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ABSTRACT
In this paper we consider the problem of mining frequently occur-
ring interesting phrases in large document collections in an ad-hoc
fashion. Ad-hoc refers to the ability to perform such analyses over
text corpora that can be an arbitrary subset of a global set of doc-
uments. Most of the times the identification of these ad-hoc doc-
ument collections is driven by a user or application defined query
with the aim of gathering statistics describing the sub-collection,
as a starting point for further data analysis tasks. Our approach to
mine the top-k most interesting phrases consists of a novel indexing
technique, called Sequence Pattern Indexing (SeqPattIndex), that
benefits from the observation that phrases often overlap sequen-
tially. We devise a forest based index for phrases and an further
improved version with additional redundancy elimination power.
The actual top-k phrase mining algorithm operating on these in-
dices is a combination of a simple merge join and inspired by the
pattern-growth framework from the data mining community, mak-
ing use of early termination and search space pruning technologies
that enhance the runtime performance. Overall, our approach has
on average a lower index space consumption as well as a lower
runtime for the top-k phrase mining task, as we demonstrate in the
experimental evaluation using real-world data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

General Terms
Algorithms, Experimentation, Performance

1. INTRODUCTION
Mining the essential characteristics of given document collec-

tions in the form of frequently occurring interesting phrases opens
ground to a fine grasp of what is going on. The lessons that can
be learned when inspecting such phrases are much beyond sim-
ple keyword based occurrence statistics w.r.t. their expressiveness.
Examples of such phrases include person names, products (with
their properties), locations, events, or even combinations of those.
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For large and hence often generic corpora, like the Web, however,
it makes little sense to look at phrases extracted from the entire
collection but rather focus on different facets, constricted to cer-
tain topics, locations, or different kinds of sources, such as blogs,
micro-news (such as in Twitter), or newspaper articles, etc. These
restrictions, referred to as queries in this paper, are not known a-
priori and hence make an upfront pre-processing (indexing) of the
sub-collection, induced by the query, impossible. Still, the nature
of this data mining task calls for reasonably short response times as
well as a highly compact index of the global document set.

In this paper we focus on solving this problem of discovering the
top-k interesting phrases in ad-hoc document collections. Interest-
ingness is usually measured by statistical methods that emphasize
a phrase’s discriminative power in the ad-hoc document collection
compared to the global importance, instead of only looking at its
local frequency. For example, in documents capturing the query
“Apple”, although the phrase “computer” is more popular than the
phrase “MacBook”, the latter should be considered as more inter-
esting.

A viable approach to mine these top-k interesting phrases should
refrain from reading a lot of data during the mining process, the
overall runtime should be low, and the index (based on the entire
set of documents) as compact as possible. In fact, as we will see,
the index maintained by existing approaches leads to many unnec-
essary or redundant information accesses, caused by a sub-optimal
index organization and causing a larger than necessary runtime per-
formance.

Recently, Simitsis et al. [18] propose the Phrase Inverted Index-
ing algorithm that stores for each phrase a list of document (IDs)
that contain the phrase. Interesting phrases are retrieved by in-
tersecting the ad-hoc document collection’s document ID list with
each phrase’s inverted list. However, this approach requires a full
scan of all the phrases in the document corpus and is very costly.
Although the authors also give a much faster approximate algo-
rithm, its results are not always particularly accurate.

Bedathur et al. [6] devise a new algorithm called Forward In-
dexing to solve this problem of reading the entire set of inverted
lists. Instead of storing each phrase’s inverted list of document ID,
Forward Indexing stores containing phrase ID lists (called forward
list) for each document. Hence only forward lists of local ad-hoc
documents need to be scanned instead of all documents in the cor-
pus like the case of Phrase Inverted Indexing. To compute the top-k
interesting phrases, a merge join is performed on the ad-hoc docu-
ment collection. They also devise a very efficient early termination
technology for the algorithm.

Since a global index needs to be built in advance to store each
phrase’s global information, the index size also becomes an cru-
cial aspect of the devised systems. Besides Forward Indexing, [6]
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proposes another algorithm Prefix-Maximal Indexing to solve the
problem, with a very compact index structure in memory of only
up to half of the index size of Forward Indexing. This is achieved
by storing only prefix-maximal phrases for each document, instead
of all the containing phrase IDs. The prefix-maximal phrases form
a very compact subset of all phrases, while covering all possible
phrases in the document. The top-k interesting phrase computation
of Prefix-Maximal Indexing also works like a merge join, joining
each possible prefix at a time. However, due to the very complex
merge join process and lack of available early termination tech-
niques, Prefix-Maximal Indexing runs significantly slower, com-
pared to Forward Indexing. As we can see in later sections, Prefix-
Maximal Indexing can be hundreds times slower on large ad-hoc
document collections.

Contribution and Outline
In this paper we propose a novel algorithm named Sequence Pat-
tern Indexing, with the advantages of both Forward Indexing and
Prefix-Maximal Indexing. By indexing prefix-maximal patterns
via a novel carefully devised compact forest/graph structure, we
avoid storing most of the duplicate sub-phrases, occurring in Prefix-
Maximal Indexing. With a novel top-k interesting phrase com-
putation method which combines both classic merge join and the
pattern-growth framework [17], usually adopted by frequent pat-
tern mining algorithms in data mining, together with new early
termination and search space pruning technologies, we make our
algorithm even times faster than Forward Indexing, on average.
Evaluation results show that our algorithm has only about half the
index size of Prefix-Maximal Indexing, and one fourth of Forward
Indexing’s, while performing 2 to 5 times faster than fastest For-
ward Indexing on average querying time (less than one second).
We also evaluated the average number of bytes read, observing that
our method has similar bytes read as the Forward Indexing tech-
nique, which is the lowest among evaluated algorithms.

This paper is organized as follows: Section 2 gives the detailed
problem definition and introduces a toy example used in this paper
for illustration purposes. Section 3 introduces the details of several
previously proposed state-of-the-art algorithms solving the same
problem. We provide our algorithm details in Section 4, including
two indexing approaches and top-k interesting phrase computation
algorithm. Evaluation details are given in Section 5, with dataset
details, results on index size, results on average querying timeand
results on average byte read. Finally Section 6 discusses related
work, followed by the conclusion in Section 7.

