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ABSTRACT
MapReduce has emerged as a promising architecture for large scale
data analytics on commodity clusters. The rapid adoption of Hive, a
SQL-like data processing language on Hadoop (an open source im-
plementation of MapReduce), shows the increasing importance of
processing structured data on MapReduce platforms. MapReduce
offers several attractive properties such as the use of low-cost hard-
ware, fault-tolerance, scalability, and elasticity. However, these ad-
vantages have required a substantial performance sacrifice.

In this paper we introduce Clydesdale, a novel system for structured
data processing on Hadoop – a popular implementation of MapRe-
duce. We show that Clydesdale provides more than an order of
magnitude in performance improvements compared to existing ap-
proaches without requiring any changes to the underlying platform.
Clydesdale is aimed at workloads where the data fits a star schema.
It draws on column oriented storage, tailored join-plans, and multi-
core execution strategies and carefully fits them into the constraints
of a typical MapReduce platform. Using the star schema bench-
mark, we show that Clydesdale is on average 38x faster than Hive.
This demonstrates that MapReduce in general, and Hadoop in par-
ticular, is a far more compelling platform for structured data pro-
cessing than previous results suggest.

1. INTRODUCTION
In recent years, there has been tremendous interest in using
MapReduce as a large scale data processing platform. While
parallel database management systems (DBMSs) were tradi-
tionally the platform of choice for large scale data processing,
MapReduce has gained substantial momentum because of several
attractive properties – the use of commodity low-cost hardware,
fault-tolerance, elasticity, scalability, and a flexible programming
model.

The initial interest in MapReduce was mainly for large scale analy-
sis of text data such as web crawls and for constructing text indexes
in parallel [19]. Enterprises typically start off using a MapReduce

∗Work done while author was at IBM Almaden Research Center

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

cluster for unstructured data such as application logs and document
collections. The data often goes through an ETL-phase and rela-
tively structured data is produced for reporting and analysis. We
have learned from conversations with several enterprise customers
that while they use a MapReduce cluster for several different work-
loads (including data mining and machine learning), structured data
processing is becoming increasingly important. The emergence and
increasing adoption of systems like Hive [3] is further indication of
the growing need for structured data processing on this platform.

Recent work [34] points to several performance problems for struc-
tured data processing on MapReduce. Critics of the MapReduce
paradigm have argued that many of these problems can be avoided
by simply using a parallel DBMS for structured data processing
tasks. However, given the flexibility of MapReduce, i.e. its ability
to cater to a larger variety of applications, as well as growing in-
vestments in hardware and administration for this platform in many
enterprises, replacing it with a parallel DBMS may neither be de-
sirable nor practical.

Previous efforts have tried to combine the flexibility and scala-
bility of MapReduce with the performance of relational DBMSs.
However, they either involved radical changes to the MapReduce
platform, i.e. discarding the distributed filesystem and running a
DBMS instance on each node [7], or adding MapReduce-like fault-
tolerance to an existing parallel DBMS [37]. Other approaches [32,
20] have advocated using indexing and storage organization tech-
niques with limited performance gains.

This paper describes Clydesdale 1, a research prototype built on
top of Hadoop. Hadoop is a popular open-source implementation
of MapReduce. With Clydesdale, we show that dramatic perfor-
mance improvements can be achieved for structured data process-
ing without any changes to the underlying implementation. This is
of significant practical value since it allows us to run Clydesdale on
future versions of Hadoop without having to re-compile and re-test
Hadoop with a set of custom changes. Such as design also allows
Clydesdale to inherit the fault-tolerance, elasticity, and scalability
properties of MapReduce. Using the star schema benchmark [33],
we show that Clydesdale is 5x – 83x faster than Hive.

Clydesdale’s design draws on several existing techniques from
parallel DBMSs such as columnar storage, tailored join plans,
and block iteration. However, adapting these techniques for the
MapReduce environment is not straightforward, in particular when
trying to preserve all the properties that make the platform attrac-

1Clydesdale is a robust and flexible breed of work horse in contrast
to a racing thoroughbred, which is fast, but fragile and inflexible.
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tive. The challenges arise from two important differences between
a parallel DBMS and MapReduce: the presence of a distributed
filesystem and the constraints of the task-scheduling infrastructure.
Clydesdale uses the Hadoop distributed filesystem (HDFS) to
store its data. To our knowledge, no commercial shared-nothing
relational DBMS uses a distributed filesystem. Most commercial
databases either rely on the storage tier (RAID controllers, SAN
storage) or use hot standbys to manage replication and mask disk
failures. Using a distributed filesystem that works on commodity
nodes to manage replication requires a careful design of the stor-
age organization layer. Clydesdale uses a novel column-oriented
layout [21] that interacts with the replication strategy of HDFS to
ensure that columns from a given row are co-located on a given
node.

The task-scheduling infrastructure in Hadoop was designed to pro-
vide locality-aware scheduling [19] at the granularity of map and
reduce tasks. Map and reduce tasks are expected to last a short
while (few minutes) and a typical job may consist of several map
and reduce tasks. In contrast, DBMS runtimes have traditionally
used iterator-based operators [23] that are scheduled to run for the
entire duration of the query on a given server. Clydesdale uses
carefully designed map tasks so that data structures used in query
processing can be shared across multiple threads and even multiple
tasks consecutively executed on any node. This allows Clydesdale
to ameliorate the per-task overheads that can adversely impact the
performance of MapReduce jobs. Clydesdale also exploits current
hardware trends such as servers with large memories and multiple
cores and uses an appropriately tailored n-way join algorithm in-
stead of repeated use of a generic two-way join.

