so
the second term dominated, meaning that the optimal setting was to
pick small values of d, such as d = 1. We observed that the error on
subset queries was considerably higher than for sampling/filtering,
so we omit a detailed study of sketching from this presentation.

5.2 Dyadic Ranges and Wavelets
Range queries that touch many entries tend to have much higher

error than small queries. Although in expectation the sum of noise
values is 0 (so query answers are expected to be correct), its vari-
ance is linear in the number of entries touched by the query [7]. In
practice, the observed errors tend to be proportional to the standard
deviation (i.e., the square root of the number of cells touched).

Dyadic Ranges and Wavelets. A natural way to make range queries
more accurate is to publish anonymized data at multiple levels of
granularity, so that any range can be decomposed into a small num-
ber of probes to the published data. For one-dimensional data, the
canonical approach is dyadic ranges: Build a (binary) tree over the
domain of the data. For each leaf, count the number of data values
in the interval corresponding to that leaf. For each internal node u,
compute the sum of counts over all the leaves in u’s subtree. We
can then publish these counts, at all levels, in a privacy-preserving
manner. Let h denote the height of this tree. In general, h = logm.
Each individual’s data now affects h counts, i.e., all the node counts
on the path from the individual’s leaf to the root. Hence, the sen-
sitivity increases by a factor of h, and the noise in each count is
higher. It is well known that any range query can be answered as a
sum of at most 2h counts (at most two node counts per level). For
large enough ranges, the higher noise added to each count is coun-
tered by the smaller number of counts touched by it. Since dyadic
ranges publish overlapping information (i.e. counts for each node,
and all children of each node), it is possible to apply some postpro-

308

 1

 10

 100

 1000

 10000

Filter Priority Filter-Priority Geometric

R
u

n
n

in
g

 T
im

e
(s

)

(a) Running time

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Filter Priority Filter-Priority Geometric

O
u

tp
u

t
S

iz
e

(b) Output size

 0.01

 0.1

 1

 10

 100

 1000

1 10 10
2

10
3

10
4

10
5

10
6

10
7

R
el

at
iv

e
E

rr
o

r

Subset Query Size

Filter
Priority

Filter-Priority
Geometric

(c) Accuracy

Figure 7: Experimental results using census income data

 0

 2000

 4000

 6000

 8000

 10000

 0 100000 200000 300000 400000 500000

A
b
so

lu
te

 E
rr

o
r

Range Query Size

D-Filter
D-Priority

D-Filter-Priority
D-Geometric

Wavelet
Geometric

(a) Dyadic ranges (uniform data)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100000 200000 300000 400000 500000

A
b
so

lu
te

 E
rr

o
r

Range Query Size

D-Filter
D-Priority

D-Filter-Priority
D-Geometric

Wavelet
Geometric

(b) Dyadic ranges (skewed data)

 0

 500

 1000

 1500

 2000

 0 100000 200000 300000 400000 500000

A
b
so

lu
te

 E
rr

o
r

Range Query Size

D-Filter
D-Filter-Priority

D-Filter (consistency)
D-Filter-Priority (consistency)

D-Geometric

(c) Dyadic ranges (skewed data, consistency)

Figure 8: Impact of Dyadic Ranges for query answering

cessing to the counts, to obtain a reduction in error, in time linear
in the number of counts, i.e. O(m) [15, 11].

Haar wavelets are quite similar to dyadic ranges in structure.
The principal difference is that the wavelet transform is orthonor-
mal, and generates m linearly independent wavelet coefficients.
The idea of adding noise in the wavelet domain was advocated by
Xiao et al. [21]. This approach also has a sensitivity of logm,
and answers range queries from logm counts, but with different
constants. In theory and in practice the results for dyadic ranges
and wavelets are quite similar: the variance of estimators for range
queries under both techniques is proportional to O(log3 m).

Combining Transforms with Summarization. These approaches
suffer the same limitations as other methods when applied to sparse
data: they still output a dataset of size O(m), which is huge com-
pared to the input data. As a result, they also take time linear in m
to perform. Thus, whenm� n, we face the same scalability prob-
lems. We observe that it is also possible to compose these variants
of private data publishing with summarization: The counts com-
puted by dyadic ranges or wavelets on the original data M become
the input dataset N for our private summary methods. We then
apply the shortcut approaches from the previous sections to com-
pute N ′′. The key is to observe that both transforms are sparsity-
preserving: the number of non-zero entries inN is not much bigger
than in the original M . This is not the case for other transforms;
for example, the Fourier transform of sparse data is always dense.
Our main technical result in this setting is as follows:

THEOREM 5. We can generate summaries of size s with the
same distribution as the laborious approach applied to dyadic ranges
or Haar wavelets under high-pass filtering and threshold/priority
sampling in (expected) time O(s+ n log(m/n)).

