
Supporting Top-K Item Exchange Recommendations in
Large Online Communities

Zhan Su
School of Computing
National University of

Singapore
suzhan@comp.nus.edu.sg

Anthony K. H. Tung
School of Computing
National University of

Singapore
atung@comp.nus.edu.sg

Zhenjie Zhang
Advanced Digital Sciences

Center
Illinois at Singapore Pte.

zhenjie@adsc.com.sg

ABSTRACT
Item exchange is becoming a popular behavior and widely sup-
ported in more and more online community systems, e.g. online
games and social network web sites. Traditional manual search
for possible exchange pairs is neither efficient nor effective. Auto-
matic exchange pairing is increasingly demanding in such commu-
nity systems, and potentially leading to new business opportunities.
To meet the needs on item exchange in the market, each user in the
system is entitled to list some items he/she no longer needs, as well
as some required items he/she is seeking for. Given the values of
all items, an exchange between two users is eligible if 1) they both
have some unneeded items the other one wants, and 2) the exchange
items from both sides are approximately of the same total value. To
efficiently support exchange recommendation services, especially
with frequent updates on the listed items, new data structures are
proposed in this paper to maintain promising exchange pairs for
each user. Extensive experiments on both synthetic and real data
sets are conducted to evaluate our proposed solutions.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: In-
formation Search and Retrieval—Information filtering; H.3.1 [IN-
FORMATION STORAGE AND RETRIEVAL]: Content Anal-
ysis and Indexing—Indexing methods

General Terms
Algorithms, Performance

Keywords
Recommender system, Item exchange, Online community

1. INTRODUCTION
Item exchange is becoming a popular internet phenomenon and

widely supported in more and more online community systems,
e.g. online games and social network web sites. In Frontier Ville,
for example, known as one of the most popular farming games with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

�� ���� �	
��
�� ��

 ���
�� �
���� ���
�� ��	���	 ���
�� �����	 ���
�� ��
�� ����
�� �	

 ����

�
 !"#
 � �� ��
$����%�%"#
 � �� �� ��

�
 !"#
 � �� ��
$����%�%"#
 � �� ��

�
 !"#
 � ��
$����%�%"#
 � �� ��

��

��

&�

&�

&�

��

Figure 1: Example of transaction in CSEM

millions of players, every individual player only owns limited types
of resources. To finish the tasks in the game, the players can only
resort to their online neighborhood for resource exchanges [1]. Due
to the lack of effective channel, most of the players are now rely-
ing on the online forum, posting the unneeded and wanted items
to attract other users meeting the exchange requirements. While
the items for exchange in online games are usually virtual objects,
there are also some emerging web sites dedicated to the exchange
services on second-hand commodities. Shede [4], for example, is a
quick-growing internet-based product exchange platform in China,
reaching millions of transactions every year. Similar web sites have
also emerged in other countries, e.g. UK [3], Singapore [2] et al.
However, the users on the platform are only able to find matching
exchange parties by browsing or searching with keywords in the
system. Despite of the huge potential value of the exchange mar-
ket, there remains a huge gap between the increasing demands and
the techniques supporting automatic exchange pairing.

In this paper, we aim to bridge this gap with an effective and
efficient mechanism to support automatic exchange recommenda-
tions in large online communities. Generally speaking, a group of
candidate exchanges are maintained and displayed to each user in
the system, suggesting the most beneficial exchanges to them. The
problem of online exchange recommendation is essentially chal-
lenging in two folds. First, it is important to design a reasonable
and effective exchange model, on which all users in the system
are willing to follow. Second, all the recommendations must be
updated in real time, to keep all users with the most recent and ac-
ceptable exchange candidates, handling the massive updates com-
ing from every participant.

To model the behaviors and requirements of the users in the
community system [9], some online exchange models have been

97

I D N a m e P r i c e
I1 N a i l $ 1 0
I2 R i b b o n $ 2 0
I3 S c r e w e r $ 7 0
I4 H a m m e r $ 8 0
I5 P a i n t $ 1 0 0
I6 D r i l l $ 1 7 0

W i s h L i s t I4 I5

U n n e e d e d L i s t I2 I3 I6

W i s h L i s t I1 I6

U n n e e d e d L i s t I4 I5

W i s h L i s t I2

U n n e e d e d L i s t I1 I4

(I 6)
(I 4, I 5)

u1

u2

u3

Figure 2: Example of transaction in BVEM

proposed. The recent study in [5], for example, proposed a Circu-
lar Single-item Exchange Model (CSEM). Specifically, given the
users in the community, an exchange ring is eligible if there is a
circle of users {u1 → u2 → . . . um → u1} that each user ui in
the ring receives a required item from the previous user and gives
an unneeded item to the successive user. Despite of the successes
of CSEM in kidney exchange problem [6], this model is not appli-
cable in online community systems for two reasons. First, CSEM
does not consider the values of the items. The exchange becomes
unacceptable to some of the users in the transaction, if he/she is
asked to give up valuable items and only gets some cheap items
in return. Second, single-item constraint between any consecutive
users in the circle limits efficiencies of online exchanges. Due to
the complicated protocol of CSEM, each transaction is committed
only after all involved parties agree with the deal. The expected
waiting time for each transaction is too long to afford, especially in
online communities. In Figure 1, we present an example to illus-
trate the drawbacks of CSEM. In this example, there are three users
in the system, {u1, u2, u3}, whose wishing items and unwanted
items are listed in the the rows respectively. Based on the protocol
of CSEM, one plausible exchange is a three-user circle, I1 from u1

to u2, I2 from u3 to u1 and I5 from u2 to u3, as is shown with
the arrows in Figure 1. This transaction is not satisfactory with u2,
since I5 is worth 100$ while I1’s price is only 10$.

In this paper, we present a new exchange model, called Binary
Value-based Exchange Model (BVEM). In BVEM, each exchange
is run between two users in the community. An exchange is eli-
gible, if and only if the exchanged items from both sides are ap-
proximately of the same total value. Recall the example in Figure
1, a better exchange option between u2 and u3 is thus shown in
Figure 2. In this transaction, u2 gives two items I4 and I5 at total
value at $180, while u3 gives a single item I6 at value 170$. The
difference between the exchange pair is only 10$, or 5.9% of the
counterpart. This turns out to be a fair and reasonable deal for both
users. On the other hand, each exchange in BVEM only involves
two users, which greatly simplifies the exchange procedure. Both
of the features make BVEM a practical model for online exchange,
especially in highly competitive environment such as online games.
To improve the flexibility and usefulness of BVEM model for on-
line communities, we propose a new type of query, called Top-K
Exchange Recommendation. Upon the updates on the users’ item
lists, the system maintains the top valued candidate exchange pairs
for each user to recommend promising exchange opportunities.

Despite of the enticing advantages of top-k exchange query un-
der BVEM on effectiveness, extensive development efforts are needed
for database system, especially with large number of online users.

Given a pair of two users in the community, the problem of finding
the matching exchange pair with the highest total value is proven
to be NP-hard, whose computational complexity is exponential to
the number of items the users own. Fortunately, the size of the item
lists are usually bounded by some constant number in most of the
community systems, leading to acceptable computation cost on the
search for the best exchange plan between two specified users. The
problem tends to be more complicated if the community system is
highly dynamic, with frequent insertions and deletions on the item
lists of the users. To overcome these challenges on the implementa-
tion of BVEM, we propose a new data structure to index the top-k
optimal exchange pairs for each user. Efficient updates on both in-
sertions and deletions are well supported by our data structure, to
maintain the candidate top-k exchange pairs.

We summarize the contributions of the paper as listed below:

1. We propose the Binary Value-based Exchange Model, cap-
turing the requirements of online exchange behavior.

2. We design a new data structure for effective and efficient in-
dexing on the possible exchange pairs among the users.

3. We apply optimization techniques to improve the efficiency
of the proposed index structure.

4. We present extensive experimental results to prove the use-
fulness of our proposals.

The remainder of the paper is organized as follows. Section 2 re-
views some related work on online exchange models and methods.
Section 3 presents the problem definition and preliminary knowl-
edge of our problem. Section 4 discusses the indexing structure to
maintain the possible exchange pairs between two users. Section 5
extends the index structure to support more users. Section 6 eval-
uates our proposed solutions with synthetic data sets and Section 7
concludes this paper.

2. RELATED WORK
In this section, we review some related studies from different

areas in computer science, including the kidney exchange prob-
lem in electronic commerce, the exchange game model in algorith-
mic game theory, and the exchange recommendation problem in
database system.

