
Data Management with SAPs In-Memory Computing
Engine

Joos-Hendrik Boese
SAP AG

j.boese@sap.com

Christian Mathis
SAP AG

christian.mathis@sap.com
Cafer Tosun

SAP AG
cafer.tosun@sap.com

Franz Faerber
SAP AG

franz.faerber@sap.com

ABSTRACT
We present some architectural and technological insights on
SAP’s HANA database and derive research challenges for
future enterprise application development.

The HANA database management system [1] was developed
to meet changed requirements of modern business applica-
tions. Nowadays, these require fast and complex analytical
data processing coupled with traditional transactional data
management. Additionally, fast and agile decision processes
that take operational data as well as structured and unstruc-
tured information into account are the current key driver
in enterprises for business success. In conventional system
landscapes currently found in enterprises, dedicated systems
are used for analytical and transactional data processing. In
contrast, HANA follows a more holistic data management
approach by integrating OLTP and OLAP functionality in
a single system and by adding features beyond traditional
database management systems, such as graph or text pro-
cessing for semi- and unstructured data. While in common
three-tier architectures, compute-intensive applications run
at the application server layer and data is loaded into the
main memory of application servers, enterprise applications
developed for or moved to HANA are more tightly integrated
with the database. The main principle of application devel-
opment for HANA is to execute data-intensive computations
in the database close to the raw data in order to prevent ex-
pensive data movement. This shift in application design
poses new challenges to the application developer: in order
to utilize HANA efficiently, he has to think differently about
how to design his application. We’ll address these challenges
and present some open questions in this area in the second
part of the talk.

Categories and Subject Descriptors
H.2 Database Management [General]: Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...10.00

General Terms
Design, Languages

1. SAP IN-MEMORY DATABASE
The SAP HANA database management system [1] provides
the data management infrastructure for current and future
SAP enterprise applications. The technical architecture and
design of HANA was driven by the significant change of
requirements on data management in modern enterprise ap-
plications, as well as recent developments in hardware archi-
tectures:

Over the last decades, enterprise applications could be classi-
fied as either OLAP or OLTP centric. Today, in most cases,
this distinction cannot be made anymore, as more and more
analytical applications require the immediate availability of
operational data to support accurate decision making, while
transactional applications also tend to touch large amounts
of data, e.g., to calculate aggregates like sums of already
delivered orders per client [4]. In addition, modern enter-
prise applications demand for non-standard features such as
planning, optimization or predictive analysis functionality,
which sometimes rely on non-relational data models, such
as graphs or semi-structured data. As speed is a key factor
for business success, response times of query execution for
decision making must be in sub-second to seconds. This re-
quires all data to be kept constantly online for fast querying
and analytics. Therefore, HANA keeps the primary copy
of its data in-memory to provide up-to-date data for fast
ad-hoc processing in-memory at any time.

To provide a solution for the heterogeneous needs of complex
enterprise applications, HANA embeds multiple storage and
query engines supporting different domain-specific languages
and targeting different data models:

1. To support the standard SQL features for enterprise ap-
plications, HANA provides a relational storage and query
engine that allows access to relational data via SQL. The
relational store can physically organize data in a column
or row-oriented fashion, depending on expected data access
patterns. Organizing data along columns bears the advan-
tage of high compression rates and cache-efficient process-
ing of aggregation and scan operations [3]. Thus, relations
that are used for data-intensive operations are stored in a
column-oriented manner. In fact, scan operations on com-
pressed columns are so fast that in the majority of cases

542



there is no need to create and maintain indexes, which re-
duces the memory required to manage the data.

2. Since valuable insights can be gained from enhancing
structured information with unstructured or semi-structured
data, HANA embeds a text engine that supports text index-
ing and common text search features, such as fuzzy or phrase
search. Such data can then be “joined” to relations of the
relational store.

3. The graph engine provides access to graph structures, as
commonly required in SAP’s planning and supply chain ap-
plications. Domain-specific graph languages are supported
to query and manipulate stored graph data.

