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ABSTRACT

Web search logs contain extremely sensitive data, as evi-
denced by the recent AOL incident. However, storing and
analyzing search logs can be very useful for many purposes
(i.e. investigating human behavior). Thus, an important
research question is how to privately sanitize search logs.
Several search log anonymization techniques have been pro-
posed with concrete privacy models. However, in all of these
solutions, the output utility of the techniques is only eval-
uated rather than being maximized in any fashion. Indeed,
for effective search log anonymization, it is desirable to de-
rive the outputs with optimal utility while meeting the pri-
vacy standard. In this paper, we propose utility-maximizing
sanitization based on the rigorous privacy standard of differ-
ential privacy, in the context of search logs. Specifically, we
utilize optimization models to maximize the output utility
of the sanitization for different applications, while ensur-
ing that the production process satisfies differential privacy.
An added benefit is that our novel randomization strategy
maintains the schema integrity in the output search logs. A
comprehensive evaluation on real search logs validates the
approach and demonstrates its robustness and scalability.

Categories and Subject Descriptors: H.2.0 [Database
Management]: Security, integrity, and protection; H.3.m [In-
formation Storage and Retrieval]

General Terms: Security

Keywords: Search Logs, Differential Privacy, Optimization

1. INTRODUCTION
Search engines are used by millions, if not billions, of peo-

ple every day. The queries posed by the users form a large
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volume of data that can give great insight into human behav-
ior via their search intent. Indeed, such data is invaluable
for researchers and data analyzers in numerous fields [13].
For example, search engines themselves can use web search
logs to identify common spelling errors, to recommend sim-
ilar queries, or to expand queries. Many other applications
also make use of search log data, such as the analysis of liv-
ing habits from daily search, and the detection of epidemics
[11]. For this reason, search log data is collected, stored, and
analyzed in different ways by all search engines.

However, one problem with the storage and release of
search log data is the potential for privacy breach. The
queries that a user poses may sometimes reveal their most
private interests and concerns. Thus, if search log data is
published without sanitization or with trivial anonymization
(such as simply replacing user ids by pseudonyms), many
sensitive queries and clicks can be explicitly acquired by ad-
versaries. [3, 13] demonstrate that it can only take a couple
of hours to breach a particular user’s privacy in the absence
of good anonymization. Thus, it is crucial to anonymize
search log data appropriately before storing or releasing it.

There has been significant work on database anonymiza-
tion that looks at how to anonymize relational data. How-
ever, much of this work is not directly applicable since there
are significant differences between search logs and relational
data. In reality, search logs pose additional challenges for
anonymization. First, there is no explicit distinction be-
tween quasi-identifiers and sensitive information in search
logs. Each user may pose hundreds of queries that involve
lots of personal information (i.e. name, addresses, living
habits, .etc) over a short period of time. By combining these
queries, adversaries may easily discover an individual’s iden-
tity with prior knowledge and thus learn such user’s entire
search history. Indeed, it is difficult to foresee all possi-
ble query combinations that can lead to privacy breaches in
the search logs. Second, search logs are sparse and highly-
dimensional, thus it is more difficult to guarantee rigorous
privacy without sacrificing too much utility.

In recent years, several search log anonymization tech-
niques have been proposed in the literature to resolve the
above problems [21, 6, 19, 16, 17, 20, 23]. Several anonymity
models have been proposed for this domain along with cor-
responding anonymization algorithms. However, their basic
premise is simply that the algorithm must satisfy the privacy
requirements without worrying about the tradeoff between
privacy and utility. Ideally, what is needed is a strategy that
can maximize the utility while satisfying a given privacy re-
quirement. To our knowledge, there is little work focusing
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on this challenging and practical problem. In this paper, we
take the first step towards tackling this problem in the do-
main of search log release by formulating utility-maximizing
problems while ensuring a rigorous privacy standard.

1.1 Contribution
Given a particular privacy notion, the utility-maximizing

problem requires finding a way to anonymize search logs in
a manner that satisfies the privacy standard and simultane-
ously achieves the optimal output utility. This requires de-
ciding on a suitable privacy requirement as well as appropri-
ate data utility measure. While several different anonymity
models have been proposed in the literature, in this paper,
we utilize the robust privacy definition of differential pri-
vacy [8] (which lowers the privacy breach risk even if the
adversaries hold arbitrary prior knowledge). We also define
several different notions of utility and propose differentially
private sanitization methods that can maximize the output
utility. Thus, the main contributions of this paper are sum-
marized as follows:

• The differentially private randomization in prior work
(Korolova et al.[20] and Götz et al.[12]) ensures differ-
ential privacy by adding Laplacian noise to the aggre-
gated query and clicked url counts. However, such ap-
proaches break the association between distinct query-
url pairs in the output since all the user-IDs have been
removed, which might be useful in only a few applica-
tions. Therefore, we propose differentially private al-
gorithms based on a different randomization strategy:
sample user-IDs for every click-through query-url pairs
using multinomial distribution, which preserves user-
IDs. This, to our knowledge, is the first randomization
strategy to generate output with identical schema as
the input search log. Thus, the sanitized search log
can be analyzed in exactly the same fashion and for
the same purpose as the input.

• Within our approach, the randomization algorithm also
ensures the utility-maximized output that is still dif-
ferentially private. To do this, we formally define the
utility-maximizing problem: find an optimal saniti-
zation that maximizes the output utility while sat-
isfying differential privacy. Specifically, for quantify-
ing the output utility, we define three different util-
ity notions (measuring the utility of frequent click-
through query-url pairs, the query-url pair diversity,
.etc) that could benefit different applications (essen-
tially, any utility measure can be coupled into our dif-
ferentially private sanitization by replacing the utility
objective function). We also prove that our sanitiza-
tion satisfies differential privacy.

• We transform the utility-maximizing problems into stan-
dard optimization problems. We can now leverage
prior developed effective solvers and adapt them to
our problem. We experimentally validate the utility
using real data sets.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related literature. In Section 3, we present
our privacy model and the sanitization process. Section 4 in-
troduces the constraints that guarantee differential privacy.
We then propose three different ways to generate output

with optimal utility while ensuring differential privacy in
Section 5. Section 6 evaluates the output utility of the sani-
tization approaches. Finally, Section 7 concludes the paper.

2. RELATED WORK

2.1 Search Log Anonymization
Following the AOL search log incident, there has been

some work on privately publishing search logs. Adar [1] pro-
poses a secret sharing scheme where a query must appear at
least t times before it can be decoded, which may potentially
remove too many harmless queries. Kumar et al. [21] pro-
pose an approach that tokenizes each query tuple and hashes
the corresponding search log identifiers. However, inversion
cannot be done using just the token frequencies, and serious
leaks are possible even if the order of tokens is hidden.

More recently, some anonymization models [20, 16, 17, 23]
have been developed for search log release. He et al. [16],
Hong et al. [17] and Liu et al. [23] anonymized search logs
based on k-anonymity which is not as rigorous as differential
privacy [12]. Korolova et al. [20] first applied the rigorous
privacy notion – differential privacy to search log release
by adding Laplacian noise. However, the released result of
this is the statistical information of queries and clicks where
all users’ search queries and clicks are aggregated together
(without individual attribution). The data utility might be
greatly reduced since the association between query-url pairs
has been removed (the published data in Götz et al. [12] also
suffers this constraint). With the released data, we cannot
develop personalized query suggestion or recommendation
for search engines, and also, we cannot carry out human
behavior research since the output data do not include the
information that any two queries belong to the same user.
Also, the utility in [20] is merely evaluated but not shown
to be maximized. Adding Laplacian noise to the counts of
selected queries and urls is straightforward and we cannot
directly maximize the output utility with optimization mod-
els. Alternatively, our paper is to seek the maximum output
utility for a novel differentially private sanitization mecha-
nism which generates outputs with the intact schema as the
original search log.

Moreover, Götz et al. [12] analyzed algorithms of publish-
ing frequent keywords, queries and clicks in search logs and
conducted a comparison for two relaxations of ǫ-differential
privacy (note that relaxations are indispensable in search log
publishing). Our work utilizes the stronger relaxation of ǫ-
differential privacy – probabilistic differential privacy. Since
we explore the optimal utility in our differentially private
sanitization which outputs intact search logs rather than
the results of counting queries/urls over the search log, our
work has a completely different focus, compared with them
[12]. In addition, Feild et al. [9] presented a framework for
collecting, storing and mining search logs in a distributed
scenario, which guarantees privacy with several policies.