2. PROBLEM DEFINITION
In this paper, we provide a novel and efficient algorithm to solve

the problem of mining the top-k frequent interesting phrases (or
patterns called in previous publications) in an ad-hoc document col-
lection, usually corresponding to a query. More specifically, given
a document corpus D and a query q, we would like to output at
most k frequent phrases with the highest interestingness values in
D′, a subset of D with respect to q where each document d ∈ D′

satisfies query q. Given a document d which is a sequence over the
word corpus, a phrase p is said to be contained by d if and only if
p is a continuous sub-sequence of d, denoted by p v d. A phrase’s
length is also restricted by user-specified minimum and maximum
length thresholds (min-len and max-len), with 1 ≤ min-len ≤
max-len ≤ 6. The frequency |{d|d ∈ D′ ∧ p v d}| of a phrase
p in a document collection D′ is called the support value of p with
respect to D′, denoted by supD

′
p or just supp when in a clear con-

text. A phrase is called frequent in a document collection D′ if

and only if supD
′

p ≥ min-supD
′
, where min-supD

′
is a user-

specified threshold. The interestingness measure we adopt here
is the one most commonly used in previous work [18, 6], called
confidence value (or somewhere relevance value) and is defined as
follows.

DEFINITION 1. Given a phrase p and an ad-hoc document col-
lection D′, the confidence value of p w.r.t. D′ is defined as: confD′

p

=
supD

′
p

supDp
, where D is the document corpus and D′ ⊆ D. When D′

is clear in the context, we can just use confp.

Figure 1 gives a toy example with 4 documents in corpus D,
together with the top-k (k = 3) interesting phrases.

D
D′

ID Document
d1 〈eabefcad〉
d2 〈dcbeafe〉
d3 〈fceacd〉
d4 〈acfdbeacd〉

(a) Documents

k

ID Phrase Conf.
p1 〈ac〉 2/2

p2 〈bea〉 2/2

p3 〈ea〉 3/4

p4 〈be〉 2/3

· · · · · ·

(b) Top-k Phrases
(min-supD

′
= 2, k = 3, min-len = 2, max-len = 4)

Figure 1: Running Example

3. PREVIOUS ALGORITHMS
In this section, we will give a brief overview on existing tech-

niques to this problem.

3.1 Phrase Inverted Indexing
Introduced in [18], this approach computes the top-k interesting

phrases by creating an index storing all the inverted lists of phrases
in the document corpus as follows. The inverted list of each phrase
p contains the IDs of all the documents containing p. Now given
an ad-hoc document collection D′, the local support value of p

(supD
′

p ) is computed by intersecting p’s inverted list with the list
of document IDs in D′. Since the global support value of p (supDp )
equals to the length of p’s inverted list, the confidence value (inter-
estingness) of p (confD′

p ) with respect to D′ is known. The top-k
interesting patterns are selected by iterating over all the patterns’
inverted lists. Figure 2 depicts the index structure on the document
corpus D appeared in Figure 1.

ID Document IDs
p1 {d1, d2}
p2 {d1, d3}
p3 {d1, d3, d4}
p4 {d1, d2, d3, d4}

Figure 2: Phrase Inverted Index-
ing

ID Forward List
d1 {p1:2, p2:2, p3:3, p4:4}
d2 {p1:2, p4:4}
d3 {p2:2, p3:3, p4:4}
d4 {p3:3, p4:4}

Figure 3: Forward Indexing

However, this approach requires a full scan of all the inverted
lists to compute the top-k phrases, which is very inefficient espe-
cially when there are, as in a typical corpus, millions of documents
and phrases. Although [18] also introduces an efficient approxi-
mate method, its output is not guaranteed to contain the correct
top-k results.
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ID Phrases
d1 {ad, be, bef, befc, ca, cad, ea, ef, efc, efca, fc, fca, fcad}
d2 {be, bea, cb, cbe, cbea, dc, dcb, dcbe, ea, fe}
d3 {ac, acd, cd, ce, cea, ceac, ea, eac, eacd, fc, fce, fcea}
d4 {ac, acd, acf, acfd, be, bea, cd, cf, cfd, ea, eac, fd}

· · · · · ·
(a) All Phrases

ID Prefix-Maximal Phrases
d1 {ad, befc, cad, ea, efca, fcad}
d2 {bea, cbea, dcbe, ea, fe}
d3 {acd, cd, ceac, eacd, fcea}
d4 {acd, acfd, bea, cfd, eac, fd}

· · · · · ·
(b) Prefix-Maximal Phrases

ID Maximal Phrases
d1 {befc, ea, efca, fcad}
d2 {cbea, dcbe, fe}
d3 {ceac, eacd, fcea}
d4 {acd, acfd, bea, eac}

· · · · · ·
(c) Maximal Phrases

Figure 4: Prefix-Maximal Indexing

3.2 Forward Indexing
Unlike the Phrase Invert Indexing method which stores the in-

verted list of each phrase, the recently proposed Forward Indexing
approach [6] builds a forward list for each document d ∈ D, con-
taining all the IDs of phrases contained in d. When trying to com-
pute the top-k phrases of an ad-hoc document collection D′, only
the forward lists of documents in D′ need be to scanned.

The phrase IDs in each forward list are stored in ascending order
of their global support values. The top-k phrases are computed by
performing a |D′|-way merge join. During this process, the local
support value and further the confidence value of a phrase can be
computed. The global support value for each phrase p is stored
explicitly in the forward lists together with p’s ID. Global support
values could also be stored in a separate global dictionary. How-
ever, as mentioned in [6], storing them explicitly in the forward lists
provides better performance. Figure 3 gives the index structure on
document corpus D appeared in Figure 1, where numbers after “:”
denote global support values.

In the implementation, a 64-bit integer is assigned for each phrase
in a forward list, storing the phrase’s global support value in the first
32 bits and the ID in the last 32 bits.

Although this approach is more efficient than Phrase Inverted In-
dexing, a full scan of D′’s forward lists is still required. To improve
its performance, [6] devises an early termination technique. For any
phrase p, we have an upper bound max-confD′

p of confD′
p :

max-confD′
p = min

{
1,
|D′|
supDp

}
≥

supD
′

p

supDp
= confD′

p

since |D′| ≥ supD
′

p . As the global support values are stored in
the forward lists in ascending order, for any phrase p that pre-
cedes another phrase q, seen during the joining process, we know
that max-confD′

p ≥ max-confD′
q . Hence, we can safely stop

the computing process if max-confD′
q is not larger than the k-th

phrase’s confidence value in the top-k phrase list.

3.3 Prefix-Maximal Indexing
[6] also propose the Prefix-Maximal Indexing approach that in-

dexes only prefix-maximal phrases. In contrast to the Forward
Indexing approach which tries to accelerate the top-k interesting
phrases computation, the Prefix-Maximal Indexing method reduces
the memory requirement of the index structure. This is achieved by
storing only prefix-maximal phrases (which is a very small subset
of all phrases) with respect to each document in the corpus, instead
of storing the IDs of all phrases contained by the document.

DEFINITION 2. A phrase p is called prefix-maximal w.r.t. a
document d ∈ D iff (i) p is frequent in D (globally frequent), (ii)
p v d, and (iii) @p′ such that p′ is frequent in D, p < p′ v d, and
p is a prefix of p′.

