
Fault-Tolerant Complex Event Processing using
Customizable State Machine-based Operators

∗

Thomas Heinze
SAP Research Dresden

Dresden, Germany
Thomas.Heinze@sap.com

Zbigniew Jerzak
SAP Research Dresden

Dresden, Germany
Zbigniew.Jerzak@sap.com

André Martin
TU Dresden

Dresden, Germany
Andre.Martin@tu-dresden.de

Lenar Yazdanov
TU Dresden

Dresden, Germany
lenar@se.inf.tu-dresden.de

Christof Fetzer
TU Dresden

Dresden, Germany
Christof.Fetzer@tu-

dresden.de

ABSTRACT

Modern Complex Event Processing (CEP) systems often
need an high degree of customization in order to implement
required application logic. The use of declarative languages,
such as CQL, often leads to complicated and hard to main-
tain application code. In this demo, we show how state
machine-based CEP operators help to cope with these prob-
lems. State machine-based CEP operators allow for a high
flexibility as well as a re-usability of application logic com-
ponents. A major benefit of the presented solution is its
easy integration with existing streaming engines, which we
demonstrate using StreamMine, a highly parallel and fault-
tolerant streaming engine prototype. In this demo we show:
(1) how state machine-based operators allow for an easy defi-
nition of custom, reusable CEP operators, (2) how resulting
state machines can be easily combined with existing fault-
tolerance techniques within StreamMine and (3) how the
resulting CEP applications can be tested in a cost efficient
way.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed applications

General Terms

Algorithms, Design, Reliability

Keywords

Complex Event Processing

∗This work is partially sponsored by European Commission’s
Seventh Framework Program (FP7) under grant agreement
No. 257843

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...10.00

1. INTRODUCTION
Expressiveness and ease of use are perceived as being in-

creasingly important factors which drive software purchasing
decisions [8]. Moreover, many scenarios which require the
use of Complex Event Processing are very domain specific.
Many of these applications cannot be easily programmed us-
ing standard operators, and need extensive customization –
the ability of standard eventing programming language, like
CQL or CEL, to solve these tasks is very limited. There-
fore, advanced concepts like ECA rules [6] or transactional
logic [1] are often used.

In this demo we show case a solution based on user defined
state machines which define CEP operators. The core idea
of our system is to build an expressive and easy to use frame-
work, which allows for operator reuse as well as extensibility,
based on the users’ needs and the scenario requirements. We
demonstrate how user defined state machines can be easily
integrated with existing streaming engines, using the Stream-
Mine platform [5] as an example. Our approach (in contrast
to other state machine approaches [3] which require user to
work with streaming SQL dialects) allows users to create ap-
plication logic using both state machine code and a visual
RapidMiner interface.

Our work on StreamMine [5] as the underlying platform
is motivated by its ability to process streaming data in a
highly parallel fashion while ensuring fault-tolerant execu-
tion of application logic. This is dictated by the fact that
the complexity and the amount of data in modern CEP sce-
narios is rapidly increasing: OPRA estimates that in 2013
one should expect over 10 million transaction events per sec-
ond originating from Securities Industry Automation Cor-
poration [2]. Therefore, in order to cope with such work-
loads highly parallel and distributed processing infrastruc-
tures must be used. However, with the increasing number of
nodes in CEP systems, the probability of failures increases
as well [9]. This in turn implies that the imminent node fail-
ures must be handled with minimum overhead and precise
recovery of the system state. The precise recovery of the sys-
tem state is a key feature of StreamMine, which we show in
this demo. State recovery is especially crucial as such state
is usually accumulated over long periods of time.