To access and process the information stored by the different
storage engines, domain-specific languages and extensions
to SQL are provided. Besides SQL, supported languages
at the moment are: (i) MDX for multi-dimensional expres-
sions, (ii) proprietary languages for planning applications,
and (iii) various extensions to SQL, e.g., for text search.
Functionality that cannot be expressed in SQL or one of the
domain-specific languages can be implemented using a pro-
cedural extension to SQL called SQL Script. SQL Script is
a flexible programming language with imperative elements
such as loops and conditionals allowing to define the control
flow of applications. SQL Script can be coupled with stan-
dard (declarative) SQL and operators defined by HANA’s
domain-specific languages. Functionality and business logic
that is frequently used in SAP’s enterprise applications, such
as currency conversion, is implemented in a function library
natively in the database kernel. These functions can be pro-
grammed with a maximum degree of parallelism, since the
library developer is in full control and can implement par-
allel execution on a lower level. Therefore, these operators
are much more tightly coupled with the database kernel in
contrast to classical stored procedures implemented in SQL
Script. These native functions can then be called in procedu-
ral SQL Script code. Stored procedures and domain-specific
languages are translated into an internal query processing
structure called the “Calculation Model” [2]. Calculation
Models may contain native operators implemented by differ-
ent query engines or operators defined in the native function
libraries.

By integrating support for multiple data models and lan-
guages, HANA establishes a holistic data management plat-
form for SAP’s enterprise applications that allows to speed
up existing applications, and enables the development of
completely new types of applications. To illustrate this, we
briefly present two examples:

• Availability-to-Promise (ATP) Check: ATP is a classi-
cal SAP application in logistics as well as sales and dis-
tribution. ATP checks are typically run during sales-
order processing, where a customer or an agent tries to
confirm, whether or not an ordered quantity of some
product can be delivered at a specific future point in
time. The ATP check is carried out on database ta-
bles representing the current stock situation, planned
goods issues and planned goods receipts. To compute
the ATP check, this information has to be transformed
into a time series (representing goods movements). In

the classical three-tier R/3 solution the database had
to be alleviated from compute-intensive processing. In
consequence, ATP time series are kept in a redundant
form as pre-computed persistent aggregate tables. The
code responsible for updating and keeping the redun-
dant data in sync runs outside the database system
in the application server, to reduce the workload on
the backend. With SAP HANA and its on-the-fly cal-
culation, we have the opportunity to abolish persis-
tent aggregates and to calculate the ATP time series
at query runtime. Furthermore, we can express the
ATP check logic in SQL Script and push it into SAP
HANA [5]. This simplifies code, allows greater flexi-
bility (e.g., adjustable time buckets) and avoids main-
tenance and consistency checks against persistent ag-
gregates.

• Analytics of patient’s records in cancer treatment: doc-
umentation of diagnosis and therapies of cancer pa-
tients in hospitals includes various records in natural
language such as doctor’s notes, manually entered di-
agnoses texts or therapy plans. Various analysis and
planning operations in daily operations of hospitals re-
quire to identify cohorts of patients with similar diag-
noses, therapies or other similarities, such as survival
status, tumor types etc. HANA’s text engine and its
entity recognition and fuzzy search features enable a
large german hospital to compute flexible reports on
their patients that include relations transparently gen-
erated from semi-structured patient records.

While the ATP application is an example for an enterprise
application that was revised and redesigned for SAPs new
in-memory computing engine, the second application is an
example for a new application enabled by HANA. The pos-
sibility of running flexible ad-hoc analytics on operational
data is expected to enable numerous new applications in
the realm of enterprise software, as well as other application
areas.

To leverage the performance of this new database layer, ap-
plications have to be revised to push application logic down
to the data, i.e., from the application layer into the database.
This poses some new challenges for application development
described in the second part of this talk.

2. DEVELOPING THE NEXT GENERATION
OF BUSINESS APPLICATIONS

Pushing application logic down to the database contrasts
the classical three-tier pattern, which has been widely imple-
mented in practice. In the classical architecture the database
was considered as the computational bottleneck and the
middle-tier was responsible for processing compute-intensive
operations. The rationale behind this design pattern was
that the application server layer could be easily scaled-out
by adding additional machines, while the database manage-
ment systems could only be scaled-up, which was uneco-
nomical. Thus, the database server had to be protected
from compute-intensive operations. With the ever increas-
ing computing power and main memory sizes of modern
hardware architectures, scaling-up the database server is
technically and economically feasible today as proved by the
HANA appliance.