Clydesdale is aimed at workloads where the data fits a star schema.
Leaders of the database community have argued [36, 18] that an
overwhelming majority of structured data repositories are either
star or snowflake schemas. Star-schemas have stood the test of time
as a good way to model large datasets in many industries, and we
expect this will continue to hold true for modeling structured data
on new platforms like Hadoop. While we focus on star schemas in
this paper, Clydesdale can also be used for more general processing
like Hive.

Clydesdale’s central contribution is a demonstration that an unmod-
ified instance of Hadoop can provide more than an order of magni-
tude in performance improvements for structured data processing.
We describe the design and implementation of Clydesdale focus-
ing on the join strategy and its execution in the context of Hadoop
(Section 4). We describe the specific challenges posed by HDFS
and MapReduce and how Clydesdale overcomes them to leverage
columnar storage, multi-core execution, and block-iteration (Sec-
tion 5). In Section 6, we demonstrate Clydesdale’s performance
on the star schema benchmark [33] and compare it with Hive. We
show that Clydesdale is 5x – 83x faster than Hive, averaging an
advantage of 38x. We describe several opportunities for future re-
search on managing updates, multi-workload scheduling, and ad-
vanced storage organization (Section 8)

2. RELATED WORK
An initial comparison [34] of MapReduce and parallel DBMSs
pointed out a substantial performance difference between the
two platforms. Subsequent studies have demonstrated that in-
dexing [20, 30], columnar storage [21], and other organization
techniques [31] can be adapted to MapReduce. to reduce this
performance gap. Other approaches [13, 8, 38] have discussed

join processing on MapReduce. Yet others [25] have examined
how to tune the various parameters in a MapReduce platform like
Hadoop to provide the best performance for a given job. However,
these efforts address general workloads and have not particularly
focused on structured data or on star schemas. Consequently, the
performance improvements they offer are not in the range that can
be achieved by targeting specific workloads. Clydesdale’s design
can be viewed as an adaptation of existing techniques to Hadoop.
Clydesdale draws from columnar storage [35] for I/O performance,
join techniques [6] suitable for multi-core servers and Hadoop, and
block-iteration [39] for CPU performance.

Recent efforts examining the suitability of MapReduce as a plat-
form for structured data processing include Hive [3], Cheetah [17],
HadoopDB [7], Llama [32], and Tenzing [16]. Hive is a popular
open-source project that provides SQL-like processing for struc-
tured data on Hadoop. It is designed to be general purpose and
works with a variety of workloads. Cheetah targets warehouse
workloads on MapReduce, but does not provide details of the im-
plementation or a comparison with other systems like Hive.

Llama is a recent system that combines columnar storage and tai-
lored join algorithms. It demonstrates a speedup of at most 5x
compared to Hive, while Clydesdale’s speedup ranges from 5.2x to
82.7x. Llama also proposes joining more than two tables at a time
using a concurrent join algorithm. The algorithm relies on stor-
ing column-group projections of the fact table sorted by the foreign
key. The dimension tables are also stored sorted by foreign key,
such that the join can be executed using a sort-merge plan. Storing
multiple projections of the fact table sorted by each foreign key im-
poses substantial overhead for rolling in additional fact data. New
data being rolled in needs to be split into column groups, and each
column group needs to be merged with the corresponding column
group of the fact table. Rolling in additional fact data is a com-
mon occurrence. Frequently requiring the entire fact table, which
is typically very large, to be merged and rewritten to the filesystem
is a prohibitive overhead. Clydesdale does not require that the fact
table be stored in any sorted order. Roll-in and roll-out of fact table
data is straightforward.

HadoopDB [7] takes an alternate approach of constructing a par-
allel DBMS by combining a single node relational database with
Hadoop to get better performance. The HadoopDB architecture
assumes that data is stored in the storage subsystem of individual
database nodes instead of a distributed filesystem like HDFS. Fault-
tolerance for the data is achieved either through reliable storage or
replication. In this paper, we focus on supporting structured data
processing workloads without discarding the distributed filesystem
– a critical component of the MapReduce platform that provides re-
liable data access across a cluster of low-cost commodity disks. In
fact, one can view Clydesdale as a demonstration that large perfor-
mance improvements can be obtained for structured data process-
ing on Hadoop without requiring a complex hybrid architecture like
HadoopDB.

A recent paper describes Tenzing [16], a SQL implementation on
Google’s MapReduce platform. The paper describes several modi-
fications to MapReduce including long-surviving worker processes
to reduce latency, streaming data between successive MapReduce
jobs, memory chaining to co-locate the reduce function of one
MapReduce job and the map function of the next job in the same
process, avoiding unnecessary sorting for MapReduce jobs that
require only shuffling, and several other optimizations. All of these
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techniques can be implemented in Hadoop, and are complemen-
tary to the ideas in Clydesdale. Likewise, the techniques used by
Clydesdale (exploiting multiple cores by sharing dimension hash
tables, the tailored join plan, and block iteration) can be used to
improve star join performance in Tenzing.

Pig [22] and Jaql [12] are high-level languages for composing and
executing complex dataflows on Hadoop. Pig and Jaql focus on
supporting ETL-like workflows that require complex data transfor-
mations. Like Hive, they also support sort-merge and hash join
strategies, and are also constrained to joining two tables at a time.
Since the join strategies in Pig, Jaql, and Hive are essentially the
same, we only compare with Hive and not with Pig and Jaql.

ASTERIX [11], DryadLinq [28], Nephele/PACT [10] propose
ways to generalize the MapReduce paradigm. ASTERIX focuses
on supporting semistructured data processing especially with
evolving schema information. DryadLinq includes an execution
engine that supports a general DAG, provides fault-tolerance, and
operators that embed cleanly in .NET host languages. Nephele
also generalizes the MapReduce paradigm. Scope [15] provides a
simple SQL-like interface to processing large datasets on Dryad,
but does not specifically address join processing workloads. In
contrast to ASTERIX, DryadLinq, Nephele, and Scope, Clydes-
dale’s focus is not to extend or generalize MapReduce, but to work
within the constraints of Hadoop to provide efficient structured
data processing.