2.2 Differential Privacy
In the context of relational data anonymization, Dwork

et al.[7, 8] have proposed the rigorous privacy definition of
differential privacy: a randomized algorithm is differentially
private if for any pair of neighboring inputs, the probabil-
ity of generating the same output, is within a small mul-
tiple of each other. This means that for any two datasets
which are close to one another, a differentially private al-
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gorithm will behave approximately the same on both data
sets. This notion provides sufficient privacy protection for
users regardless of the prior knowledge possessed by the ad-
versaries. This has been extended to data release in various
different contexts besides search logs. Specifically, Xiao et
al. [27] introduced a data publishing technique which en-
sures ǫ-differential privacy while providing accurate answers
for range-count queries. Hay et al. [15] presented an ef-
ficient differentially private algorithm for releasing a prov-
ably private estimate of the degree distribution of a network.
McSherry et al. [25] solved the problem of producing rec-
ommendations from collective user behavior while providing
differential privacy for users. Recently, Chen et al. [5] pub-
lished the set-valued data with differential privacy guaran-
tee. Our work follows the same line of research.

2.3 Utility Maximization
In microdata disclosure, Bayardo et al. [4] and LeFevre

et al. [22] raised the optimal k-anonymity and the optimal
multidimensional anonymization problem respectively. Re-
cently, Ghosh et al. [10] introduced a utility maximizing
mechanism for releasing a statistical database. However,
there is little work on this topic in the context of differential
privacy guaranteed search log release. To our knowledge, we
takes a first step towards addressing this deficiency.

3. MODEL

3.1 Differential Privacy
Our objective is to privately sanitize the input search logs

that includes pseudonymous user-IDs, search queries, clicked
urls and the counts of every user’s click-through query-url
pairs. Hence, we ensure that the output has the identical
schema as the input: every single tuple in the output in-
cludes a pseudonymous user-ID, a click-through query-url
pair and its count for this user. Intuitively, we consider two
search logs to be neighbors if they differ by an arbitrary
user’s (all) query tuples. Hence, we define every user’s all
query tuples in a search log D as its user log.

Definition 1. (User Log Ak) Given a search log D, we
denote each user sk’s user log Ak as all its query tuples in
D, where every single tuple [sk, qi, uj , cijk] ∈ Ak includes a
pseudonymous user-ID (sk), a query (qi), a url (uj) and the
count (cijk) of query-url pair (qi, uj) belonging to user sk.

Clearly, every search log D consists of numerous individual
user logs (D =

S

∀sk∈D Ak). Given two neighboring input

search logs D and D
′ (w.o.l.g, D = D

′ + Ak), ensuring ǫ-
differential privacy for all the outputs might be impossible:
for any output O including items in D but not in D

′ (such
as user-ID sk), the probability that generating O from D

′

is zero but from D is non-zero, hence the ratio between the
probabilities cannot be bounded by e

ǫ (due to a zero de-
nominator). We thus adopt the following relaxed notion of
differential privacy (using our notations):

Definition 2. ((ǫ, δ)-probabilistic differential pri-

vacy [24, 12]) A randomizationR satisfies (ǫ, δ)-probabilistic
differential privacy if for any input search log D, we can di-
vide the output space Ω into two sets Ω1, Ω2, such that (1)
Pr[R(D) ∈ Ω1] ≤ δ, and for D’s any neighboring search log

D
′ and any output O ∈ Ω2: (2) e

−ǫ ≤ Pr[R(D)=O]
Pr[R(D′)=O]

≤ e
ǫ.

The above probabilistic differential privacy ensures that
R satisfies ǫ-differential privacy with high probability (no
less than 1 − δ) [12]. In this definition, the set Ω1 includes
all privacy-breaching outputs for ǫ-differential privacy where
the probability of generating such outputs is bounded by δ.
Specifically in our sanitization (w.o.l.g. D = D

′ +Ak), since
we retain user IDs in the output and D

′ does not contain sk,
we can only consider Ω1 as the output space where all out-
puts in Ω1 include user-ID sk (because ǫ-differential privacy
cannot be achieved when D

′
, D differing in user sk’s user log

Ak and the output O including sk). Hence, the probability
Pr[R(D) ∈ Ω1] should be no greater than δ (the proba-
bility of sk existing in the overall output space Ω should
be bounded by δ). Moreover, for any output O ∈ Ω2, two
ratios should be bounded by e

ǫ for achieving ǫ-differential
privacy. Definition 2 has been proven to be stronger than
the privacy notion of Korolova et al.’s work [20] (indistin-
guishability differential privacy [7]) by Götz et al.[12] (as
also shown in Section 4.3).

All the sanitization methods addressed in this paper are
required to satisfy this robust and rigorous privacy defini-
tion. No matter how much prior knowledge is owned by
adversaries, we can lower the privacy risk by bounding the
probabilities that any arbitrary two neighboring inputs pro-
duce any possible output.

3.2 Search Log Sanitization Process
The most sensitive values in search logs are the click-

through information. Sometimes search queries may be more
sensitive than the clicked urls in search logs (i.e. query “dia-
betes medicine”and click“www.walmart.com”), or vice versa
(i.e. query“medicine”and click“www.cancer.gov”). We thus
consider each distinct click-through query-url pair (simply
denoted as query-url pair) as a combination of the sensitive
values in the search logs. In our privacy model, Definition 2
ensures that adding any user’s all search information (user-
ID, query-url pairs and the counts) in the input does not
cause any additional risk.

Table 1 presents some frequently used notations in our
model: we denote cij as the input count of any query-url
pair (qi, uj) and the set of these counts {∀cij} constitutes the
input query-url histogram. Similarly, xij represents the out-
put count of (qi, uj) and the set of these counts x = {∀xij}
forms the output query-url histogram. Finally, the output
counts of all triplets (qi, uj , sk) form the output query-url-
user histogram which is randomly sampled (the sampling
process will be given later on). Similarly, the deterministic
counts of all triplets (qi, uj , sk) in the input form the input
query-url-user histogram.

Table 1: Frequently Used Notations
(qi, uj) an arbitrary query-url pair in the input/output

(qi, uj , sk) any user sk’s arbitrary query-url pair (qi, uj)
cij the total count of (qi, uj) in the input
cijk the count of triplet (qi, uj , sk) in the input
xij the total count of (qi, uj) in the output

(variable) (in the optimal solution: x∗
ij)

xijk the count of triplet (qi, uj , sk) in a sample output
(random) (xijk triplets (qi, uj , sk) are sampled in xij trials)

Algorithm 1 illustrates two steps of our sanitization. We
first compute the optimal output counts for all the query-
url pairs in the input search log D, and then generate the
output O by sampling user-IDs for each of them with multi-
nomial distribution [2] (the details of this multinomial sam-
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Figure 1: An Example of the Sanitization Algorithm

pling are given later on). More specifically, the algorithm
can be guaranteed to be differentially private by some con-
straints for the output counts of all query-url pairs {∀xij}
(we can derive the constraints from the randomization, as
shown in Section 4). Meanwhile, the output utility can be
maximized by the utility objective function (some options
are given in Section 5). Thus, we can formulate the utility-
maximizing problem to compute the optimal output counts
of all query-url pairs for the random sampling (the solution
x
∗ = {∀x∗

ij} achieves the optimal output utility and also
satisfies differential privacy constraints).

Algorithm 1 Sanitization Algorithm

Input: search log D and differential privacy parameters (ǫ, δ)
Output: sanitized search log O
1: Compute the Optimal Output Counts for all query-url

pairs in the search log: {∀(qi, uj) ∈ D, x∗
ij}.

/*** solve an optimization problem: define a utility objec-
tive function w.r.t. the output counts {∀xij} while {∀xij}
subject to some constraints that ensures differential privacy
for the sampling. (the optimal solution is {∀x∗

ij}) ***/

2: Generate the Output O: sampling user-IDs for every
query-url pair (qi, uj) with x∗

ij times multinomial trials (the

probability of every sampled outcome in one trial is given by
the input D).