PROOF. The approach is quite direct: from M , we produce the
(exact) transform into either wavelets or dyadic ranges, then apply
our private summary algorithms to this transform. The theorem

follows by observing that the total number of non-zero values in
the transform of M can be bounded in terms of n and m. We
outline the case for dyadic ranges; wavelets are similar.

Consider each non-zero in M as a leaf in a binary tree. The
number of non-zeros in the dyadic range transform of M is the
number of distinct nodes touched by following the paths from each
non-zero to the root. Each non-zero can touch at most one node in
any level, giving a crude bound of n logm. This can be tightened
by observing that for levels close to the root, there may be fewer
than n nodes. More precisely, for the top logn levels, there are at
most n nodes in total. Thus we bound the total number of nodes
touched, and hence the number of non-zeros in the transform as:

O(n+ n(logm− logn)) = O(n log(m/n)).
We generate and count all the non-zeros of the transform exactly.

This can be done in space O(logm) by walking over the input in
sorted order. This output can be fed into any of the summariza-
tion mechanisms from Section 3 directly. We can also compute
the exact number of zeros, and choose from these which zeros to
upgrade.

One subtlety with this approach for the wavelet transform is that
we produce the output in the transformed space, i.e., we output the
noisy set of swavelet coefficients. This is in contrast to [21], which
presents the output in the original (data) domain. The reason is that
the s wavelet coefficients do not necessarily lead to sparse output,
and may require O(m) space to represent exactly as counts.

This approach extends naturally to multiple dimensions of data.
However, care is needed: the sensitivity grows exponentially with
the number d of dimensions, as logdm. As each range query is
answered by summing O(logdm) counts, there are fewer queries
benefiting from dyadic ranges or wavelets, as their sizes must in-
crease rapidly with the dimension.

Consistency Checks for Dyadic Ranges. The work of [15, 11]
describes how to perform post-processing on dyadic range counts

309

to form consistent least-squares estimators. In our setting, we treat
this as impractical, due to the high cost of materializing all counts.
Instead, we propose a consistency-inspired heuristic for dyadic ranges,
via the inherent correlation between counts along the same leaf to
root path. For dyadic ranges over the original data, a node count is
never smaller than the counts in the node’s descendants. Therefore,
it is natural to try to enforce a similar condition in the summary
data, by modifying some entries after publication.

For filter summaries over dyadic ranges, we impose the follow-
ing post-processing step. If a node u is selected in the summary
M ′′, but at least one of u’s ancestors v is not selected, then we
drop u from M ′′. The intuition for this is straightforward: Since
M(v) ≥M(u), v had a higher chance to pass the filter after noise
addition. The fact that it did not is strong evidence that its count
(and thus u’s count) is small, and likely zero. The evidence of v’s
absence from the summary trumps the evidence of u’s presence, so
we drop u.

This condition is less meaningful when the summary is a random
sample: it may omit some nodes v as part of the random sampling,
so the absence of some node does not give a strong reason for drop-
ping its descendants. However it is appropriate to apply the combi-
nation of filter and priority sampling described in Section 3.4, if we
do so after filtering but before sampling. This means that we must
work on the output of the filtering, which can be large (but still
much smaller than m), and so we require more working space than
the size of the final summary. However, this may be an acceptable
quality/efficiency tradeoff for some data.

5.3 Experiments with Transforms
In this section, we show the result of experiments that combine

the dyadic range technique with the filtering and sampling methods
to produce a bounded output size, and evaluate the performance
on range queries. Specifically, we consider Filter, Priority, and
Filter-Priority on dyadic ranges (dubbed D-Filter, D-Priority and
D-Filter-Priority), as well as the geometric mechanism both with
and without dyadic ranges (Geometric, resp. D-Geometric). We
also include the standard Wavelet transform, which takes O(m)
time and space. Our attempt to combine wavelet with filtering and
sampling resulted in considerably degraded query accuracy, so we
do not include it. This is because, under the weighting scheme of
[21], coefficients which are important for accurate query answering
have low magnitude. We leave modifying the scheme to retain im-
portant coefficients for future work. We set the number of sampled
dyadic ranges to s = 105, which is equal to the number of non-
zeros in the original dataset. We report results for various range
query sizes.

