
SocialSearch: Enhancing Entity Search with Social
Network Matching

∗

Gae-won You, Seung-won Hwang
Pohang University of Science and Technology

Pohang, Republic of Korea

{gwyou,swhwang}@postech.edu

Zaiqing Nie, Ji-Rong Wen
Microsoft Research Asia

Beijing, P. R. China

{znie,jrwen}@microsoft.com

ABSTRACT

This paper introduces the problem of matching people names to
their corresponding social network identities such as their Twitter
accounts. Existing tools for this purpose build upon naive textual
matching and inevitably suffer low precision, due to false posi-
tives (e.g., fake impersonator accounts) and false negatives (e.g., ac-
counts using nicknames). To overcome these limitations, we lever-
age “relational” evidences extracted from the Web corpus. In par-
ticular, as such an example, we adopt Web document co-occurrences,
which can be interpreted as an “implicit” counterpart of Twitter fol-
lower relationships. Using both textual and relational features, we
learn a ranking function aggregating these features for the accurate
ordering of candidate matches. Another key contribution of this pa-
per is to formulate confidence scoring as a separate problem from
relevance ranking. A baseline approach is to use the relevance of
the top match itself as the confidence score. In contrast, we train a
separate classifier, using not only the top relevance score but also
various statistical features extracted from the relevance scores of
all candidates, and empirically validate to outperform the baseline
approach. We evaluate our proposed system using real-life internet-
scale entity-relationship and social network graphs.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Search process; H.4
[Information Systems Applications]: Miscellaneous

General Terms

Algorithms, experimentation, performance

Keywords

Entity search, graph matching, social network

1. INTRODUCTION
As the number of people with “Web presence” increases, more

search engines provide object-level search results [11, 13], e.g., by

∗This research was supported by Microsoft Research and the MKE
(The Ministry of Knowledge Economy), Korea, under IT/SW Cre-
ative research program supervised by the NIPA (National IT Indus-
try Promotion Agency) (NIPA-2010-C1810-1002-0003).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

showing related news, images, products, and people frequently co-
occurred in the news. To enable instant social interactions with
such people entities, this paper develops SocialSearch, of map-
ping the given person name1 with its corresponding entity in the
commercial social networks, such as Twitter. For instance, such
system will link more than 100 million people that can be crawled
from the Web, to their corresponding Twitter accounts among 12
million users (number as of year 2009).

While there are existing services mapping Web entity with its
social entity, such as a browser plug-in WebMynd [2], they build on
an assumption that full names representing Web entities are used
to describe the corresponding social entities and focus on textual
matching.

However, we observe that such assumption holds only for a lim-
ited fraction of real-life matchings, as Figure 1 illustrates– For 627
randomly selected query names with notable Web presence (as ex-
plained in Section 4.1.2), full name matching is correct for only
16.5%, and fails for the remaining 83.5%, which falls into the fol-
lowing representative cases observed from this pie chart.

41.6%

10.8%

47.5%

16.5%

Full Name

Nickname

No Account

Full Name Matching

Figure 1: Failure of textual matching

Impersonator. As revealing full names attracts traffic through name
search, many celebrities present their full names. However, for the
same reason, many fake accounts impersonating celebrities also ex-
ist, which has resulted in many lawsuits for Twitter recently. To
illustrate, in the pie chart, among 41.6% of accounts using full
names, which naive textual matching identifies as correct matches,
only 16.5% are authentic and the rest are fake or confused Twit-
ter identities. To partially address this problem, Twitter manually
distinguishes an authentic account and marked as “verified” by dis-
playing a check mark next to the Twitter ID.
Nicknaming. For many people entities belonging to “long tail” [15],
i.e., not necessarily celebrities but with notable Web presence, at-
tracting traffic is not as much of a concern. They thus often use
nicknames, which cannot be reached by the naive name matching.
Such account covers 10.8% of the real matches, shown as a gray
pie in Figure 1.

1This paper assumes that Web entities have no name ambiguity.
The name disambiguation is out of our scope.

515

No account. While the above two cases cover the cases where
there is a matching Twitter account but hard to find (confused by
fake identities and the use of nicknaming), there is a significant
fraction of cases with no matching Twitter account. As a black
pie in Figure 1 shows, 47.5% of the random names do not have
matching accounts in Twitter.