3. BACKGROUND
We describe the extensibility points in Hadoop that were used
to implement Clydesdale. These include InputFormats,
OutputFormats, MapRunners, and schedulers.

A Hadoop job is typically configured with several parameters be-
fore it is launched. The InputFormat , OutputFormat, the
map function, the reduce function, and the data types expected as
inputs to the map function are all specified in the job configuration.

An InputFormat is an important extensibility point in Hadoop
and is responsible for two functions. The first function is to gener-
ate splits of the data that can each be assigned to a map task. A
job consists of several map and reduce tasks, each of which may run
for several seconds to minutes. A split is the unit of scheduling
and is a non-overlapping partition of the input data that is assigned
to a map task. The second function is to transform data on disk to
the typed key and value pairs that are required by the map function.
An InputFormat implements the following two methods:

• getSplits() is used by the Hadoop scheduler to get a list of
splits for the job.

• getRecordReader() is invoked by Hadoop to obtain an im-
plementation of a RecordReader, which is used to read
the key and value pairs from a given split.

Hadoop provides different InputFormats to consume data
from text files, comma separated files, etc. The dual of an
InputFormat in Hadoop is an OutputFormat, which is
responsible for transforming the key-value pairs output by a
MapReduce job to an on-disk format.

Hadoop also allows the user to specify a MapRunner along with
the map and reduce functions. This is optional, and a default
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Figure 1: Example star schema.

MapRunner is used when this is not specified. The MapRunner
encapsulates the logic for how to apply the map function on the
input key-value pairs. The default MapRunner simply does the
following: first, it takes the split that the task is supposed to
process and opens a RecordReader. It then repeatedly reads
a key-value pair from the RecordReader and applies the map
function on it until all the records in the split have been processed.
Alternate MapRunner implementations can be provided without
recompiling Hadoop. This is useful for cases where different
behavior is required, such as processing the keys and values in
multiple threads. Section 5 describes how Clydesdale exploits this
feature of Hadoop for improved performance.

Hadoop also has a feature called JVM reuse. By default, Hadoop
runs each task in a separate Java Virtual Machine (JVM) . Enabling
JVM reuse lets a single JVM run multiple consecutive map tasks
from the same job. This is particularly useful for jobs where each
map task may need to construct a large amount of state in memory
before it begins processing. With JVM reuse, only the first map
task on the node needs to construct this state. If this is stored as a
static object, subsequent tasks running in the JVM can simply reuse
this state. Section 5.2 describes Clydesdale’s use of JVM reuse to
eliminate redundant computation.

4. CLYDESDALE ARCHITECTURE
Clydesdale targets workloads where the data fits a star schema. A
star schema consists of one or more fact tables referencing any
number of dimension tables. An example from the star schema
benchmark [33] is shown in Figure 1. In such datasets, the fact ta-
bles are usually much larger than the dimension tables – often by
several orders of magnitude. A typical query joins the fact table
with one or more dimension tables to aggregate measure columns
in the fact table. Queries are currently written as Java programs that
execute as MapReduce jobs on Hadoop.

Figure 2 shows the general architecture of Clydesdale. The fact ta-
ble is stored in the distributed filesystem (HDFS) so that it is spread
across all the nodes. A master copy of the dimension tables is avail-
able in HDFS. Dimension tables are also cached on the local stor-
age of each node. New nodes, or nodes that have lost their local
copy of the dimension data because of disk failures may copy the
dimension data from HDFS.
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Figure 2: Architecture of Clydesdale.

4.1 Columnar Storage
The fact table is stored using ColumnInputFormat [21] (CIF).
The benefits of being able to avoid I/O for the columns that are not
used in a query are well known [14, 35]. CIF stores each column
of a table in a separate HDFS file and only reads the files corre-
sponding to the columns that are needed for the query. However,
implementing columnar storage on a replicated distributed filesys-
tem poses a unique challenge: storing each column in a different
file makes it difficult to ensure that the corresponding HDFS blocks
for different columns in a single row are co-located at every replica
in HDFS. This is important to ensure that a task that processes a set
of rows from the fact table can be scheduled at a node where the
data for all the columns is available locally.

CIF is a column-oriented InputFormat that solves the above
problem. and lets Hadoop continue using locality aware scheduling
for map tasks. CIF leverages the support for pluggable placement
policies in HDFS 21.0 to accomplish this. For details of how this is
implemented and the interface presented to MapReduce programs
that use CIF, see [21].

4.2 Join Strategy
Star-join queries in Clydesdale are executed as a MapReduce job.
The map phase is responsible for joining the fact table with the di-
mension tables. The reduce phase is responsible for the grouping
and aggregation. The flow for a typical join job is depicted in Fig-
ure 3. We describe the join plan using an example. Consider query
3.1 from the star schema benchmark:

SELECT c_nation, s_nation, d_year,

sum(lo_revenue) as revenue

FROM lineorder, supplier, date, customer

WHERE lo_custkey = c_custkey

and lo_orderdate = d_datekey

and lo_suppkey = s_suppkey

and c_region = ’ASIA’ and s_region=’ASIA’

and d_year >=1992 and d_year <= 1997

GROUP BY c_nation, s_nation, d_year

ORDER BY d_year asc, revenue desc;

The query computes the total revenue grouped by Customer’s na-
tion, Supplier’s nation, and the year for orders between 1992 and
1997 where the Supplier and Customer were from Asia. In this
query, the fact table is joined with three dimension tables, Supplier,
Date, and Customer.

Figure 3: Clydesdale’s join implementation.