590

�
�
��
�
�
��
�	

�

�
�
��
�	

�

���������������� ���������

���������

������	�

���������

������	�

�	���
�
 �	���
�

��������	
����
�������

�������������������

������� ���	��� ����

�����

�����

������ �����

����������

��������

Figure 1: Stage-based architecture of StreamMine

2. SYSTEM ARCHITECTURE
The StreamMine prototype shown in this demo consists

of runtime and design time components – see Figure 1. The
design time contains a user interface which allows for a GUI-
based query definition, as well as online monitoring of the
application logic execution in the underlying streaming sys-
tem. The StreamMine runtime processes the event stream
as event batches and allows the users to define the size of
batches (down to the size of one event), trading off through-
put for latency. The processing logic is divided into stages
with each stage processing a full batch before sending it to
the next stage.
In order to process data in parallel StreamMine uses a key-

based stream partitioning approach. A single stream is split
across several slices (within one stage) which execute the
same stage logic in parallel. The number of slices per stage
can be arbitrarily chosen, which allows for flexible resource
allocation driven by the complexity of the stages’ operators.

3. ACTIVE REPLICATION
Due to the high event rates and infinite event streams ob-

served in typical CEP scenarios, logging of all events to allow
for recovery in case of crashes would introduce an unaccept-
able overhead. Therefore, within this demonstration we will
show how an enhanced version of active replication [4] can be
used to mitigate this problem. Our variant of active replica-
tion does not require a continuous duplication of workload
across identical nodes. Instead we allow nodes to use idle
CPU time to provide fault-tolerance by acting as an active
replica for another node.
Figure 2 illustrates the scheme used for our active repli-

cation. For each slice a primary and a secondary (backup)
copy is created. In case of normal utilization (below 50%) the
node responsible for secondary copies performs same compu-
tations as the primary copy with the successor stage ignoring
the duplicated input. If the primary copy fails, the secondary
copy becomes the primary and takes over the processing with
no latency.
In case when utilization of the node hosting a secondary

�

�

��

��

�

�

��

��

state transfer

��

��

�

�

Figure 2: Combining active and passive replication

in StreamMine

copy exceeds 50% it automatically switches from active repli-
cation to passive replication. In passive replication mode,
the secondary node buffers all incoming events, without pro-
cessing them. This allows it to restore the state in case of
the primary failure. When the event buffer of the secondary
is full, it triggers the state transfer from the primary and
discards the events from its buffer. Events can be discarded
as the corresponding state has already been installed in the
secondary. The primary and secondary slices are distributed
across all slices of a single stage in such a way that the pro-
cessing is equally partitioned over all available nodes.

A cautious reader might notice, that to enable the above
active/passive replication scheme one needs to be able to
perform deterministic execution of the application logic. De-
terministic execution allows for replaying of the events with
consistent results. StreamMine replication scheme ensures
that state of the different replicas is consists at any time.
Based on our previous work [5], we demonstrate that using
active replication introduces only a small overhead for the
processing, in terms of both throughput and latency.

4. STATE MACHINE-BASED OPERATORS
In order to represent the processing logic within one stage

a state machine is used. The state machine encodes the in-
ternal state of the operator as well as the handling of arriving
events. We choose the state machine approach because we
believe it is well suited to model complex behavior and al-
lows for modularized as well as extensible design of operator
semantics.

Our state machines consist of states and transitions, which
describe the transfer between states. A transition can be
watched by a guard, which ensures that given conditions are
met before the transition is taken. In addition, transitions
can trigger specific actions, such as sending of an event or
increasing a counter.

Each time a new event arrives a transition inside the state
machine is called. This, in turn, allows other transitions to
become active resulting in further state transition. This is
repeated until the state machine does not perform any state
transition or the state machine arrives in its initial state
again. Because we allow state machines to be defined by
the user, it can potentially happen that an infinite cycle of
states is created. A simple solution to this problem, based
on detection of strongly connected components, has been