The problem of kidney exchange rises from the kidney transplan-
tation market, in which many relatives of the patients are willing to
donate their kidneys but not compatible with the patients. To uti-
lize the willing donors, a better solution is exchanging the donors
among the patients [6]. With large number of patient-donor pairs,
the kidney exchange problem aims to discover circles among the
pairs with maximal length of L, such that the kidney of each donor
is compatible to next patient on the circle. While the general prob-
lem of kidney exchange is NP-hard and difficult to find approx-
imate solutions [8], some heuristics have been employed to find
simple circles [6]. In particular, in [6] the authors proposed a lin-
ear integer programming (ILP) formulation of the kidney exchange
problem. The tree search strategy with incremental formulation ap-
proach is applied to find some local optimal solution.

In computational economics, Arrow-Debreu Model is a general
representation of exchange game among a group of participants
with different commodities for trade [11, 12]. In this exchange
game, each participant initially owns some cash as well as a com-
bination of the commodities. Given the market prices of the com-
modities, the users sell unnecessary commodities and buy the some

98

I D N a m e P r i c e
I1 N a i l $ 1 0
I2 R i b b o n $ 2 0
I3 S c r e w e r $ 7 0
I4 H a m m e r $ 8 0
I5 P a i n t $ 1 0 0
I6 D r i l l $ 1 7 0

T i m e O p e r a t i o n U s e r W i s h l i s t U n n e e d e d l i s t T o p - 1 T o p - 2

1

u1 I2 I1, I 4 - - - -
u2 I1, I 6 I4, I 5 (u 2, u 3, { I 6} , { I 4, I 5}) - -
u3 I4, I 5 I2, I 3, I 6 (u 3, u 2, { I 4, I 5} , { I 6}) - -

2 I n s e r t I 3 i n t o W 1

u1 I2,I3 I1, I 4 (u 1, u 3, { I 2, I 3} , { I 4}) - -
u2 I1, I 6 I4, I 5 (u 2, u 3, { I 6} , { I 4, I 5}) - -
u3 I4, I 5 I2, I 3, I 6 (u 3, u 2, { I 4, I 5} , { I 6}) (u 3, u 1, { I 4} , { I 2, I 3})

3 D e l e t e I 5 f r o m U 2

u1 I2, I 3 I1, I 4 (u 1, u 3, { I 2, I 3} , { I 4}) - -
u2 I1, I 6 I4 - - - -
u3 I4, I 5 I2, I 3, I 6 (u 3, u 1, { I 4} , { I 2, I 3}) - -

Figure 3: Running Example of Top-K Exchange Pair Monitoring with β = 0.8

other commodities to optimize his utility function. The basic Arrow-
Debreu Theorem [7] states that there exists a group of prices lead-
ing to a clear market, in which each user is satisfied with the final
allocation. While the theorem proves the existence of the price
combination with Kakutani’s Theorem, it does not provide a sys-
tematic way to find the prices. In [11, 12], scientists in computer
theory tried to design explicit algorithms to find the optimal prices
to clear the market.

The general problem of exchange recommendation in database
system is extended from the kidney exchange problem, which is
closely related to our study. In [5], Abbassi and Lakshmanan pro-
posed the Circular Single-item Exchange Model (CSEM), follow-
ing the same transaction structure from kidney exchange game.
CSEM is different from kidney exchange problem that each user in
CSEM is allowed to take different commodities while each kidney
disease patient has only one associated donor. Moreover, CSEM
can be extended to some sub-models, including Swap Exchange
Model, Short-Cycle Exchange Model and Probabilistic Exchange
Model. The authors of [5] presented some algorithms to find ap-
proximate solutions to all these models with approximation factor
linear to the maximal allowed cycle length k. Based on our analysis
in Section 1, CSEM is only practical if the items for exchange with-
out explicit value label and efficiency requirement. In online com-
munity space, exchanges on valued items are expected to be run
with fast response time, which need better exchange model such as
our proposal.

3. PROBLEM DEFINITION AND PRELIM-
INARIES

In the community system, we assume that there are n users U =
{u1, u2, . . . , un}, and m items O = {I1, I2, . . . , Im}. Each user
ui has two item lists, the unneeded item list Li and the wishing
item list Wi. Each item Ij is labelled with a tag vj as its public
price. Given a group of items O′

⊆ O, the value of the item set is
the sum on the prices of all items in O′, i.e. V (O′) =

∑
Ij∈O′ vj .

In the example for Figure 1 and Figure 2, the value of the item set
V ({I1, I2, I3}) =$100 according to the price list in the figures.

In this paper, we adopt the Binary Value-based Exchange Model
(BVEM) as the underlying exchange model in the community sys-
tem. Given two users ui and ul, as well as two item sets Si ⊆ Li

and Sl ⊆ Ll, an exchange transaction E = (ui, ul, Si, Sl) rep-
resents the deal that ui gives all items in Si to ul and receives Sl

in return. The gain of the exchange E for user ui is measured
by the total value of the items he receives after the exchange, i.e.
G(E, ui) = V (Sl). Similarly, the gain of user ul is G(E, ul) =
V (Si). This exchange is eligible under BVEM with relaxation pa-
rameter β (0 < β ≤ 1), which follows the formal definition below.

DEFINITION 1. Eligible Exchange Pair
The exchange transaction E = (ui, ul, Si, Sl) is eligible, if it sat-

isfies 1) Item matching condition: Si ⊆ Wl and Sl ⊆ Wi; and 2)
Value matching condition: βV (Si) ≤ V (Sl) ≤ β−1V (Si).

Assuming that all users in the system are rational, each user ui

always wants to maximize his gain in the exchanges with other
users. In the following, we prove the existence of a unique opti-
mal exchange among all exchanges between ui and ul, maximizing
both of their gains.

LEMMA 1. For any pair of users, ui and ul, there exists a
dominating exchange pair E = (ui, ul, Si, Sl) such that for any
E′ = (ui, ul, S

′

i, S
′

l) the following two events can never happen:
1) G(E′, ui) > G(E, ui), or 2) E(E′, ul) > G(E, ul).

PROOF. We prove this lemma by construction and contradic-
tion. We order all eligible exchange pairs with non-increasing or-
der on G(E, ui). For all exchange pairs with exactly the maxi-
mal gain for ui, we further find the unique exchange pair E =
(ui, ul, Si, Sl) by maximizing the gain for ul. If E does not sat-
isfy the condition in the lemma, there are two possible cases. In
the first case, there exists an exchange pair E′ that G(E′, ui) >
G(E, ui). Depending on our construction method, this situation
can never occur. In the second case, ul has a better option with
higher gain in E′ = (ui, ul, S

′

i, S
′

l), i.e. G(E′, ul) = V (S′

i) >
G(E, ul) = V (Si). If this happens, we will show in the following
that E′′(ui, ul, S

′

i, Sl) is also an eligible exchange pair, thus vio-
lating the construction principle of E. Based on the definition of
eligible exchange pair, we know that

G(ui, E
′) = V (S′

l) ≥ βV (S′

i) = βG(ul, E
′)

Since G(ui, E) is the maximal gain of ui on any exchange pair,
it is easy to verify that V (Sl) ≥ V (S′

l) ≥ βV (S′

i). On the other
hand, it can be derived that

V (Sl) ≤ β−1V (Si) ≤ β−1V (S′

i)

Combining the inequalities, we conclude E′′ = (ui, ul, S
′

i, Sl)
is also eligible. Moreover, G(ui, E

′′) = V (Sl) = G(ui, E) and
G(ul, E

′′) = V (S′

i) > V (Si) = G(ul, E), which also violate our
construction method. This contradiction leads to the correctness of
the lemma.

The lemma suggests the existence of an optimal exchange so-
lution between ui and ul for both parties, denoted by E∗(ui, ul).
However, for each user ui, there may exist different eligible ex-
change pairs with different users at the same time. To suggest more
promising exchange pairs to the users, we define Top-K Exchange
Pair as below.

DEFINITION 2. Top-K Exchange Recommendations
For user ui, the top-k exchange pairs, i.e. Top(k, i), includes the
k most valued exchange pairs E∗(ui, ul) with k different users.

99

In the definition above, each pair of user (ui, ul) contributes at
most one exchange pair to Top(k, i). It is because there is a dom-
inating exchange plan between two users ui and ul. Therefore, it
is less meaningful to output two different exchange suggestions be-
tween a single pair of users. The main problem we want to solve
in this paper is providing an efficient mechanism to monitor top-k
exchange recommendations for each user in real time.

PROBLEM 1. Top-K Exchange Pair Monitoring
For each insertion or deletion on any item list Li andWi for user
ui, update the Top(k, j) for every user uj in the system.