Figure 4 shows the pseudocode for this job. The plan proceeds as
follows: In the initialization phase of the map tasks, the predicates
on the dimension tables are evaluated and a hash table is built for
each dimension table with the qualifying rows. This happens in the
buildHashTables() method in Figure 4 (line 5). The body
of this method is omitted since the implementation is straightfor-
ward. In this example, c_region = ‘ASIA’ is the predicate on
the Customer table, s_region = ‘ASIA’ is the predicate on the
Supplier table, and 1992 ≤ d_year ≤ 1997 is the predicate on
the Date table. The key of the hash table is the primary key of the
dimension table, and the value is the set of auxiliary columns refer-
enced in the query for that dimension table. In the above example,
c_nation , s_nation, and d_year are the auxiliary columns
from the Customer, Supplier, and Date dimensions respectively. In
general, a dimension hash table may contain zero or more auxiliary
columns. Clydesdale currently uses a single-threaded algorithm to
build each hash table. The degree of parallelism during the build
phase is limited to the number of dimension tables joined to the fact
table.

Once the hash tables are built, each map task begins to scan its
split of the fact table. The list of columns that need to be scanned
– the relevant foreign key columns and the measures used in the
query – is pushed into CIF so that unnecessary disk I/O is avoided.
For each row in the fact table, the hash tables are probed to check
if the row satisfies the join conditions. This logic is implemented
in the probeHashTables() method in line 8 of the figure. In
this example, foreign key columns lo_custkey, lo_suppkey,
and lo_orderdate are used to probe the Customer, Supplier,
and Date hash tables respectively. After each successful probe, the
fact table row is augmented with the auxiliary columns from the
dimension table. The probing uses “early-out” in the sense that as
soon as one of the probes fails, it is no longer necessary to probe
the remaining dimension tables for the current row. The logic for
probeHashTables() is relatively straightforward and the de-
tails are not shown in Figure 4.

A row is emitted as the output for the map function by construct-
ing a key from the subset of columns needed for grouping. In this
example, c_nation , s_nation, and d_year are included as
part of the key (line 9). lo_revenue is emitted as the value (line
10). A simple sum() function is used to aggregate the value in
the reducer (line 19). While not shown in Figure 4, combiners can
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————————————————————————————-
1. class Query {
2. class QMapper implements Mapper {
3. List<HashTables> hlist;
4. initialize(JobConf conf) {
5. hlist = buildHashTables(conf);
6. }

7. void map (Record key, Record value, OutputCollector c) {
8. if (probeHashTables(hlist, value)){
9. Record groupKey = value.project(

“c_nation,s_nation, d_year”);
10. Record rest = value.project(“lo_revenue”);
11. }
12. c.collect(groupKey,rest);
13. }
14. }

15. class QReducer implements Reducer {
16. void reduce (Record key, Iterator<Record> values,

OutputCollector c) {
17. Float sum = 0;
18. while (values.hasNext()){
19. sum += values.next().get("lo_revenue");
20. }
21. c.collect(key, sum);
22. }
23. }

24. main(){
25. job = new JobConf();
26. ColumnInputFormat.addInputPath(job,“/data/facttable”);
27. job.setOutput(“/tmp/output/”);
28. job.set("dimtables.directory", “/local/tmp/dimensions”);
29. ...
30. ...
31. job.set(“queryparams”, queryParams);
32. JobClient.runJob(job);
33. sortResult(“/tmp/output”, “/output/result”, conf);
34. }
35.}
————————————————————————————-

Figure 4: MapReduce job pseudocode for the example query.

be used for partial aggregation before sending the results over to
the reducers. The final order by clause is simply evaluated using
a single process sort (line 33). All the relevant information for the
job is passed in through the JobConf in the main function (lines
24 – 34).

5. CHALLENGES
While the join algorithm described above seems straightforward,
naive implementations are not able to achieve good performance.
For an efficient implementation we found that it is necessary to
reconsider how multi-core parallelism is used in MapReduce, how
MapReduce Tasks are scheduled, and how individual rows or key-
value pairs are processed.

5.1 Exploiting Multi-Core Parallelism
While contemporary servers typically have 8 – 16 cores, core
counts are rapidly increasing with 32-core and 64-core servers
likely to be commonplace very soon. A typical Hadoop cluster
takes advantage of multiple cores by configuring the nodes to have
multiple slots for map and reduce tasks. As a result, as many
(map and reduce) tasks are scheduled on a node as there are slots
available. Each task is run in a separate JVM for fault isolation.

——————————————————————————
1. class MTMapRunner{
2. void run(RecordReader input, OutputCollector output) {
3. buildHashTables(conf);
4. RecordReader[] inputs = input.getMultipleReaders();
5. List<Thread> tList = new List<Thread>();
6. for (r in inputs) {
7. tList.add(new JoinThread(r, output));
8. }
9. waitForAllThreadsToComplete(tList);
10. }
11. class JoinThread extends Thread {
12. ...
13. void run() {
14. while ( input.next(key, value)) {
15. //do join processing
16. }
17. }
18. }
19.}
——————————————————————————

Figure 5: MapRunner class used in Clydesdale for the probe

phase.

For the join algorithm described in Section 4.2, if each map task
independently computes a set of hash tables, then each server will
have as many copies of the hash tables in memory as there are map
slots. This approach becomes impractical for servers with a large
number of map slots, especially when dimension hash tables have
non-trivial sizes. The problem at hand is to find a solution without
changing the underlying implementation of Hadoop.

Clydesdale tackles this problem in two parts. First, a Clydesdale
job, when submitted, requests the Hadoop scheduler to only sched-
ule a single map task per node irrespective of the number of map
slots available on the node. Section 5.2 discusses how this is done.
Second, it uses a custom MapRunner class to run a multi-threaded
map task that can occupy all the slots on the node. Recall that a cus-
tom MapRunner can be used without any changes to the Hadoop
codebase itself. This class, called MTMapRunner is shown in Fig-
ure 5. The MTMapRunner replaces the default MapRunner and
incorporates the join processing logic in Figure 4 (lines 2 – 14).
This map task can now use a single copy of the dimension hash
tables in memory that can be shared by all the threads. Once they
are built, the hash tables are read-only data structures and therefore
do not require synchronization for access by multiple threads.