Figure 1 shows an example of Algorithm 1, particularly
the multinomial sampling after computing the optimal out-
put counts of all query-url pairs {∀x∗

ij} (assume that {0,
3, 20, 0, 4} in the example is the optimal solution of an
optimization problem that includes a utility objective and
some constraints ensuring differential privacy). Therefore,
our multinomial sampling has following properties:

1. The number of trials for (qi, uj)’s user-ID sampling is
given as x

∗
ij (optimal solution x

∗ = {∀x∗
ij}).

2. In every multinomial trial for any query-url pair (qi, uj),
the probability that any user-ID sk is sampled, is cijk/cij .
Specifically, i.e. “car price, kbb.com” in Figure 1, the
probability that user 082 is sampled is 2

0+2+5
. How-

ever, the probability that user 081 is sampled for this
query-url pair is 0. In addition, the expected value of
every random variable xijk can be derived as E(xijk) =

xij · cijk/cij . Thus, given an output count x
∗
ij (opti-

mal) for any query-url pair (qi, uj), the shape of the in-
put/output query-url-user histograms w.r.t. only query-
url pair (qi, uj) (illustrating the individual counts of
(qi, uj) held by distinct users) should be analogous
(this is guaranteed by multinomial distribution). i.e.
the input and output query-url-user histogram w.r.t.
“google, google.com”, even if the output count x

∗
ij =

20 < cij = 15 + 7 + 17 = 39, the shape of histograms
{8, 3, 9} (in a randomized output, see Figure 1(b))
and {15, 7, 17} (in the input) is similar.

3. If ∀(qi, uj), the Input Support (denoted as
cij

P

∀(qi,uj)
cij

),

is close to the Output Support (denoted as
xij

P

∀(qi,uj)
xij

),

the shape of the output query-url histogram can be
maximally preserved. At this time, after sampling
user-IDs with the above output counts of all query-
url pairs (or called output query-url histogram), the
shape of the output query-url-user histogram can be
maximally preserved as well.

Actually, one of our utility-maximizing problems is to
seek the optimal output utility that minimizes the sum
of the support distances for all frequent query-url pairs
(see the definition and details in Section 5.2, if pur-
suing the minimum sum of support distances for all
query-url pairs, we can lower the minimum support
threshold). Thus, once the sum of the support dis-
tances is minimized (utility-maximizing problem can
do so, i.e. it figures out that the distance between
{∀ xij

P

xij
} = {0,

3
27

,
20
27

, 0,
4
27
} and {∀ cij

P

cij
} = { 2+0+0

53
,

3+0+1
53

,
15+7+17

53
, 0+0+1

53
, 0+2+5

53
} is minimized while sat-

isfying some privacy guarantee constraints), the shape
of the input/output query-url-user histograms can be
analogous (i.e. see the counts in the left table of Figure
1(a) and Figure 1(b)).

To sum up, if we compute the output count of every query-
url pair x = {∀xij} by solving an optimization problem (for
variables x = {∀xij}) that maximizes the output utility and
also ensures differential privacy for the sanitization algo-
rithm, the output with optimal utility can be generated by
sampling user-IDs for all the query-url pairs (the schema of
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Input/Output is indeed identical since we can sort the output
by the sampled user-IDs, as shown in Figure 1(b) where the
association between query-url pairs and the shape of query-
url-user histogram can be preserved).

4. PRIVACY GUARANTEE CONDITIONS
Assume that R is a sanitization algorithm that samples

user-IDs for every query-url pair (qi, uj) with its total output
count xij . Since the sampling procedures for all query-url
pairs are independent, for any input D ({∀cijk} is given) and
a possible output O ({∀xijk} is also given), the probability
Pr[R(D) = O] can be computed in terms of the probability
mass function of multinomial distribution [2]:

Pr[R(D) = O] =
Y

∀(qi,uj)∈O

[xij ! ·
Y

∀sk∈D

(cijk/cij)
xijk

xijk!
] (1)

Indeed, Pr[R(D) = O] is determined by xij and {∀sk ∈
D,

cijk

cij
and xijk}. Given input D, {∀sk,

cijk

cij
} are constants.

Hence, if ∀(qi, uj) ∈ D, the output count xij is determined,
we can compute the probability Pr[R(D) = O] for any out-
put O ∈ Ω (∀xijk are fixed in O). Therefore, given any
pair of neighboring inputs D and D

′ that differ in one user
log, bounding the probabilities per Definition 2 for a divided
output space Ω can be transformed to the problem: deter-
mining a feasible solution x = {∀xij} in the output that
satisfies all the probability bounding conditions in Defini-
tion 2 for an output space split Ω = Ω1 ∪Ω2. Using this we
can formulate the constraints (satisfying differential privacy)
for variables: the counts of all query-url pairs x = {∀xij} in
all the possible outputs O ∈ Ω.

Without loss of generality, we let D = D
′ + Ak where D

and D
′ differ in an arbitrary user sk’s user log Ak. Thus,

we first derive the probabilities in Definition 2 for all O in
the output space Ω, and then deduce the constraints for
satisfying differential privacy.

4.1 Probabilities in Definition 2
Due to D = D

′ + Ak, the user-ID sk might be sampled
into the output O if starting from D. Thus, for all outputs
O which contain sk, we have Pr[R(D′) = O] = 0 (since
sk /∈ D

′). Recall that, given Ak = D−D
′ (or Ak = D

′−D),
we can only divide the output space Ω into two sets Ω1 and
Ω2 as: (1) every output O in Ω1 includes sk; (2) every output
O in Ω2 does not include sk, because Ω1 should includes all
the exceptional outputs that violates ǫ-differential privacy.
We thus bound the probabilities per Definition 2 for the
above output space split to achieve differential privacy.

4.1.1 for all O ∈ Ω1

Since ∀O ∈ Ω1 where sk ∈ O, we have Pr[R(D′) = O] =
0. Thus, the probability Pr[R(D′) ∈ Ω1] is also equal to 0.
We now compute the probability Pr[R(D) ∈ Ω1].

Specifically, to generate any possible output O including
user-ID sk from D, the probability Pr[R(D) = O] (where
O ∈ Ω1) is equal to the probability that “sk is sampled
at least once in the multinomial sampling process of all the
query-url pairs in Ak”. For every query-url pair (qi, uj) ∈
Ak, if its total output count in the sampling is xij , the prob-
ability that sk is not sampled in a single multinomial trial (a

user-ID in D except sk is sampled) is
cij−cijk

cij
simply because

user sk holds (qi, uj) with the count cijk and the total count

of (qi, uj) is cij in the input D. Since ∀(qi, uj) ∈ Ak may lead
to that sk being sampled and the multinomial sampling for
every query-url pair (qi, uj) includes xij independent trials,

we have Pr[sk is not sampled] =
Q

∀(qi,uj)∈Ak
(

cij−cijk

cij
)xij .

Finally, we can obtain the probability that sk is sampled at

least once: Pr[sk is sampled] = 1−Q

∀(qi,uj)∈Ak
(

cij−cijk

cij
)xij .

Thus, we can derive Pr[R(D) ∈ Ω1] as below:

Pr[R(D) ∈ Ω1] = 1−
Y

∀(qi,uj)∈Ak

(
cij − cijk

cij
)xij (2)

Note that for any query-url pair (qi, uj) ∈ Ak where cijk =
cij ((qi, uj) is unique and only belongs to user sk), if its
output count xij > 0, the probability Pr[R(D) ∈ Ω1] should
be equal to 1 which cannot be bounded. Therefore, we let
xij = 0 for this case and all the unique query-url pairs in
the input should be removed.

4.1.2 for all O ∈ Ω2

For any output O ∈ Ω2, we discuss the ratios Pr[R(D)=O]
Pr[R(D′)=O]

and Pr[R(D′)=O]
Pr[R(D)=O]

(since O does not include the user-ID sk,

we have Pr[R(D) = O] > 0 and Pr[R(D′) = O] > 0).
Intuitively, for all query-url pairs that belong to both Ak

and D
′, sampling user-IDs from D involves an additional

user-ID sk (but sk /∈ O) compared with sampling user-IDs

from D
′. We thus have Pr[R(D)=O]

Pr[R(D′)=O]
≤ 1 ≤ Pr[R(D′)=O]

Pr[R(D)=O]
.