This paper aims at overcoming the limitations discussed above
by exploiting “relational” evidences collected from the Web. More
specifically, for given a person name as a query, we can extract re-
lated people to the query name using co-occurrences or link struc-
ture. We interpret such a relationship as an “implicit” counterpart
to Twitter follower relationships and propose to leverage these re-
lational features to complement textual features.

As such an example, we leverage an entity-relationship graph
built upon co-occurrences in the Web corpus, obtained from object-
level search engine Microsoft EntityCube [1, 13]. For instance,
when a query is ‘Bill Gates’, it retrieves and visualizes the related
people names such as ‘Steve Jobs’ frequently co-occurred with
‘Bill Gates’ in Web documents.

By leveraging this graph, our proposed problem of matching the
person name to its Twitter account becomes to match a node from
an entity-relationship graph to a Twitter graph. While textually
comparing the person name and the Twitter name corresponds to
using only node similarity, our proposed solution enables “holis-
tic” matching of using both textual and relational evidences, which
complements textual matching in the following two significant ways:

First, relational features, such as “A frequently co-occurs with
B in Web documents” (extracted from an entity-relationship graph)
and “A follows B’ in Twitter” (extracted from a Twitter graph),
work as an additional evidence to match B with its nickname B’,
even when there is not much textual similarity. Relational evi-
dences can contribute to not matching two nodes that are textually
identical to avoid matching impersonators. Second, unlike Twitter
graph that is very manipulation-prone, as users can choose arbitrary
user names and follow arbitrary accounts, the entity-relationship
graph is more robust, representing the relationships extracted from
the implicit feedbacks of Web document creators (or, leveraging
the wisdom of crowds).

In particular, from these two graphs, we extract both textual and
relational features and train two classifiers for (1) ranking candi-
dates by relevance, for the given query keyword, and (2) classi-
fying whether there exists a matching Twitter account among the
candidates identified as follows:

• Relevance Ranking: We extract textual and relational fea-
tures and use an SVM to learn a ranking function to accu-
rately order the matching candidates.

• Confidence Scoring: We then quantify the confidence level
on whether the candidates contain a match or not to help
users to easily identify the case with no account.

To summarize, we believe this paper has the following key con-
tributions:

• We formulate SocialSearch as a novel ranking problem and
propose a learning model to rank the social entities. We
leverage an entity-relationship graph extracted from Web doc-
ument co-occurrences (1) to leverage relational features for
matching, and (2) to enable more manipulation-resistant map-
ping. This unique formulation enables holistic and robust

matching using both textual and relational features.

• We formulate confidence scoring as a separate problem from
relevance ranking to help users to easily identify the case
with no account. A baseline approach is to treat the rele-
vance score of the top match itself as the confidence score. In

contrast, we train a separate classifier using not only the top
relevance score but also various statistical features extracted
from the relevance scores of all candidates, and empirically
validate to outperform the baseline approach.

• We validate the effectiveness of our approach using internet-
scale real-life EntityCube and social network datasets.

2. RELATED WORK
To the best of our knowledge, no previous work has extracted

implicit network structures from the Web corpus and matched with
social networks. We survey related efforts on matching names with
social network identities, categorized into those using (1) textual
and (2) relational features.

Textual features. There have been several browser plug-ins such
as WebMynd augmenting Web search results with social network
search results. However, such approaches are solely based on tex-
tual similarity and thus identify only a limited fraction of matches
as discussed in Section 1. Similarly, name or ID search typically
provided from social network services, e.g., Twitter name search,
also builds on textual similarity and suffers from the same prob-
lems.

Relational features. Leveraging relations between nodes has been
explored in a different problem context in regards to anonymity
aspects. Several studies reported that relational features, such as
friendship relationships in social network and citations in academic
literature, reveal the identities (or real-life names), even when nodes
are “anonymized” [6, 12]. While these works motivate the use of
relational features, they cannot be adopted for our target problem
because the precision is too low, 30.8% or 40-45%, respectively,
by aiming at a different goal of validating de-anonymization (non-
zero precision) with limited information. In contrast, our goal is to
achieve the maximal precision leveraging all available information.

Alternatively, relational features have been adopted for disam-
biguating names and recommendation from (1) a Web graph [3],
(2) bibliographic citations [14], and (3) a social network [4, 5].
First, link structure of the matching documents is used to select the
right identity with high relational similarity. Second, coauthor in-
formation is used to identify and correct name variants. Third, the
social relationships are exploited to recommend new friends (us-
ing friends-of-friends relationships), communities, or Web pages
favored by social peers.