Upon insertions or deletions on the item lists of user ui, the top-
k exchange pairs of ui or other users is subject to change. Figure
3 shows an example to help understand the impact of item updates.
At the initial timestamp, there is only one eligible exchange pair
between u2 and u3, i.e. (u2, u3, {I6}, {I4, I5}). The gain of u3 in
this potential exchange is 180$. At the second timestamp, assume
that there is no exchange happened and a new item I3 is inserted
into u1’s wish list. The exchanging pair between u1 and u3 be-
comes eligible, as is listed in the table. The gain of u3 from the
new exchanging pair is $80, which is smaller than her gain from
the previous exchange suggestion with u2. As a result, the new ex-
changing pair is the second best recommendation for u3. At time
3, I5 is deleted from unneeded list of u2. This breaks the existing
eligible exchanging pair between u2 and u3, and there is no other
eligible exchange pairs between them. Therefore, this exchanging
pair is deleted from the recommendation list of both users. It is
important to note that our system only presents the suggestions to
the users, but never automatically commits these exchanges.

In the following theorem, we prove that the computation of top-1
exchange pair is difficult, even when there are only two users in the
system.

THEOREM 1. Given two users ui and ul, finding the optimal
eligible exchange pair between ui and ul is NP-hard.

PROOF. We reduce the Load Balancing Problem to our prob-
lem. Given a group of integers X = {x1, x2, . . . , xn}, the problem
of load balancing is deciding if there exists a partition X1 ⊂ X and
X2 ⊆ X (X1 ∩X2 = ∅ and X1 ∪X2 = X) that

∑
xi∈X1

xi =∑
xj∈X2

xj . Load balancing problem is one of the most famous
NP-hard problems [13].

Given each instance of loading balancing problem, i.e. X, we
construct the item lists for ui and ul as follows. For each xj ∈

X, a corresponding item Ij is constructed with value vj = xj .
All these items Ij (1 ≤ j ≤ n) are inserted into the wish item
list Wi for ui and unneeded item list Lj . A new item In+1 is
then created with value vn+1 =

∑
xj∈X xj/2. We insert In+1

into Li and Wj . This reduction can be finished in O(n) time. By
setting β = 0, our problem tries to find a subset in Wi with the
exact total value as In+1. If such a solution is always discovered
by some algorithm in polynomial time, load balancing problem is
also solvable in polynomial time. If this is the case, we will prove
P=NP.

The last theorem shows that the complexity of finding top-k ex-
change pair between any two users is exponential to the size of the
item lists. Fortunately, the number of items owned by the users is
usually limited in most of the online community systems. This par-
tially relieves the problem of optimal exchange pairing. Therefore,
the major problem for top-k exchange pair monitoring to overcome
is how to effectively select some pairs of users to re-calculate the
optimal exchange, when some insertion or deletion happens. In the

Notation Description
U = {ui} the set of users in the community
O = {Ij} the set of items with all users
Li the unneeded item list for user ui

Wi the wishing item list for user ui

vj the value of the item Ij
V (O′) the value of an item set O′ ⊆ O

Si Sl item subset of Li and Ll respectively
E(ui, ul, Si, Sl) exchange pair between ui and ul

G(E,ui) the gain of ui from exchange E

β relaxation factor on value matching condition
E∗(ui, ul) the optimal exchange pair between ui and ul

AV T approximate value table
AV T [m] mth entry in AV T

N maximal number of items in any list
ε approximation bound
vmin, vmax minimal and maximal value of any item combina-

tion
N maximal number of entries in any AV T

Top(k, i) Top-k exchanges list for user ui

θi minimal value of exchange pairs in Top(k, i)
UL(Ij) set of users who have Ij in their unneeded item

list
CL(Ij) set of users who have Ij in their critical item set
κ number of top results to be calculated initially
κi number of top results ui currently keep
Ki critical item sets for user ui

Table 1: Table of Notations

Algorithm 1 Brute-force algorithm for T1U2
exchange(Li,Wi, Ll,Wl)
1: Clear optimal solutions S∗

2: Generate subsets φL = 2Li∩Wl and sort on value
3: Generate subsets φR = 2Ll∩Wi and sort on value
4: Set m = |φR|

5: for n from |φL| to 1 do
6: while m > 0 and β ∗ |φR[m]| > |φL[n]| do
7: m = m− 1
8: end while
9: if φL[n] and φR[m] is an eligible exchange then

10: S∗ = (ui, ul, φL[n], φR[m]) if V (φL[n]) ≥ G(S∗, ui)
and V (φR[m]) ≥ G(S∗, ul)

11: end if
12: end for
13: Return S∗

rest of the paper, we present some data structure, which indexes the
possible exchange pairs, supporting frequent updates on lists. For
ease of paper reading, all of the notations are summarized in Table
1.

In the following, we try to answer some common questions re-
garding the item exchanging model, especially on applicability and
effectiveness issues:
Question 1: CSEM may find more exchanging options than BVEM
does? It is true that CSEM finds more exchange candidates. How-
ever, due to the lack of value matching condition, most of the ex-
changes found by CSEM are meaningless in our problem domains,
e.g. online games.
Question 2: Top-K exchange pairs for ui may overlap with each
other? Our BVEM only provides recommendations for exchanges.
Users in the real system may decide which exchange to commit
based on his own preference. An online game player, for example,
is more willing to trade for a specific weapon than the others.
Question 3: What about using currency as intermediate medium

100

between users? Real/virtual currency is not used in many online
communities, e.g. Frontier Ville. Even in some applications allow-
ing direct buying/selling operation with the central system, direct
exchanges are popular behavior with the users, because of the effi-
ciency on getting highly prioritized items.

4. EXCHANGE BETWEEN TWO USERS
In this section, we focus on a special case of the exchange recom-

mendation problem, with only two users in the system looking for
the top-1 valued exchange pair between them. In the following sec-
tions, we extend our discussion to the general case with arbitrary
number of users. For simplicity, we call it the T1U2 Exchange.
Algorithmically, T1U2 exchange can be solved by an offline algo-
rithm with exponential complexity in term of the list sizes.

The offline algorithm works as follows. It first computes the
intersections between the wish list and unneeded list, i.e Wi ∩ Ll

and Li ∩Wl. Then all the subsets of the two temporary lists are
enumerated. The algorithm tests every pair of the subsets to find
the pairing satisfying Definition 1 and maximizing the gain of both
users. Details about this algorithm is illustrated in Algorithm 1.
The running time of this algorithm is exponential to the list size,
i.e. O(|Si|2

|Si|+|Sl|2
|Sl|). Unfortunately, there does not exist any

exact algorithm with polynomial complexity, unless P=NP. Hence
it is more interesting to find some alternative solution, outputting
approximate results with much better efficiency.

DEFINITION 3. ε-Approximate T1U2 Exchange for ui

Assuming E∗ = (ui, ul, Si, Sl) is the highest valued exchange
pair between user ui and ul, an exchange pair,E′ = (ui, ul, S

′

i, S
′

l),
is said to be ε-approximate for ui if the gain is no worse than E∗

by factor 1− ε, i.e. G(E′, ui) ≥ (1− ε)G(E∗, ui).

Different from exact top-1 exchange pairing, ε-approximate ex-
change does not possesses the similar property in Lemma 1. An
ε-approximate exchange pair for ui may not be ε-approximate for
ul. Therefore, the computation involving ui and uj may return
different results to the users.

Inspired by the famous polynomial-time approximation algorithm
on the subset sum problem [10], we design a fully polynomial-time
approximation scheme(FPTAS) to calculate ε-approximate T1U2
exchange. Moreover, we show how to utilize the solution to design
a reusable index structure to support updates.

The approximation scheme follows the similar idea in the FPTAS
on subset sum problem. Generally speaking, the original brute-
force algorithm spends most of the time on generating all the item
combinations of Wi ∩ Ll and Li ∩Wl. There are many redundant
combinations, which share almost the same value with others. In
the new algorithm, it only generates some of the combinations of
the items in Wi ∩ Lj and Li ∩Wj . These combinations are main-
tained in table indexed by their approximate values. The other item
combinations are merged into the table when their value is similar
to the existing ones. In particular, given the approximation factor
ε, the exact value of an item set, V (O′), is transformed to some
approximate value, γ(O′), guaranteeing that

V (O′) ≤ γ(O′) ≤ (1− ε)−1V (O′) (1)
To achieve this, we utilize the following rounding function f(x).

