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ABSTRACT
The inherent flexibility of the RDF data model has led to its
notable adoption in many domains, especially in the area of
life-sciences. Some of these domains have an emerging need
to access data integrated from various distributed sources
of information. It is not always possible to implement this
by simply loading all data into one central RDF store. For
example, in the context of inter-institutional collaboration
for drug development and clinical research participants of-
ten want to maintain control over their local databases. Al-
ternatively, distributed query processing techniques can be
utilized to evaluate queries by accessing the remote data
sources only on demand and in conformance with local au-
thorization models. In this paper we present an efficient ap-
proach to distributed query processing for large autonomous
RDF databases. The groundwork is laid by a comprehen-
sive RDF-specific schema- and instance-level synopsis. We
present an optimizer that is able to utilize this synopsis to
generate compact execution plans by precisely determining,
at compile-time, those sources that are relevant to a query.
Furthermore we present a tightly integrated query engine
that is able to further reduce the volume of intermediate re-
sults at run-time. An extensive evaluation shows that our
approach improves query execution times by up to two and
transferred data volumes by up to three orders of magnitude
compared to a näıve implementation.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed da-
tabases; H.2.4 [Database Management]: Systems—Query
processing

General Terms
Algorithms, Performance
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1. INTRODUCTION

1.1 Background and Motivation
The Resource Description Framework (RDF) data model

offers flexible means to collect data without the need to ex-
plicitly specify a database schema. An RDF dataset is de-
fined by a set of RDF Triples. Each triple consists of a Sub-
ject, a Predicate and an Object, expressing that the ”subject”
has the property ”predicate” with value ”object”. Resources
are named by globally unique Uniform Resource Identifiers
(URIs) which are a proper superset of URLs. Subjects and
predicates are always resources whereas objects are either re-
sources or literals. Literals are atomic values with optional
type or language information.

Propofol state „Liquid“ .
Propofol formula „C12H18O“ .
Propofol sideEffect Apnea .
Apnea label „Apnea“ .
Propofol contraindication Hypovolemia .
Hypovolemia label „Hypovolemia“ .

labelApnea

Propofol

sideEffect

Hypovolemia

contraindication

state
formula

label

„Apnea“

„Liquid“

„Hypovolemia“

„C12H18O“

Figure 1: Example RDF dataset and graph1

A set of RDF Triples (e.g., stored in one single table with
three columns) can also be seen as a directed, labeled graph.
The graph can be derived by interpreting each triple as an
edge labeled by the predicate that reaches from the subject
to the object [3]. As our target discipline is biomedical re-
search, our examples are drawn from this domain. A dataset
describing drugs and their side-effects as well as the resulting
RDF Graph is shown in Figure 1.

contraindication
formula ?formula

SELECT ?compound ?formula ?sideeffect
WHERE {

?compound contraindication Hypovolemia .
?compound formula ?formula .
?compound sideEffect ?sideeffect .

}

?compound

Hypovolemia

?sideeffect
sideEffect

Figure 2: Example SPARQL query1

The default query language for RDF, SPARQL, is cen-
tered around the concept of pattern matching. A basic
SPARQL query is constructed by combining a set of Triple
Patterns to form a Basic Graph Pattern (BGP). Each triple
pattern is an RDF Triple in which the subject, predicate or
object can be replaced by variables. Joins between triple
patterns are defined implicitly by using the same variable
names [6]. When evaluating a query, an RDF database re-
turns all possible substitutions for the query’s variables such
that the resulting pattern is contained in the queried RDF

1URIs have been abbreviated for better readability
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graph. Figure 2 shows a SPARQL query against our example
dataset as well as the graph pattern contained. It asks for
the name, chemical formula and possible side-effects of all
drugs with contraindication ”Hypovolemia”. The returned
variable binding is: ?compound=Propofol, ?formula=

"C12H18O", ?sideeffect=Apnea.
Because RDF data is modeled as a network of objects

with well-defined semantics it is supposed to be well suited
for the canonical representation of heterogeneous, disparate
data sources and structures. In order to foster interoperabil-
ity, common vocabularies (e.g., RDFS [4], OWL [2]) have
been developed that provide further means to describe the
semantics and structure of an RDF graph. The fact that
these vocabularies are themselves expressed in RDF enables
consistent management of data and metadata. The flexi-
bility of RDF simplifies the management of arbitrary graph
structures, which has led to its notable adoption in the area
of life sciences (e.g., [10]). In a project at one of our uni-
versity hospitals we are developing innovative methods to
integrate and manage distributed, heterogeneous informa-
tion sources for biomedical research. We currently focus on
RDF and related technologies as the described properties
render them interesting for an adoption in this domain.

Due to its schema-relaxed nature the efficient manage-
ment of large amounts of RDF data is a challenging task.
It has therefore attracted attention from the database com-
munity during recent years which has led to the develop-
ment of highly scalable RDF stores [7, 16, 22, 23, 25]. But
in the context of biomedical research it is often not possi-
ble to load the entire data into a central repository due to
legal and regulatory requirements or retentions caused by is-
sues regarding intellectual property rights. This is especially
important within the scope of inter-institutional collabora-
tion where participants often want to maintain control over
their local databases. Therefore distributed query process-
ing techniques [17] are often implemented that allow to eval-
uate queries by accessing the remote data sources only on
demand. Because data can thereby be kept at its origin it is
much easier to preserve access autonomies, e.g., by incorpo-
rating local authorization models. Furthermore techniques
for querying distributed RDF repositories are also relevant
in other areas such as query processing for Linked Data [1].

1.2 Related Work and Contribution
So far, only few generic concepts for querying distributed

RDF databases have been proposed. Specialized systems
implement approaches oriented towards multidatabase lan-
guages (e.g., [11]), the Semantic Web (a large number of
small data sources, e.g., [21]) or Linked Data (a seman-
tic web in which resources have dereferencable URIs, e.g.,
[15, 18]). Most of the more generic solutions implement a
mediator/wrapper architecture as shown in Figure 3. With
the exception of [9], which uses an external search engine,
the mediator normally maintains a global synopsis which is
implemented by some sort of index structure. This index
is used to decompose queries into local subqueries which
are then processed by wrappers that harmonize and ex-
tend the interfaces of the remote systems. The approaches
presented in [27] and [24] are based on indexing the data
sources on schema level (RDF predicates). As these sys-
tems decide which parts of a query have to be evaluated
at which endpoint based on the predicates of the query’s
triple patterns, they are limited to queries with bound pred-