Figure 8(a) shows that D-Priority is the worst of our private sum-
mary techniques on dyadic ranges. This is because the sensitivity
of the dyadic ranges is large (i.e., logm), so the noise is also large,
giving zero entries among dyadic ranges a high probability to be in
the sample. D-Filter and D-Filter-Priority are much better, since
they filter out most of the original zero counts; even if we drop
some counts with very small magnitude, this does not dramatically
affect the accuracy of the answer on the whole range. We also note
that dyadic ranges significantly improve accuracy: D-Geometric is
far better than Geometric for all range query sizes R ≥ 104 (i.e., at
least 1% of the domain). Moreover, the accuracy is stable when us-
ing dyadic ranges: it depends only very weakly on the range size,

since each query probes about the same number of entries (i.e.,
twice the height of the dyadic range tree).

Figure 8(b) shows the same experiment when the data is skewed,
i.e., the non-zeros in the data are more clustered in the domain.
This effectively changes the sparsity of the resulting dyadic ranges,
which have more zeros in certain tree nodes than others. Now D-
Filter is better than D-Geometric since it can eliminate more noise
from these “light” nodes in the dyadic range tree.

Wavelet has good accuracy in both experiments, but is slow and
has a large output size of O(m). We computed the running time of
all these techniques, while varying the data density from 10−1 to
10−3. We observed the same trend as in Figure 4—sampling and
filtering are always much faster than both wavelet and the geomet-
ric mechanism applied to dyadic ranges. For larger density values,
the reduction in running time for our techniques is less pronounced,
by a factor of about 2 to 4 times, since all methods incur the extra
cost for building the dyadic ranges. The summary size is still orders
of magnitude smaller than the unfiltered size of M ′.

Overall, we conclude that both dyadic ranges and wavelets are
compatible with our private summary framework. Dyadic ranges
are highly effective when we anticipate range queries that touch
more than a small fraction of the domain. The accuracy of wavelets
suffers when combined with our summary methods, and we leave
further investigations for future work.

Consistency checks. We also experimented with applying consis-
tency checks to the dyadic ranges, as discussed in Section 5.2. This
is done for Filter, and for Filter-Priority after filtering, but before
priority sampling. Note that applying these checks on the geomet-
ric mechanism is not helpful, since there are very few entries set to
zero that can be used to filter descendant nodes. Figure 8(c) shows
that applying consistency checks reduces the errors of our two tech-
niques by 30% to 60%. This confirms that consistency checks help
improve accuracy when the data is highly sparse and non-uniform,
since they further eliminate noise from originally zero entries. For
more uniform datasets, the same trend is present, but is less pro-
nounced: the improvement is closer to 10%.

6. CONCLUDING REMARKS
Differential privacy is a powerful mechanism for releasing data

without violating the privacy of the data subjects. In this paper,
we have proposed a general framework for computing private sum-
maries of sparse data. Such summaries are an effective way to re-
lease data under differential privacy without overwhelming the data
user or the data owner. The accuracy of query answering from the
released summary compares favorably to the laborious approach
of publishing vast data with geometric noise. In many cases, our
private summaries even improve query accuracy, by removing a
lot of the noise without compromising privacy. Both filtering and
sampling are effective in different cases, but the combined Filter-
Priority method seems generally useful across a wide variety of
settings. On data which is sparse, as is the case for most realistic
examples, the cost of creating the summary is low, and the bene-
fit only improves as the data dimensionality increases. When we
expect that range queries are prevalent, the summaries can be com-
bined with techniques such as dyadic ranges. The benefits of the
summary still hold (compact, accurate, fast to compute), and the
query accuracy increases even further for most range queries.

310

7. REFERENCES
[1] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry,

and K. Talwar. Privacy, accuracy, and consistency too: a
holistic solution to contingency table release. PODS, 2007.

[2] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. ICALP, 2002.

[3] B.-C. Chen, D. Kifer, K. LeFevre, and A. Machanavajjhala.
Privacy-Preserving Data Publishing. NOW publishers, 2009.

[4] G. Cormode and D. Srivastava. Anonymized data:
Generation, models, usage. SIGMOD, 2009.

[5] N. Duffield, C. Lund, and M. Thorup. Estimating flow
distributions from sampled flow statistics. SIGCOMM, 2003.

[6] N. Duffield, C. Lund, and M. Thorup. Priority sampling for
estimation of arbitrary subset sums. J. ACM, 54(6), 2007.