In the function, vmax and vmin are the maximal and minimal values
of any non-empty item combination. The parameter ε is the error
tolerance and N is the maximal number of items.

f(O′) =

⌈
log vmin − log V (O′)

log
(
1− ε

N

)
⌉

(2)

Algorithm 2 AV T Generation (Item set O′, Error bound ε , max-
imal value vmax, minimal value vmin, maximal item number N)
1: Generate an empty approximate value table AV T
2: Create a new entry AV T [0]
3: Set AV T [0].lbi = ∅
4: Set AV T [0].ubi = ∅
5: Set AV T [0].value = 0
6: Set AV T [0].lb = AV T [0].ub = 0
7: for each item Ij ∈ O′ do
8: for each entry AV T [m] ∈ AV T do
9: Calculate M = f(AV T [m].value+ vj)

10: if there is AV T [n].value = M then
11: if AV T [m].lb+ vj < AV T [n].lb then
12: Update AV T [n].lb and AV T [n].lbi
13: end if
14: if AV T [m].ub+ vj > AV T [n].ub then
15: Update AV T [n].ub and AV T [n].ubi
16: end if
17: else
18: Create a new entry AV T [n] in AV T
19: AV T [n].value = M
20: AV T [n].lb = AV T [m].lb + vj
21: AV T [n].ub = AV T [m].ub + vj
22: AV T [n].lbi = AV T [m].lbi ∪ {Ij}
23: AV T [n].ubi = AV T [m].ubi ∪ {Ij}
24: end if
25: end for
26: end for
27: Return AV T

Intuitively, f(O′) is the minimal integer m that vmin

(
1− ε

N

)
−m

≥ V (O′). Since vmin ≤ V (O′) ≤ vmax and f(O′) always out-
puts an integer, f(O′) can only be a non-negative integer between
0 and N = �(log vmin − log vmax)/ log(1 −

ε
N
)
. Based on this

property, we implicitly merge the item combinations to N groups,
i.e. {S1, S2, . . . , SN}. Each group Sm contains every item com-
bination O′ with f(O′) = m, i.e. Sm = {O′

|f(O′) = m}. For
every item combination O′

∈ Sm, we have the common approxi-
mate value γ(O′) for O′, i.e. γ(O′) = vmin

(
1− ε

N

)
−m, which

satisfies Equation (1).
These groups are maintained in a relational table, called Approxi-

mate Value Table (or AV T in short). In AV T , each entry AV T [m]
records some statistical information of the group Sm, to facilitate
the computation of ε-approximate T1U2 exchange. Specifically,
we use AV T [m].value to denote the common approximate value
of all item combinations in Sm. We use AV T [m].lb (AV T [m].ub
resp.) to denote the lower bound (upper bound resp.) of all the
item combinations in Sm. We also keep the item combinations
achieving the lower bound and upper bound, i.e. AV T [m].lbi and
AV T [m].ubi. In Table 2, we present an example of AV T .

To construct the AV T table, we sort all items based on their
identifiers. At the beginning, the algorithm initializes the first en-
try AV T [0] in the table. We set AV T [0].value = AV T [0].lb =
AV T [0].ub = 0, empty AV T [0].lbi and AV T [0].ubi at the same
time. For each item Ij in the input item set O′, the algorithm it-
erates every existing entry AV T [m] in the AV T and updates as
follows. For every entry AV T [m], our algorithm tries to gener-
ate a new entry AV T [n] with n = f(AV T [m].value + vj). If
AV T [n] already exists, it tries to merge Ij into AV T [m].lbi and
AV T [m].ubi, checking if they can generate new lower and upper
bound for group Sn. If AV T [n] does not exist in the table, a new
entry is created. The details are available in Algorithm 2.

101

Entry approximate value lb lbi ub ubi All item combinations
AV T [1] 2 2 {I1} 2 {I1} {I1},{I2}
AV T [2] 4 3 {I3} 4 {I1, I2} {I3},{I1, I2}
AV T [3] 8 5 {I1, I3} 7 {I1, I2, I3} {I1, I3},{I2, I3},{I1, I2, I3}

Table 2: Example of approximate value table on a 3-item set

If we run the algorithm on a 3-item set O′ = {I1, I2, I3} with
item prices v1 = 2, v2 = 2 and v3 = 3, the result AV T is pre-
sented in Table 2, with (1− ε/N)−1 = 2 and vmin = 1. There
are 7 non-empty combinations in O′, including {I1}, {I2}, {I3},
{I1, I2}, {I1, I3}, {I2, I3} and {I1, I2, I3}. After finishing the
construction of the AV T table, there are only 3 entries in the ta-
ble, which is much smaller than than the original number of item
combinations. The information of the groups are all listed in the
rows of the table. We also include the concrete item combinations
in the last column for better elaboration, although AV T does not
maintain them in the computation.

In the following lemma, we show that the output AV T summa-
rizes every item combination within error bound ε.

LEMMA 2. Given any item set O′, for each item combination
O′′
⊆ O′, the AV T table calculated by Algorithm 2 contains at

least one entry AV T [m] that

V (O′′) ≥ (1− ε)AV T [m].value

AV T [m].lb ≤ V (O′′) ≤ AV T [m].ub

PROOF. For simplicity, let δ = 1− ε/N . We apply mathemati-
cal induction to that, ∀O′′

∈ O′, there is an AV T [n] such that:

V (O′′) ≥ δ|O
′′
|AV T [m].value (3)

AV T [m].lb ≤ V (O′′) ≤ AV T [m].ub (4)

Basically, if |O′′
| = 0, namely O′′ = ∅, the Equation 3 and 4

hold by giving AV T [0].
Then we inductively prove the lemma. Assume that the the

Equation 3 and 4 hold for all |O′′′
| = k, we are going to prove that

they also hold for O′′ with length k+1. Let O′′ = {I1, I2, . . . , Ik+1}.
By the assumption, for O′′′ = {I1, I2, . . . , Ik}, there is a AV T [n]
such that Equation 3 and 4 holds. According to line 9-12 in Algo-
rithm 2, the AVT table is updated according to Ik+1 and AV T [n].
Let the updated (line 11-14) or new created (line 16-21) AVT entry
be AV T [m]. We can verify that:

V (O′′) = V (O′′

− Ik+1) + vk+1

≥ δkAV T [n].value + vk+1

≥ δk(AV T [n].value + vk+1)

≥ δk+1f(AV T [n].value+ vk+1)

= δk+1AV T [m].value

V (O′′) = V (O′′

− Ik+1) + vk+1

≥ AV T [n].lb + vk+1

≥ AV T [m].lb

V (O′′) = V (O′′

− Ik+1) + vk+1

≤ AV T [n].ub + vk+1

≤ AV T [m].ub

Since δk ≥ δN = (1− ε/N)N ≥ 1− ε, Lemma 2 holds.

The size of AV T is no larger than N . Therefore, the complex-
ity of the AV T construction algorithm is O(N 2

|O′
|). Assuming

vmax, vmin, ε and N are all known constants, the algorithm finishes
in linear time with respect to the item size |O′

|, which is supposed
to be much faster than the exact algorithm if N is much smaller
than 2|N|.

To utilize AV T in T1U2 exchange problem, we create two tables
AV T1 and AV T2, based on Li ∩Wl and Wi ∩ Ll respectively. If
there is an eligible exchange pair between ui and ul, the following
lemma shows that there must also exist a pair of AV T [m] ∈ AV T1

and AV T [n] ∈ AV T2 with close values.

LEMMA 3. If E = (ui, ul, Si, Sl) is any eligible exchange
and ε ≤ 1 − β, there exists two entries AV T1[m] ∈ AV T1 and
AV T2[n] ∈ AV T2 that

βAV T1[m].lb ≤ AV T2[n].ub ≤ β−1AV T1[m].lb

βAV T2[n].lb ≤ AV T1[m].ub ≤ β−1AV T2[n].lb

PROOF. According to Lemma 2, we can find AV T1[m] and
AV T2[n] such that AV T1[m].lb ≤ V (Si) ≤ AV T1[m].ub, and
AV T2[n].lb ≤ V (Sl) ≤ AV T2[n].ub. There could be two cases:

• AV T1[m].value ≥ AV T2[n].value

• AV T1[m].value < AV T2[n].value

These two cases correspond to the two inequalities respectively.
We will only prove the first case because of the symmetry.

The left side of the inequations:

βAV T1[m].lb ≤ βV (Si)

≤ V (Sl)

≤ AV T2[n].ub

The right side of the inequations:

AV T2[n].ub ≤ AV T2[n].value

≤ AV T1[m].value

≤ (1− ε)−1AV T1[m].lb

≤ β−1AV T1[m].lb

So far the first case has been proven. The second case can be proven
similarly.