icates. Although at least [24] stores further (manually de-
fined) statistics, query optimization is very difficult due to
the lack of comprehensive instance-level information. In [19]
the authors describe a system which uses histograms on
instance-level to perform various query optimization tech-
niques. As these histograms are built for instances of classes
and their properties, data sources have to be annotated
with and adhere to an explicit schema definition. This con-
tradicts the schema-free nature of RDF. In [14] an opti-
mizer has been presented which overcomes these limitations
by utilizing a combined schema- and instance-level index,
referred to as RDF Data Summaries. It is oriented to-
wards a Linked Data scenario and is able to optimize arbi-
trary queries (i.e., with unbound predicates) over arbitrary
datasets (i.e., without schema information). An index is
built by independently hashing each of the subject, predi-
cate and object of the triples contained in the datasets. The
resulting three-dimensional points are then approximated by
Minimum Bounding Boxes (MBBs) each of which summa-
rizes a certain set of triples. When optimizing a query, con-
stants contained in the triple patterns are hashed and the
resulting range-queries are issued against the index. As a
result for each triple pattern these queries return a set of
MBBs. Dependencies between triple patterns are taken into
account by executing the same operations (e.g., joins) on the
returned MBBs that would have been performed on vari-
able bindings during query execution. The set of relevant
sources is then extracted from source identifiers contained
in the MBBs (see section 2).

IndexnIndexm

Database1 DatabasenDatabasem

Wrapper1 WrappernWrapperm

dexnIIndexm
Mediator

Query Result

Index1

Figure 3: Common architecture with global synopsis

Accurate data localization is a major challenge when query-
ing a distributed RDF graph because multiple sources are
often able to answer a contained triple pattern although they
are not able to contribute to the overall result of a query.
This is due to the schema-relaxed nature of SPARQL and
the widespread use of some vocabularies. RDF Data Sum-
maries provide means to identify relevant sources more ac-
curately than previous work, but have some limitations. As
any type information is lost and triples are only approxi-
mated by ranges of hash values, the approach can only han-
dle simple queries and smaller datasets due to significant
main memory requirements and running times. In this work
we adopt this concept in order to implement efficient dis-
tributed query processing over large autonomous RDF da-
tabases. This includes the following scientific contributions:
i) a comprehensive RDF-specific synopsis that allows the op-
timizer to efficiently and accurately determine, at compile-
time, sources that are relevant for answering a query,
ii) a tightly integrated proof-of-concept query engine that
is able to further prune irrelevant variable bindings at run-
time, iii) an extensive evaluation based on a comprehensive
workload and a large distributed RDF graph consisting of
several real-world biomedical knowledge bases, iv) a perfor-
mance comparison of our approach for three different types
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of data distribution that model different ways in which we
expect data to be collected. The experiments show that our
approach improves query execution times by up to two and
transferred data volumes by up to three orders of magnitude
compared to a näıve implementation.

The rest of this paper is structured as follows: Section 2
describes the basic idea and presents in-depth information
on the index structure developed, whereas section 3 covers
query optimization. An approach to query execution that is
tightly integrated with the optimizer is described in section
4. The system is evaluated in section 5 and finally in section
6 results and directions for future work are discussed.

2. INDEXING
The basic idea of an RDF Data Summary is to project the

data onto a set of three-dimensional points by computing
independent hash values for each triple’s subject, predicate
and object. These points are then approximated by a spatial
index structure called Q-Tree [14]. Q-Trees are a variant
of R-Trees that have a constant number of leaf nodes and
do not reference the data items themselves but summarize
them, e.g., by storing counts. Data items are approximated
by Minimum Bounding Boxes (MBBs) on leaf level. A set
of nodes is itself summarized by a MBB on a higher level,
up to one single root node. Figure 4 shows an example of a
two-dimensional Q-Tree.

4 5 6 7 8

2 3

11

2

3

4

6

5

8

7

count=2count=3count=2count=3count=3

Figure 4: A two-dimensional Q-Tree

A data summary is a three-dimensional Q-Tree for all data
sources, which is built by iteratively transforming the triples
from each source and inserting them into the tree. Each leaf
node stores a set of source identifiers, including one for each
source of a triple approximated by the node. During query
optimization a range-query is built from each triple pattern’s
constants and variables and executed against the index. The
result of such a query is a set of MBBs derived from valid
leaf nodes. If the result is not empty, every system that is
referenced by any of the resulting MBBs could potentially
return variable bindings for the according triple pattern.

Pred
ica

te

Subject

O
bj

ec
t

T1Res1

T2 Res2

Figure 5: Joining two MBBs

The dependencies between individual triple patterns are
taken into account by joining the MBBs as defined in the
query. In doing so only those sources remain relevant that
are referenced in any MBB resulting from applying all op-
erators (e.g., joins). An example for a join between two
MBBs (T1 and T2) over the subject dimension (resulting in
Res1 and Res2) is shown in Figure 5. For more details the
interested reader is referred to [14].

Although this approach is highly flexible, it is not well
suited for complex queries and large datasets. As the nodes

of the indexed RDF datasets are hashed, any type informa-
tion is lost. However, the preservation and incorporation of
type information would lead to more accurate results (e.g.,
resources can only be joined with resources) and the ability
to consider further SPARQL operators (e.g., selecting results
with filter expressions). Furthermore it is very inaccurate to
approximate several triples by ranges of hash values, as this
often leads to overlapping MBBs that do not approximate
common RDF nodes. This is reinforced by the fact that
Q-Trees are designed to have a predefined, constant num-
ber of leaf nodes regardless of the size of the dataset. In
general there are therefore considerably more join partners
for MBBs than there would be for the approximated triples.
This leads to inaccurate results and limits the optimizer to
simple queries and small datasets due to significant main
memory requirements and running times. In the following
sections we will present some extensions and modifications
that help to overcome these limitations.

2.1 Type Information
By preserving type information and implementing value-

or order-preserving transformations for some literal data
types, the optimizer is able to produce more accurate re-
sults and consider further operators during query optimiza-
tion. We represent type information by two-byte integers
and are therefore able to handle 65536 different data types.
Some identifiers are reserved for common data types of lit-
erals (such as integers, strings or calendar dates). As we use
eight-byte hash values, literals with a fixed-length represen-
tation (such as integers) can be kept as is whereas other
values need to be transformed by applying a hash function.