3. OUR FRAMEWORK
We design our solution as three main sequential procedures– (1)

selecting candidate accounts, (2) ranking candidate accounts, and
(3) computing confidence.

3.1 Candidate Selection
We select candidates relevant to the query name. A naive ap-

proach is to select all accounts that exactly match the query name.
However, as we already discussed in Section 1, this approach can
find only a limited fraction (∼16.5%) of the real matches.

We thus relax candidate selection criteria to include partial matches.
Our observation with real-life matches suggests that our proposed
relaxation scheme covers 97.26% of real matches. More formally,
given a query name q = {q1, q2, · · · }, i.e., an ordered set of words
delimited by a space character, 97.26% of the names c.n of the
candidate account c fall into one of the following three types:

• Exact containment (E-type): The account name in this cat-
egory is exactly matched with the query name, i.e., q = c.n.

516

• All containment (A-type): The account name in this cate-
gory contains all the words of the query name, i.e., ∀qi ∈
q, qi ⊂ c.n2. In other words, this category permits the re-
ordering of words or concatenation/augmentation. For ex-
ample, given a query q = ‘John Mccain’, A-type matches in-
clude all E-type matches and also the matches like ‘Mccain,
John’ (reordering words), ‘JohnMccain’ (concatenation), or
‘JohnMccain2010’ (concatenation and augmentation).

• Some containment (S-type): The account name in this cat-
egory contains some words of the query name, i.e., ∃qi ∈
q, qi ⊂ c.n. For example, for q = ‘John Mccain’, S-type
matches include all E-type and A-type matches, and also the
matches like ‘john’, ‘jmccain’, or ‘mccain2010’.

Table 1 shows the coverage and the average number of candi-
dates for the candidate selection methods exploiting three types.
Specifically, for 329 random queries with matching Twitter accounts
(as explained in Section 4.1.2), the matching account falls into E-,
A-, and S-types with 79.33, 91.49, and 97.26%, respectively.

Table 1: Coverage of candidate selection
Type E-type A-type S-type

Coverage 0.7933 0.9149 0.9726

Avg. # candidates 18.8 21.6 205.0

The increase in coverage, as E-, A-, and S-types are used for
candidate selection, can be naturally explained by the containment
in the definitions of three types– All E-type names naturally satisfy
A-type and S-type containments, and all A-type names satisfy S-
type, i.e., CE ⊂ CA ⊂ CS , where CE , CA, and CS are the sets of
candidates obtained from the three selection methods, respectively.

We adopt S-type for initial candidate selection to maximize the
coverage, which we later narrow down using relevance ranking.
However, the trade-off for maximizing coverage is a large can-
didate size, as Table 1 shows the average number of candidates
which increases dramatically from 18.8 to 205.0, as the selection
scheme relaxes from E-type to S-type. We partially address this
problem with an additional filtering condition. To illustrate, for
q=‘Bill Gates’, S-type candidates include ‘Bill Clinton’, which is
unlikely to be a candidate. To eliminate candidates that are highly
likely to belong to another name, we drop the names that exactly
match other names occurred in the Web page.

3.2 Ranking Candidates
Once the candidates are identified, we rank them with textual

and relational features (Section 3.2.1) using the aggregated ranking
function (Section 3.2.2).

3.2.1 Feature Extraction

This section reports the features that have a positive effect to
the performance. Those features are computed for the candidates,
with respect to the EntityCube entity matching a query keyword,
designed to quantify (1) relevance and (2) popularity.

First, regarding relevance, for each Twitter account candidate,
we compute the relevance in terms of (1) name revealed in the
Twitter page (2) Twitter ID and (3) related nodes. Second, regard-
ing popularity, we count the number of followers to measure how
likely the corresponding Twitter account to match the Web iden-
tity with notable enough Web presence to qualify as an EntityCube
entity.
Name relevance. The name type, among E-, A-, and S-types, sug-
gests how likely the given Twitter account candidate matches the

2We use the notation ⊂ to represent a substring matching. For
example, given two strings s1 and s2, s1 ⊂ s2 means that s1 is a
substring of s2.