The last lemma shows that we can find candidate pairs from the
approximate value tables, by testing the lower bounds and upper

102

Algorithm 3 Exchange Search on AV T (lists Wi, Li, Wl, Ll)
1: Clear result set RSi for ui and RSl for ul

2: Generate AV T1 on Wi ∩ Ll and AV T2 on Li ∩Wl

3: for each pair of entries AV T1[m] ∈ AV T1 and AV T2[n] ∈
AV T2 do

4: if β ≤ AV T1[m].ub
AV T2[n].lb

≤ 1
β

and β ≤ AV T2[n].ub
AV T1[m].lb

≤ 1
β

then
5: Generate (ui, ul, AV T [m].ubi, AV T [n].lbi) for ui and

(ui, ul, AV T [m].lbi, AV T [n].ubi) for ul

6: Update RSi and RSl if necessary
7: end if
8: end for
9: Return RSi to ui and RSl to ul

bounds of the entries. Based on the lemma, we present algorithm 3
to show how to discover ε-approximate exchange pair for ui and ul

at the same time. Note that the results for ui and ul may not be the
same exchange pair. Given the AV T1 on Wi ∩ Ll and AV T2 on
Li ∩Wl, every pair of entries AV T [m] ∈ AV T1 and AV T [n] ∈
AV T2 are tested. If the condition in Lemma 3 is satisfied, two pairs
of eligible exchange pair are generated, i.e. an exchange candidate
(ui, ul, AV T [m].ubi, AV T [n].lbi) for ui and another exchange
candidate (ui, ul, AV T [m].lbi, AV T [n].ubi) for ul respectively.
The algorithm then tests the optimality of the two exchange pairs
for ui and ul separately. After finding all the eligible exchange
pairs, the optimal solutions are returned to ui and ul separately.

THEOREM 2. Algorithm 3 outputs ε-approximate optimal top-k
exchange pair between any two users ui and ul in linear time.

PROOF. Consider the top-1 eligible exchange (ui, ul, Si, Sl).
By Lemma 3, we can find an upper (lower) bound item set S′

i in
AV T1, and an lower (upper, resp.) bound item set S′

l in AV T2,
such that they form an eligible exchange, and V (S′

i) ≥ (1 −
ε)V (Si), V (S′

l) ≥ (1− ε)V (Sl). Therefore, (ui, ul, S
′

i, S
′

l) is an
ε-approximate top-1 exchange pair. Since both S′

i and S′

l are lower
or upper bound item sets, and Algorithm 3 compares all pairs of
lower / upper bound values, S′

i and S′

j are guaranteed to be found
by Algorithm 3.

The algorithm to find approximate T1U2 is described in Algo-
rithm 3. Since there are at most N entries in either table, the time
complexity of Algorithm 3 is O(N 2). By sorting all the entries in
decreasing order on approximate value and scanning entries in top-
down fashion, we can easily reduce the complexity of the algorithm
to O(N).

5. GENERAL TOP-K EXCHANGE
In last section, we use the technique of approximate value table

to search top-1 exchange pair between two users ui and ul. In real
systems, however, there are usually thousands of users online at
the same time. To support large community systems for exchange
recommendation, we extend our discussion from two users to ar-
bitrary number of users in this section. A straightforward solution
to the problem is maintaining |U |(|U | − 1) approximate value ta-
bles. For each pair of users ui and ul, two approximate value tables
AV Til and AV Tli are constructed and maintained for item com-
binations in Wi ∩ Ll and Li ∩Wl respectively. Upon any update
of the lists with user ui, the system re-computes T1U2 between ui

and any other user ul. Top(k, i) and Top(k, l) are thus updated
accordingly with respect to the new optimal exchange between ui

and ul. Unfortunately, this solution is not scalable in large online
community systems on table indexing and maintenance, due to the
quadratic number of tables used in this solution.

To reduce the memory space used by the index structure, we do
not dynamically maintain approximate value tables between every
pair of users. Instead, some lightweight index structure is kept in
the system, with space consumption linear to the number of items.
Given an update on some list Li (or Wi) on user ui, this data
structure is used to find out every user ul with potentially affected
Top(k, i) or Top(k, l). To accomplish this, we first derive some
necessary condition on top-k exchange pairs, with the concept of
Critical Item Set.

DEFINITION 4. Given an item list Wi of user ui, a subset of
items O′

⊆ Wi form a critical item set, if V (Wi) − V (O′) <
G(ui, T op(k, i)).

In other words, an item set O′ is critical to the wish list Wi, if
the rest of the items in Wi is of total value no larger than the cur-
rent optimal gain of ui. In the following, we use Ki to denote the
critical item set on Wi of ui. Note that Definition 4 only provides
an sufficient condition on critical item set. Given an item list Wi,
there can be hundreds of different combinations of items satisfying
the definition above. In Section 5.1, we will discuss more on how
to construct a good critical item set according to some criterion.

LEMMA 4. If Top(k, i) contains an exchange pair
E = (ui, ul, Si, Sl), Si contains at least one item Ij in the critical
item setKi with respect toWi.

PROOF. Suppose that Si does not contains any item in Ki. That
is, Si ⊂ Wi − Ki. Therefore, V (Si) ≤ V (Wi) − V (Ki) <
G(ui, T op(k, i)). This contradicts the condition that Si is an top-k
exchange. Therefore, Si contains at least one item in any critical
item set.

Lemma 4 implies that the system needs to re-compute the T1U2
exchange between ui and ul to update Top(k, i), only if ul owns
at least one critical item of ui and vice versa. This motivates our
index structure based on inverted lists on critical items. There are
two inverted lists on each item, i.e. CL(Ij) and UL(Ij). CL(Ij)
consists of a list of users with Ij in his critical item set, and UL(Ij)
includes all users with Ij in his unneeded item list.

Generally speaking, when there is an update (insertion or dele-
tion) on Wi of user ui, the system retrieves a group of candidate
users from the inverted lists and computes T1U2 exchange. The
candidate set is

(⋃
Ij∈Wi

UL(Ij)
)⋂(⋃

Ik∈Li
CL(Ik)

)
. The de-

tailed description is given in Algorithm 4. By Lemma 4, this algo-
rithm does not miss any necessary update on the top recommen-
dation lists. The major cost of the candidate selection is spent on
merging the inverted lists on the users. To improve the efficiency of
the list merging, every inverted list is sorted on the ids of the users.
In the rest of the section, we discuss details on the implementations
of some more efficient pruning strategies.

5.1 Critical Item Selection
In this part of the section, we dissolve the problem on the con-

struction of optimal critical item selection according to Algorithm
4. Given the wishing item list Wi, there are a large number of dif-
ferent ways to construct the critical item set Ki. Generally speak-
ing, a good critical item set is supposed to reduce the number of
candidate users tested in Algorithm 4. To accomplish this, we first
derive some cost model below.

Since UL(Ij) keeps the set of users owning the item Ij in their
unneeded item list. Basically, we assume that |UL(Ij)| is relatively
small, compared to the total number of users |U |, i.e. |UL(Ij)| �
|U |. Moreover, we further assume that UL(Ij) for different items

103

Algorithm 4 General Top-K Update(Wi,ui)
1: Clear the left candidate user set CUl

2: for each Ij in the critical item set of Wi do
3: merge UL(Ij) into CUl

4: end for
5: Clear the right candidate user set CUr

6: for each Ij ∈ Li do
7: merge CL(Ij) into CUr

8: end for
9: for each ul ∈ CUl ∩ CUr do

10: Compute T1U2 between ui and ul

11: Update Top(k, i) and Top(k, l) accordingly
12: end for

are not strongly correlated. Namely, for any two distinct items Ij
and Ik, |UL(Ij) ∩ UL(Ik)| � |UL(Ij)|. With this assumption,
the number of candidate users to check, given the critical item set
Ki, can be estimated by

∑
Ij∈Ki

|UL(Ij)|.
Based on the analysis above, a good critical item set is equal to

the following combinatorial problem with linear constraint.

Minimize :
∑

Ij∈Ki

|UL(Ij)|

s.t.
∑

Ij∈Ki

vj ≥ V (Wi)−G(ui, T op(k, i))

That is, for an user Ui, we select a set Ki ⊂ Wi, to minimize∑
Ij∈K |UL(Ij)|, subject to the sufficient condition

∑
Ij∈K vj ≥

V (Wi)−G(ui, T op(k, i)) in Definition 4.
Although this problem is an NP-Complete problem, a near-optimal

solution can be obtained by a simple greedy algorithm. Follow-
ing such construction method, the items in Wi are sorted in de-
creasing order of vj/|UL(Ij)|. Then the items are selected one
by one in this order, until the sum of the value exceeds V (Wi) −
G(ui, T op(k, i)).