Using a multi-threaded MapRunner reduces the number of copies
of the hash tables to one per node, but introduces another prob-
lem. Since the scheduler only assigns a single split per map
task, all the threads on a single node read from a single split.
The next() method on the RecordReader for a split is
synchronized. As a result, all the threads in the MapRunner get
bottlenecked on deserializing data from the split. Recall that a
split provides a RecordReader() to iterate through the key-
value pairs in it. The next() method is responsible for perform-
ing I/O from HDFS if necessary and deserializing the key-value
pair.

We overcome this bottleneck by wrapping CIF into a class called
MultiColumnInputFormat (MultiCIF) that packs multiple
input splits into a single multi-split. The number of
splits to pack into a single multi-split can be configured.
MTMapRunner can unpack the multi-split and create a
RecordReader for each constituent split (line 4 in Fig-

19



ure 5). Now each thread can independently read and deserialize
key-value pairs (lines 6 – 8) and the input split is no longer a
deserialization bottleneck.

The hash tables are also shared across consecutive map tasks that
run on the same node. Clydesdale exploits Hadoop’s JVM reuse
feature to ensure that the next map task that is scheduled on this
node runs in the same JVM. By storing the hash tables as static
data structures, the next map task can reuse them for processing
its multi-split. As a result of these optimizations, dimension
hash tables are computed exactly once per node for a given query
in Clydesdale.

Discussion. The total size of the hash tables is limited by the
memory on each node. We note that in a majority of data repos-
itories, dimension tables are small – the largest dimension tables
encountered in practice are often a few gigabytes. These are sev-
eral orders of magnitude smaller than the fact table, which can be
hundreds of terabytes or larger. The hash table often needs to be
built on only a subset of the rows and columns in the dimension
table, and is usually even smaller. Given that system memory sizes
are increasing rapidly – 64GB per node are common for modern
servers – we believe that it is reasonable to assume that dimension
hash tables will fit in the memory of a single node. For the rare case
where the cluster nodes have little memory or for unusual datasets
with extremely large dimension tables, one could reduce the mem-
ory footprint by joining with a single hash table at a time. A subse-
quent pass over the intermediate joined result can be made to join
with the remaining dimension tables, either all at once or a single
table at a time. This strategy works when the aggregate size of the
dimension hash tables exceeds available memory, but each one fits
in memory by itself. For the case of a single large dimension table,
we expect to resort a repartition join strategy [13, 38].

5.2 Task Scheduling
Scheduling in MapReduce is designed to work with large heteroge-
neous clusters where each job can be broken into small schedulable
units – map and reduce tasks. The actual scheduling implementa-
tion is pluggable, and different schedulers can be used for different
resource management objectives. Hadoop scheduling assumes that
each map task can be executed by a single core in a relatively short
amount of time (a few minutes). Clydesdale’s join tasks break with
the assumption that map tasks are short single-core tasks. Each
map task runs multiple threads so the hash tables are shared across
them. Given these constraints, the scheduler needs to:

1. Schedule only one map task from the join job on a given
node. This will prevent wasteful re-computation of dimen-
sion hash tables in multiple slots on a node.

2. Schedule subsequent map tasks from the join job on the
nodes where the dimension hash table has already been built
so that they can be reused. This may need to be balanced
with respect to the locality requirements of other jobs
running in the cluster.

3. Communicate to the map task the number of slots, or proces-
sor cores it can use on the node. This is important to ensure
that the other tasks from other jobs executing on this node
get their share of CPU time.

Clydesdale accomplishes (1) by marking each task as requiring a
large amount of memory. The capacity scheduler [1] on Hadoop

can use this information to schedule only one task from the job on
each node. Subsequent map tasks from the same job on this node
do not have to build the hash tables again, thanks to JVM reuse.

In evaluating our current prototype, since the entire cluster was
used to run the join queries we did not encounter the problems in
(2) and (3) above. However, using Clydesdale efficiently on a large
shared cluster will require some improvements to the scheduling
support in Hadoop. In fact, we believe that the changes being pro-
posed as part of the next generation of Hadoop [5] will be sufficient
to support Clydesdale and other workloads concurrently on a large
cluster. A more detailed discussion of tradeoffs in scheduling com-
plex workload mixes is beyond the scope of this paper. We refer
the reader to recent work on multi-framework scheduling [26, 5].

5.3 Block Iteration
The overheads of a Volcano-style [23] row-at-a-time iterator
pipelining model for relational databases has previously been
described [39]. Not surprisingly, query processing on Hadoop
can also suffer from high per-row overheads. For workloads like
text analytics which require substantial CPU work per document,
overheads of a few function calls per key-value pair do not
matter. However, for a structured data processing, the number
of instructions performing useful work may be small compared
to the overhead of moving a single key-value pair through the
framework, one at a time.

We solve this problem with a block iteration technique that amor-
tizes the overheads associated with retrieving a single key-value
pair from a split (or multi-split) over a block of key-value
pairs. We layer a new BlockColumn- InputFormat (B-CIF)
over the same input data to return an array of rows instead of a
single row at a time. The array is populated by filling up a block
of values from each column at a time. As a result, the cost of
RecordReader.next() is incurred only once per block of
rows. Furthermore, this allows the underlying deserializers for the
different columns to be called in a tighter loop leading to better
cache performance. Columnar execution techniques such as late
tuple reconstruction [6, 27], while not currently implemented, may
be used to further improve cache performance.

6. EXPERIMENTS
We compare the performance of Clydesdale with Hive [3] using the
star schema benchmark [33]. We examine the execution plans for
both systems, and analyze how each of the features discussed in
Section 5 contributes to Clydesdale’s performance.