person name used in query, as Table 3 enumerates name type fea-
tures as binary numbers.
ID relevance. Similarly, as many Twitter users use part of their
names as Twitter ID, the ID type, classified into E-, A-, and S-types
following the same convention of classifying names, also evidences
the likelihood of the given candidate to be a match. However, un-
like Twitter names, pre-filtered to belong to either E-, A-, or S-type,
ID may not fall into any one of these categories. In such case, such
ID is categorized into N-type. These four types are represented by
four binary features shown in Table 3.
Relation relevance. We now discuss relational relevance. Given a
query name ‘Bill Gates’, a candidate account ‘BillGates’ is more
likely to be a match, if its related nodes (based on Twitter fol-
lower relationships) match the names of the adjacent nodes in the
EntityCube entity-relationship graph (i.e., people co-occurring fre-
quently with ‘Bill Gates’ in Web documents). For this purpose, we
first observe the discrepancy between co-occurrences and follower
relationships– While the former is bidirectional, the latter is uni-
directional, as Figure 2 illustrates. In this figure, given a query

EntityCube Twitter

John Mccain JohnMccain

Bill Gates Bill Clinton

Barack Obama
Barack Obama

A-type

S-type

Figure 2: Features on relation

‘Barack Obama’, ‘Bill Clinton’ with a bidirectional follower rela-
tionship may have different strength, compared to ‘John Mccain’
with a unidirectional follower relationship, which we thus sepa-
rate into two different features. For each type, we count the num-
ber of common neighbors as features between neighbors in Enti-
tyCube graph and those in Twitter graph, as Table 3 enumerates.
For matching and counting common neighbors, we use A-type and
S-type textual matches respectively, which explains the A-type and
S-type features in Table 3 for each type. In this neighbor matching
process, if one-to-many matches exist, we select one (1) satisfy-
ing stricter matching criteria (E-type matching for counting A-type
common neighbors, and A-type for counting S-type matches) and
(2) if no such match exists, we arbitrarily select one. Lastly, we
take the logarithm of the count, as counts tend to follow power law,
i.e., log(|R|+ 1), where |R| is the number of relations.

Table 2: Average number of common neighbors for unidirec-

tional (U) and bidirectional (B) edges
A-type (U) S-type (U) A-type (B) S-type (B)

Match 2.0217 9.3746 0.4386 1.7554

Non-match 0.4897 3.4200 0.0672 0.3236

To motivate the use of common neighbors as features to distin-
guish matches from non-matches, Table 2 illustrates the average
number of common neighbors for the matches and non-matches,
counted using E- and A-type match (respectively) for uni- and bi-
directional neighbors (respectively). We can observe that the com-
mon neighbors of the matches significantly outnumber those of
non-matches.
Popularity. In addition to the above mentioned three features re-
lated to relevance, we also consider the popularity of the corre-
sponding Twitter account, quantified by the number of follower in-
links. As EntityCube entities correspond to people with notable
Web presence, this metric evidences how likely the corresponding

517

Twitter account to have notable Web presence. We similarly take
the logarithm of the inlink count, i.e., log(indegree(c)+1), as the
indegree also follows power law [7].

3.2.2 Learning to Rank: Combining Features

This section suggests how to combine the multiple features ob-
served in the previous section and learn a ranking function f−→w to
rank candidates Ci. In particular, we adopt Ranking SVM algo-
rithm [9, 10]. More formally, let a training set S = {C1, C2, · · · , Cn}
with respect to a set of queries Q = {q1, q2, · · · , qn}, where Ci =
{ci,1, ci,2, · · · ci,|Ci|} is a set of candidates for each query qi. With-
out loss of generality, we consider ci,1 as the correct answer. This
is an optimization problem as follows:

minimize : V (−→w ,
−→

ξ) =
1

2
−→w · −→w + C

∑
ξi,j (1)

subject to :

∀i,∀ci,j ∈ Ci − {ci,1} :
−→wΦ(qi, ci,1) >

−→wΦ(qi, ci,j) + 1− ξi,j (2)

∀i∀j : ξi,j ≥ 0 (3)

where −→w is a weight vector, Φ(qi, ci,j) is a mapping onto features
between a query qi and a candidate account ci,j explained in the
previous section, and

∑
ξi,j means total training error. We can thus

control a permitted limit of training error by adjusting the param-
eter C. Note that Eq. (2) means the pairwise comparison between
the correct answer ci,1 and other candidates ci,j such that j 6= 1.