http

www/w3/org dbpedia/org/categories/category

2000/01/rdf-schema 2001/xmlschema

3

12

1 1

http/dbpedia/org

categories/category resources

2

1 1

http

www/w3/org dbpedia/org

2000/01/rdf-schema 2001/xmlschema

5

32

1 1 categories/category resources2 1

C

B

A

Figure 6: Local and global prefix trees

Type information is not only preserved for literals but
also extended to cover resources by encoding a prefix of the
resources’ URIs. In contrary to literals, type identifiers can
not be assigned statically to prefixes as there might be too
many of them (e.g., a heterogeneous collection of URLs).
However, as even datasets that do not adhere to a specific
schema very often preferably use certain namespaces, most
URIs in an RDF dataset share a set of common prefixes.
To determine the common prefixes of an individual dataset
we normalize the triples’ URIs and split them into a list of
path components. We then add all components (excluding
the last element) to a radix tree and count the number of
their occurrences (trees (a) and (b) in Figure 6). Each leaf
node represents one prefix which can be built by appending
all components on its path to the root node. Finally, a
global view is needed as this allows to map the same prefixes
from different datasets onto the same type identifiers. Local
radix trees are computed in parallel for each data source
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(trees (a) and (b) in Figure 6) and merged into a global
tree (see tree (c) in Figure 6). If the number of prefixes is
larger than what can be encoded by the available two bytes,
the top-k prefixes can be selected by iteratively removing
the leaf node with the lowest frequency until only k leaf
nodes remain. The organization of common prefixes in a
radix tree also allows to efficiently determine the type for
a given normalized URI as radix trees support an efficient
longest-prefix matching operation. Parts of the URI not
contained in the longest prefix are transformed by applying
a hash function. To cover unknown or infrequent types we
further reserve default identifiers. In the following sections
we assume that the function type(n) returns a two-byte type
identifier and hash(n) returns an eight-byte hash value for
any resource or literal n.

2.2 Index Organization
The proposed index structure does not implement a sin-

gle synopsis for all datasets, but one index per data source.
This allows for independent updates and increases the accu-
racy as any MBB can be uniquely associated with a single
endpoint. Furthermore we apply vertical partitioning [7] to
each index. This concept is based on the observation that
for real-world (e.g., biomedical) RDF datasets the number
of distinct predicates is very small compared to the number
of triples. We therefore group triples that share the same
predicate into a common partition, efficiently eliminating
the need to store most of the predicates. This enables us
to reduce the amount of redundant information and at the
same time preserve the predicates’ hash values. This fur-
ther increases the accuracy on schema-level, which is im-
portant because predicates are rarely unbound in common
SPARQL queries [8]. Furthermore vertical partitioning al-
lows to efficiently handle type information. For this purpose
we partition the dataset not only by predicate hash value,
but also by subject, predicate and object type. As a result, a
partition P = (types, typep, typeo, hashp) references a two-
dimensional spatial index structure, approximating subject
and object hash values for any triple t = (ts, to, tp) with
type(ts) = types, type(tp) = typep, hash(tp) = hashp and
type(to) = typeo.

39 3243210073213

02 1753078394425

12 9212132431904

02 3243210070765

typep hashptypeotypes

39 3243210073213

02 1753078394425

12 9212132431904

02 3243210070765

typep hashptypeotypes

39 3243210073213

02 1753078394425

12 9212132431904

02 3243210070765

typep hashptypeotypes

DBA

DBB

DBC

id

has
hohashs

Figure 7: PARTrees, partition- and system tables

An example for such an index is show in Figure 7. The
system table references a list of partitions (partition table)
for each indexed data source. Each of these partitions again
references a spatial index structure that will be explained in
more detail in the following section.

2.3 Partition-Trees
In order to further increase the accuracy of our index we

developed an extension of Q-Trees, which we call Partition-

Trees or PARTrees for short, that store more comprehen-
sive information about the data elements in one partition.
Conceptually, sets of integers are added to the leaf nodes
which store the two least significant bytes (LSBs) of the
indexed hash values. E.g., for the subject-dimension the
set bs contains the value (hash(ts) mod 216) for each triple
t = (ts, tp, to) approximated by the leaf node. Resulting
in only a tiny space overhead, it is further possible to pre-
serve the correlation between the LSBs of the hash values
for the different dimensions. For this purpose we store a set
of points n.lsb = {(hash(ts) mod 216, hash(to) mod 216)}
that approximate the subject and object hash value of each
triple t = (ts, tp, to) indexed by a leaf node n. Because each
of these points occupies two bytes for the subject and ob-
ject dimension respectively, the index consumes at least four
bytes of memory per triple. As can be seen in the following
sections this growth in memory consumption is legitimate
because the stored information helps to determine sources
for triple patterns more accurately and drastically reduces
the number of join partners for most MBBs. In contrast
to Q-Trees, which have a fixed number of leaf nodes, we
allow our trees to grow with the number of indexed data
elements. In order to control space consumption we define
a maximum fanout for inner nodes and leaf nodes which
describes the maximum number of child nodes (or approxi-
mated triples) per node. During indexing the PARTrees are
generated locally by applying the Sort-Tile-Recursive (STR)
bulk-loading algorithm [20] and transmitted to the media-
tor on a per-partition basis where they are kept in main
memory.

3. QUERY OPTIMIZATION
Query optimization starts with creating an initial execu-

tion plan. This step includes the process of selecting po-
tential sources for the individual triple patterns in a query.
Afterwards the query is simplified by pruning parts of the
query execution plan that have been proven to not con-
tribute to the final result. In a postprocessing step the plan
is reorganized and subqueries are generated.

3.1 Initial Plan Generation
The initial execution plan is generated by selecting possi-

ble sources for each triple pattern. To this end type infor-
mation and hash values are derived from the constants con-
tained in the patterns. The global index is now queried in or-
der to determine potential sources. A partition
p = (types, typep, typeo, hashp) is valid for a triple pattern
t = (ts, tp, to) if its referenced PARTree might approximate
a triple that satisfies t. This means that the types and hash
value defined by the partition p match the triple pattern’s
constants, i.e., all of the following conditions hold true:

1. ts is a variable, or type(ts) = p.types,

2. tp is a variable, or (type(tp) = p.typep and hash(tp) =
p.hashp),

3. to is a variable, or type(to) = p.typeo.

For each system the partition table is checked and range- or
point-queries are executed against the PARTrees referenced
by valid partitions. Similar to R-Trees, the trees are tra-
versed from the root node to the leaf nodes on each path con-
sisting of valid nodes n with n.mind ≤ hash(td) ≤ n.maxd
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for each constant dimension d ∈ {s, o}. A leaf node
nl = (mins,maxs,mino,maxo, lsb) is valid if its MBB also
covers hash(td) for each constant dimension d ∈ {s, o} and
the stored LSBs match the hash value(s), i.e., the following
holds true:

1. t.s and t.o are variables, or

2. t.o is variable and (hash(t.s) mod 216, y) ∈ nl.lsb, or

3. t.s is variable and (x, hash(t.o) mod 216) ∈ nl.lsb, or

4. (hash(t.s) mod 216, hash(t.o) mod 216) ∈ nl.lsb.

Based on these preconditions it is possible to determine the
set of potential sources for each triple pattern from the global
index which is sketched in Algorithm 1. If the optimizer is
not able to determine at least one potential source for each
of the query’s triple patterns, the query can not yield any
results and further optimization and query execution can be
omitted.