6.1 Hive Background
Hive is a popular open-source project that brings large-scale struc-
tured data processing using SQL to Hadoop. Hive is fairly general-
purpose, and supports two join plans: the re-partition join (also
referred to as common join) and the broadcast join (also referred
to as mapjoin). A re-partition is essentially a sort-merge join [13,
38] where the mappers tag each input record with the table they
come from and output the record with the join column as the key.
The records from both tables with a given join key end up at the
same reducer, which actually joins the tuples. This is a robust tech-
nique that works with any combinations of sizes of the tables being
joined. The primary disadvantage of this technique is that it re-
quires both the tables to be sent over the network during the shuffle
phase, which often becomes the bottleneck.
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A mapjoin in Hive resembles a hash join and is designed for the
case where one table is significantly smaller than the other. Fig-
ure 6 shows how this plan works. First the Hive master node builds
a hash table on the smaller table. The hash table is then serialized,
compressed, and disseminated to the map tasks using Hadoop’s dis-
tributed cache mechanism. The distributed cache broadcasts data
by copying it to HDFS. Each node can then read this data off HDFS
and write it to local storage. The distributed cache ensures that the
data is copied to each node only once per job irrespective of the
number of map slots on the node. The map tasks then read and
deserialize the hash table into memory, where they probe it against
the local splits of the larger table, emitting the join results.

Figure 6: Hive’s Mapjoin plan.

6.2 Experimental Setup
Hardware. For our experiments we report results from two
clusters, A and B. Cluster A comprises 9 nodes connected by a
1Gbit ethernet switch. One node was assigned to run the Hadoop
jobtracker (the MapReduce master node responsible for assigning
tasks to different worker nodes) and the namenode (the master
node for HDFS). Eight worker nodes were used to store data and to
run MapReduce jobs. Each node had two quad-core AMD Opteron
processors, 16GB of main memory, and eight 250GB SATA disks.

Cluster B is a larger cluster with 42 nodes, also connected by a
1Gbit ethernet switch. Two nodes were reserved to run jobtracker
and namenode. The remaining 40 nodes were used for HDFS and
MapReduce. Each node had two quad-core Intel Xeon processors
with 32GB of main memory and five 500GB SATA disks.

These clusters represent two common tradeoffs made when con-
figuring servers for Hadoop. A portion of the budget can be spent
either on additional memory or additional disks. Cluster A is more
memory constrained, i.e. 2GB per core as opposed to 4GB per core
on cluster B.

Software Configuration. Both clusters were running 64-bit
Linux with Kernel 2.6. Hadoop was configured to run six map slots
(mappers) and one reduce slot (reducer) per node. Both clusters
have Hadoop version 0.20.2 and 0.21.0 installed, running on the
Sun JVM 1.6.0_16 14.2-b01. Clydesdale runs on top of Hadoop-
0.21.0, while Hive-0.7.0 uses Hadoop-0.20.2. Clydesdale requires
the pluggable block placement policy [2] feature currently only
available in Hadoop-0.21.0. On the other hand, Hive 0.7.0 does
not support Hadoop-0.21.0 at the moment. Our single node tests
running Clydesdale confirmed that there was no significant perfor-
mance difference between using either version of Hadoop.

Workload. We used the star schema benchmark [33], a modified
TPC-H benchmark. It uses a single central fact table that references

several dimension tables as shown in Figure 1. In the experiments
below we compare the execution times of its queries at scale factor
(SF) 1000. At SF1000 the size of the uncompressed fact table in
text format is approximately 600GB, while the dimension tables
are significantly smaller – Customer (2.8GB), Supplier (828MB),
Part (166MB), and Date (225KB), under 4GB in total.

The workload consists of four query flights, with three or four
queries each, with varying predicates and selectivities. The first
flight is based on joining the fact table with the smallest dimension
table – Date, to produce the aggregate earnings for a specific year.
The second flight consists of a join with three dimension tables –
Date, Part, and Supplier and adding a group by operator. The third
flight involves a join with Customer, Supplier, and Date. Finally,
the fourth flight involves joining all four dimension tables. Each
query computes an aggregate on the measure columns in the fact
table and groups by one or more columns from the dimension ta-
bles. See [33] for more details on these queries.

Storage Format. For Clydesdale, the fact table was stored in
Multi-CIF format [21], whose binary encoding reduced the size to
approximately 334GB in HDFS. The dimension tables were stored
in HDFS in binary format and all data nodes kept a local copy as
well.

For the Hive experiments, all tables were stored in RCFile [24]
format, which required approximately 558GB of disk space.
RCFile [24] is a recently introduced hybrid columnar format for
Hadoop that uses a PAX [9]-like layout of records within each
HDFS block to eliminate unnecessary I/O. As we configured
HDFS with a replication factor of three, the above numbers have
to be multiplied by three to obtain the total amount of disk space
required. Neither Clydesdale nor Hive used any indexes.

6.3 Comparison with Hive
Figures 7 and 8 show the execution time of all star schema bench-
mark queries using Clydesdale vs. Hive on clusters A and B respec-
tively. The time reported is the average execution time from three
runs of the query. In each case, the filesystem cache was flushed
before running the query to ensure that the data was being read
from the disks. For Hive, the execution times are shown for both
the repartition join and the mapjoin plan. Hive results in the figure
are also annotated with the speedup Clydesdale offers compared to
Hive. This was computed by simply dividing the execution time of
Hive by that of Clydesdale for the same query.

Clydesdale was 17.4x to 82.7x faster than Hive, averaging a 38x
speedup on cluster A. On cluster B, the speedup ranged from 5.2x
to 21.4x, averaging 11.1x. In order to better understand the per-
formance differences between Clydesdale and Hive, we examine
the query plan produced by each system for a representative query.
Consider query 2.1, which joins the fact table with three dimension
tables: Date, Part, and Supplier.