591

������

���	��
��

��
	�

��
���

������

������

�����

������������

������������	

�
��������������

������������	

�
�����������������������

�����������������������
������	

���������������

Figure 3: Example state machine-based windowed

aggregation operator

shown in [11]. Solution presented in [11] has the complexity
of O(n), where n is the number of states.
Figure 3 illustrates an example state machine which imple-

ments a windowed aggregation function. The processing of
new input event always begins in the start state and consists
of three major steps: (1) removing all outdated events from
the time window, (2) adding the new event to the aggregate
and (3) sending the new aggregate to the next stage. All
these steps are modeled as a single state and by taking the
transition between the different states corresponding actions
are triggered, in order to remove outdated events or to send
the new aggregates to the next stage.
To integrate state machines into StreamMine we use an

already existing approach called State Machine Compiler
(SMC) [7], which offers a domain specific language (DSL) to
represent state machines and allows for an automatic com-
pilation into native code. From within the generated code
external classes and/or functions can be accessed, which is
used (among others) to send events from one StreamMine
stage to its successor stages. The DSL representation of the
state machine shown in Figure 3 is shown in Figure 4. Fig-
ure 4 also highlights the different components of the state
machine.
As a starting point for our system we have created a set of

state machine templates representing commonly used CEP
operators including: selection, join, aggregation, projection
and sequence. These templates can be instantiated with pa-
rameters to allow for an easy reuse by, e.g., setting filter
criteria or join conditions. In addition, these predefined so-
lutions can serve as starting point for user defined operator
semantics, because the implemented actions and guards can
used also in other state machines.

State Machine DSL Generated Code

Lines of code 304 2087

Ratio 1x 6.8x

Table 1: Comparison of the number of lines of code

written for the state machine DSL and generated by

the SMC compiler

We have evaluated our approach with the help of the 2011
DEBS Challenge scenario [10]. The 2011 DEBS Challenge
scenario is a good candidate for evaluation as it requires a

Guards

New state

after transition

State

External Action

������

����	
���
�
���
���
�
����

�������	
��� ��

�

�������	
���

�

����	
���
�
���
���
�
���

�������
�
�� �����
����������
�
����
���

�

�������
�
�

�

����	
���
�
���
���
�
����

 !��"�##��#������!��"�##��#��	�
 �
�	�	�
��
���

�

 !��"�##��#����

�

����	
���
�
���
���
�
����$��%�&	��##��#��� !�
#����'�

������ ��������
���
�����##��#�������

����	
���
�
���
���
�
����$(��%�&	��##��#��� !�
#����'�

����� ��

�

Figure 4: DSL-based implementation of the state

machine-based windowed aggregation operator

shown in Figure 3

large number of custom-written operators. Table 1 shows
a comparison between the number of lines of code written
using the state machine DSL and the number of code lines
generated by the SMC compiler for the Challenge solution.
Using the abstraction offered by the state machine-based op-
erators only a small fraction of code needs to be implemented
by hand.

5. FAULT-TOLERANT OPERATORS
Besides being well suited for describing complex opera-

tor semantics state machines-based operators can easily be
integrated into the existing parallelized and fault-tolerant
StreamMine platform. The execution of state machines can
be parallelized by instantiating several identical state ma-
chines and executing all of them on different parts of the
input stream.

To evaluate the performance of the state machine-based
operators we have measured throughput and latency – see
Figure 5. Evaluation was performed on a 50-node cluster
with each node equipped with 2 Intel Xeon E5405 (quad
core) CPUs and 8 GB of RAM. Conducted experiments
demonstrate that using 12 instances in parallel a through-
put of up to 250,000 events per second can be achieved. In
addition, the end to end latency per stage is below 3 mil-
liseconds. It can be concluded, that by using only the state
machine-based operators one can build scalable applications.

The state machine operators are also well suited for in-
tegration with the existing active replication solutions. An
important aspect of implementing active replication inside
a streaming engine is that the state of an operator which
has to be synchronized between different replicas has to be

592

of stages

A
g

g
re

g
a

te
d

 t
h

ro
u

g
h

p
u

t
(k

E
ve

n
ts

/s
)

2 4 6 8 10 12

100

150

200

250

1 2 3 4 5 6

1000

1500

2000

2500

Throughput
Latency

L
a
te

n
c
y
 (

n
s
)

of nodes

Figure 5: Throughput and latency using the state

machine-based operators

specified. When allowing users to write custom application
logic, they also need to manually specify which data has to
be synchronized between the replicas. In contrast, using the
state machine-based operators this can be done automati-
cally, as the application logic state is stored in the current
state of the state machine.