Since the ratio Pr[R(D)=O]
Pr[R(D′)=O]

is bounded by 1 (and obviously

e
ǫ), we only need to derive and bound the ratio Pr[R(D′)=O]

Pr[R(D)=O]
.

As mentioned in Section 4.1.1, all the query-url pairs in
D (and Ak) but not in D

′ should be not be retained in
the output. Thus, to generate O from D, we only sample
user-IDs for the common query-url pairs in D and D

′. Two
categories of common query-url pairs can be identified:

(1) ∀(qi, uj) in D
′ but not in Ak, the probabilities of sam-

pling user-IDs for (qi, uj) from D and D
′ are equivalent be-

cause the query-url-user histograms w.r.t. these query-url
pairs in D and D

′ are identical. We denote the ratio of

these two probabilities as Pr[R(D′)=O]
Pr[R(D)=O]

(ij) that is equal to 1.

(2) ∀(qi, uj) in D
′ and also in Ak, we can consider ev-

ery sampled user-ID in the process of R(D) → O into two
cases: “sk is sampled or not”. In every multinomial trial
for (qi, uj), the probability of sampling sk is

cijk

cij
while the

probability of sampling another user-ID in D (also in D
′) is

1− cijk

cij
. Since the number of (qi, uj) in the output is xij (xij

times independent trials), we have ratio Pr[R(D′)=O]
Pr[R(D)=O]

(ij)=
1

(1−
cijk
cij

)
xij

= (
cij

cij−cijk
)xij (since O does not contain sk, sk

should not be sampled in xij times independent trials when
generating O from D).

In sum, to generate any output O ∈ Ω2 from D and D
′

respectively, it is independent to sample user-IDs for all
the above two categories of query-url pairs. Thus, ∀O ∈
Ω2,

Pr[R(D′)=O]
Pr[R(D)=O]

=
Q

∀(qi,uj)∈D′
Pr[R(D′)=O]
Pr[R(D)=O]

(ij). Due to

∀(qi, uj) ∈ D
′ but /∈ Ak, Pr[R(D′)=D]

Pr[R(D)=D]
(ij) = 1, we have for

all O ∈ Ω2:

Pr[R(D′) = O]

Pr[R(D) = O]
=

Y

∀(qi,uj)∈D′∩Ak

(
cij

cij − cijk
)xij (3)
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4.2 Differential Privacy Constraints
After representing all the probabilities in a corresponding

output space split, we now show that proving the randomiza-
tion algorithm to be (ǫ, δ)-probabilistic differentially private
per Definition 2 is equivalent to ensuring that the output
counts of all query-url pairs satisfy a set of conditions. The-
orem 1 is proven in Appendix A.

Theorem 1. RandomizationR achieves (ǫ, δ)-probabilistic
differential privacy if for any input search log D, the output
counts of query-url pairs x = {∀(qi, uj) ∈ D, xij} satisfy:

1. if ∃ triplet (qi, uj , sk) ∈ D such that cijk = cij , then
xij = 0 (do not output unique query-url pairs);

2. for all Ak ⊂ D:
Q

∀(qi,uj)∈Ak
(

cij

cij−cijk
)xij ≤ e

ǫ;

3. for all Ak ⊂ D: 1−Q

∀(qi,uj)∈Ak
(

cij−cijk

cij
)xij ≤ δ.

As a result, we can utilize these conditions to formu-
late utility-maximizing problems in our differentially private
search log sanitization. Specifically, we can implement Con-
dition 1 while preprocessing the input search log (removing
all the unique query-url pairs), and regard Condition 2 and 3
as Differential Privacy Constraints in the sanitization. On
the satisfaction of them, the sanitization should be (ǫ, δ)-
probabilistic differential private for every pair of neighboring
search logs that differs in only one user log.

Note that while our multinomial sampling process is dif-
ferentially private, the computation of the counts (x∗ =
{∀x∗

ij}) is not always necessarily so. To make the whole
(end-to-end) sanitization differentially private, we must en-
sure that the count computation step is also differentially
private. One simple way to do this is to use the generic way
of adding Laplacian noise to the counts derived from the op-
timization (x∗ = {∀x∗

ij}). Since the count computation can
be viewed as a query over the input database, adding Lapla-
cian noise will make the computation differentially private.

Specifically, similar to Korolova et al. [20], if the count
differences of every query-url pair (qi, uj) in the optimal
solutions derived from two neighboring inputs (D, D

′) are
bounded by a constant d, computing optimal counts can
be guaranteed to be ǫ

′-differentially private [20] (ǫ′ is the
parameter of ensuring differential privacy for such step) by
adding Laplacian noise Lap(d/ǫ

′) to the optimal count of
every query-url pair: ∀(qi, uj), x

∗
ij ← x

∗
ij + Lap(d/ǫ

′). In-
deed, given d, we can simply bound the difference of ev-
ery query-url pair’s optimal count (computed from any two
neighboring inputs) with a preprocessing procedure by ex-
amining every user log Ak in the input database D (w.o.l.g.
D = D

′ + Ak):

1. formulate two utility-maximizing problems (pick the
same option as the following sanitization) with the
neighboring inputs D and D

′ = D − Ak respectively,
and solve them.

2. if the count difference of any query-url pair in both
optimal solutions is greater than d, remove Ak from
D and restart the preprocessing procedure with input
D − Ak (reexamining all the user logs in the updated
input D − Ak).

Since the above preprocessing procedure iteratively ex-
amines every user log Ak in the input search log D (if Ak

causes an unbounded optimal count difference, Ak will be
removed and the preprocessing procedure restarts), the op-
timal counts computed from any two neighboring inputs D

and D
′ = D − Ak should be bounded: first, in case of any

removal of Ak from D, restarting the procedure with the
updated input D−Ak is identical to starting the procedure
with input D

′ due to D
′ = D−Ak, thus the optimal counts

derived from inputs D and D
′ are identical and definitely

bounded by d); second, if there is no user log removed from
D in the preprocessing procedure (the best case), the opti-
mal counts derived from D and D’s any neighboring inputs
D−Ak are bounded by d (note that if D

′ = D+Ak, prepro-
cessing D

′ could bound the optimal count difference for D

and D
′). Essentially, such preprocessing procedure requires

solving 2N optimization (LP) problems in the best case and
N (N+1) optimization (LP) problems in the worst case (this
seldom happens) where N refers to the number of users in
the input D, thus the efficiency can be maintained with this
additional preprocessing procedure.

Overall, adding noise Lap(d/ǫ
′) can ensure ǫ

′-differential
privacy [20] for the step of computing optimal counts in Al-
gorithm 1. While adding noise may distort the optimality
to some extent, this is the price of guaranteeing complete
differential privacy. Since adding Laplacian noise is a well-
studied generic approach, we do not discuss this differential
privacy guarantee due to space limitation, and the sanitiza-
tion algorithm refers to the sampling process in this paper.

4.3 Indistinguishability Differential Privacy
Recall that in Section 3.1, we have noted that probabilistic

differential privacy [24, 12] provides stronger privacy guaran-
tee than indistinguishability differential privacy [7, 20]. Par-
ticularly, the probabilistic differential privacy notion (Defi-
nition 2) has following property:

Proposition 1. [12] Probabilistic differential privacy im-
plies indistinguishability differential privacy: if all the con-
ditions in Definition 2 are satisfied with parameters (ǫ, δ),
the following two inequalities also hold:

1. Pr[R(D′) ∈ bO] ≤ e
ǫ · Pr[R(D) ∈ bO] + δ;

2. Pr[R(D) ∈ bO] ≤ e
ǫ · Pr[R(D′) ∈ bO] + δ.

where bO is an arbitrary set of possible outputs and bO ⊆ Ω.

Götz et al. have proven Proposition 1 and show that the
converse of it does not hold in [12]. Hence, satisfying Def-
inition 2 with the differential privacy constraints (Theorem
1) provides more rigorous privacy guarantee than the work
of Korolova et al. [20].