Storing only maximal phrases (a subset of prefix-maximal phrases
derived by removing “p is a prefix of p′” in Definition 2) could fur-
ther reduce the memory requirement, since all the non-maximal
phrases contained by each document are also contained in the max-
imal phrases. However, the support values of some sub-phrases
(those which are not prefixes of maximal phrases) can not be eas-
ily calculated using the Prefix-Maximal Indexing. Hence, prefix-
maximal phrases are used instead.

For each document d ∈ D, the prefix-maximal phrases are stored
in a forward list and ordered lexicographically. To further com-
press the index, for each prefix-maximal phrase only its suffix dif-
ferent from the previous phrase in the forward list is stored. For
example, given the previous phrase 〈cd〉 in d3 in Figure 4(b), only
〈ceac〉’s suffix 〈eac〉 needs to be stored. Support values of all the
phrases are calculated by merging all the forward lists in D′, com-
paring each phrase from a forward list to others. Over-counting of
a sub-phrase is also avoided. Details of the merge algorithm can
be found in [6]. After calculating all the local support values with
respect to D′, the confidence values are calculated by using a sep-
arate global support value dictionary. Then, the top-k results can
be outputted. Figure 4 presents a comparison between storing all
phrases, only maximal phrases, and prefix-maximal phrases. Note
that here the document corpus D is no longer limited to only the 4
given documents in Figure 1, but with many other documents not
listed (|D| � 4). Hence, many of the sub-phrases are globally
frequent. In the following, if not mentioned, we have |D| � 4.

To store the index more efficiently, all the prefix-maximal phrases
contained by one document are merged together forming a long in-
teger array. A 32-bit integer is assigned for each item, while only
the last 24 bits are used for content. The first 8 bits of the first item
in each phrase contains a flag indicating the start of a new phrase,
and stores the difference length from the previous phrase. Note that
this is an improved implementation, as the original implementa-
tion of Prefix-Maximal Indexing stores each prefix-maximal phrase
in an individual array, and has to also keep array addresses (with
the size of 64 bits in our X64 systems) of all the prefix-maximal
phrases. On a large scale document corpus with average long doc-
ument length, a large part of memory would be used for storing
array addresses.

The main drawback of this approach is that a full scan of the
forward lists of D′ is required, since no early termination technique
can be applied. Experiments show that this approach is very slow
compared to the Forward Indexing method. However, both of them
are dramatically faster than Phrase Inverted Indexing.

4. OUR APPROACH
In this section we present our Sequence Pattern Indexing ap-

proach for indexing and mining top-k phrases. First, we present
the details of our compressed global phrase index in Section 4.1
followed by its improvement in Section 4.2. Then, Section 4.3
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presents the algorithm to compute the top-k interesting phrases on
the given ad-hoc document collection.

4.1 Sequence Pattern Indexing
Although storing only prefix-maximal phrases could reduce the

memory usage significantly, compared to storing all the phrase IDs,
it is still not perfect. As an illustration, consider the prefix-maximal
phrases in Figure 4(b): we can find a lot of duplicate sub-phrases,
like 〈ceac〉 and 〈eacd〉 in d3, 〈efca〉 and 〈fcad〉 in d1, etc. These
duplicate sub-phrases occupy a large amount of memory, in partic-
ular with low min-supD and large max-len. Our devised index
structure makes use of this observation to achieve a better compres-
sion by removing these duplicate sub-phrases, as many as possible.
Obviously, the new indexing technique should also not jeopardize
the querying performance of the top-k phrase computation. As we
will see in Section 5, our indexing and top-k phrase mining meth-
ods provide better performance on both the index size and the run-
ning time compared to existing approaches.

Our indexing approach is inspired by the following observation:
Phrases are ordered sequences, which are originally extracted from
a long ordered sequence of the document. Hence, they also implic-
itly reflect an order between themselves. If we sort all the prefix-
maximal phrases by their original matching positions in the docu-
ment as shown in Figure 5 (Numbers after “@” indicate matching
positions.), we observe that there are many of duplicates as a suffix
of the previous phrase, while being a prefix of the current phrase. In
order to achieve a smaller index size, we need to find a way to uti-
lize the original matching positions (or order) of prefix-maximal
phrases more efficiently. One simple way is keeping, for each
phrase, only the rest part after the duplicate prefix. However, this
could not compress prefix-maximal phrases with the same prefix
(e.g., document 〈ababc〉 with its only two prefix-maximal phrases
〈aba〉 and 〈abc〉.) which happens a lot in real datasets (though not
very obvious in our tiny toy example). Plus, it is very difficult to
locate all possible suffixes of a specific prefix phrase, which is very
important in top-k interesting phrase computation. Note that simi-
larly, Prefix-Maximal Indexing does store only the difference suffix
for previous phrase sharing the same prefix, it is under the assump-
tion that all phrases are ordered lexically, where phrases with the
same prefix are grouped together. Also, that approach is significant
slow in top-k interesting phrases computation, due to the highly
complex computation on possible prefix phrases.

ID Prefix-Maximal Phrases a

d1 {ea@1, befc@3, efca@4, fcad@5, cad@6, ad@7}
d2 {dcbe@1, cbea@2, bea@3, ea@4, fe@6}
d3 {fcea@1, ceac@2, eacd@3, acd@4, cd@5}
d4 {acfd@1, cfd@2, fd@3, bea@5, eacd@6, acd@7}

· · · · · ·

a – Duplicate Prefix Sub-Phrase Comparing to Previous Phrase
– Duplicate Prefixes among Phrases

Figure 5: Prefix-Maximal Phrases (Ordered by Matching Position)

Figure 6(a) gives the data structure of our new indexing method
on document d1’s 6 prefix-maximal phrases given in Figure 5. We
can see that all the sub-phrases are organized on a forest structure
(two trees in the forest in this example), where each node con-
tains one item and its possible length information (will be explained
later). There are also some links from outside pointing to the nodes
(drawn in arrows above the nodes), which indicate the starting item
of the indexed prefix-maximal phrases. These information together

with the item in each node are used to store phrase length informa-
tion, which is a bit array with the size of max-len. Its flag value i
indicates that a phrase with the item as the i-th item is valid.

For example, if we want to retrieve all the phrases starting from
item b, we first visit the unique node n (n3 as shown in Figure 6(a))
which is linked from outside and contains b, and we have a prefix
p = 〈b〉 with the length of 1. Since n has only one child, we can
only extend it with e. We can keep extend p until 〈befc〉 which is
still valid. When we are trying to extend it with the next node con-
taining a which results in a prefix with the length of 5, we find that
it is no longer valid since the next node does not contain the possi-
ble length information about length 5 and we have to stop here. In
this way, all the phrases started with b can be visited.