[7] C. Dwork. Differential privacy. ICALP, pages 1–12, 2006.
[8] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and

mining data streams: You only get one look. SIGMOD ,
2002.

[9] J. Gehrke, D. Kifer, and A. Machanavajjhala. Privacy in data
publishing. IEEE ICDE, 2010.

[10] A. Ghosh, T. Roughgarden, and M. Sundararajan.
Universally utility-maximizing privacy mechanisms. STOC,
2009.

[11] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the
accuracy of differentially-private histograms through
consistency. VLDB, 2010.

[12] S. Isaacman, R. Becker, R. Cáceres, S. Kobourov,
J. Rowland, and A. Varshavsky. A tale of two cities.
HotMobile, 2010.

[13] D. Kifer. Attacks on privacy and deFinetti’s theorem.
SIGMOD, 2009

[14] D. Kifer and B.-R. Lin. Towards an axiomatization of
statistical privacy and utility. PODS, 2010.

[15] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor.
Optimizing linear counting queries under differential privacy.
PODS, 2010.

[16] A. Machanavajjhala, D. Kifer, J. M. Abowd, J. Gehrke, and
L. Vilhuber. Privacy: Theory meets practice on the map.
IEEE ICDE, 2008.

[17] F. McSherry. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. SIGMOD,
2009.

[18] F. McSherry and K. Talwar. Mechanism design via
differential privacy. IEEE FOCS, 2007.

[19] S. Muthukrishnan. Data Streams: Algorithms and
Applications. NOW publishers, 2005.

[20] F. Olken. Random Sampling from Databases. PhD thesis,
Berkeley, 1997.

[21] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via
wavelet transforms. IEEE ICDE, 2010.

[22] Y. Xiao, L. Xiong, and C. Yuan. Differentially private data
release through multidimensional partitioning. VLDB SDM
Workshop, 2010.

APPENDIX
In this appendix, we describe the four data sets alluded to in the
introduction in greater detail, and show that they are sparse, and
have a large domain size.

Census Income Data. Census Income Data has attributes (Age,
Birthplace, Occupation, Income). Samples can be downloaded from
www.ipums.org. To represent in a contingency table, we con-
sidered income at the various granularities of $1,000 to $10,000,
and age at granularities of 1 to 5 years. Under various settings, we
observed data density at most 5%, and as small as 0.02%.

OnTheMap Data. The US Census Bureau makes available data
describing commuting patterns for US residents, as the number of
people for each work-home combination (at the census block level),
together with other information such as age ranges, salary ranges,
and job types. We consider the 47 states available in version 4 of
the 2008 data from http://lehd.did.census.gov/. We
take the location data as the first 2 digits of the census tracts in
each county; so each location is identified by “county id + 2-digit
tract id”. There are 4001 such locations, so the size of the resulting
frequency matrix is m = 1.6 × 107. The number of non-zeros
under this setting is ∼ 8.2× 105, so the data density is ρ = 0.051.
The mean value in each non-zero cell is approximately 150, but
with very high variance: many cells have frequency 1 or 2 (and
hence should be masked by the addition of noise). The data domain
becomes larger and sparser if we include more attributes: adding
age, salary and industry, each of which has three values, increases
the data size by 27 times while dropping the density to about 0.01.

Adult Data. The Adult Data from the UCI Machine Learning
repository, available at http://archive.ics.uci.edu/ml/
datasets/Adult, has been widely used in data mining, and
prior work on privacy [13]. The full data has 14 attributes, but
to avoid gridding issues, we projected the data on categorical at-
tributes, i.e, Workclass, Education, MaritalStatus, Occupation, Re-
lationship, Race, Sex. This generated data with a density of 0.14%,
and an average value in each (non-zero) cell of 9.

Telecom Warehouse Data. AT&T records measurements on the
performance of devices in its network in a data warehouse. These
measurements include attributes deviceId, timestamp, Val, repre-
senting a measurement Val of each device at a given time stamp.
For each day, many gigabytes of data are added to the warehouse.
For several natural granularities of the numerical attributes, the ob-
served density ranges from 0.5% to 2%. Therefore, the output of re-
porting all differentially private counts is 50-200 times larger. Gen-
erating, storing and processing data in this form would increase
the associated costs by the same factors, making this vastly too
expensive. Nevertheless, given the company’s data protection poli-
cies, and the need for various internal groups to analyze this data, a
practical anonymization solution is highly desirable.

311

	p299-cormode