SELECT sum(lo_revenue), d_year, p_brand1

FROM lineorder, date, part, supplier

WHERE lo_orderdate = d_datekey

and lo_partkey = p_partkey

and lo_suppkey = s_suppkey

and p_category = ‘MFGR#12’

and s_region = ‘AMERICA’

GROUP BY d_year, p_brand1

ORDER BY d_year, p_brand1;
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Figure 7: Clydesdale vs. Hive at SF1000 on Cluster A (9 nodes).
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Figure 8: Clydesdale vs. Hive at SF1000 on Cluster B (42 nodes).

We breakdown the execution times of this query on cluster A.
Clydesdale took 215 seconds for query 2.1 compared to 15,142
seconds for Hive. On Clydesdale, eight map tasks were executed,
one on each worker node, each taking on average about 200
seconds. Recall that Clydesdale runs only one multi-threaded map
task per node at a time, and the hash tables on the dimensions need
to be built exactly once per node.

Examining the logs of a representative map task we noted that it
took 27 seconds to build the three hash tables and 164 seconds to
process the actual join. The task processed 10.8GB worth of fact
table data, the count of actual bytes read from HDFS, at a rate of
67 MB/s (over the 164 second period). Interestingly, this is sub-
stantially lower than the raw I/O bandwidth available on the node,
which is over 560MB/s. This is in part because of performance
problems that affect HDFS (see Section 6.6). The final sort for the
order by clause took under 10 seconds.

For query 2.1, Hive generates a five stage mapjoin plan. Each
stage is a MapReduce job. The first three stages perform joins

with the three dimension tables – Date, Part, and Supplier – one
at a time. Building and distributing the hash table on Date took
under 2 seconds. During the join with the Date dimension (the
first MapReduce job) each map takes approximately 25 seconds
to process a split. There are no reduce tasks. Overall, stage
1 took 2,640 seconds. It processed 4,887 map tasks averaging 25
seconds on the 48 map slots across cluster A. Note that each map
task had to reload the hash table from disk. Across the cluster,
this was done 4,887 times. This is clearly redundant work com-
pared to the approach in Clydesdale that needs to do this once
per node. The RCFile InputFormat did not allow us to de-
crease the number of splits. When we re-ran this query using
the TextInputFormat, decreasing the number of splits in-
creased the runtime by 10% to 20%.

Stages 2 and 3 of the query joined the intermediate result with the
Part and Supplier dimensions taking 2,040 seconds and 9,180 sec-
onds respectively. Unlike Clydesdale, since the joins in Hive are
performed one after another, the intermediate results have to be
written to HDFS and read back. This additional I/O also adds over-
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head. Stage 2 and stage 3 read approximately 200GB and 188GB,
eventually producing a join output of size 11GB. Stage 3 took the
longest to execute since the size of the dimension hash table for
Supplier was relatively large, occupying 100MB compressed on
disk and about 500MB decompressed in memory.

After the joins completed, Hive launched 2 more MapReduce jobs,
one for the group by (720 seconds) and one for order by operation
(19 seconds). Overall, the mapjoin plan for query 2.1 took 15,142
seconds.

Hive’s repartition join plan for query 2.1 also comprises five stages
of which the first three essentially perform a sort-merge join [13]
with the dimension tables – Date, Part and Supplier – one at a time.
Stage 1 took 9,720 seconds, stage 2 took 7,140 seconds, and stage 3
took 420 seconds. Stages 4 and 5 were comparable to the mapjoin
plan. The overall time for the repartition join plan was 17,700 sec-
onds.

6.4 Discussion
A possible criticism of this comparison is that while Clydesdale
replicates the dimension tables on to local storage on each node,
Hive’s current implementation does not support such a strategy.
However, merely fixing this will not improve Hive’s performance
to be comparable to Clydesdale. In fact, in each of the queries, dis-
seminating the hash table is a relatively small fraction of the query
cost compared to all the other overheads described above. For in-
stance, in query 2.1, where the overall running time was 15,142
seconds on cluster A, the time spent in building and distributing
the three hash tables was around 192 seconds. Even subtracting
this out of the runtime for Hive, Clydesdale is still 70x faster.

The speedup Clydesdale provides over Hive is greater for queries
that include more dimension tables and those that produce larger di-
mension hash tables. Given the discussion of the query plans above,
the reasons are fairly obvious. First, Hive joins one dimension ta-
ble at a time with the fact table. This requires several MapReduce
jobs compared to Clydesdale’s approach of joining with all the re-
quired dimension tables in a single MapReduce job. Second, Hive
maintains as many copies of the hash tables in memory as there
are map tasks on a machine. As a result of this problem, queries
3.1, 4.1, 4.2, and 4.3 did not complete using the Hive mapjoin
plan on cluster A because of out-of-memory errors. Cluster B had
more memory per node and was able to complete the mapjoin plan.
Clydesdale’s use of MTMapRunners allows it to share a single
copy across multiple join threads on a node. Third, Hive creates
the hash table on a single node and pays the cost of disseminating
it to the entire cluster. Clydesdale exploits the fact that dimension
tables are smaller and replicates them on local storage. Finally,
each map task in Hive has to load and deserialize the hash table
when it starts. Hive does not currently reuse JVMs to retain the
hash table in memory throughout a given job.