The index is built as follows:

(I) For each prefix-maximal phrase p from a document d’s prefix-
maximal phrases ordered by matching position, we check
whether p’s first item p[1] has been linked to the index. If
not, we create a new tree root node n with p[1] as its content
and add 1 to n’s length information.

(II) We add p’s next item p[i] to the tree as a child of node n. If
it is already there we just skip it, else we create a new node
for p[i]. Possible length information for p[i] are also updated
with i added. Node n is also set to its child node contains
p[i]. Then we increase i by 1 and repeat (II).

(III) Until all of p’s items have been added, we go back to (I) for
the next prefix-maximal phrase. All the items we have not
seen before are also linked from outside to the index during
this process. The node ID in right-bottom corner of each
node in Figure 6(a) denotes the order each node is created.

Note that during the index building each unique item gets an
outside link pointing to it when it was encountered the first time,
and this may also include some outside links to items which are not
starting items of any phrases (especially when min-len ≥ 2). For
example, one may notice there is one arrow on item d in Figure 5,
while there is no phrase which starts with d (except length-1 phrase
d which is not valid since min-len = 2). This is because that when
we first encounter an item we do not know whether there are more
items afterward. We can either remove the outside link by doing
a simple checking after index building, or simply ignore it as the
possible length information guarantees no invalid phrase will be
retrieved with the item as starting item.

We can further prove its correctness with the following theorem.

THEOREM 1. Given an index generated from a document d’s
prefix-maximal phrases using the Sequence Pattern Indexing ap-
proach, each possible length information stored in each node in the
index corresponds to a different phrase contained by d.

PROOF. During the indexing process sub-phrases from differ-
ent prefix-maximal phrases are stored on different parts of the for-
est due to their different prefixes and all of the sub-phrases of a
prefix-maximal phrase are indexed with different possible lengths
set. Hence, the number of possible lengths equals the number of
phrases. Since our index structure is a forest, given a node n and
one of its possible lengths l, we can always get a different phrase
p with the length of l by traversing n and its l − 1 ancestors. Re-
call that each possible length information is set only when index-
ing one of the prefix-maximal phrase p′, we have p v p′. Now
we have x different phrases where each phrase is a sub-phrase of
d and x equals the total number of phrases of d, and we prove this
theorem.
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(b) Memory Layout

a1 2e1 b1 e2 f1

3 c2

4 a3 d4

1 2
3

n1 n2 n3 n4 n5 n6 n7 n8

2
3 4

2

(c) Improved Index Structure

Figure 6: Sequence Pattern Indexing (On d1 ∈ D in Figure 1)

From Theorem 1 the following corollary can be derived.

COROLLARY 1. By traversing the index of a document d gen-
erated by Sequence Pattern Indexing, we can get the exact set of
phrases contained by d.

PROOF. Theorem 1 has proved for each prefix-maximal phrase
we have all its sub-phrases indexed. According to previous descrip-
tion about index visiting process, given any prefix phrase we can
visit all its super-phrases with the prefix phrase as prefix. Together,
the corollary is proved.

As we can see, building the index of each document is with only
O(n) time complexity (as items in each phrase are visited only
once), where n is the sum of lengths of all the prefix-maximal
phrases contained by the document. Hence, the index building is
with quite low cost, and on our evaluaiton it actually finishs in only
a few minutes with millions of documents.

Figure 6(b) depicts the memory layout of our indexing technique,
with the number below each cell indicating a relative memory ad-
dress. As shown in the figure, every branch in the forest are merged
together to a byte array. Each node is assigned with 4 bytes (32
bits), with the first byte (8 bits) used for storing flags, and the last
3 bytes (24 bits) storing the item content. In the flag byte, the
last 6 bits are kept for possible length (1 to 6) information (given
max-len ≤ 6 in our systems) mentioned before. The second bit
is used to indicate the end of a branch which is set when merging
the branches to generate the byte array. With that flag set to 1, the
phrase matching always stops right after that node. When set to 0,
the first bit indicates that this 4 bytes belong to a node. When it is
set to 1, the current 2 bytes (with 15 bits left now after the first flag
bit) are used for storing a link address to a child node. Outside links

to the start items are also organized into a list with 2 bytes contain-
ing each item’s address. As we can see, the outside link list does
not contain any information about the item except their addresses.
This will be explained later in Section 4.3.

4.2 Improved Sequence Pattern Indexing
Although compared to Prefix-Maximal Indexing, the memory

usage has been greatly reduced by using the Sequence Pattern In-
dexing, there exist still some duplication in the forest structure, like
e → f → c → a and a → d depicted in Figure 6(a). Our
first indexing method above can not deal with them, as it utilizes
only ordered prefix-maximal phrases. Also, some of the duplicates
in index structure are not duplicate sub-phrases. Hence, we fur-
ther improve our Sequence Pattern Indexing approach, by utilizing
the specific matching positions (instead of just matching orders) of
each prefix-maximal phrases, trying to eliminate more duplicates.

Figure 6(c) shows our improved data structure. Compared to the
original one in Figure 6(a) using a forest structure, we now make
use of a graph structure which can eliminate duplicates more effi-
ciently. While the traversing method remains basically unchanged,
the index building process is substantially modified:

(I) For each prefix-maximal phrase p together with its matching
position m from all the document d’s prefix-maximal phrases
ordered by matching position, we first check whether p[1]
has been linked. If not, we create a new node n from p[1].

(II) For each p’s next item p[i], we check whether p[i] matches a
node nm+i whose matching position equals m+i. If yes, we
increase i, link and set n to nm+i, and repeat (II). If nm+i

does not exist, we create a new node.
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(III) Until all of p’s items have been added, we go back to (I) for
the next prefix-maximal phrase. Possible length information
are updated as before. Node numbers in the right-bottom
corners in Figure 6(c) now indicate both the adding order
and the matching positions.

For example, when adding the third phrase 〈efca〉whose match-
ing position is 4, we first match the first item e to node n1. Since
n1’s next node dose not have a matching position of 5, we link n1

to node n5 whose matching position is 5 and contains the item f,
and continue matching on node n5 until all the items are added.

Note that now when we are traversing the index structure, only
the direct links after the first phrase items are followed, to pre-
vent retrieving false phrases. For example, when we are retrieving
phrases starting with e, we only follow the direct link directly after
e linking to d, but not the indirect one after the next item a, which
could lead to a false phrase 〈ead〉. This is because if we follow the
indirect links there may be multiple paths (phrases) with the same
length but different contents to a node, and we do not know which
path the matching possible length information of the node belongs
to and hence is valid. For example if we follow the indirect links,
both the false phrase 〈ead〉 and the true phrase 〈cad〉 would lead
to node n8 with the same possible length of 3 in Figure 6(c).