5. UTILITY-MAXIMIZING PROBLEMS
While search logs consist of millions of queries and click-

through urls, from the perspective of utility, clearly, all are
not equal. Indeed, from an application perspective, only a
small portion may be useful with regards to a specific pur-
pose. For instance, only the frequent query-url pairs are use-
ful for query recommendation. Hence, different data usage
purposes may result in different requirements for extract-
ing data from the original search log. To privately sanitize
search logs while retaining maximal utility, we need to eval-
uate the data utility according to the usage requirement. In
this section, we introduce three utility-maximizing problems
with three different utility definitions.
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5.1 Maximizing the Output Size
As stated in Theorem 1, our sanitization algorithm sat-

isfies (ǫ, δ)-probabilistic differential privacy if three condi-
tions for the output counts of all query-url pairs are satis-
fied. Specifically, Condition 1 should be implemented in the
preprocessing step1 while Conditions 2 and 3 give two sets
of constraints for the output counts of all query-url pairs,
x = {xij}:

s.t.

8

>

>

<

>

>

:

∀Ak ⊂ D,
Q

∀(qi,uj)∈Ak
(

cij

cij−cijk
)xij ≤ eǫ

∀Ak ⊂ D, 1−
Q

∀(qi,uj)∈Ak
(

cij−cijk

cij
)xij ≤ δ

∀xij ≥ 0 and xij is an integer

Intuitively, the above constraints can be transformed into
linear constraints: (constant tijk =

cij

cij−cijk
; each user log

Ak’s two constraints can be combined as min{ǫ, log 1
1−δ
})

s.t.

(

∀Ak ⊂ D,
P

∀(qi,uj)∈Ak
xij · log tijk ≤ min{ǫ, log 1

1−δ
}

∀xij ≥ 0 and xij is an integer

(4)
In the above differential privacy constraints (each user log

generates a constraint): due to ∀tijk =
cij

cij−cijk
> 1, the

coefficient of all the linear constraints ∀ log tijk should be
greater than 0 (all unique query-url pairs have been re-
moved). Letting Mx ≤ b be the above differential pri-
vacy constraints, all the elements in the constraint matrix
M are non-negative and all the elements in b are equal to
min{ǫ, log 1

1−δ
}. Thus, we have:

Statement 1. Differential privacy constraints (Equation
4) are always feasible and bounded.

The above property holds from the geometric viewpoint
of linear constraints. Specifically, linear constraints {Mx ≤
b, x ≥ 0, b > 0} form a convex polytope, which is always
feasible and bounded if M, b ≥ 0 [26].

One interesting point worth noting is that the size of the
output (the total number of all users’ query-url pairs in the
output) is bounded by the differential privacy constraints.
If we regard the output size

P

∀
(
qi,uj)∈D xij as the utility

objective function, we can use the following problem to seek
the optimal output utility:

max :
X

∀
(
qi,uj)∈D

xij

s.t.

(

∀Ak ⊂ D,
P

∀(qi,uj)∈Ak
xij · log tijk ≤ min{ǫ, log 1

1−δ
}

∀xij ≥ 0 and xij is an integer

We define this as “Output size Utility-Maximizing Prob-
lem” (O-UMP). Since it is an integer linear programming
(ILP) problem, we can solve it using some standard method
(such as simplex algorithm) with linear relaxation [26] (the
LP problem is always feasible and bounded). After solving it
(optimal solution x

∗ = {∀⌊x∗
ij⌋}), for every (qi, uj), we sam-

ple user-IDs with ⌊x∗
ij⌋ times multinomial trials (the input

query-url-user histogram provides the probability of every
sampled outcome in every trial). The sanitization algorithm
satisfies Definition 2 (Proof in Appendix C).

1For all unique query-url pairs, we let the output count be
0 (for satisfying Condition 1 in Theorem 1).

Lemma 1. The O-UMP based sanitization algorithm sat-
isfies (ǫ, δ)-probabilistic differential privacy.

Since the optimal solution x
∗ = {∀x∗

ij} satisfies the dif-
ferential privacy constraints, the randomization algorithm
based on the linear relaxed solution should be also differen-
tially private (∀⌊x∗

ij⌋ ≤ x
∗
ij , thus ∀⌊x∗

ij⌋ strictly satisfies the
constraints Mx ≤ b where M, b ≥ 0). Note that if we re-
quire adding Laplacian noise to {∀x∗

ij} to ensure differential
privacy for the step of computing optimal counts, we cannot
always guarantee that the noise-added optimal solution sat-
isfies the differential privacy constraints, though this is likely
(since the mean of added Laplacian noise is 0). Meanwhile,
since the amount of noise Lap(d/ǫ

′) is directly proportional
to d (privacy parameter ǫ

′ is fixed), d can be lowered to the
preferred value (reducing the sensitivity/amount of noise)
to gain closer approximation of strict end-to-end differential
privacy. These apply to all the utility-maximizing problems.

5.2 Maximizing the Utility of Frequent query-
url Pairs

Top frequent click-through pairs in search logs have better
utility [14] than abnormal query-url pairs for improving the
quality of search results or enforcing the search with recom-
mendations and suggestions. Retaining frequent query-url
pairs in the sanitized search logs can be a basic and practical
goal of seeking the optimal output utility in the sanitization.
We denote this problem as “Frequent query-url pair Utility-
Maximizing Problem” (F-UMP).

First of all, we denote |D| as the size (the total number
of query-url pairs) of the input search log D. Thus, fre-
quent query-url pairs can be identified using its Support in
D: given a minimum support threshold s, if

cij

|D|
≥ s, then

(qi, uj) is a frequent click-through query-url pair in D. Since
the support of a frequent query-url pair explicitly indicates
its importance in the search log, the support of all the fre-
quent query-url pairs should be preserved as much as possi-
ble. In other words, the support of every frequent query-url
pair in the output O should be close to its support in the in-
put D (|D| does not include the number of unique query-url
pairs which should be removed in the preprocessing step).

Thus, we can define the objective function as minimizing
the sum of support distances for all the “frequent query-url
pairs” in the input database D, and formulate F-UMP as:

min :
X

∀(qi,uj)∈D where
cij

|D|
≥s

||
xij

|O|
−

cij

|D|
||

s.t.

8

>

<

>

:

∀Ak ⊂ D,
P

∀(qi,uj)∈Ak
xij · log tijk ≤ min{ǫ, log 1

1−δ
}

P

∀(qi,uj)∈D xij = |O|

∀xij ≥ 0 and xij is an integer

where |O| = P

∀(qi,uj)∈D xij is the size of the output O.

Generally, since every query-url pair’s support in D and O

are two ratios, pursuing the minimized sum of support dis-
tances (our objective in F-UMP) cannot always guarantee
an output with good frequent query-url pair utility (i.e. the
number of all frequent query-url pairs are very small, but
the support of them are close to the original one). Alterna-
tively, we can specify a fixed output size |O| in the sanitiza-
tion and seek the optimal utility for the frequent query-url
pairs. Recall that O-UMP can generate the output with the
maximum size for any input D and fixed parameters (ǫ, δ)
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(we denote the maximum output size as λ). Thus, to pre-
serve sufficient output size, we can solve the F-UMP with a
specified constant output size |O| ∈ (0, λ].

Statement 2. F-UMP can be considered as an integer
linear programming (ILP) problem if we fix the output size
|O| as a constant and standardize the absolute values in the
objective function.

First, due to |O| = P

∀(qi,uj)∈D xij , if we specify the size

of the output in the sanitization,
xij

|O|
− cij

|D|
can be considered

as linear. Second, we can transform the absolute values in
the objective function in a standard way:

1. create a new variable yij for every frequent query-url
pair ∀(qi, uj) where

cij

|D|
≥ s: yij =

xij

|O|
− cij

|D|
;

2. generate two new constraints for every yij : yij ≥ xij

|O|
−

cij

|D|
and yij ≥ cij

|D|
− xij

|O|
.

As a result, F-UMP can be transformed into an integer
linear programming (ILP) problem as below:

min :
X

∀(qi,uj)∈D where
cij

|D|
≥s

yij

s.t.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

∀Ak ⊂ D,
P

∀(qi,uj)∈Ak
xij · log tijk ≤ min{ǫ, log 1

1−δ
}

P

∀(qi,uj)∈D xij = |O|

∀(qi, uj) where
cij

|D|
≥ s, yij ≥

xij

|O|
−

cij

|D|

∀(qi, uj) where
cij

|D|
≥ s, yij ≥

cij

|D|
−

xij

|O|

∀xij ≥ 0 and xij is an integer

Similar to O-UMP, we can solve the above ILP problem
using some standard methods such as Simplex algorithm
with linear relaxation [26] (if |O| is specified to be no greater
than λ, the ILP problem should be feasible and bounded).