Clydesdale’s performance speedup for the SF1000 workload on
cluster A was larger than that on cluster B. This is because the
amount of work done per node on cluster B, the larger cluster, was
significantly lower given the fixed amount of data. Obviously, the
number of splits processed per node on the larger cluster (B)
was five times smaller as it had five times the number of nodes. As
a result, the fraction of time each node spent building the dimension
hash tables was significant compared to the time spent actually pro-
cessing the join. For instance, in query 2.1 above the typical map
task spent 16 seconds building the dimension tables, and 29 sec-

onds in the probe phase with an overall run time of around 65 sec-
onds. Furthermore, since the overall runtimes are relatively short,
under 180 seconds in all cases, the Hadoop scheduling overheads
become a non-trivial part of the runtime. We expect that Clydes-
dale’s advantages over Hive will continue to hold on Cluster B with
larger scale factors, e.g. 10,000. Unfortunately the data generator
for the star schema benchmark [33] does not currently support scale
factor 10,000. Verifying performance at SF 10,000 is left as future
work.

6.5 Analysis of Clydesdale
We now present experiments that analyze the impact of the indi-
vidual techniques used in Clydesdale and their contribution to the
overall speedup. We turn off each of its features – block iteration,
columnar storage, and the use of multi-threaded map tasks – one at
a time, to measure their impact on the runtime. Figure 9 shows the
results of this experiment on Cluster A, again at SF 1,000.

The average slowdown from turning off block iteration was approx-
imately 1.2x. Turning off columnar storage, i.e., reading all the
columns of the fact-table stored in CIF, resulted in a slowdown of
3.4x and made the scan of the fact table the bottleneck. As ex-
pected, queries that originally touched fewer bytes from the fact
table, i.e. only scanned a few columns were more adversely af-
fected by this change than the queries scanned more columns. For
instance, query flight 2, which only scanned 4 columns in the fact
table slowed down by 3.8x. On the other hand, query flight 4, which
scanned 6 columns was slower by 2.0x.

Finally, turning off the use of multi threaded tasks slowed down
performance by 2.4x. Each task was executed single threaded and
built its own copy of the dimension hash tables. Again, queries
that joined the fact table with more or larger dimension tables were
slowed down substantially more than those requiring fewer or
smaller dimension tables. For instance, query flight 1 was slowed
down by just 1.2x as it only joins the fact table with Date, the
smallest dimension table. On the other hand, query flight 4, that
touched all the dimension tables was 4.5x slower.

In summary, no single technique was responsible for all of Clydes-
dale’s improved performance. Each of these techniques were com-
plementary, and in combination, resulted in the overall performance
improvement.

6.6 Limitations
For structured data processing on Hadoop, one of the main bottle-
necks appears to be HDFS bandwidth. The bandwidth at which
map tasks could read from HDFS was only a fraction of the raw
disk bandwidth observed using dd . For instance, we measured that
each disk was able to supply between 70MB/s and 100MB/s. Con-
servatively assuming 70MB/s per disk would result in 560MB/s for
cluster A’s eight disks and 280MB/s for cluster B’s four disks. To
check if HDFS could deliver this bandwidth, we ran the TestDFSIO
benchmark, included in the Hadoop distribution. The benchmark
consists of a write and a read job. Each map task of the write job
writes a file of pre-specified size to HDFS, while the mappers in the
read job retrieve the previously written files from HDFS. Locality
is respected, such that data is being read from the disks local to the
node. The filesystem cache on each node in the cluster was flushed
before running the read test to ensure that the data was actually be-
ing read from disk. The results of this experiment are summarized
in Table 1.
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Figure 9: Clydesdale’s performance as different enhancements are turned off one at a time.

Cluster Disk B/W HDFS B/W

(MB/sec) (MB/sec)

Cluster A 560 126
Cluster B 280 105

Table 1: HDFS read bandwidth available per node.

We were surprised by the poor results observed in these experi-
ments, with HDFS providing only a fraction of the raw bandwidth
available on the nodes. We traced the reason for the poor bandwidth
from HDFS to a bug in the Sun JVM that gets triggered by the NIO
socket implementation in Hadoop. This is a known issue [4] that
leads to excessive CPU usage ultimately resulting in reduced I/O
bandwidth from HDFS. As a result of this bug, the additional disks
on cluster A (8 disks) did not really provide significantly better
I/O bandwidth. We believe that Clydesdale’s performance will be
substantially improved once this bug is fixed and HDFS is able to
deliver better I/O bandwidth.

7. CONCLUSIONS
In this paper, we described the design and architecture of
Clydesdale, a system for structured data processing on Hadoop.
Clydesdale draws on many recent techniques from DBMSs
including columnar storage, tailored plans for star schemas, block
iteration for efficiency, and multi-core aware execution plans.
We showed that with a careful combination of these techniques
Clydesdale is able to out-perform Hive by 38x on the star schema
benchmark. Clydesdale achieves these results without requiring
any changes to the implementation of Hadoop. This allows
Clydesdale to inherit all the attractive properties of Hadoop
including the ability to run on low-cost hardware, fault-tolerance,
elasticity, and scalability. We view this result as evidence that
MapReduce in general, and Hadoop in particular is significantly
more compelling as a platform for structured data processing than
previously assumed.

8. FUTURE WORK
While Clydesdale’s performance advantage over Hive is often more
than an order of magnitude, and sometimes nearly two orders of
magnitude, we would like to point out that Clydesdale is a research

prototype and not a fully functional system like Hive. Clydes-
dale does not currently have a SQL parser. Queries are written as
MapReduce programs in Java. We are working on building a parser
and compiler for a simple subset of SQL.

Currently, neither Hive nor Clydesdale support updates to the di-
mension tables. In Clydesdale, we plan to manage updates by
keeping the dimension tables in a separate transactional database
and periodically exporting a copy of the dimension tables to HDFS.
From there, each node copies over the data from HDFS to the lo-
cal storage. We plan to use a simple form of snapshot isolation
along with the batch update of the dimension tables. Clydesdale
can take advantage of several advanced techniques from column
store databases such as storage organization [29] and late tuple re-
construction [27]. Finally, efficiently scheduling Clydesdale work-
loads alongside traditional MapReduce workloads poses new work-
load management challenges.
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