Like Sequence Pattern Indexing, we also prove the correctness
of the improved approach. Before we continue, we first prove one
lemma.

LEMMA 1. Given an index generated by Improved Sequence
Pattern Indexing, each node can have at most two parents and they
have the same content.

PROOF. Given a document d and a node n with the content d[m]
and its matching position m, there is only one possible item d[m−1
before d[m] in document d at position m − 1. Besides n’s trivial
parent node n′ with the matching position m− 1 (if n′ exists), ac-
cording to the index building process another parent node n′′ could
only link to n if and only if n′′’s content equals to d[m− 1]. Now
since when building the index there is only one phrase correspond-
ing to this linking behavior, there is at most one parent that links
to n. Together with the trivial parent node, n could only have two
parents with the same content, and the lemma is proved.

THEOREM 2. Given an index generated from a document d’s
prefix-maximal phrases and their matching positions using the Im-
proved Sequence Pattern Indexing approach, each possible length
information stored in each node in the index corresponds to a dif-
ferent phrase contained by d.

PROOF. We only need to prove that for a node n with multiple
parents this theorem is true. For n’s descendants the same proof can
be applied. While for those nodes with single parent Theorem 1 in
Section 4.1 has already proved it.

Since we have already proved that n could only have two parents
n′ and n′′ with the same content in Lemma 1, obviously the two
paths from n′ and n′′ to n are same and corresponds to one same
phrase, according to the index building process and the modified
traversing process of following only direct links after the first item.
Hence it is just like the single parent situation and we have that
for a node with multiple parents each possible length information
corresponds to a different phrase.

From Theorem 2 we can derive the following corollary.

COROLLARY 2. By traversing the index of a document d gen-
erated by Improved Sequence Pattern Indexing, we obtain exactly
those phrases contained by d.

PROOF. Very similar to the proof of Corollary 1.

Similarily, the improved index building approach is also with
only O(n) time complexity.

The technique used to build the index memory layout is exactly
the same one for building Sequence Pattern Indexing in Section 4.1.

4.3 Top-k Interesting Phrase Mining
Now, we specify the algorithm for computing the top-k interest-

ing phrases, given the built index on the document corpus. Unlike
the Forward Indexing approach and the Phrase-Maximal Indexing
approach which use a |D′|-way merge join or variations, our algo-
rithm (Sequence Pattern Indexing) is a combination of both |D′|-
way merge join and the pattern-growth framework [17] used in the
frequent sequential pattern mining problem in data mining. While
the merge join approach is used only on prefixes with length 1, the
pattern-growth framework is applied to extend each prefix in the
merge join process.

The Pattern-growth framework in essence is a depth-first search
algorithm, where during each step the prefix pattern is extended
with one of the new local items derived by scanning the rest un-
matched part of each instance containing the prefix pattern. Al-
gorithms adopting pattern-growth framework usually start with an
empty pattern, and guarantee each newly derived prefix pattern is
frequent by checking the minimum support threshold. In this way,
all frequent patterns can be discovered and visited. For example,
if each prefix pattern is extended with one of the respective local
items in lexicographical order, we could have patterns found in the
following order: 〈a〉, 〈ab〉, 〈aba〉, 〈abd〉, 〈b〉, 〈ba〉, 〈bd〉, 〈cd〉,
〈d〉, 〈db〉.

When we introduced the index structure of the Sequence Pattern
Indexing method in Section 4.1, we pointed out that each index
for each document contains an address list consisting of addresses
of different items in the index. If we sort each address list in ad-
vance, when building the index, by keeping the same order of all
the items linked-to, among all the documents in the corpus, we can
actually apply the |D′|-way merge join on those address lists, and
retrieve all the phrases with the length of 1 appearing in the ad-hoc
document collection D′. Now, given any prefix length 1 phrase p
and the index structures of each document in D′, we can apply the
pattern-growth framework on p by keep appending local frequent
items discovered in the index structures to p, to mine all the phrases
with p as prefix and update the top-k interesting phrase list.

Early termination can also be achieved during the |D′|-way merge
join process. Before going into details, we first give some defini-
tions and theorems.

DEFINITION 3. Given a phrase p, we use: min-des-supp =
min{supp′ |p′ is frequent ∧ p is a prefix of p′} to denote the mini-
mum frequent support value of p’s super-phrase p′ with p as prefix
(p can be equal to p′).

THEOREM 3. Given a length 1 phrase p and any super-phrase
p′ with p as prefix (p can be equal to p′), we have:

max-confD′
p = min

{
1,

|D′|
min-des-supDp

}
≥ min

{
1,

supD
′

p

min-des-supDp

}

≥
supD

′

p′

supDp′
= confD′

p′

as an upper-bound of both p and p′’s confidence values.
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PROOF. Given the famous Apriori Principle [4] proving that
supp always ≥ supp′ and the fact that |D′| ≥ supD

′
p , this the-

orem can be easily proved.

Now we can derive from Theorem 3 the following corollary.

COROLLARY 3. Given a list of length-1 phrases p1, · · · , pi,
· · · , pn sorted by min-des-suppi in ascending order, we have:
max-confD′

p1 ≥ max-confD′
pi ≥ · · · ≥ max-confD′

pn

PROOF. For any length-1 phrases pi and pj with min-des-suppi
≤ min-des-suppj , we always have:

max-confD′
pi = min

{
1,

|D′|
min-des-supDpi

}
≥ min

{
1,

|D′|
min-des-supDpj

}
= max-confD′

pj

, and the corollary is proved.

Now with Corollary 3, early termination can be easily applied.
Before mining a length 1 phrase p from the |D′|-way merge join,
we check whether max-confD′

p is not larger than the k-th result in
the top-k list, and stop safely if it is true. Length-1 phrases of each
documents are retrieved in the order of min-des-suppi from the
address list in each index of each document, by sorting all items in
the corpus in advance during the index building process.

We also give some theorems for search space pruning before ex-
tending any super-phrases of each length 1 phrase. Similar to the
proof of Theorem 3, we can prove the following theorem.

THEOREM 4. Given a phrase p and any super-phrase p′ with p
as prefix (p can be equal to p′), we have:

max-des-confD′
p = min

{
1,

supD
′

p

min-des-supDp

}

≥
supD

′

p′

supDp′
= confD′

p′

as a upper-bound of both p and p′’s confidence values.

From Theorem 4 we get to the following corollary.

COROLLARY 4. Given a prefix phrase p and its length-(|p|+1)
super-phrases with p as prefix and extended with p’s local frequent
items, we can safely prune each length-(|p|+1) phrase p′ by check-
ing whether max-des-confD′

p′ is not larger than the k-th result in
the top-k list.