Overall, in F-UMP based sanitization, we can specify an
appropriate output size |O| ∈ (0, λ], solve the ILP problem
(optimal solution x

∗ = {∀⌊x∗
ij⌋}) and generate the optimal

output utility: the Input/Output Support of all the frequent
query-url pairs tends to be close (only counting the non-
unique query-url pairs) and the output size can be assured
as well. Finally, we sample the output with the optimal
solution of F-UMP: for every (qi, uj) (either frequent or in-
frequent), we sample user-IDs with ⌊x∗

ij⌋ times multinomial
trials (equally, the input query-url-user histogram provides
the probability of every sampled outcome in every trial).
As discussed in Section 3.2, the shape of query-url-user his-
togram can be preserved in this problem based sanitization
algorithm. Also, the sanitization algorithm satisfies Defini-
tion 2 (Proof in Appendix C).

Lemma 2. The F-UMP based sanitization algorithm sat-
isfies (ǫ, δ)-probabilistic differential privacy.

5.3 Maximizing query-url Pair Diversity
Occasionally, more distinct query-url pairs exhibit better

utility, we can formulate the “Diversity Utility-Maximizing
Problem” (D-UMP) in search log sanitization. The diversity
of search logs normally has two facts: the diversity of search
queries and the diversity of query-url pairs. Since we in-
vestigate the potential privacy breach from every query-url

pair (finer-grained than search queries), we denote the diver-
sity utility of search logs as the number of distinct query-url
pairs. (Indeed, we can also model search query diversity
maximizing problem in a similar way.)

In our sanitization, xij denotes the count of query-url pair
(qi, uj) in the output O. To evaluate the output diversity,
we can introduce another variable yij for every xij .



yij = 1, if xij > 0
yij = 0, if xij = 0

(5)

We thus define the utility function as max :
P

yij . More-
over, given a large constant H ≥ max{∀cij}, Equation 5 is
guaranteed to hold by the following inequalities:

8

<

:

∀(qi, uj), xij ≤ yij ·H
∀(qi, uj), xij ≥ yij

yij ∈ {0, 1}, ∀xij ≥ 0, H ≥ max{∀cij}
(6)

Similarly, D-UMP can be mathematically modeled as:

max :
X

∀(qi,uj)∈D

yij

s.t.

8

>

>

>

<

>

>

>

:

∀Ak ⊂ D,
P

∀(qi,uj)∈Ak
xij · log tijk ≤ min{ǫ, log 1

1−δ
}

∀(qi, uj) ∈ D, xij ≤ yij ·H

∀(qi, uj) ∈ D, xij ≥ yij

H ≥ max{∀cij}, ∀xij ≥ 0 and is an integer, yij ∈ {0, 1}

Essentially, letting ∀xij ∈ {0, 1} and xij = yij , the above
mixed integer programming (MIP) problem can be trans-
formed to a simplified binary integer programming (BIP)
problem (see Equation 7). Both problems have the same
optimal solution for variables y = {∀yij}. (We prove Theo-
rem 2 in Appendix B)

Theorem 2. The optimal solution y
∗ = {∀y∗

ij} of the
BIP problem is equivalent to the values {∀y∗

ij} in the op-
timal solution {x∗

, y
∗} = {∀x∗

ij ,∀y∗
ij} of the MIP problem.

max :
X

∀(qi,uj)∈D

yij

s.t.

(

∀Ak ⊂ D,
P

∀(qi,uj)∈Ak
yij log tijk ≤ min{ǫ, log 1

1−δ
}

H ≥ max{cij},∀yij ∈ {0, 1}

(7)

After solving the simpler BIP problem rather than the
MIP problem (both integer programming problems are fea-
sible), we thus let ∀(qi, uj) ∈ D, xij = yij ∈ {0, 1} be the
optimal solution of D-UMP (sampling user-IDs in only one
trial for every query-url pair in the output. Similarly, the
input query-url-user histogram provides the probability of
every sampled outcome in one trial).

However, both BIP and MIP problem are NP-hard [26].
For large-scale D-UMP, we propose an effective and efficient
heuristic algorithm to solve the BIP problem in Algorithm 2.
It seeks an approximate optimal value for the BIP problem.
We iteratively remove sensitive query-url pairs (let yij = 0
if yij has a maximum positive coefficient tijk in the sparse
constraint matrix). We eliminate these query-url pairs since
they belong to a certain user with the highest percent in the
count histogram of the triplets query-url-user (sensitive to
the corresponding user. i.e. if user sk holds 90% of (qi, uj),
tijk should be large). The algorithm terminates until all the
differential privacy constraints are satisfied.

The sanitization algorithm based on D-UMP also satisfies
Definition 2. (Proof in Appendix C)
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Algorithm 2 Sensitive query-url Pair Eliminating (SPE)

1: for every (qi, uj) ∈ D do

2: yij ← 1.
3: while true do

4: get maximum tijk =
cij

cij−cijk
from the constraint matrix.

5: let yij ← 0 for the maximum tijk .

6: if ∀Ak,
P

∀(qi,uj)∈Ak
yij log tijk ≤ min{ǫ, log 1

1−δ
} then

7: break
8: return y∗ = {∀y∗

ij}.

Lemma 3. The D-UMP based sanitization algorithm sat-
isfies (ǫ, δ)-probabilistic differential privacy.

6. EXPERIMENTAL RESULTS

6.1 Experiment Setup2

Dataset. We utilize the AOL real search log [3, 13] to test
our utility-maximizing problems. Our experimental dateset
is extracted from one subset of AOL data. Specifically, we
randomly pick 2500 out of over 65000 user logs in the se-
lected AOL data. We remove all the unique query-url pairs
(posed by only one user) from the selected dataset in our
preprocessing step. Thus, Table 2 presents the characteris-
tics of the AOL dataset (only collect the tuples with clicks),
our randomly selected dataset and the preprocessed dataset.
6043 distinct query-url pairs is held by 1980 users in the
preprocessed dataset (since search logs which are extremely
diverse include large number of unique query-url pairs, most
of the existing work [20, 12] cannot maintain the entire out-
put diversity either). Thus, we have 6043 variables and 1980
differential privacy constraints in our UMPs.

Table 2: Characteristics of the Data Sets
AOL Exp. Preprocessed Dataset

Dataset Dataset (without unique pairs)
total tuples 1,864,860 237,786 53,067 (|D|)
user logs 51,922 2,500 1,980 (Constraints)

distinct queries 583,084 83,130 4,971
distinct urls 373,837 82,076 4,289

query-url pairs 1,190,491 163,681 6,043 (Variables)

Parameters Setup. To observe the tuning of differ-
ential privacy parameters (ǫ, δ), we let δ = {10−4, 10−3,
10−2

, 10−1
, 0.2, 0.5, 0.8} and e

ǫ = {1.001, 1.01, 1.1, 1.4, 1.7, 2.0,

2.3} in all three utility-maximizing problems. Furthermore,
F-UMP requires two additional parameters: the minimum
support s and the output size |O| (|O| ≤ λ and λ is given
as the optimal value of O-UMP). We let s = { 1

100
, 1

250
, 1

500
,

1
750

, 1
1000
}. For every pair of ǫ and δ, we compute λ in O-

UMP and specify an appropriate output size |O| in F-UMP.
Platform. All the experiments are performed on an HP

machine with Intel Core 2 Duo CPU 3GHz and 3G RAM
running Microsoft Windows XP Professional Operating sys-
tem. While solving D-UMP, we also submit the AMPL for-
mat of the BIP problems to three NEOS solvers (qsopt ex,
scip and feaspump [18]) running online in addition to locally
running our heuristic.

2Since the published search logs in [20] and [12] do not in-
clude pseudonymous user-IDs for associating distinct query-
url pairs in every user’s search history, the utility of our sani-
tized search logs is incomparable with their work. Moreover,
since Laplacian noise has been well evaluated in their work,
we focus on testing the optimal utility w.r.t. the output
counts of all query-url pairs.