Table 3 shows an example of system with 5 users. The value of
the items are v1 = 70, v2 = 40, v3 = 20, v4 = 35, v5 = 80, v6 =
10, and |UL(I1)| = 3, |UL(I2)| = 1, |UL(I3)| = 2, |UL(I4)| =
1, |UL(I5)| = 2, |UL(I6)| = 3. u1 has 3 items in Wi, and the
critical item set is I1 and I2, which has a total value of 110 > v1 +
v2+v3−G(u1, T op(k, 1)) = 70, and sum of UL(I1)+UL(I2) =
4. Other eligible critical item sets include {I1, I3} and {I1, I2, I3}.
By sorting the item on vj/UL(Ij), we pick up the items in order
{I2, I1, I3}. The final critical item set is Ki = {I1, I2}.

5.2 Item Insertion
When an item insertion comes, the system retrieves all candidate

users with some pruning condition, and re-computes the T1U2 ex-
change to update the top-k recommendations.

After a new item Ij is inserted into the wish list Wi of an user ui,
some new eligible exchange pairs are generated. If there is a new
eligible exchange between user ul and ui, ul must own this item
in its unneeded item list Li. Otherwise, this exchange pair must be
tested before. Hence the candidate user set CU is initialized with
the inverted list UL(Ij). Then for each user ul in CU , the system
examines if ui owns a critical item of ul or ul owns a critical item
of ui. If any of these two cases happens, Algorithm 3 is invoked to
find the optimal exchange pair between ui and ul.

We give an additional example of item insertion. In the example
illustrated in Table 3, if one new item I1 is inserted into u2’s wish
list W2, the system first retrieves the users owning I1 in their un-

needed item lists. Such users include u3 and u5. The system then
tests if these candidate users have at least one critical item of u2.
Since u5 does not contain any u2’s critical items {I6}, and u2 does
not contain any u5’s critical items {I4, I6} in the unneeded item
list. Therefore, u5 fails the test and u3 will be further checked by
the 2-user item exchange algorithm.

5.3 Item Deletion
When removing some Ij from Wi, the deletion operation can

be done in two steps. In the first step, the system deletes all the
current top-k exchanges containing the deleted item. In the second
step, some re-computation is run to find new top-k exchange pairs
for users with insufficient exchange recommendations.

The first step in the deletion operation is implemented with some
inverted list structure, allowing the system to quickly locate all top-
k exchange pairs with the deleted item Ij in Wi. Assume that the
users with deleted exchange pairs are all kept in a fixing user list.
Algorithm 4 is then called, for each user in the list, to fix all the top-
k recommendation pairs. This implies that the deletion operation is
expensive if many users are added into the fixing user list.

To optimize the system performance, we propose some opti-
mization technique possibly reducing the number of users in the
fixing user list after the deletion operation. The basic idea of the
optimization is maintaining top κ exchange pairs for each user
ui, with some integer κ > k. It is straightforward to verify that
Top(k, i) is subset of Top(κ, i). To utilize the expanded top ex-
change recommendation set, the system updates Top(κ, i) for each
insertion operation. On item deletion, if one of the exchange pair
E ∈ Top(κ, l) is removed due to the deletion of Ij ∈ Wi, the
exchange list will not be totally re-computed immediately. Instead,
the new T1U2 exchange between ui and ul is evaluated. If the new
optimal exchange on ui and ul remains in Top(κ, l), it is directly
inserted back into Top(κ, l). Otherwise, the counter decreases by
one from κ to κ − 1. The complete re-computation of Top(κ, l)
is delayed until the next insertion operation on lists of ul or there
is less than k exchange pairs left with the system. We can prove
that the all exchange pairs in Top(k, i) must be exactly maintained
by the scheme. Although it incurs more cost on insertions (because
of the larger critical item set), this optimization greatly improves
the overall performance of the system by cutting unnecessary re-
computation of top exchange pairs.

We give an additional example of item deletion. Assume that
k = 2 and κ = 3. At first, one user u1 has 3 top exchanges:
E1 = (u1, u3, {I1, I2}, {I5}), E2 = (u1, u5, {I1}, {I4, I6} and
E3 = (u1, u2, {I3}, {I6}). If I4 is deleted fromL1, E2 is removed
from the list, and κ1 become 2. Suppose then I6 is deleted, E3 is
also removed and κ1 become 1. Then re-computing is triggered,
and κ1 is reset to 3, with the top results list re-computed.

6. EXPERIMENTS
In this section, we evaluate the algorithms we proposed in pervi-

ous sections. We adapt the real life data from B2B online market
as well as generating synthetic data based on some general models.

6.1 Data Generation and Experiment Settings

6.1.1 Synthetic Dataset
The first step of synthetic data generation is creating certain num-

ber of items. Each item is assigned with a value. Values are gen-
erated according to certain distributions, including exponential and
Zipf distributions. The parameters of all the distributions in investi-
gation are provided in Table 4. The maximum value and minimum
value are set at 10,000 and 10 respectively. When generating the

104

User Wi Li G(ui, T op(k, i)) Critical Item Set
u1 I1, I2, I3 I4, I5, I6 60 I1, I2
u2 I2, I6 I3, I5 50 I6
u3 I3, I5 I1, I2, I6 80 I5
u4 I1, I4 I6 0 I1, I4
u5 I4, I6 I1, I3 10 I4, I6

Table 3: Example of critical item sets of 5 users

item values, the distributions are truncated to keep all prices be-
tween 10 and 10,000.

Distribution Density Function p(x) Parameter
Exponential λe−λx λ = 1

Zipf 1/xs

∑
N
n=1

(1/ns)
s = 1, N = Vmax

Table 4: Parameters controlling the distributions on values

In real system, users and their items are usually strongly corre-
lated, because of the similar tastes and behaviors. To capture the
diversity and clustering properties on the users and items, we setup
5 classes to model different types of users and their popular items.
Each user is randomly assigned to one of the classes with equal
probability. One of the class is considered as “background class",
which contains all the items. Every item is also assigned to one
of the other four classes with equal probability. There is an upper
limit on the maximum number of items in each list N . An item list,
e.g. wish list Wi or unneeded list Li, is full if the number of items
reaches the limitation. In our experiments, to test the scalability of
the system, we try to keep the item list as full as possible.

After setting the parameters and assigning users and items to the
classes, the synthetic data are generated with a sequence of item
updates. The generation of updates consists of two phases. The first
phase is the warm-up phase. The objective of this phase is to fill
each user’s wish and unneeded lists, thereby with more insertions
than deletions. After the lists are almost full, the simulation starts
the second phase. In the second phase, insertions and deletions take
place with identical frequency, leading to relatively stable system
workload.

In the first phase, when generating a new update, our simulation
randomly selects a user with equal probability. The generator then
chooses one of the wish list or the unneeded list. If the target list
is not full, an insertion operation is taken. Otherwise, the generator
randomly deletes one of the item in the target list. During inser-
tion, the selection on the inserting item depends on the user’s class
as well as the items’ class. The generator picks up a random num-
ber to decide if the item is from the same class of the user (4/7
probability), the “background" class (2/7 probability) or the other
three classes (1/7 probability, and 1/21 for each class). It then
uniformly chooses an item from the specific class. During dele-
tion, one item is chosen from the list with equal probability. The
selection of the deleting item does not take class information into
account.

In the second phase, similar to the first phase, one item list from
the chosen user is selected with equal probability. If the selected
item list is empty, an insertion to the item list is run. If the item
list is neither full nor empty, the generator makes a randomized
decision: it generates an insertion with probability 0.6, or a deletion
with probability 0.4. The probabilities are able to keep all lists
almost full in the second phase.

The number of updates generated in the first phase is N ∗ |U |,
where |U | is the number of users and N is the maximal number of
items in any list. The number of updates generated in the second

phase is no less than 2 ∗ N ∗ |U |. The performance tends to turn
stable after a series of updates in the second phase.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

200k 400k 600k 800k 1M 1.2M 1.4M

P
ro

ce
ss

in
g

tim
e

of
 e

ac
h

up
da

te

Number of updates

Figure 4: Average update response time over time

In Figure 4, we present the evolution of average update response
time during our simulation. In the first phase of the simulation,
the response time increases quickly. After transiting to the second
phase, the performance tends to be stable. All our experimental
results are collected in the second phase of the simulation.

The Figure 5 illustrates the distribution of the item after a period
of running and the system performance has been stabilized. The
amount of users in the system is 30,000 and the length of item list is
limited to 15. Figure 5(a) represents the distribution of item length
of each user. As we can see in the figure, the majority of users have
a near-full item list. More than 80% users’ item lists are of length
13, 14 or 15. Figure 5(b) illustrates the distribution on total value
of each user’s item list. As shown in the figure, the total value is
concentrated around 15k 20k. Figure 5(c) shows the distribution
on the length of the item list intersections, which is the number of
common items between two users. It can be seen that users tend to
have very small number of intersections. In most of the cases, it is
no more than 5 items. The same trend can be seen in Figure 5(d),
which plots the distribution of intersection value between users.
Among all |U |2 pairs of users, only a several hundred user pairs
share items with more than 20k total value.