One challenge in training this classifier is a large bias in terms
of candidate size. We observe that the number of candidates for
queries, which widely varies by orders of magnitude, e.g., from
6 × 103 to 1. Due to this bias, using all candidates for training
can lead to overfitting for queries with a large set of candidates.
To address this problem, we use only top-20 candidates with the
maximum in-links for training.

Table 3: Feature table for ranking candidates (R) and confi-

dence classification (C)
No. Features Type R C

1
Name type

E-type Binary X

2 A-type Binary X X

3 S-type Binary X X

4

ID type

E-type Binary X

5 A-type Binary X

6 S-type Binary X

7 N-type Binary X

8 Relation A-type Real X

9 (unidirectional) S-type Real X

10 Relation A-type Real X

11 (bidirectional) S-type Real X

12 Popularity Real X

13 Top-1 ranking value Real X

14 Average ranking value Real X

15 Standard deviation Real X

16 Difference Real X

17 Eccentricity Real X

3.3 Confidence Scoring
This section discusses how to quantify the confidence of the top

candidate found, to assist user- or application-level decision on
whether to return the top candidate or to return ‘no account’ as
result.

3.3.1 Baseline: Using Relevance as Confidence

A straightforward approach is to simply use the relevance score
of the top match itself as a confidence score. However, we observe
that, to make a more robust decision, we need to refer the relevance

of, not just the top match, but its relative standing in the overall
relevance score distribution, as we will empirically validate in Sec-
tion 4. We thus propose to separate confidence scoring, to consider
the overall relevance score distribution as features.

3.3.2 Proposed Approach: Confidence Scoring

This section proposes to train a separate classifier using not just
(1) the relevance score of top-1 candidate but also (2) distributional
features for relevance scores of other candidates as follows:
Name type. The name type of the top-1 candidate, using the same
categorization into E-, A-, and S-types used for relevance scoring.
Top-1 ranking value. The relevance score of the top-1 candidate,
i.e., maxci,j∈Ci

f−→w (ci,j).
Average ranking value. The average relevance score of all candi-
dates.
Standard deviation σ. The standard deviation of the relevance
scores of all candidates.
Difference. The difference between the relevance scores of the top-
1 and the top-2 candidates, i.e., max1 −max2, where max1 and
max2 are the relevance scores of the top-1 and the top-2 candidate,
respectively.
Eccentricity. The eccentricity of the top-1 candidate. This feature
measures how outstanding the top-1 score is, compared to other
scores, which we normalize as (max1 −max2)/σ.

Table 3 summarizes the details of the features explained above.
We train an SVM classifier [8] using the above six features. Such

classifier outputs negative values for empty accounts and positive
values for non-empty account using the maximum margin hyper-
plane as the boundary value 0. This classifier can thus be used both
for (a) classification and (b) confidence scoring– Using the sign
of the output value, we can distinguish non-empty and empty ac-
counts, and when positive, the magnitude can be used as confidence
scoring.

4. EXPERIMENTS
This section reports our experimental results to evaluate our pro-

posed approach. First, Section 4.1 reports our experimental setting.
Second, Section 4.2 validates the effectiveness of our approach over
a real-life dataset. Our experiments were carried out on a machine
with Intel Xeon 2.33 GHz CPU and 4GB RAM running Windows.
All implementations were written in C#.

4.1 Experimental Settings
We first describe how we collect Twitter and EntityCube datasets

in Sections 4.1.1. We then report how to build test datasets for
evaluating our framework in Section 4.1.2.

4.1.1 Twitter and EntityCube

We collected 10 million Twitter accounts from 20th May to 15th
September in 2009, from which, we crawled ID, name, following
list, and verified account tag from each front page of the Twit-
ter accounts. Among these accounts, 692 accounts were tagged
by Twitter as “verified”, which suggests that twitter.com manu-
ally verified the accounts match the person name used. Based on
the information collected, we build a “directed unweighted” graph
Gt = (Vt, Et), where each directed edge represents that a user
explicitly refers to another user.

Meanwhile, we collected a web co-occurrence graph (an undi-
rected graph) from EntityCube with about 100 million people with
notable Web presence. More formally, based on this information,
we build an “undirected weighted” graph Ge = (Ve, Ee). The
weight of each edge represents the degree of co-occurrence be-
tween two entities (how frequently two entity names occur in the

518

same web pages).