Algorithm 1: Source Selection

Input: Triple pattern t
Result: All possible sources for t

1 begin
2 S ← ∅
3 foreach system s do
4 foreach partition p of s that is valid for t do
5 if tree of p contains valid leaf node for t then
6 S ← S ∪ {s}
7 break

8 return S

For our example query from Figure 2 sources for the triple
pattern (?compound, formula, ?formula) can be found by
only checking the partition tables as both subject and ob-
ject are variables. For the triple pattern (?compound, con-

traindication, "Hypovolemia") additional range queries
with a constant at the object dimension have to be per-
formed.

JOIN [?c]

DISPATCH [DBA]

BGP [?c sideEffect ?s]UNION

DISPATCH [DBB] DISPATCH [DBC]

BGP [?c formula ?f]BGP [?c formula ?f]

JOIN [?c]

DISPATCH [DBA]

BGP [?c contraindication
Hypovolemia]

?f
?c
?s

= ?formula
= ?compound
= ?sideeffect

Figure 8: Initial plan for the example query

An initial execution plan is built from the set of potential
sources by modeling dependencies between patterns as joins
over its variables. The operator Join(Vj) denotes that the
variable bindings returned by its children are to be joined
over variables Vj . An operator Dispatch(s) states that its
subtree is to be evaluated by the remote system s. The case
in which there is more than one source for solutions to a
triple pattern is modeled by unifying the results of different
dispatch operators. The operator Union therefore denotes
that the variable bindings returned by its children are to be
unified. The initial execution plan for our example query
is shown in Figure 8. We assume a scenario consisting of
three data sources, DBA, DBB and DBC in which the triple
pattern (?compound, formula, ?formula) can be answered
by the systems DBB and DBC whereas the other two triple
patterns can only be answered by the system DBA.

3.2 Plan Simplification
In the next optimization phase the initial execution plan

is simplified by ”simulating” its execution based on the in-
formation provided by the index structure. The variable
bindings returned by evaluating a triple pattern at a remote
system are represented by Approximate Variable Bindings
(AVBs). Each AVB b approximates a set of bindings for a
set of variables V by defining type information, boundaries
for hash values and compressed bitsets for each variable di-
mension v ∈ V .

1. b.minv and b.maxv are lower and upper bounds for
the bindings’ hash values.

2. b.typev defines the bindings’ type.

3. b.bitsetv encodes the bindings’ LSBs.

The set of possible LSBs for the approximated variable bind-
ings are encoded in a bitset (of length 216) because this al-
lows to efficiently join two AVBs. As the bitsets are only
sparsely populated they can also be compressed very well.
Each AVB is initially being produced by a certain dispatch
operator as explained below. When an AVB has been com-
pletely processed and reaches the top of the query execution
plan there are in general multiple dispatch operators that
have contributed to it. Each AVB stores a bitset b.dispatches
that is used to keep track of these contributing operators.
In the following sections we will describe these operators in
more detail. As a Union operator simply unifies the two sets
of AVBs produced by its children we focus on the Dispatch
and Join operator.

Algorithm 2: Produce AVBs

Input: System s, triple pattern t = (ts, tp, to)
Result: All AVBs for t from system s

1 begin
2 B ← ∅
3 foreach partition p of s that is valid for t do
4 foreach leaf node n in tree of p that is valid for t do
5 b← new AV B
6 foreach d ∈ {s, p, o} such that td is variable do
7 if d = p then
8 b.typetd = p.typep
9 b.mintd = b.maxtd = p.hashp

10 b.bitsettd .set(p.hashp mod 216)

11 else
12 b.typetd = p.typed
13 b.mintd = n.mind, b.maxtd = n.maxd

14 b.bitsettd = DeriveBitset(d, n, t)

15 B ← B ∪ {b}

16 return B

3.2.1 Dispatch Operator
When executed, the triple pattern referenced by a dis-

patch operator Dispatch(s) is evaluated in the same way
as during source selection but for a single source s. Simi-
lar to the initial plan generation process the partition table
of s is checked and the referenced PARTrees are queried for
valid leaf nodes. The resulting leaf nodes are then converted
into AVBs representing sets of potential bindings for a triple
pattern. This process is sketched in Algorithm 2. For each
variable dimension boundaries for hash values as well as the
data type and a bitset is defined. If the predicate is a vari-
able this information is derived from the partition’s values
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for typep and hashp. In case of a variable at the subject
or object position the minimum and maximum boundaries
for the bindings’ hash values are defined by the leaf node’s
MBB and the type is defined by the partition.

Bitsets for the subject and object dimension can be de-
rived directly from the set of points n.lsb if both subject
and object are variables. Otherwise the hash value of the
constant dimension is used to project onto relevant bits for
the variable dimension. If both, subject and object, are vari-
ables each dimension is transformed into a bitset by simply
setting the bits as defined by the points’ coordinates for the
subject and object dimension. In case of one constant and
one variable dimension only these bits are set for the vari-
able dimension for which a point exists in n.lsb that has a
coordinate matching the constant dimension. Algorithm 3
implements this for a variable subject dimension, the object
dimension is handled analogously.

Algorithm 3: Derive Bitset

Input: Dimension d ∈ {s, o}, leaf node n, triple pattern
t = (ts, tp, to)

Result: Bitset for the dimension d
1 begin
2 b← new bitset
3 if d = s then
4 /∗ handle subject dimension∗/
5 if t.o is a variable then
6 foreach (x, y) ∈ n.lsb do
7 b.set(x)

8 else
9 foreach (x, hash(to) mod 216) ∈ n.lsb do

10 b.set(x)

11 else
12 /∗ handle object dimension∗/
13 return b

The downside of this transformation is that the correla-
tion between the LSBs is lost if both subject and object
are variables, resulting in possible false positives. On the
other hand AVBs can now be joined much more efficiently,
as the intersection of two bitsets can be performed simply
by computing a bitwise AND-operation. Ascending integers
are assigned as unique identifiers to each dispatch operator
in order to enable the tracking of contributing sources. To
this end the i-th bit is initially set in b.dispatches for each
AVB b produced by a dispatch operator with identifier i.

3.2.2 Join Operator
Two MBBs can be joined if the defined ranges overlap

for each join dimension. For AVBs we extend this by taking
data types and bitsets into account. Two AVBs b1 and b2 can
be joined if the following holds true for each join dimension
v ∈ Vj :

• b1.minv ≤ b2.maxv and b1.maxv ≥ b2.minv

(MBBs overlap),

• b1.typev = b2.typev (types are equal),

• (b1.bitsetv AND b2.bitsetv) 6= 0
(at least one equal bit is active in the bitsets).