Table 5 summarizes the parameters tested in our experiments.
Their default values are in bold font.

Parameter Varying Range
Number of users 10k, 20k, 30k, 40k, 50k
β 0.7, 0.75, 0.8, 0.85, 0.9, 0.95
Length of item list 10, 15, 20, 25, 30
κ 15, 25, 35, 45, 55, 65, 75
k 1, 3, 5, 7, 9, 11
Number of items 300, 600, 900, 1200, 1500
ε 1− β

Table 5: Varying parameters in synthetic data set

6.1.2 Real Dataset
It is difficult to find real exchanging data from large online com-

munities. To get a better understanding on our method with real

105

 1

 10

 100

 1000

 10000

 100000

0 1 2 3 4 5 6 7 8 9 101112131415

Lo
g-

po
pu

la
tio

n

Length of item list

Needed list
Unwanted list

(a) Dist. on length of item lists

 100

 1000

 10000

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

Lo
g-

po
pu

la
tio

n

Total value

Needed list
Unwanted list

(b) Dist. on total value of item
lists

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

1 2 3 4 5 6 7 8 9 10

Lo
g-

po
pu

la
tio

n

Length of item intersection

Intersection length

(c) Dist. on length of item list in-
tersections

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

Lo
g-

po
pu

la
tio

n

Total value of item intersection

Intersection value

(d) Dist. on total value of item list
intersections

Figure 5: Distribution on length and total value of user item lists and intersections

world applications, we crawl some transaction data from eBay.com,
which is a famous C2C online market system.

Our crawler records historical transactions with certain users in
consecutive 90 days. Afterwards, all the users participating in these
transactions are crawled in the same manner. In total we have
crawled 34,191 users, 452,774 item records and 1,094,152 trans-
action records. We associate a user’s wish (unneeded) list with all
the item that he/she buys (sells).

As an online market is different from an exchanging market, we
pre-process the data in order to make it suitable to test our sys-
tem. We find that there are large number of duplicated or highly
similar items. In order to reduce the duplication and increase the
user item list overlapping, highly similar items are merged together.
Some items and users are discarded to make sure that every user has
non-empty item list. After the pre-processing, the final result data
contains 2,458 users and 2,769 items.

To test our system performance under various number of users,
we re-scale the data to generate data set of various size. To scale up
the data, we randomly duplicate existing users until reaching the
desired size. The duplicated user associates with the same set of
items. To scale down the data, we randomly remove users.

We generate continuous updates according to the transactions we
have crawled. We associate an item with a user’s wish (unneeded)
list, if this user have bought (sold) this item. To generate update
operations, we randomly choose a user, an updating type (inser-
tion/deltetion), an item list (wish/unneeded) and an item associated
with this list.

The length of an item list at any moment is limited within 15.
A list with 15 items are considered as full. The reason to set a
fixed limitation is that our crawled transactions span 90 days. These
items are not listed at the same time. At any moment, only a small
number of items are listed. Therefore, we set this fixed limitation
to control the number of items simultaneously listed in an item list.

Table 6 summarizes the parameters tested in our real data exper-
iments. Their default values are in bold font.

Parameter Varying Range
Number of users 0.5k, 1.5k, 2.5k, 3.5k, 4.5k
β 0.7, 0.75, 0.8, 0.85, 0.9, 0.95
κ 15, 25, 35, 45, 55, 65, 75
k 1, 3, 5, 7, 9, 11
ε 1− β

Table 6: Varying parameters in real data set

6.2 Experiments on T1U2 Exchange
In Section 4 we propose Algorithm 3, which is an approximation

algorithm for finding T2U1 exchange. In this section, we evaluate
its performance, including the running time and the approximation

 10

 100

 1000

 10000

 100000

 1e+006

 4 6 8 10 12 14 16 18 20

Ti
m

e
(μ

s)

Length of item list

BruteForce
Approximation

(a) Running time on exponential
price distribution

 10

 100

 1000

 10000

 100000

 1e+006

 4 6 8 10 12 14 16 18 20

Ti
m

e
(μ

s)

Length of item list

BruteForce
Approximation

(b) Running time on Zipf price
distribution

Figure 6: Impact of varying item list length on running time

ratio. Also we use the brute force algorithm as straw-man. We
test both algorithms on exponential and Zipf distribution. Detailed
density functions and parameters of them are as shown in 4.

0.98

0.99

1.00

1.01

1.02

 2 4 6 8 10 12 14 16 18 20

A
pp

ro
xi

m
at

io
n

R
at

io

Length of item list

Approximation Ratio

(a) Approximation ratio on expo-
nential price distribution

0.98

0.99

1.00

1.01

1.02

 2 4 6 8 10 12 14 16 18 20

A
pp

ro
xi

m
at

io
n

R
at

io

Length of item list

Approximation Ratio

(b) Approximation ratio on Zipf
price distribution

Figure 7: Impact of varying item list length on approximation

Figure 6 and 7 present the performance of both algorithms under
different lengthes of item list. We fix both β and 1− ε to 0.8, and
generate two item lists of equal length, as Wi ∩ Ll and Li ∩Wl.
Figure 6 shows the running time of both algorithms. As the plots
imply, when the lengths of the item lists are less than 8, approxi-
mation scheme is not as good as brute-force algorithm, because ap-
proximation method spends too much time on index construction.
However, with the size of the item set grows larger, the running
time of brute force algorithm grows explosively, while the approx-
imate algorithm shows a good scalability. Figure 7 represents the
approximation ratio of the approximate T1U2 algorithm on various
value distributions. The approximation ratio is defined as the pro-
portion of the approximated result to the accurate result, i.e. the
output of the brute force algorithm. The results show that under
either value distribution, the approximation ratio is no smaller than
0.99.

Figure 8 discusses the effect of relaxation ratio β on the run-
ning time of both algorithms, when the number of items are fixed
at 10. We set ε for Algorithm 3 at 1 − β. The running time of

106

 10

 100

 1000

 10000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Ti
m

e
(μ

s)

β

BruteForce
Approximation

(a) Running time on exponential
price distribution

 10

 100

 1000

 10000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Ti
m

e
(μ

s)

β

BruteForce
Approximation

(b) Running time on Zipf price
distribution

Figure 8: Impact of varying β on running time

0.98

0.99

1.00

1.01

1.02

 0.6 0.65 0.7 0.75 0.8 0.85 0.9

A
pp

ro
xi

m
at

io
n

R
at

io

β

Approximation Ratio

(a) Approximation ratio on expo-
nential price distribution

0.98

0.99

1.00

1.01

1.02

 0.6 0.65 0.7 0.75 0.8 0.85 0.9

A
pp

ro
xi

m
at

io
n

R
at

io

β

Approximation Ratio

(b) Approximation ratio on Zipf
price distribution

Figure 9: Impact of varying β on approximate rate

Algorithm 3 increase with β, which well follows the complexity
analysis. On the other hand, β does not affect the running time of
brute-force method. Figure 9 shows that the actual approximation
ratio in practice is much better than the theoretical estimation.

6.3 Top-K Monitoring on Synthetic Dataset
We compare our proposed algorithm with critical item pruning,

referred to as ‘Critical’, with a basic algorithm, referred to as ‘Ba-
sic’. The basic algorithm is similar to our proposed method. It finds
the exchange candidates with the inverted list. However, it does not
apply critical item pruning strategy. After exchange candidates are
found, the algorithm simply find eligible exchange pairs between
current user and each candidate using the T1U2 algorithm.

To verify the efficiency, we measure the response time. Only the
experiment results on exponential distribution are summarized, be-
cause there is no significant differences among results on various
distributions. For each set of experiments, a query file is gener-
ated according to the rule we describe in Section 6.1. The query
file contains 10 to 30 million updates and is long enough to makes
sure that the system finally levels off. The average response time
is measured every 1,000 continuous operations. The aim of our ex-
periments is to test the impact of system parameters, the item price
distributions and the user number.

As mentioned in Section 5.3, to optimize the performance, the
system initially computes the top κ results instead of k, where κ >
k. When one of the old top-k exchanges is deleted, top-κ results
are calculated instead of re-computing only top-k results. We first
test the impact of the number κ. The empirical result is also used
to justify our selection of the default value for κ in Table 5.