4.1.2 Building Test Data

We now need “ground-truth” matches between Entity and Twit-
ter nodes to test our proposed approaches. We build one test set
V using verified pairs provided from twitter.com. However, this
set, by design, cannot cover the case where the EntityCube identity
does not have a matching Twitter account (‘empty account’), which
naturally motivates to build another test set E including the empty
account cases based on V . More specifically,
Set V: We crawled 692 verified accounts from Twitter and man-
ually found the matching real people names in EntityCube. We
denote this set of pairs (ve, vt) as V , where ve ∈ Ve is a node in
EntityCube Ge, and vt ∈ Vt is a node in Twitter Gt.
Set E : As V cannot include empty accounts by design, it cannot be
used to verify the accuracy of confidence scoring. We thus build
another test set E including empty account cases. More specifi-
cally, from the verified pairs in V , we manually selected 20 seed
accounts representing a wide range of occupation domains. From
each of this “seed pair” (ve, vt), we randomly select the neighbor-
ing nodes v′e of ve, specifically among those one or two hops away
from ve. From 20 seed pairs, we collect the total 627 neighboring
nodes. For these 627 EntityCube nodes identified, we asked hu-
man assessors to find the matching Twitter accounts using search
engines and to mark the cases where no Twitter account can be
found. As a result, 52.5% of EntityCube entities were matched
to the corresponding Twitter accounts (which we denote as En for
non-empty matches) while the remaining 47.5% of entities corre-
spond to empty accounts (which we denote as Ee).

4.2 Experimental Results
This section reports our experimental results using the evaluation

datasets explained in previous section. We first validate our ranking
method only with non-empty accounts in Section 4.2.1. We then
validate the accuracy of confidence scoring with both non-empty
and empty accounts in Section 4.2.2.

4.2.1 Relevance Ranking

For evaluating the accuracy of ranking, we use the non-empty
accounts V and En.

As the evaluation metrics, we use the following three widely
adopted metrics for ranking effectiveness– (1) P@1, ratio of the
query results such that top-1 candidate is the correct answer (preci-
sion), (2) R@5, ratio of query results such that the correct answer
is contained within top-5 candidates (recall), and (3) MRR [16],
average of the reciprocal ranks of the query results as this formula:

MRR =
1

|Q|

∑

q∈Q

1

rankq
(4)

where Q is a set of queries, and rankq is the rank of the correct
answer for q ∈ Q.

We then compare our proposed method with the following three
natural baselines:

• E+POP: For the given name, we use E-type textual match to
identify candidates, from which we rank Twitter candidates
by popularity, i.e., the number of follower in-links.

• A+POP: We use A-type match for candidate selection then
rank by popularity.

• S+POP: We use S-type match for candidate selection then
rank by popularity

In clear contrast, our proposed method uses S-type match for
candidate selection, then ranks the candidates by the SVM model

leveraging both textual and relational features, which we thus de-
note as as S+SVM.

Table 4 shows the coverage of top-k candidates, i.e., R@k, over
En for the three baseline approaches.

Table 4: R@k of top-k candidates

k 1 5 10 20 All

E+POP 0.7447 0.7872 0.7933 0.7933 0.7933

A+POP 0.8602 0.9058 0.9149 0.9149 0.9149

S+POP 0.3343 0.6596 0.7477 0.8815 0.9726

Recall from our discussion in Section 3.1 that 97.26% of all
matching name/Twitter pairs satisfy S-type textual match. More
formally, this can be interpreted that R@All, i.e., the ratio of query
results such that the correct answer is contained within all candi-
dates, for selecting candidates using S-type is 97.26%. In other
words, 0.9726 is the theoretical optimum value R@k that can be
achieved by S+POP, as we marked in bold in Table 4. Meanwhile,
R@k results of S+POP is very low, until k reaches 20, which ex-
plains the drawback of having high recall for S+POP. That is, as
the coverage of candidates increases, the chance of including false
positives also increases. The recall solely depends on the ranking
accuracy, while the baseline ranking is not very accurate.

As a result, A+POP, achieving a moderate balance of recall and
accuracy, is the winner for the baseline ranking, which we compare
with our proposed approach S+SVM in Table 5 using P@1, R@5,
and MRR metrics. Specifically, we use V and En as the training
and test data, interchangeably, for S+SVM.