6.2 Maximum Output Size λ

With the preprocessed dataset (|D| = 53067 as shown in
Table 2), we can compute the maximum output size λ using
O-UMP for a given pair of differential privacy parameters
(eǫ

, δ). Table 3 presents the maximum output size (the op-
timal value of O-UMP) for different pairs of (eǫ

, δ) where
O-UMP is solved by Matlab function linprog. We can obtain
7.08%-26.2% of the original size with the given parameters.
Due to the high diversity and sparseness of search log data,
this percent of output size is sufficient good for differential
privacy guaranteed sanitization algorithms.

Table 3: Max Output Size λ on e
ǫ and δ (|D| = 53067)

eǫ�δ 10−4 10−3 10−2 10−1 0.2 0.5 0.8
1.001 3759 4007 4007 4007 4007 4007 4007
1.01 3759 4007 4879 4879 4879 4879 4879
1.1 3759 4007 4891 8382 8382 8382 8382
1.4 3759 4007 4891 8874 10445 11419 11419
1.7 3759 4007 4891 8874 10445 12438 12438
2.0 3759 4007 4891 8874 10445 13088 13088
2.3 3759 4007 4891 8874 10445 13088 13901

6.3 Maximum Utility Derived by F-UMP
Recall that F-UMP based sanitization generates outputs

with the minimum sum of the support distances of all the
frequent query-url pairs. Thus, we examine the maximum
frequent query-url pairs utility with three measures: the op-
timal value of F-UMP (minimum sum of the support dis-
tances), the Precision and Recall of the frequent query-url
pairs in the input/output, defined as below:

Precision =
|S0 ∩ S|
|S| , Recall =

|S0 ∩ S|
|S0|

(8)

where S0 and S denote the set of frequent query-url pairs
in D and O respectively, and | · | means the cardinality of
the set. Specifically, Precision is defined to evaluate the
fraction of the frequent query-url pairs in the output that
are originally frequent in the input with the same minimum
support. Recall is defined to evaluate the fraction of the
frequent query-url pairs in the input that remains frequent
in the output with the same minimum support.

To evaluate the performance of F-UMP in differentially
private search log sanitization, we run two groups of ex-
periments. First, we fix the output size and the minimum
support as: |O| = 3000 < λ and s = 1

500
, and test the (mea-

surement) results with different pairs of (ǫ, δ). Second, we
fix the differential privacy parameters as: e

ǫ = 2, δ = 0.5
(λ = 13088, as shown in Table 3), and test the results with
different minimum support s and output size |O|. Note that
the minimum sum of support distances is an effective mea-
sure in the first group of experiments because the minimum
support s is fixed and the original frequent query-url pairs
in the input has been determined for all different pairs of ǫ

and δ (thus the sum of the support distances for all the fre-
quent query-url pairs in the input is comparable). However,
in the second group, the set of original frequent query-url
pairs is varying for different s, hence the objective values
of F-UMP is incomparable on a varying s. Therefore, we
use the average of the support distances for all the frequent
query-url pairs in the input in addition to the sum of them
in the second group of experiments.

Interestingly, in all our F-UMP experiments, Precision is
always equal to 1, which means all the frequent query-url
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Figure 2: F-UMP Performance

pairs in the output are also frequent in the input with the
same minimum support s. This is quite reasonable: suppose
that (qi, uj) is not a frequent query-url pair in the input
where

cij

|D|
< s, if it is frequent in the output where

xij

|O|
≥ s,

the solution of F-UMP must be not optimal (reducing
xij

|O|
to

cij

|D|
might improve the objective value and does not violate

differential privacy constraints).
In the first group of experiments, Figure 2(a) and 2(b)

demonstrate the Recall and Sum of the Support Distances
for all the frequent query-url pairs in the input. Fixing δ,
Recall increases as ǫ increases until ǫ = log 1

1−δ
. Fixing ǫ ≥

log 1
1−δ

, Recall increases as δ increases; fixing ǫ < log 1
1−δ

,
Recall stays invariant even if δ is increasing. By contrast,
the sum of support distances has an inverse increasing trend
on varying ǫ and δ.

Table 4: Recall on |O| and s (eǫ = 2, δ = 0.5, λ = 13088)

s�|O| 3000 4000 5000 6000 7000 8000
1

1000
0.8873 0.8189 0.874 0.8661 0.8583 0.8346

1

750
0.8095 0.8762 0.8571 0.8476 0.8952 0.8667

1

500
0.9143 0.9143 0.9286 0.9143 0.8857 0.8714

1

250
0.9116 0.8529 0.8529 0.8529 0.8529 0.8235

1

100
0.933 0.8667 0.8 0.8 0.8 0.7333

In the second group of experiments, Table 4 presents the
Recall on different pairs of outputs size and minimum sup-
port. As we can see, over 80% of the frequent query-url pairs
can be retained in the output with fixing e

ǫ = 2 and δ = 0.5
(given more strict e

ǫ and δ, 30% of them can be retained
as shown in Figure 2(a)). In addition, Table 5 illustrates
the sum of support distances for all frequent query-url pairs
in the input (the same |O| and s as Table 4). Fixing s,
the sum of support distances increases as the output size
increases (they are comparable due to fixed s). This fact is
true: given a fixed minimum support s, for the fixed set of
frequent query-url pairs in the input, it is easier to achieve
the minimum support without violating differential privacy
constraints when |O| is not too large (the ideal output count
xij is |O| · cij

|D|
and the output counts are bounded by privacy

constraints, thus all frequent query-url pairs ∀xij are likely
to achieve |O| · cij

|D|
if |O| is small). Finally, since the set of

frequent query-url pairs varies for different s, we compare
the average support distance instead of the sum of them for
different s. As shown in Figure 2(c), the average support
distance decreases as the minimum support s increases (log-
arithmic scale minimum support s). Therefore, the frequent
query-url pairs in the output is closer to them in the input
if a larger minimum support is given in the F-UMP.

Table 5: Sum of Freq. query-url Pair Support Dis-

tances on |O| and s (eǫ = 2, δ = 0.5, λ = 13088)

s�|O| 3000 4000 5000 6000 7000 8000
1

1000
0.0551 0.085 0.1058 0.1279 0.1485 0.1785

1

750
0.0549 0.0854 0.1116 0.1271 0.1477 0.1767

1

500
0.0559 0.0865 0.1048 0.1247 0.1448 0.1716

1

250
0.0555 0.086 0.1043 0.1236 0.1393 0.161

1

100
0.0574 0.088 0.1063 0.1246 0.1392 0.1583

6.4 Maximum query-url Pair Diversity

6.4.1 D-UMP Performance

We now look at the performance of D-UMP (maximum
diversity utility). Figure 3 shows the percentage of retained
query-url pairs in the output with the same parameters (ǫ, δ)
as F-UMP. The maximum query-url diversity has a simi-
lar increasing trend as the Recall of F-UMP (Figure 2(a)).
Moreover, the query-url diversity can be retained as high as
30%. Note that the input has been preprocessed by remov-
ing all the unique query-url pairs, and they are not counted
in the denominator of the ratio.
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Figure 3: Maximum Diversity on (ǫ, δ) (SPE)

6.4.2 BIP Solver Comparison

Since D-UMP is an NP-hard problem, we introduced an
effective heuristic algorithm (Algorithm 2) for this binary in-
teger programming (BIP) problem with a sparse non-negative
constraint matrix. We now compare the performance of our
Sensitive Pair Eliminating heuristic (SPE) with some pop-
ular BIP solvers (Matlab bintprog function, Neos qsopt ex,
Neos scip and Neos feaspump [18]).