PROOF. Since for p and all its super-phrases, the upper bound
their confidences is always not greater than the last entry the top-
k list, the top-k list would never be updated by p and its super-
phrases. Hence, there is no need to extend p, and we can safely
remove p and its super-phrases from the search space.

Although very similar, max-des-confD′
p is different (smaller

and closer to confD′
p ) from max-confD′

p′ , since in the |D′|-way
merge join D′ and also supD

′
p are unknown until we meet (also

necessary for applying early termination) p , while in pattern-growth
supD

′
p is already computed before p’s local frequent item compu-

tation.
Actually, we can also apply early termination locally when ex-

tending a phrase. The following corollary gives the details.

COROLLARY 5. Given a prefix phrase p and its length-(|p|+1)
super-phrases with p as prefix and extended with p’s local frequent
items, ordered by max-des-confD′

p′ (p′ denotes each of the super-
phrases) in descending order, we can safely stop extending p iff for
any p′ its max-des-confD′

p′ is not larger than the k-th result in the
top-k list.

PROOF. Similar to the proof of Corollary 4.

Algorithm 1 shows the detailed mining algorithm. entriesd is
used to denote the index’s address list of each document d ∈ D′,
while pdbD

′
p denotes the projected database w.r.t. p on D′ contain-

ing each matching position of p on D′. The local frequent items
in pdbD

′
p are calculated by traversing the index structure of each

d from the p’s last matched item with only frequent ones returned.
The top-k result list is updated each time a new prefix phrase p with
min-len ≤ |p| ≤ max-len is visited, by comparing its confidence
value confD′

p with others’ in top-k result list.

Algorithm 1: Top-k Phrase Mining (Sequence Pattern Index-
ing)

Function: mine(D′, k)
Input: Current Document Collection D′ ⊆ D, Result Number
Output: Top-k Interesting Phrase List

1 result← ∅;
2 foreach frequent item i from |D′|-way merge join on entriesd

of each d ∈ D′ do
3 p← 〈i〉;
4 if result[k] ≥ max-confD′

p then
5 break;
6 mine_local(D′, k, p, pdbD

′
p , result);

7 return result;

Function: mine_local(D′, k, p, pdbD
′

p , result)
Input: Current Document Collection D′, Result Number,

Current Prefix Phrase, Current Projected Database,
Top-k Result List

1 if min-len ≤ |p| ≤ max-len then
2 update result with p by comparing confD′

p ;
3 foreach local frequent item i in pdbD

′
p , sorted by

max-des-confD′
p in descending order do

4 p′ ← p+ 〈i〉;
5 if result[k] ≥ max-des-confD′

p then
6 break;
7 mine_local(D′, k, p′, pdbD

′

p′ , result);

5. EXPERIMENTS
We now report on an experimental evaluation of our devised Se-

qPattIndex (Sequence Pattern Indexing) approach. We compare its
performance to two state-of-the-art methods: ForwardIndex (For-
ward Indexing) and PreMaxIndex (Prefix-Maximal Indexing). All
experiments are conducted on a Dell Workstation with a quad core
Intel Xeon W3520 (2.66 GHz) CPU (with only one core used) and
24 GB memory installed, running Windows 7 64-bit edition. All
the algorithms are written by C#. Table 1 gives the algorithms’
short names and descriptions for reference.

First, we introduce the two datasets we used during the evalua-
tion, which are extracted from PubMed [3] – the largest free pub-
lication database on life sciences and biomedical topics. The first
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Table 1: Algorithms Used in Evaluation

Baselines
Algorithm Description
ForwardIndex Forward Indexing [6] (in Section 3.2)
PreMaxIndex Prefix-Maximal Indexing [6] (in Section 3.3)

Our Approaches
Algorithm Description
SeqPattIndex Sequence Pattern Indexing (in Section 4)
SeqPattIndex_IM Improved Sequence Pattern Indexing (in Section 4.2)
SeqPattIndex_NP Sequence Pattern Indexing with Early Termination and

Search Space Pruning Turned off

one we used is the whole set of nearly 18 million publication titles
(with a raw size of 1.5 GB), which has a relatively short average
document length and very few duplicate words in each document.
This kind of data is very common, from publication titles in aca-
demic databases like Google Scholar, DBLP [1] 1 to query logs,
short messages as in Twitter. The second one we adopted is a set
of 2.5 million publication abstracts (with a raw size of 2.4 GB),
which has a relatively long average document length and a lot of
duplicate words in each document. This kind of data is also very
common, like in patent abstracts or NSF Award [2] abstracts, lead
sections 2 on Wikipedia pages, or product descriptions on websites.
The detailed dataset characteristics are listed in Table 2.

Table 2: Dataset characteristics

Global Per Document
Dataset #Doc. #Word Max. Len. Avg. Len. Avg. #Word
PubMed Titles 17,826,927 2,028,673 167 11.59 10.99
PubMed Abstracts 2,500,000 2,075,526 1599 149.72 92.1

5.1 Offline Global Frequent Phrase Mining
Note that we need to mine global frequent sub-phrases in ad-

vance on the whole dataset. Mined sub-phrases will then be in-
dexed by the evaluated algorithms. We give the details of our
adopted offline mining algorithm in this section.

A lot of algorithms have been devised to mine generalized fre-
quent sequential patterns allowing varying length and gaps between
items, like PrefixSpan [17]. However, those kind of algorithms are
not suitable for our task of mining frequent continuous sequential
patterns with maximum and minimum length limits and no gap be-
tween items. Although the length limitation can be easily solved,
the continuous limitation is not easy to overcome. For example,
one may consider using a general mining algorithm like PrefixS-
pan to mine all possible patterns first and then filter out our desired
patterns. However, this approach is not only significantly slow but
also inaccurate, as in some cases some continuous patterns could
not be found. Following we give an example of the case:

Document: abcabcd
Actually Pattern: abcabcd
Found by PrefixSpan: abcabcd
Found by PrefixSpan (No-gap): abcabcd

As we can see, although PrefixSpan also can find a pattern with
the content 〈abcd〉, the one it finds is non-continuous and will be
filtered out, instead of the missed continuous one appearing later
1We do not use DBLP as it contains only about 2 million publica-
tion titles and is too small to show significant runtime performance
differences. It also does not include any publication abstracts.
2The section before the table of content and the first heading.

in the document. Although we can also add the no-gap limitation
to PrefixSpan by extending a current pattern with only the local
frequent items right after it when mining patterns, as shown in the
example, we can only find the continuous pattern 〈abc〉 instead of
〈abcd〉 which is extended from the second appearance of 〈abc〉,
since, according to the pattern-growth framework adopted by Pre-
fixSpan, only the first appearance of pattern 〈abc〉 is considered.