Table 5: Effectiveness of ranking methods (Training set → Test

set)
Measure P@1 R@5 MRR

A+POP 0.8602 0.9058 0.8783

S+SVM 0.8906 0.9574 0.9169

(a) V → En

Measure P@1 R@5 MRR

A+POP 0.9152 0.9390 0.9253

S+SVM 0.9226 0.9628 0.9400

(b) En → V

Table 5(a) first reports the results when V is used for training and
En for testing (denoted as V → En). Observe that, in all settings,
S+SVM outperforms A+POP. We also stress that the accuracy of
S+SVM is close to the theoretical optimum– The R@5 result of
S+SVM is 95.74%, close to the optimum value, i.e., 97.26%, while
that of baseline is 90.58%. Table 5(b) then reports the results when
En is used for training and V for testing (denoted as En → V).
In this setting, of using Twitter verified accounts V for testing,
which are heavily biased to celebrities, the baseline using popular-
ity for ranking is relatively more effective compared to Table 5(a),
when using less-biased En for testing. However, even in this unfa-
vorable setting, our proposed method S+SVM consistently outper-
forms baseline A+POP. Summing up, from these evaluations, we
observe that, even though there is no wide margin to improve to the
optimum, our proposed method manages to outperform baselines
and performs closely to the theoretical optimum.

4.2.2 Confidence Scoring

This section discusses how we evaluate the accuracy of confi-
dence scoring, by comparing baseline REL (using the relevance
score) and our proposed scheme CNF (using separate the con-
fidence score) respectively, using test set E , including both non-
empty and empty accounts, i.e., E = En ∪ Ee.

As the ground-truth is given as the binary class of non-empty and

519

empty results, to evaluate the accuracy of confidence scoring using
this test set, we set the confidence score threshold θ for both REL
and CNF to make the binary decision. We validate the accuracy of
this classification using 5-fold cross validation on E . More specif-
ically, E is divided into five equal-size disjoint subsets E1, · · · , E5

such that E i ⊂ E . We then use E − E i as a training set for learning
the SVM classifier, and then test the result on E i.

We now discuss how we set θ for REL and CNF. For baseline
approach REL, such threshold θ, for each fold E i, can be estimated
as the value that maximizes F1-measure for the training set E −E i.
Our proposed approach CNF, as this scheme builds on an SVM
classifier, naturally suggests threshold θ, as the boundary value 0
(i.e., conceptually the maximum margin hyperplane). We thus do
not need a tuning procedure for CNF.

In contrast, for REL, we observe a challenge in tuning θ. Fig-
ure 3 plots the threshold value θ found for REL from each fold E i.
We observe that, the optimal threshold values of five folds are scat-
tered in a wide range, i.e., {2.05, 2.06, 2.18, 2.8}, which suggests
that the confidence scoring of the baseline is not very robust, being
heavily dependent on testing set.

2.05 2.06 2.18 2.28 2.8
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Threshold θ

F
1

−
m

e
a

s
u

re

1st fold

2nd fold

3rd fold

4th fold

5th fold

5th 3rd 2nd 1st 4th

Figure 3: Variance of θ in REL

We measure the classification effectiveness using the following
widely-adopted metrics– (1) Precision and Recall on the non-empty
accounts En, (2) F1-measure, harmonic mean of precision and re-
call on En, and (3) Accuracy on E , ratio of the query results that
return the correct non-empty accounts in En or correctly classify
the empty accounts in Ee. Note that we report the average scores of
5 folds for the above four measures.

We implement the following four different algorithms. For se-
lection and ranking, all these algorithms adopt the winner approach
S+SVM, discussed in the previous section. Their names vary, de-
pending on the confidence scoring algorithm, which we denote
using the naming convention of [selection]+[ranking]+[confidence
scoring] scheme used:

• S+SVM+NUL using no confidence scoring,

• S+SVM+REL using REL for confidence scoring,

• S+SVM+CNF using CNF for confidence scoring,

• S+SVM+CNF+F1 using CNF optimized for F1 measure.

In addition to CNF optimized for accuracy, being designed to
minimize the misclassification error according to the definition of
the SVM classifier [8], we also implement CNF+F1 optimized for
F1-measure, by readjusting θ obtained from the SVM classifier
(maximizing accuracy) into θ′ maximizing F1-measure.