543



Having a database management system that integrates het-
erogeneous domain-specific features in addition to signifi-
cant computing power, changes the way SAP’s enterprise
applications can be designed. To make use of the full po-
tential of SAP’s in-memory computing engine, the devel-
oper has to decide about what parts of his application are
data-intensive. This part can then be pushed down into
the database, where it is executed close to the primary data
structures of the storage engines. This eliminates data move-
ment from the database into application servers, which, in
fact, is the main bottleneck for data-intensive applications in
traditional three-tier architectures today. Identifying data-
intensive operations is sometimes trivial and sometimes tricky.
Application developers could for example be guided by best
practices, design patterns, tools for code analysis, profil-
ing, etc. Another approach is to decide at execution time,
whether for a given setting, either data is moved from the
database to the application server or whether code should
be shipped to the database to be executed there.

To utilize the computing power of modern server platforms,
user-defined logic must exploit parallelism provided by the
abundance of compute cores. Also, data-specific code- and
runtime optimizations must be applied to execute applica-
tion code efficiently. Since SAP’s in-memory database tech-
nology is evolving from a classical database system to a
multi-purpose data analysis engine, runtime optimizations
and transparent parallelization must also be applied for non-
SQL (procedural) parts of the application code. Focusing
on well understood SQL query optimization is not suffi-
cient anymore. Automatic optimization and parallelization
of arbitrary procedural parts of application code is required.
Algorithms implemented in domain-specific languages or in
SQL Script must scale over multiple cores.

One solution is to provide language features, that allow ap-
plication programmers to describe how the in-memory ex-
ecution engine can optimize and parallelize user code: to
address different types of application developers, the system
can allow for coding at different levels of abstraction. For
example, some application logic can be implemented using
graphical tools such as SAP’s HANA modeler. Encorporat-
ing parallelism hints on this level can be done by provid-
ing split/merge operations that split/merge data streams
for parallel processing. Again, other parts of the application
can be directly implemented in SQL Script, where paral-
lelism can be formulated, for example, using parallel for

operations or functional patterns like map/reduce. At the
level below, we can provide an infrastructure that general-
izes and modularizes existing database-internal algorithms
and data structures for easy re-use and re-combination in
application code running in the database system.

For convenient development of arbitrary data-intensive logic
in SQL Script, such a language will need to evolve from a
pure procedural SQL extension to a more complete program-
ming model, supporting features such as modularization,
standard libraries, debugging tools, exception handling, etc.
The way these challenges are addressed and solved are fun-
damental, since they will define the way we program future
enterprise applications for SAPs in-memory engine.

3. REFERENCES
[1] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg,

and W. Lehner. SAP HANA database: data
management for modern business applications.
SIGMOD Rec., 40(4):45–51, Jan. 2012.

[2] B. Jaecksch, F. Faerber, F. Rosenthal, and W. Lehner.
Hybrid data-flow graphs for procedural domain-specific
query languages. In Proceedings of the 23rd
international conference on Scientific and statistical
database management, SSDBM’11, pages 577–578,
Berlin, Heidelberg, 2011. Springer-Verlag.

[3] H. Plattner. A common database approach for OLTP
and OLAP using an in-memory column database. In
Proceedings of the 35th SIGMOD international
conference on Management of data, SIGMOD ’09,
pages 1–2, New York, NY, USA, 2009. ACM.

[4] H. Plattner and A. Zeier. In-Memory Data
Management: An Inflection Point for Enterprise
Applications. Springer Verlag, Heidelberg, 2011.

[5] C. Tinnefeld, S. Müller, H. Kaltegärtner, S. Hillig,
L. Butzmann, D. Eickhoff, S. Klauck, D. Taschik,
B. Wagner, O. Xylander, A. Zeier, H. Plattner, and
C. Tosun. Available-to-Promise on an in-memory
column store. In BTW, pages 667–686, 2011.

544