Instead, we adopt a tricky way to help mining our desired pat-
terns, by modifying the SeqPattIndex algorithm in Section 4.3 from
mining the locally top-k interesting patterns to mining global fre-
quent patterns. This conversion is simple, since we just need to
remove all the early termination and search space pruning tech-
niques and the top-k pattern list and instead output all the patterns
that are frequent. In the following, we give the pseudo-code of the
modified algorithm. Note that before we run the algorithm, we first
create an index by treating each sub-text in a document with the
length of at most max-len as a prefix-maximal pattern. For ex-
ample, the document 〈abcabcd〉 in the previous example will be
indexed and mined by splitting into the following 7 prefix-maximal
patterns {〈abca〉, 〈bcab〉, 〈cabc〉, 〈abcd〉, 〈bcd〉, 〈cd〉, 〈d〉} with
max-len of 4.

Algorithm 2: Global Frequent Phrase Mining
Function: mine(D)
Input: Global Document Collection

1 foreach frequent item i from |D|-way merge join on entriesd
of each d ∈ D do

2 p← 〈i〉;
3 mine_local(D, k, p, pdbDp );

Function: mine_local(D′, p, pdbD
′

p )
Input: Current Document Collection D′, Current Prefix

Phrase, Current Projected Database
1 if min-len ≤ |p| ≤ max-len then
2 Output p;
3 foreach local frequent item i in pdbDp do
4 p′ ← p+ 〈i〉;
5 mine_local(D′, p′, pdbD

′

p′ );

The reason our algorithm can find all patterns is that each pos-
sible pattern with at most the length max-len has already been
indexed before running the algorithm, and will be visited if it is
frequent.

Since only continuous patterns are mined and no time-costly fil-
tering step is involved, this method is very fast. As we tested, only
less than one hour is need for mining patterns on the two PubMed
datasets (mentioned in Section 5) with min-sup of 5 and max-len
of 6. Together with the time for buildig indexes using mined global
patterns which is only a few minutes, the whole offline indexing
step uses not more than one hour.

5.2 In-Memory Index Size Evaluation
We first evaluated the in-memory index sizes of our approaches

(including the improved approach introduced in Section 4.2 called
SeqPattIndex_IM here) and the two baselines, with the results un-
der different minimum support thresholds listed in Figure 7. As we
can see, Forward Indexing has a very large index size compared
to others, while Prefix-Maximal Indexing has a very compact in-
dex size which is only half of that generated by Forward Index-
ing. Our methods have the best performances, with 1/2 to 2/3
of the Prefix-Maximal Indexing index size. On the PubMed Titles
dataset, our improved approach has similar performance compared
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to the original one, since very few duplicate items can be found in
each document in the dataset, hence, SeqPattIndex_IM could not
further compress the index. On the PubMed Abstracts dataset, with
lots of duplicate items, the improved approach further reduces the
index size to 2/3 to the original one’s. Note that the index size of
SeqPattIndex_NP is the same as for SeqPattIndex (i.e., SeqPattIn-
dex_NP affects only the querying performance.).

SeqPattIndex
SeqPattIndex_IM

PreMaxIndex
ForwardIndex
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Figure 7: In-Memory Index Size (in MB)

5.3 Querying Time Evaluation
Now we discuss the evaluation of the average runtime needed to

compute the top-k interesting phrases. We selected the queries used
in this evaluation as follows: First, we divide all sub-phrases into
different groups based on their frequencies in the original global
document collection. Patterns with the same number of digits in
their frequencies are grouped together. We build ranges of fre-
quencies like [100, 1000), [1000, 10000), etc. Then, we select the
top-10 frequent sub-phrases in each such group and merge them to-
gether as the final evaluation query collection for computing the av-
erage querying time (runtime). The reason for selecting the queries
like this is to cover different situations. Note that we do not con-
sider queries whose frequencies are below 100 since their querying
time with respect to different algorithms are too small to be distin-
guished and compared. Since the improved approach introduced
in Section 4.2 has nearly the same querying time of the original
approach (in Section 4.1), we do not show its results here. We
also included the performance of SeqPattIndex by turning off all
the early termination and search space pruning functions, indicated
by SeqPattIndex_NP in the figures later. Note that the evaluation
here assumes the indexes have alraedy been built and loaded in the
memory, hence the results do not include runtimes on global pat-
tern mining, maximal pattern extraction, index building, etc., in the
previous offline step.

Figure 8(a) and 8(d) reports on the average querying time on
PubMed Titles and PubMed Abstracts, respectively, with varying

ad-hoc document collection size |D′|, a fixed minimum support
threshold min-sup = 5, and k = 10. We compare our algo-
rithm SeqPattIndex with the two state-of-the-art algorithms For-
wardIndex and PreMaxIndex. As we can see, for all the algorithms,
the average querying times increase as |D′| increases with approx-
imately a linear relationship. Note that when |D′| > 10000 the
two algorithms SeqPattIndex and ForwardIndex start to show bet-
ter performance, since their early termination technologies start to
work more often under a larger |D′| which results in a significantly
reduced running time. Besides when |D′| is not large even Seq-
PattIndex’s slowest version SeqPattIndex_NP shows better perfor-
mance than ForwardIndex. This is because ForwardIndex has to
traverse all the frequent and infrequent sub-phrases when early ter-
mination is not working well, while SeqPattIndex only traverses
those frequent sub-phrases whose parents are also frequent (since
it follows the Apriori Principle [4]) and saves lot of time. Note that
only queries with a frequency larger than |D′| are adopted with the
first |D′| documents for each query used.

Figure 8(b) and 8(e) show the evaluation results with varying
k. Queries with frequencies larger than k are used in the evalua-
tion. As we can see, the querying time increases with increasing k.
When k is very large (close to |D′|), SeqPattIndex tends to have the
same average querying time as ForwardIndex. Note that although
according to the algorithm in Section 3.3 PreMaxIndex should have
the same performance with respect to all k values, actually its av-
erage querying time grows slowly with larger k. This is because of
the slower update process of the top-k prefix list with a larger k.

Finally, Figure 8(c) and 8(f) show the evaluation results on dif-
ferent minimum support thresholds min-sup. As we see, all the
algorithms are not sensitive to min-sup.