6. OFFLINE TESTING
To simplify the usage of the state machines we created

a graphical representation of the application logic allowing
for easy creation and composition of state machine-based
operators. The use of RapidMiner framework in combination
with StreamMine allows users to conduct offline debugging
of their query graph logic using a subset of input data.
Application logic created using RapidMiner user interface

can be compiled and executed locally thus allowing cost neu-
tral testing and debugging, especially if the target environ-
ment implies the need to purchase expensive on-demand in-
frastructure cycles. To that end we use a small scale version
of the StreamMine engine which is integrated with the Rapid-
Miner user interface. Operators written using the state ma-
chine DSL can be automatically recognized and imported
into the RapidMiner interface. From there the generation
of the local debug code can be undertaken. While offline
debugging using the RapidMiner does not replace the online
debugging on a real system, in our opinion, it presents a
cost effective and a fast alternative to testing using target
environments.

7. DEMONSTRATION SETUP
In the following we briefly describe the demonstration

setup. The demo consists of two major parts: one show-
ing the usage of the user defined operators and the second
illustrating their combination with active replication tech-
niques.

7.1 User Defined Operators
This part of our demonstration will introduce the user

interface based on RapidMiner and demonstrate the integra-
tion between the user interface and the underlying Stream-
Mine system. We will show how complex operator semantics
can be implemented fast and in an intuitive way using the
RapidMiner user interface. In addition, we will showcase the
deployment of a prototypical application and demonstrate
live monitoring of the overall system performance.

7.2 Fault-Tolerance Mechanism
During the second part of the demo we will focus on pre-

senting the limited overhead introduced by our active/passive
replication-based fault-tolerance. We will show the function-
ing of the active replication in combination with the state
machine-based operators. We will shown, that the correct-
ness of the results can be ensured as long as at least one
replica is running. To this end we will kill replicas simulat-
ing crash-stop failures. In addition, we will show how the
system can react to sudden peaks in the event load and au-
tomatically switches to passive replication.

8. REFERENCES
[1] D. Anicic, P. Fodor, R. Stühmer, and N. Stojanovic.

Event-driven approach for logic-based complex event
processing. In 2009 International Conference on
Computational Science and Engineering, pages 56–63.
IEEE, 2009.

[2] J. P. Corrigan. OPRA updated traffic projections for
2012 and 2013. Technical report, Options Price
Reporting Authority, August 2011.

[3] A. Demers, J. Gehrke, B. Panda, M. Riedewald,
V. Sharma, W. White, et al. Cayuga: A general
purpose event monitoring system. In Proc. CIDR.
Citeseer, 2007.

[4] A. Martin, C. Fetzer, and A. Brito. Active replication
at (almost) no cost. In Reliable Distributed Systems,
30th IEEE Symposium on. IEEE, 2011.

[5] A. Martin, T. Knauth, S. Creutz, D. B. de Brum,
S. Weigert, A. Brito, and C. Fetzer. Low-overhead
fault tolerance for high-throughput data processing
systems. In Distributed Computing Systems, 31st
International Conference on, Los Alamitos, CA, USA,
June 2011. IEEE Computer Society.

[6] A. Paschke, A. Kozlenkov, and H. Boley. A
homogeneous reaction rule language for complex event
processing. 2010.

[7] C. Rapp. The state machine compiler (SMC).

[8] R. L. Sallam. BI platforms user survey, 2011:
Customers rate their BI platform functionality.
Gartner Research Note G00211770, March 2011.

[9] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM
errors in the wild: a large-scale field study. In
SIGMETRICS ’09: Proceedings of the eleventh
international joint conference on Measurement and
modeling of computer systems, pages 193–204, New
York, NY, USA, 2009. ACM.

[10] N. Stojanovic. DEBS challenge. In Proceedings of the
5th ACM international conference on Distributed
event-based system, pages 369–370. ACM, 2011.

[11] R. Tarjan. Depth-first search and linear graph
algorithms. In Switching and Automata Theory, 1971.,
12th Annual Symposium on, pages 114–121. IEEE,
1972.

593