The minimum and maximum boundaries for hash values re-
sulting from a join between two AVBs are defined in the

same way as for a spatial join of the MBBs involved. Fur-
thermore the bitsets of the resulting AVB are defined as the
result of a bitwise AND-operation on the bitsets of both
AVBs for each dimension. Therefore the number of active
bits in the AVBs’ bitsets decreases as AVBs are passed up-
wards towards the root of the query execution plan. The
properties of the AVB br resulting from a join between two
AVBs b1 and b2 for each dimension v ∈ Vj are defined as:

• br.minv = max(b1.minv, b2.minv),

• br.maxv = min(b1.maxv, b2.maxv),

• br.bitsetv = b1.bitsetv AND b2.bitsetv,

• br.typev = b1.typev.

The bitset br.dispatches is set to (b1.dispatches OR
b2.dispatches) in order to keep track of the sources con-
tributing to br. Properties for variable dimensions not con-
tained in Vj are simply inherited from either b1 or b2. Note
that it is not possible that the underlying triple patterns
contain a common variable that is not in Vj due to the im-
plicit definition of joins. When joining two sets of MBBs
we first partition each operand into sets of AVBs with equal
data types in the join dimensions. We then solve the rectan-
gle intersection problem for each combination of compatible
partitions by applying a standard plane-sweeping algorithm.
Afterwards the bitsets of each pair of intersecting AVBs are
checked for compatibility.

3.2.3 Join-order Optimization
It is obvious that the performance of joining sets of AVBs

strongly depends on a good join-order for many queries. We
therefore implemented a cost-based optimizer utilizing a top-
down enumeration strategy with memoization [12]. We as-
sume independence between the individual triple patterns
and estimate selectivities based on the higher-level inner
nodes of the PARTrees. For a given triple pattern we con-
struct a set of MBBs by traversing the PARTrees of each
valid partition up to a predefined depth (e.g., three). We es-
timate the selectivity for a join between two triple patterns
by simply computing the cardinality of the spatial join be-
tween the sets of MBBs returned by this scans. As LSBs
are only stored in the leaf nodes we can in this process only
consider the MBBs’ and the data types defined by the par-
titions. This simple procedure has some drawbacks. Firstly,
as the PARTrees’ higher-level nodes approximate a poten-
tially large number of triples from which only a tiny fraction
might be a valid solution the resulting selectivity estimation
can be very imprecise. Secondly, some triple patterns have
a large number of valid higher-level nodes which leads to a
non-negligible running time overhead. Thirdly, the assump-
tion of independence of the selectivities of joins in a SPARQL
query does not hold as has been shown in [22]. Neverthe-
less the described method performs reasonably well for most
queries of medium complexity as can be seen in section 5.

3.3 Postprocessing
In the postprocessing phase the resulting operator tree is

transformed and subqueries are derived. If the set of result-
ing AVBs is empty the query can not return any results and
query execution can therefore be omitted. Otherwise there
is a potential to prune redundant dispatch-operators that
have not contributed to the result. To this end we monitor
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the resulting AVBs and keep only those operators who have
contributed to at least one AVB. The others are pruned from
the query execution plan.

JOIN [?c]

DISPATCH [DBA]

BGP [?c sideEffect ?s]DISPATCH [DBB]

BGP [?c formula ?f]

JOIN [?c]

DISPATCH [DBA]

BGP [?c contraindication
Hypovolemia]

Figure 9: Simplified query execution plan

For our example query from Figure 2 we assume that the
results for the triple pattern (?compound, formula, ?for-

mula) from source DBC did not contribute to the overall
result. Figure 9 shows the query execution plan after prun-
ing the redundant operator.

JOIN [?c]

BGP [?c sideEffect ?s]

DISPATCH [DBB]

BGP [?c formula ?f]

JOIN [?c]

DISPATCH [DBA]

BGP [?c contraindication
Hypovolemia]

JOIN [?c]

DISPATCH [DBA]

BGP [?c sideEffect ?s .
?c contraindication
Hypovolemia .]

DISPATCH [DBB]

BGP [?c formula ?f]

Figure 10: Reorganization and pushdown

Afterwards the tree is reorganized in order to push down
joins between triple patterns behind one common dispatch
operator whenever possible. The triple patterns of these op-
erators can then be unified to form a more complex basic
graph pattern. As in [16] we rely on a heuristic assuming
that the minimal number of subqueries yields optimal per-
formance. The Figures 10 and 11 show the transformed exe-
cution plan as well as the derived subqueries for our example
query.

SELECT ?compound ?sideeffect
WHERE {

?compound sideEffect ?sideeffect .
?compound contraindication Hypovolemia

}

SELECT ?compound ?formula
WHERE {

?compound formula ?formula
}

DBA DBB

Figure 11: Subqueries for the example query

4. QUERY EXECUTION
In order to evaluate the pruning power of the presented

optimizations we have developed a query engine based on
the mediator/wrapper architecture shown in Figure 3. It
implements a simple query execution model which consists
of four steps:

1. Parse and optimize the query.

2. Execute subqueries at the remote systems.

3. Load local results into a global database.

4. Execute the query on the global database.

This is basically equivalent to executing the query on a rele-
vant subgraph of the global graph. Therefore an RDF store
can again be used as a global temporary database.

An important side-effect of the presented optimization
technique is that the AVBs resulting from query optimiza-
tion can also be used to prune redundant variable bindings
during query execution. As AVBs describe restrictions for
hash values of variable bindings they can be used to filter a
stream of bindings, leaving only those who are potentially
relevant for answering a query. A set of n-dimensional AVBs
can be derived from a set of bindings B for n variables by

iteratively hashing the values of each binding and approx-
imating them in the same way as during index generation,
i.e., by applying the Sort-Tile-Recursive algorithm. When
we denote this by a function AVB(B) and returning bind-
ings for a query execution plan P by a function Q(P ) the
following holds for a query consisting of a join between two
triple patterns T1 and T2:

AVB(Q(T1 1 T2)) ≈ AVB(Q(T1)) 1 AVB(Q(T2))

As AVB(Q(T1)) 1 AVB(Q(T2)) is exactly what is computed
by the optimizer during query simplification, the AVBs re-
turned by the optimizer effectively approximate the vari-
able bindings that would be returned when executing the
query. This is true for any other query and can be used
to implement a concept related to semi-join reducers (see,
e.g., [17,26]). In this approach irrelevant join candidates for
a join between two relations from remote systems are pruned
by matching them against the results of a semi-join opera-
tion. Although there are different ways to implement semi-
join reducers (e.g., with bloom-filters), they have in common
that the reducers are computed at run-time whereas in our
case they are generated at compile-time.