As shown in Table 6, we collected the maximum percent
of retained distinct query-url pairs using all the solvers with
the same experimental inputs. We observe that our heuristic
algorithm performs better than other solvers in most cases
and the optimal values by all the solvers have quite similar
varying tendency. Specifically, Algorithm 2 generates sani-
tized search logs with greater query-url pair diversity than
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Table 6: Diversity Utility of Different BIP Solvers
(a) e

ǫ = 2

δ 10−3 10−2 10−1 0.2 0.5 0.8
SPE 0.128 0.181 0.26 0.281 0.295 0.306
bintprog 0.096 0.152 0.238 0.268 0.289 0.295
qsopt ex 0.096 0.152 0.234 0.268 0.295 0.295
scip 0.095 0.152 0.237 0.268 0.295 0.295
feaspump 0.096 0.152 0.258 0.295 0.303 0.303

(b) δ = 0.1

eǫ 1.01 1.1 1.4 1.7 2.0 2.3
SPE 0.177 0.257 0.26 0.26 0.26 0.26
bintprog 0.146 0.225 0.238 0.238 0.238 0.238
qsopt ex 0.155 0.225 0.234 0.234 0.234 0.234
scip 0.146 0.214 0.231 0.231 0.231 0.231
feaspump 0.155 0.258 0.258 0.258 0.258 0.258
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Figure 5: Computational Performance for Solving
D-UMP (eǫ = 1.7, δ = 10−3, Logarithmic scale)

Matlab bintprog, NEOS qsopt and Neos scip. NEOS fea-
spump performs slightly better than Algorithm 2 only when
(eǫ = 2, δ = 0.5) and (eǫ = 1.1, δ = 0.1).

Finally, we plot the runtime for solving a typical D-UMP
by all solvers in Figure 5 (eǫ = 1.7, δ = 10−3)). Since our
Sensitive query-url Pair Eliminating (SPE) heuristic con-
sumes complexity O(n2 log mn) (m × n constraint matrix),
it outperforms other solvers on runtime as well.

6.5 Difference of Input/Output Histograms
As described in Section 3.2, our multinomial sampling,

particularly the F-UMP based sanitization can retain the
shape of the histograms in the output (generate similar count
histograms for distinct triplets: query-url-user (qi, uj , sk)).
We now examine this by comparing two histograms.

Specifically, we generate 10 randomized outputs with the
optimal solution of F-UMP for two different output size
|O| = 4000 and 6000 respectively (fixing e

ǫ = 2, δ = 0.5, s =
1/500), and plot two bar plots in Figure 4: the X-axis varies

from 0% to 100% while the Y-axis represents the average
number of distinct triplets (qi, uj , sk)

3 whose difference ra-
tio of the input/output histograms (defined in Equation 9)
equals the values in the X-axis. In both Figure 4(a) and 4(b),
the percent of most triplets (qi, uj , sk) in the input/output
varies within a tolerable bound (|O| = 4000, the difference
ratio of about 75% triplets is below 40%; |O| = 6000, the
difference ratio of about 90% triplets is below 40%).

DiffRatio(x∗
ijk , cijk) = ||

x∗
ijk/|O| − cijk/|D||

cijk/|D|
|| (9)

7. CONCLUSION AND FUTURE WORK
In this paper, we have addressed the important practical

problem of retaining the maximum utility while the search
log sanitization satisfies differential privacy and generates
outputs with the identical schema as the original search log.
As a necessary step, we have defined three different notions
of utility that are useful for various applications. The effec-
tiveness of our approach has been validated on real datasets.

We can extend our work in several directions. First, cor-
responding to the utility-maximizing problem, one can sim-
ilarly define the privacy breach-minimizing problem which
asks for minimal privacy loss while satisfying a certain util-
ity. Second, in most of the current work on search log re-
lease, the database schema of the input and output does not
include query time and the rank of the clicked url, thus it
is an open problem to probe effective approaches for pub-
lishing search logs with more complex schema. Third, the
adversaries may breach the privacy by inferring the correla-
tions between users’ query-url pairs. Whether the differen-
tial privacy guaranteed sanitization algorithms can handle
such potential privacy breach or not is worth investigating.
We intend to explore these in the future.
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APPENDIX

A. PROOF OF THEOREM 1

Proof. Assume that D and D
′ differ in an arbitrary user

sk’s user log Ak. For the above neighboring inputs, the

output space Ω = Ω1 ∪ Ω2 in our sampling mechanism can
be only split as below: all the possible outputs in Ω1 include
sk whereas all the possible outputs in Ω2 do not include sk.

First, according to Equation 2, if Condition 3 holds, we
have Pr[R(D) ∈ Ω1] ≤ δ for any input D. Meanwhile, Con-
dition 1 guarantees that Pr[R(D) ∈ Ω1] can be effectively
bounded by δ. Otherwise, for any unique query-url pair
(qi, uj), given xij > 0, Pr[R(D) ∈ Ω1] should be equal to 1
with such output space split (no other space split available
for any pair of neighboring input search logs).

Second, for all O ∈ Ω2, we have Pr[R(D′) = O] > 0
and Pr[R(D) = O] > 0. If D

′ ⊂ D, Condition 2 ensures
Pr[R(D)=O]
Pr[R(D′)=O]

≤ 1 ≤ Pr[R(D′)=O]
Pr[R(D)=O]

≤ e
ǫ. On the contrary, if

D ⊂ D
′, Condition 2 derived from D

′ can also guarantees
Pr[R(D′)=O]
Pr[R(D)=O]

≤ 1 ≤ Pr[R(D)=O]
Pr[R(D′)=O]

≤ e
ǫ.

Thus, the randomization R satisfies Definition 2 (by divid-
ing output space as above) if three conditions in the theorem
hold. Note that the violation of any condition would result
in unbounded multiplicative and/or additive probability dif-
ference (given ǫ and δ) for at least one input D and/or one
of its neighboring input D

′ (Differential privacy will not be
guaranteed), then the upper bounds ǫ and δ are tight.

B. PROOF OF THEOREM 2

Proof. To distinguish y
∗ in the optimal solutions of the

BIP and MIP problem, we denote y
∗ in them as (y∗)B =

{∀(y∗
ij)B} and (y∗)M = {∀(y∗

ij)M} respectively. Suppose
that (y∗)B and (y∗)M differ in one variable: (y∗

ij)B and
(y∗

ij)M where ∀z 6= ij, (y∗
z)B = (y∗

z )M .
Case 1: (y∗

ij)B = 0 and (y∗
ij)M = 1. Due to (y∗

ij)M = 1
and x

∗
ij ≥ (y∗

ij)M , constraints ∀Ak ⊂ D,
P

∀(qi,uj)∈Ak
(yij)M ·

log tijk ≤ min{ǫ, log 1
1−δ
} are satisfied for (y∗)M . More-

over, we have
P

∀(qi,uj)∈D(y∗
ij)M >

P

∀(qi,uj)∈D(y∗
ij)B (be-

cause (y∗
ij)M > (y∗

ij)B). As ∀(y∗
ij)B satisfies the constraints

∀Ak ⊂ D,
P

∀(qi,uj)∈Ak
(yij)B · log tijk ≤ min{ǫ, log 1

1−δ
} in

the BIP problem,
P

∀(qi,uj)∈D(y∗
ij)M should be the optimal

value for the BIP problem (due to
P

∀(qi,uj)∈D(y∗
ij)M >

P

∀(qi,uj)∈D(y∗
ij)B). Hence, it is a contradiction.

Case 2: (y∗
ij)B = 1 and (y∗

ij)M = 0. Hence, the constraints
∀Ak ⊂ D,

P

∀(qi,uj)∈Ak
(yij)B log tijk ≤ min{ǫ, log 1

1−δ
} are

satisfied in the BIP problem. In the MIP problem, if letting
xij be 1 for all (y∗

ij)B = 1, ∀Ak ⊂ D,
P

∀(qi,uj)∈Ak
xij log tijk

≤ min{ǫ, log 1
1−δ
} can be also satisfied. In this case, we have

P

∀(qi,uj)∈D(y∗
ij)B =

P

∀(qi,uj)∈D xij =
P

∀(qi,uj)∈D(yij)M

>
P

∀(qi,uj)∈D(y∗
ij)M (since ∀(qi, uj) ∈ D, xij = (yij)M ).

Hence, (y∗)M is not the optimal solution of the MIP prob-
lem. It is also a contradiction.

In sum, the contradictions show that y
∗ in two optimal

solutions are identical, and complete the proof.

C. PROOF OF LEMMA 1, 2 AND 3

Proof (Sketch). It is straightforward to prove the dif-
ferential privacy for all utility-maximizing problems based
sanitization algorithm: since the optimal solutions in O-
UMP, F-UMP and D-UMP always satisfy the conditions
in Theorem 1, the sanitization algorithm achieves (ǫ, δ)-
probabilistic differential privacy for any neighboring inputs
(we can add Laplacian noise to ensure differential privacy for
the step of computing the optimal counts if necessary).
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