Table 6 shows the results of all four approaches categorized above
on the four measures. Bold numbers indicate the best performance
for each metric.

Observe that our proposed schemes using the confidence scoring
(S+SVM+CNF and S+SVM+CNF+F1) significantly outperform

S+SVM+NUL without confidence scoring. While S+SVM+NUL
achieves high recall, it suffers from low precision, i.e., less than
50%, by failing to identify “empty account” cases. In clear contrast,
in all settings, S+SVM+CNF and S+SVM+CNF+F1 outperform
S+SVM+REL in all metrics, with S+SVM+CNF+F1 being the
winner in F1 metric, and S+SVM+CNF in precision.

Table 6: Effectiveness of the proposed methods on F1-measure,

Precision, Recall, and Accuracy

Method F1 Precision Recall Accuracy

S+SVM+NUL 0.6336 0.4839 0.9241 0.4839

S+SVM+REL 0.8062 0.7762 0.8403 0.8183

S+SVM+CNF 0.8148 0.7917 0.8415 0.8282

S+SVM+CNF+F1 0.8178 0.7856 0.8543 0.8299

5. CONCLUSION AND FUTURE WORK
This paper studied how to enhance entity search by matching the

corresponding social network entities. This problem is challeng-
ing, as existing tools, using textual matching, suffer from low pre-
cision. In contrast, we holistically leveraged both textual and rela-
tional features and proposed a learning model to rank the matching
accounts by the aggregated relevance. Meanwhile, as nearly half
of Web entities do not have matching social entities, we observed
that computing confidence for deciding whether to return the top
match or return ‘no matching account’ is critical. For this purpose,
we proposed to separately compute a confidence score of the match
found, which was empirically more robust than using the relevance
itself as a confidence measure. Our evaluation results empirically
validated the accuracy of our algorithm over the real-life datasets.

Meanwhile, this paper does not address name disambiguation
problem, which we leave as future work to investigate how rela-
tional features can be used for the disambiguation purpose.

6. REFERENCES
[1] EntityCube. http://www.entitycube.com.

[2] WebMynd. http://www.webmynd.com.

[3] R. Bekkerman and A. McCallum. Disambiguating web appearances of people
in a social network. In proc. WWW, pages 463–470. ACM, 2005.

[4] J. Chen, W. Geyer, C. Dugan, M. Muller, and I. Guy. Make new friends, but
keep the old: recommending people on social networking sites. In proc. CHI,
pages 201–210. ACM, 2009.

[5] I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel, S. Yogev, and
S. Ofek-Koifman. Personalized recommendation of social software items based
on social relations. In RecSys, pages 53–60. ACM, 2009.

[6] S. Hill and F. Provost. The Myth of the Double-blind Review?: Author
Identification Using Only Citations. SIGKDD Explorations Newsletter,
5(2):179–184, 2003.

[7] A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter: understanding
microblogging usage and communities. In proc. WebKDD/SNA-KDD, pages
56–65. ACM, 2007.

[8] T. Joachims. Making large-scale support vector machine learning practical.
pages 169–184, 1999.

[9] T. Joachims. Optimizing search engines using clickthrough data. In proc.

SIGKDD, pages 133–142. ACM, 2002.

[10] T. Joachims. Training linear svms in linear time. In proc. SIGKDD, pages
217–226. ACM, 2006.

[11] J. Lee, S. won Hwang, Z. Nie, and J.-R. Wen. Query result clustering for
object-level search. In proc. SIGKDD, pages 1205–1214. ACM, 2009.

[12] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In proc.

S&P, pages 173–187. IEEE Computer Society, 2009.

[13] Z. Nie, J.-R. Wen, and W.-Y. Ma. Object-level vertical search. In proc. CIDR,
pages 235–246, 2007.

[14] B.-W. On, D. Lee, J. Kang, and P. Mitra. Comparative Study of Name
Disambiguation Problem using a Scalable Blocking-based Framework. In Proc.

JCDL, pages 344–353. ACM, 2005.

[15] B. Taneva, M. Kacimi, and G. Weikum. Gathering and ranking photos of named
entities with high precision, high recall, and diversity. In proc. WSDM. ACM,
2010.

[16] E. M. Voorhees. The trec question answering track. Natural Language

Engineering, 7(4):361–378, 2001.

520