The optimizer returns a set of n-dimensional AVBs (one
dimension for each variable in the query) but individual sub-
queries normally only cover parts of these variables. We
therefore split each resulting AVB into multiple (potentially
overlapping) AVBs, one for each set of variables contained in
a subquery. As the set of AVBs for an individual subquery
might now contain duplicates, we further apply a distinct
operator. In order to enable efficient checking of variable
bindings against the reducers, we again organize AVBs in
PARTrees by applying the Sort-Tile-Recursive algorithm. In
contrast to indexing where we build two-dimensional trees,
the number of dimensions now depends on the number of
variables in the subquery. Furthermore we do not parti-
tion the resulting AVBs by data types, in order to keep the
space overhead low. Instead we organize them in one sin-
gle PARTree in which nodes also store type information.
For each dimension, the data type of a node is defined as
the result of a bitwise OR-operation on the according type
identifiers of its children. This is inspired by S-Trees, a vari-
ant of which has also been used for indexing RDF datasets
in [28]. These trees are then transferred to the remote sys-
tems together with the subqueries. During the execution
of a subquery, members of the stream of resulting variable
bindings are pruned if there is no leaf node in the reducer
matching the binding’s types and hash values. This does
not affect the completeness of the overall result of a query
because the generated reducers only allow for false positives.

Our prototype implements all concepts described in this
paper. It supports distributed indexing as well as query op-
timization and execution. Its system architecture is shown
in Figure 12. Wrappers export standardized interfaces to
the remote systems which are provided by instances of the
RDF-3X database system [23]. As the wrappers are loosely
coupled to the underlying databases and only require a
SPARQL interface, we are able to integrate nearly any RDF
store. We chose RDF-3X because it is one of the most effi-
cient, open-source RDF database systems available and of-
fers excellent performance. The components communicate
via plain sockets and are multithreaded which enables them
to process multiple queries in parallel.
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The temporary global database is also implemented as an
instance of the RDF-3X system. Because the developed op-
timizations generally cut down heavily on the number of in-
termediate results (see section 5) it is also possible to replace
it by an in-memory database. Unfortunately the number of
intermediate results is much higher without optimizations
and they do thus often not fit into main memory. We there-
fore chose RDF-3X to allow for a fair comparison of the
unoptimized and optimized case in the following section.
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Figure 12: System architecture

5. EVALUATION
5.1 Datasets and Workload

Because there is no established benchmark for querying
distributed RDF repositories, we generated a synthetic work-
load based on several biomedical knowledge bases.

5.1.1 Datasets
Our evaluation datasets contain roughly 100 million trip-

les from different biomedical sources that are available in
RDF format. We have built a scenario which models a
knowledge base for drug developers and researchers in the
area of medicine, incorporating information about proteins,
diseases, genes, metabolic pathways, drugs, clinical trials
and more. Diseasome [13] publishes a network of disor-
ders and disease genes that have been obtained from On-
line Mendelian Inheritance in Man (OMIM). OMIM1 is a
compilation of human disease genes and phenotypes. De-
tailed chemical, pharmacological and pharmaceutical data
is provided by DrugBank2. Dailymed3 contains informa-
tion about marketed drugs. Adverse effects are covered by
SIDER4. LinkedCT5 provides data about clinical trials that
have been obtained from a public trial registry. DBpedia6

consists of structured information derived from Wikipedia.
The Bio2RDF [10] project publishes different datasets, con-
taining a derivative of Entrez Gene7 which is a database
for gene-specific information from different projects8. An

1http://www.ncbi.nlm.nih.gov/omim
2http://www.drugbank.ca/
3http://dailymed.nlm.nih.gov/
4http://sideeffects.embl.de/
5http://linkedct.org/about/
6http://dbpedia.org
7http://www.ncbi.nlm.nih.gov/gene
8We have extracted a subset of about 20M triples

overview over the different datasets, the number of contained
triples and the number of unique subjects, predicates and
objects is shown in Table 1.

System # Triples # Subjects # Predicates # Objects

Infobox Properties6 34.2 M 1.816.862 38.563 8.107.107

Other Properties6 31.3 M 9.490.850 8 13.590.111

GeneID7 20.1 M 462.855 31 10.750.501

Linked CT5 9.8 M 981.880 90 3.808.369

HGNC [10] 1.1 M 125.256 37 655.833

OMIM1 0.9 M 20.280 43 379.099

Drugbank2 0.5 M 19.693 119 275.336

Dailymed3 0.2 M 10.015 28 67.778

Sider4 0.1 M 2.674 11 29.410

Diseasome [13] 0.1 M 8.152 19 27.704

Global 98.4 M 11.121.647 38.905 35.837.311

Table 1: Properties of the evaluation dataset

We evaluated three different scenarios by partitioning the
dataset in different ways. In the naturally-partitioned sce-
nario the datasets have been preserved as is. For the horizon-
tally-partitioned scenario we merged all datasets into one
single dataset and partitioned it horizontally into n equally
sized datasets. In the randomly-partitioned scenario all trip-
les have been distributed randomly among n equally sized
datasets. These three scenarios model different ways in
which we expect data to be collected. The rationale for nat-
ural data distribution is straightforward as this models the
case in which several subject-specific data collections have
been established. Horizontal data distribution resembles a
scenario in which different knowledge bases have been built
by merging subsets of other datasets. Finally the randomly-
distributed scenario models an extreme for an RDF-specific
type of data collection. We assume that users take advan-
tage of their ability to uniquely reference entities in other
datasets and further annotate them. Therefore the infor-
mation regarding individual entities is spread over different
data sources. A real-world data management solution for
our biomedical use cases would probably have to deal with
a data distribution lying somewhere in between these three
scenarios.

5.1.2 Workload
The workload used in our evaluation has been generated

from different patterns. A query pattern is defined by a num-
ber of stars (s), a number of constants (c) and a number of
variables (v). Each star defines a basic graph pattern that
consists of (c+v) triple patterns. Subjects of these triple
patterns are always variables, predicates are always bound
and c of the objects are constants, whereas v of the objects
are variables. If a pattern consists of more than one star,
the individual stars are connected via additional triple pat-
terns with unbound subject and object and bound predicate.
Therefore a query pattern with parameters s, c and v con-
sists of n = (c+v+1)∗s−1 triple patterns. Such queries are
considered to be good representatives for many real world
SPARQL queries [8] and similar query patterns have been
used in other evaluations [7,16,23]. In the following sections
we denote a pattern consisting of s stars with v variables
and c constants as SsVvCc. Figure 13 shows an overview
over the set of query patterns used. It comprises patterns
consisting of one, two and three stars, each of which consists
of one, two or three constants and one or two variables. The
most complex query pattern (S3V1C2) consists of n = 11
triple patterns.