In general, Prefix-Maximal Indexing shows the worst perfor-
mance in all the cases and is slower than Forward Indexing and
Sequence Pattern Indexing, about 10 to 1, 000 times. The main
reason for this is that Prefix-Maximal Indexing consumes a signif-
icant amount of time on large |D′| and has no early termination or
pruning techniques to alleviate this. As for the Sequence Pattern
Indexing, we see the early termination and search space pruning
techniques are very effective, with the querying time reduced by
10 to 100 times. If we do not consider Sequence Pattern Indexing,
Forward Indexing is really very efficient, and hundreds times faster
than Prefix-Maximal Indexing. Our Sequence Pattern Indexing al-
gorithm is the fastest in all the cases, with generally a reduction of
a factor of 2 to 5 in the average querying time compared to For-
ward Indexing. This attributes to the more advanced infrequent
sub-phrase filtering (Apriori Principle [4]), together with search
space pruning and early termination whose efficiency have been
proved by comparing to the same algorithm having those functions
turned off, given that Forward Indexing uses only early termina-
tion technique. Compared to the very large index size of Forward
Indexing, Sequence Pattern Indexing is more preferred given the
smallest index size and the smallest average querying time.

5.4 Byte Read Evaluation
Besides evaluation on average querying time, we further give

the detailed evaluation results of byte read on the two datasets –
PubMed Titles and PubMed Abstracts – in this section, with vary-
ing |D′|, varying min-sup, and varying k. The same queries as
above are used in the evaluation.

As shown in Figure 9(a) and 9(d), we see that all evaluated al-
gorithms have similar average bytes read with smaller ad-hoc doc-
ument collection size |D′|. However, when |D′| increases to be
very large, the two algorithms SeqPattIndex and FowardIndex tend
to have significant lower byte read, due to the early termination.
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Also, in general, SeqPattIndex and ForwardIndex have similar av-
erage bytes read with varying |D′|.

Figure 9(b) and 9(e) further provide the results with varying k.
Similarly, we can find that SeqPattIndex and ForwardIndex have
similar performance due to the existing early termination. While
SeqPattIndex has lower byte read than Forward on low k values
mainly due to its better search space pruning, its byte read increases
fast under large k values, since search space pruning does not work
well when k approaches |D′|.

For bytes read with varying minimum support threshold min-sup,
Figure 9(c) and 9(f) show the results. We can see that SeqPattIn-
dex and ForwardIndex have much better results compared to Pre-
MaxIndex and SeqPattIndex_NP, while all algorithms have nearly
the same performance under different min-sup. SeqPattIndex and
ForwardIndex have results in the same order in this situation, with
SeqPattIndex having the better results, about a factor of 2 to 4
smaller.

In general, on the evaluation of average bytes read, the two al-
gorithms SeqPattIndex and ForwardIndex, which employ early ter-
mination, perform significantly better than two others PreMaxIn-
dex and SeqPattIndex_NP. On average, SeqPattIndex has the better
byte read performance than ForwardIndex, with about 2 to 10 times
fewer bytes read on low k values, while ForwardIndex has better
bytes read performance on larger k values.

6. RELATED WORK
The problem of mining top-k interesting phrases has been stud-

ied by [15] years ago, but on a static document collection. Until re-
cently, [18] proposes Phrase Inverted Indexing as the first approach
to compute the top-k interesting phrases on an ad-hoc document
collection. However, as it requires a full scan of the inverted lists
of all the documents in the corpus, it runs significantly slow, es-
pecially on large-scale datasets. [6] proposes the Forward Index-
ing approach to solve this problem, storing contained phrase IDs
in each document’s forward list. Hence, only a scan on the ad-
hoc document collection’s forward lists is necessary. Together with
devised early termination technique, Forward Indexing is signifi-
cantly faster. Another very different algorithm Prefix-Maximal In-
dexing is also introduced in [6], focusing on reducing the index size
by storing only prefix maximal phrases for each document. How-
ever, due to the lack of early termination, Prefix-Maximal Indexing
can be thousands times slower than Forward Indexing.

The top-k interesting phrases computation of our algorithm is de-
vised by combining classical |D′|-way merge joins and the pattern-
growth framework originally used for generalized sequence pattern
mining, given that a phrase in our system can be viewed as a special
case of a generalized sequence pattern (which allows any length
and gaps between items) introduced in [5] at first. The pattern-
growth framework was first devised for the PrefixSpan [17] algo-
rithm to mine all frequent sequence patterns, and has been widely
adopted by most algorithms developed later. It works by keep ex-
tending a prefix with each found locally frequent item, and is in
essence a depth-first search algorithm.

Mining top-k interesting patterns has also been studied in the
data mining area, often used to find the most discriminative sub-
patterns for tasks like classification or clustering. For example,
[16] tries to select rules with the top-k highest confidence values
on each class from all mined frequent patterns, for item-set datasets
classification. In fact, our problem could be solved by adopting
the strategy above with the query q of an ad-hoc document col-
lection D′ as the class label. However, this would be too costly
as for each query hundreds of seconds would be used. Besides,
as discussed in Section 5.1, the mining algorithm has to be mod-

ified to work on our specialized patterns. Some more advanced
data mining algorithms have also been proposed to solve the prob-
lem more efficiently and more effectively. [9] proposes to mine
the top-k covering rules for each instance directly to help classi-
fying gene expressions, while [20] provides a similar solution for
item-set datasets. Recent work [7, 8, 10, 13, 11] are also proposed
working on finding most discriminative sub-patterns, with different
instance covering technologies, using SVM instead of rule-based
classifier, adopting interesting measures like information-gain, us-
ing numerical features, and/or classifying uncertain data, etc..

[19] tries to reduce both the size of data cube and querying time
on data cube by identifying prefix and suffix structural redundan-
cies, while our system tries to compute top interesting phrases dy-
namically for each ad-hoc query with both carefully designed index
structure storing phrase candidates and efficient algorithm working
on the index structure to compute final results, which are in essence
two very different problems. [14] works on discovering interesting
terms of certain ad-hoc document collections, while [12] tries to
find facets from an ad-hoc set of documents. However, identified
facets are only about the documents’ meta data, unlike our systems
working on identifying phrases directly from document texts. Re-
cently, [21] proposes a novel system to try to identify key phrases
which could be used in future as queries from an user-inputted text,
given an existing text corpus. Phrase candidates are scored by ei-
ther TF/IDF or mutual information. Wikipedia has also been uti-
lized to help rank phrase candidates.

7. CONCLUSIONS
In this work we have devised a novel indexing technique for min-

ing interesting phrases in ad-hoc document collections. We have
coined it Sequence Pattern Indexing (SeqPattIndex) as it harnesses
the natural sequential alignment of frequent patterns inside docu-
ments. The index created with this approach shows a low level
or redundancy compared to existing approaches and can be com-
pressed, as we have shown in this work. We have developed an ef-
ficient top-k pattern mining algorithm that operates on the upfront
generated indexes and allows for early termination. We have con-
ducted a comprehensive performance study using real world data
sets showing that our approach outperforms existing approaches
not only in the compactness of the underlying indices but also in
the runtime of the top-k mining algorithm.
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