The selection of κ affects the system performance on two sides.
On the one hand, large κ decreases the frequency of re-computing.
On the other hand, it increases the update cost. Figure 10(a) illus-
trates the system response time when varying κ, when k is set as de-
fault value 5. The result shows that the response time reduces when
κ increases. The optimal performance is achieved when κ = 35 for
both algorithms. When κ keeps increasing, the system performance
levels off, because of the increasing cost of updates.

Then we study the effect of k, i.e. the number of top exchange
recommendations. We record the system response time under dif-

 0

 0.2

 0.4

 0.6

 0.8

 1

15 25 35 45 55 65 75

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

)

κ

Basic
Critical

(a) Effect of κ

 0

 0.2

 0.4

 0.6

 0.8

 1

1 3 5 7 9

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

)

k

Basic
Critical

(b) Effect of k

 0

 0.2

 0.4

 0.6

 0.8

 1

0.7 0.75 0.8 0.85 0.9 0.95

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

)

β

Basic
Critical

(c) Effect of relaxation factor β

 0

 0.5

 1

 1.5

 2

 10 15 20 25 30

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

)

N

Basic
Critical

(d) Effect of item list length N

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10k 20k 30k 40k 50k

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

)
Number of User

Basic
Critical

(e) Effect of user number |U |

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

300 600 900 1200 1500

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

)

Number of Total Items

Basic
Critical

(f) Effect of total item number

Figure 10: Top-K monitoring results on synthetic dataset

ferent values of k. Figure 10(b) shows that the overall response
time slightly increases with the growth on k. However, this minor
increase makes no significant impact on the overall performance.
This implies that the extra overhead brought by increasing k is not
an important factor for our system. For basic algorithm, it scans the
list and finds the candidate user. Therefore, its running time does
not depend on k. For critical algorithm, although increasing k can
result in a larger critical item set, the pruning result is not signifi-
cantly increased. This suggests that our pruning method is effective
in reducing the candidate set size.

We next study the effect of relaxation factor β on the system per-
formance. We illustrate the response time under different β factor,
as shown in Figure 10(c). The overall performance always holds
on a certain level. This result implies that our system can work
well under different β values. Response time of basic algorithm
at β = 0.95 slightly decline in both data sets, since fewer eligible
exchange can be found when the relaxation rate is higher.

In our experiments, each user’s item list is length fixed. It chal-
lenges the system performance when each user is allowed to list
more items. We hereby study the performance on different lengthes
of item lists. As shown in Figure 10(d), when the item list grows
larger, the response time grows linearly with N . When the item list
expands, items are more likely to appear in lists for different users.
The system has to examine more users to update the exchange rec-
ommendations. In practice, users in online communities does not
have a long item list. Therefore, the current performance of our
system is capable of handling the workload of general community
systems.

Number of users in the system is another very important factor
which greatly impacts the system performance. We evaluate the
response time under different number of users. The result is pre-
sented in Figure 10(e). The result shows that the response time
linearly grows with the number of users. Despite the decline of the
system throughput, the performance of our method is still excellent
even for the largest u we have tested (more than 1,000 updates per

107

 0

 0.1

 0.2

 0.3

 0.4

 0.5

15 25 35 45 55 65 75

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

)

κ

Basic
Critical

(a) Effect of κ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1 3 5 7 9

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

)

k

Basic
Critical

(b) Effect of k

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0.5k 1.5k 2.5k 3.5k 4.5k

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

)

Number of User

Basic
Critical

(c) Effect of number of user u

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0.7 0.75 0.8 0.85 0.9 0.95

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

)

β

Basic
Critical

(d) Effect of relaxation factor β
Figure 11: Top-K Monitoring Results on Real Life Dataset

second under 50,000 users).
According to our data generating method, when the number of

total items decreases, every item is shared by more users. This
brings extra overhead to the system. It is reflected in our test of the
system performance with varying number of items. As shown in
Figure 10(f), the system performance is inversely proportional to
the number of items.

6.4 Top-K Monitoring on Real Dataset
Similarly to the experiments in previous subsection, we compare

“Critical" against “Basic" on real dataset. Firstly, we study the ef-
fect of κ, which is the initial top results that the system computes.
In the tests, k is set at 5. The result is illustrated in Figure 11(a).
As can be seen in the figure, response time keeps decreasing with
κ increases. For the Basic algorithm, the response time drops sig-
nificantly before κ = 45 and levels off after the point. The critical
pruning algorithm is not greatly affected by the κ. Its response time
decrease insignificantly with κ increases.

Secondly, we study the effect of k, which is the number of top
results requested by user. The result is illustrated as Figure 11(b).

The result implies that our pruning strategy can well handle the
increasing number of k. For both algorithms, the response time
linearly increases with k. The critical algorithm increases slightly
slower than the basic algorithm. The overall efficiency shows that
our pruning strategy halves the response time. The improvement is
better, because in a real life data set, item price distribution is more
skewed and user-item ownership are more clustered.

Thirdly, we study the effect of u, which is the number of users
participating in the exchange. We test both algorithm under various
number of users. As our original (filtered) data set contains 2,458
users, we re-scale the data to generate differently sized data set.
We down-scale the data set to generate u = 500 and u = 1, 500
data sets. We up-scale the date to generate u = 2, 500, 3, 500 and
4, 500 data sets. The result is shown in Figure 11(c).

The result shows that the critical algorithm has a high efficiency
and nice scalability. It has an improvement up to near three times.
When the user number increases, the response time of critical al-
gorithm grows in a linear manner. Meanwhile, response time of
basic algorithm grows faster when user number exceed 2,500. This
is because that on the one hand, when we up-scale the data, each
item is owned by more user, and the cost of searching for top-k
exchange becomes more expensive; on the other hand, each delet-
ing effects more top-k results, which result in a more frequent top-
k re-computing. As a result, the basic algorithm shows a super-
linear increasing. Since the critical algorithm is less affected by
re-computing frequency, it shows a linear growth in response time.

Lastly, we study the effect of β, which is the relaxation factor
and also the approximation factor in Algorithm 3. The result is il-
lustrated as Figure 11(b). The critical algorithm perform well under
all β, while the response time of the basic algorithm keeps on in-
creasing with β. In a real-life data, user-item ownership are highly
clustered. Therefore, small user group often shares a long common

item list. In this case, the approximate T1U2 algorithm is launched
more frequently than in our synthetic data set. As the approxima-
tion algorithm has an time complexity related to (1 − β)−1, the
response time increase with β.

7. CONCLUSION
In this paper, we study the problem of top-k exchange pair mon-

itoring on large online community system. We propose a new ex-
change model, namely Binary Value-based Exchange Model (BVEM),
which allows exchange transaction between users only when they
both have items the other side wants and the total values of the
items are of the same price. We present an efficient mechanism
to find the top-1 exchange pair between two users, and extend the
analysis to large system with arbitrarily many users. Extensive ex-
periments on synthetic data sets show that our solution provides a
scalable and effective solution to the problem.

8. ACKNOWLEDGMENTS
Zhenjie Zhang was partly supported by Singapore A*STAR’s

Human Sixth Sense Project (HSSP) in Advanced Digital Sciences
Center (ADSC).

9. REFERENCES
[1] http://gamersunite.coolchaser.com/games/frontierville.
[2] http://singapore.gumtree.sg/.
[3] http://www.iswap.co.uk/home/home.asp.
[4] http://www.shede.com.
[5] Z. Abbassi and L. V. S. Lakshmanan. On efficient

recommendations for online exchange markets. In ICDE,
pages 712–723, 2009.

[6] D. J. Abraham, A. Blum, and T. Sandholm. Clearing
algorithms for barter exchange markets: enabling nationwide
kidney exchanges. In ACM Conference on Electronic
Commerce, pages 295–304, 2007.

[7] K. Arrow and G. Debreu. Existence of an equilibrium for a
competitive economy. Econometrica, 22:265–290, 1954.

[8] P. Biró and K. Cechlárová. Inapproximability of the kidney
exchange problem. Inf. Process. Lett., 101(5):199–202, 2007.

[9] Y. Chen, S. Chen, Y. Gu, M. Hui, F. Li, C. Liu, L. Liu, B. C.
Ooi, X. Yang, D. Zhang, and Y. Zhou. Marcopolo: a
community system for sharing and integrating travel
information on maps. In EDBT, pages 1148–1151, 2009.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press and McGraw-Hill,
2001.

[11] X. Deng, C. H. Papadimitriou, and S. Safra. On the
complexity of equilibria. In STOC, pages 67–71, 2002.

[12] N. R. Devanur, C. H. Papadimitriou, A. Saberi, and V. V.
Vazirani. Market equilibrium via a primal-dual-type
algorithm. In FOCS, pages 389–395, 2002.

[13] V. V. Vazirani. Approximate Algorithms. Springer, 2003.

108