We created roughly 100 instances of each pattern. To this
end we associated the stars to the data sources (naturally-
partitioned). A random instance of a star was generated by
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Figure 13: Query patterns

selecting all possible outgoing triples for a random subject,
replacing the subject with a variable, randomly selecting v
triples and replacing its objects by variables and c triples
that were kept as is. In order to generate a workload which
can be executed in a reasonable amount of time without ap-
plying any optimizations we ensured that each star does not
yield more than 10.000 results. We further matched links
between stars with links between datasets which allowed us
to control how the load is spread among the data sources.
For each possible link between two (or three) datasets we
created an equal number of queries in a way that resulted
in about 100 instances. In the case of s = 1 this was triv-
ial. As there are 10 data sources we just created 10 random
instances for each dataset. For patterns consisting of s = 2
stars we were able to discover 25 possible links between two
data sources. Therefore we created four random instances
per query pattern and link, which resulted in exactly 100
queries. For s = 3 this was more complicated as links be-
tween data sources are not always transitive. We found that
there are 32 different possibilities for links between three
datasets and created three instances for each of these links,
resulting in 96 queries per pattern.

Query Class ≤101 ≤102 ≤103 ≤104 ≤105

S1V1C1 71 5 6 11 7
S1V1C2 88 8 1 2 1
S1V2C2 82 7 7 3 1
S1V2C3 87 9 3 1 0
S2V1C1 87 6 4 3 0
S2V1C2 98 1 1 0 0
S2V2C2 91 6 2 1 0
S3V1C1 73 20 3 0 0
S3V1C2 88 5 3 0 0

Total 765 67 30 21 9

Table 2: Result cardinalities

Although there are no guarantees that this process gen-
erates queries that spread the load equally (i.e., query each
dataset with the same frequency), it works well in prac-
tice. Regarding the naturally-partitioned scenario, the load
is spread equally for s = 1. In case of s = 2 OMIM
and GeneID are slightly underrepresented whereas Disea-
some and Drugbank are overrepresented. For s = 3 OMIM,
GeneID and HGNC are slightly underrepresented whereas
Diseasome, Drugbank and Dailymed are overrepresented.
All other datasets are queried with the same frequency. Ta-
ble 2 shows the result cardinalities of the queries in our work-
load. Due to limiting the results of the individual stars to a
cardinality of ≤10.000 most queries (≈85%) return ≤10 re-
sults regardless of the underlying query pattern. As can be
seen from the following experiments the overall time needed
to execute a query is usually not strongly correlated with
the cardinality of its result but with the cardinalities and
number of its subqueries which are again influenced by data
distribution.

5.2 Setup
Our experiments were performed on three Dell desktops

which hosted the data sources and wrappers. Each of these
machines has a 4-core 3.1 GHz Intel Core i5 CPU with 6 MB
cache and 8 GB of memory running a 64-bit Linux kernel
in version 2.6.35. The mediator was deployed on a Dell
laptop with a 4-core 1.6 GHz Intel Core i7 CPU with 6
MB cache and 4 GB of memory also running a 64-bit Linux
2.6.35 kernel. All systems are able to perform sequential
reads on their local hard disks with about 100 MB/s and
were connected via Fast Ethernet. Mediator and wrappers
are implemented in Java and all machines were running a
64-bit Sun JVM in version 1.6.0. The JVM heap size was
restricted to 512 MB for each wrapper and 2 GB for the
mediator. When partitioned naturally, we distributed the
datasets among the three machines as follows:

• Machine A: Infobox Properties, OMIM, Drugbank
(≈36 M triples total)

• Machine B: Other Properties, HGNC, Sider
(≈32.6 M triples total)

• Machine C: GeneID, LinkedCT, Dailymed, Diseasome
(≈30.2 M triples total)

In case of horizontal or random partitioning we derived nine
equally sized datasets (≈10.9 M triples) and distributed them
uniformly among the three machines (three datasets each).
As it is more robust against outliers, we report the geometric
mean of the running times for the different sets of queries.
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Figure 14: Index size in case of natural partitioning

5.3 Indexing
The size and accuracy of the index can basically be con-

trolled by adjusting the PARTrees’ leaf fanout (fl) as it de-
fines the number of triples that are packed into one leaf node.
Figure 14 shows the size of the index for different values
of fl in the case of natural data distribution. Space con-
sumption converges to a lower boundary when increasing fl.
This is due to the fixed four bytes allocated for each indexed
triple. The additional overhead for nodes in the PARTrees
decreases with fl. For our evaluation we chose fl to be 50
which seems to be a good trade-off between space consump-
tion and performance according to our experiments. In this
case the index consumes about 5.6 bytes per triple. This
totals to about 555 MB of main memory which corresponds
to a compression ratio of about 5% compared to the original
data in RDF turtle format (12 GB). In case of horizontal and
random data partitioning the space consumption increases
slightly to 560 MB and 571 MB respectively. Building the
index from scratch takes about 18 minutes for natural data
distribution and 10 minutes for the other scenarios. The lat-
ter benefit from the fact that each dataset contains an equal
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Figure 15: Average query execution times for different optimization levels

number of triples, which increases parallelization. About
30% of the time is spent on building the prefix tree.

5.4 Query Optimization
The average time needed to optimize the queries is shown

in Figure 16. The measured running times include all opti-
mization steps, ranging from parsing the query and initial
plan generation, to plan simplification and the generation of
reducers. As can be seen the running time increases with
the complexity of the underlying query pattern. The pat-
terns S2V2C2 and S3V1C2 are the most difficult, as they
contain the most variables and joins. Furthermore the com-
plexity increases slightly when optimizing queries in case of
horizontally- and randomly-partitioned data. Analogously
to the increasing size of the index this is due to the fact
that these partitionings lead to a larger number of unique
predicates per dataset and therefore increase the number of
partitions. Triples that are summarized in one leaf node in
case of natural data distribution are then potentially placed
in different nodes. This results in more leaf nodes and the
need to join more AVBs during query optimization.
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Figure 16: Time needed for query optimization

We also compared our approach to the work presented
in [14]. For this purpose we ignored the type information and
LSBs stored in our index. Despite the partitioning of trip-
les by data source and predicate, this closely resembles the
original index structure. In this case the optimizer was not
able to handle about 51% of the workload’s queries because
it produced a huge number of intermediate results during
join processing and ran out of memory. Increasing the heap
size limit did not effectively solve this problem. The error
rate correlated with the complexity of the underlying query
patterns ranging from 0% for the query class S1V1C1 to 98%
for S2V2C2, S3V1C1 and S3V1C2 respectively. The running
times for optimizing the remaining queries increased by an
average factor of about 50, ranging from 1.6 for the query

class S1V1C2 up to 288 for S3V1C1.

5.5 Query Execution
Figure 18 shows the average time needed to execute the

workload including query optimization. With a workload-
average of about one second in case of natural and horizontal
partitioning the prototype performs very well considering its
simple design. The average query execution times increase
by a factor of up to five when the data is partitioned ran-
domly. In contrary to the other scenarios, where most triple
patterns can be answered by only one single data source,
there are often much more potential sources in this scenario.
As a result, less triple patterns can be pushed down and
grouped into more complex subqueries which significantly
increases the number of subqueries and resulting variable
bindings. Although many of these bindings can be pruned,
this increases local query execution times because the reduc-
ers are only applied to the result sets of the subqueries and
are not directly involved into local query processing.
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Figure 18: Time needed for query execution

The impact of the different optimizations is shown in more
detail in Figure 15. We denote pruning parts of the oper-
ator tree with Pruned, and further reducing the number of
returned variable bindings with Reduced. The baseline of
100% is defined by the unoptimized case, in which the step
of query simplification is omitted (see section 3.1) and ini-
tial execution plans are postprocessed and executed directly
without applying any optimizations. In case of natural data
distribution, pruning operators reduces the average query
execution time by up to two orders of magnitude (S2V2C2).
Further reduction of the resulting variable bindings yields
only an additional speedup of up to 10%. In total, the av-
erage query execution time is decreased by a factor of five
(S1V1C1) to 110 (S2V2C2). In this case applying reducers
has only little impact, as subqueries do not yield many ir-
relevant results. When the data is distributed horizontally,
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Figure 17: Transferred data volumes for different optimization levels

plan simplification yields a speedup of a factor of five to
65 (S2V2C2). Reducers also have a significant impact, fur-
ther decreasing query execution times by a factor of up to
two. Applying all optimizations the average query execu-
tion time is decreased by a factor of five (S1V1C1) to 100
(S2V2C2). In case of random data distribution much more
data sources yield relevant results, limiting the impact of
plan simplification. This results in a speedup of a factor of
two to eight (S2V1C2). On the other hand the potential for
pruning irrelevant results is significantly increased, leading
to an additional speedup of a factor of up to five (S3V1C1).
This adds up to a total speedup of a factor of four (S1V1C1)
to 25 (S2V2C2).

When compared to natural data distribution, the overall
query execution times increase slightly in case of horizontal
and significantly in case of random data distribution. For
naturally or horizontally distributed data only a single data
source returns relevant bindings for most triple patterns.
Therefore these scenarios benefit the most from pruning op-
erators from the query execution plan. Horizontal distribu-
tion does also offer some potential for reducing the resulting
variable bindings, as the unnatural distribution slightly in-
creases the number of irrelevant variable bindings returned
by the subqueries. In case of random partitioning pruning
parts of the operator tree is more difficult because relevant
results for triple patterns can often be returned by more
than one data source. On the other hand this significantly
increases the potential to reduce the amount of resulting
variable bindings. Independent from data distribution the
resulting relative speedup increases with the complexity of
the underlying query pattern.

Details on the total data volume (over all queries in the
respective class) transferred while executing the workload
are shown in Figure 17. Here Näıve denotes the unopti-
mized case. Plan simplification reduces the transferred data
volume by several orders of magnitude. Further pruning
irrelevant variable bindings yields an additional reduction
by up to another few orders of magnitude, especially in the
case of random data distribution. Due to plan simplifica-
tion the generated subqueries often correspond to the stars
contained in a query when data is distributed naturally or
horizontally. The number of bindings for these stars are
limited to ≤10.000 and therefore the number of bindings re-
turned by all subqueries is often ≤10.000 ∗ #Stars. Load-
ing a dataset into RDF-3X is very fast for smaller datasets.
The total query execution times are thus often dominated
by local query processing in this cases because the gener-
ated reducers do not affect local query processing. If data

is distributed randomly the number of results returned by
the subqueries increases significantly. As reducers are able
to prune a large amount of these bindings they do have a
strong impact on the overall running times in this scenario.

6. DISCUSSION AND FUTURE WORK
We have presented a scalable system for optimizing and

executing SPARQL queries over large distributed RDF
graphs. Because of the wide-spread use of some vocabular-
ies and the schema-relaxed nature of SPARQL many RDF
databases are potentially able to answer a single triple pat-
tern. But if the same triple pattern is part of a more complex
SPARQL query many of these answers are irrelevant due to
a lack of join partners. The rich RDF-specific synopsis de-
scribed in this paper enables efficient compile-time and run-
time techniques that address this problem. At compile-time,
sources that would return only irrelevant results for an indi-
vidual triple pattern can be pruned from the query execution
plan. Especially this technique is also of high relevance for
querying the Semantic Web [1]. Because this scenario is
characterized by a large number of small datasets that are
only accessible via a high latency, low bandwidth network,
it is important to minimize the number of subqueries.

Our index structure implements vertical partitioning [7].
It has been shown that this storage scheme does not perform
very well for datasets with a large number of distinct RDF
predicates when implemented on top of relational database
systems [25]. Similar problems arise in our solution for very
heterogeneous datasets in which a large number of predi-
cates occur only rarely. As this leads to many small parti-
tions the compression ratio can drop significantly which also
has a negative impact on running times. This problem can
be overcome by merging small partitions into one common
partition. A related approach has been proposed in [22] for
other schema-level information.

To improve the performance and results of join-order op-
timization we are planning to adopt the concept presented
in [22]. The basic idea is to provide very accurate cardinality
estimations based on a lightweight RDF-specific approach
for mining parts of a datasets schema. We feel that this
can be implemented for distributed RDF databases and in-
tegrated into our system based on the triples’ subject, pred-
icate and object types and hash values. There are also sev-
eral ways to further develop our proof-of-concept query en-
gine. For example, recent work has shown that distributed
RDF stores can be queried very efficiently by processing
the results of subqueries with MapReduce [16]. Although
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the system presented therein also offers query processing
over distributed instances of the RDF-3X system, its aim is
to use a cluster of machines in order to manage one large
RDF dataset. As it needs to control how data is distrib-
uted among the local databases its concepts are not directly
applicable to our requirements though. Another technique
for improving query execution is bind-joins [17]. This con-
cept, which has already been utilized for querying distrib-
uted RDF databases in [19] and [24], is also related to semi-
join reducers. The basic idea is to compute a join between
two subqueries by binding a variable in one query to all
according values obtained by executing the other query. In
order to make effective use of this optimization, the local da-
tabases need to be able to process queries containing initial
variable bindings. This is currently not supported in most
RDF stores but has been included in the W3C’s working
draft for the upcoming SPARQL version [5].

In this paper we limited ourselves to a read-only scenario.
It is generally possible to propagate updates to our index but
the subject, predicate and object hash values and types of
triples that have been added, updated or deleted have to be
made available. RDF-3X offers a natural way to implement
this as it handles updates via a so-called differential index
which is periodically merged with the main index. Our index
will degrade over time when updates are performed because
the MBBs of a PARTree’s leaf nodes can not be split in a
reasonable way without knowing the original data items. It
is therefore recommended (and also very fast) to rebuild the
index from scratch at certain intervals.
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