
Designing Integration Flows Using Hypercubes
Kevin Wilkinson

HP Labs
1501 Page Mill Rd.
Palo Alto, CA, USA

kevin.wilkinson@hp.com

 Alkis Simitsis
HP Labs

1501 Page Mill Rd.
Palo Alto, CA, USA

alkis@hp.com

ABSTRACT
The design and implementation of an ETL (extract-transform-
load) process for a data warehouse proceeds from a conceptual
model to a logical model, and then a physical model and imple-
mentation. The conceptual model conveys at a high level the data
sources and targets, and the transformation steps from sources to
targets. The current state of the art is to express the conceptual
model informally using text descriptions and diagrams. This
makes the process of deriving a logical model time-consuming
and error-prone. Our work is towards a system that covers the
whole ETL lifecycle by injecting several layers of optimization
and validation throughout the whole process starting with the
business level objectives and ending with flow execution. In this
paper, we focus on the ETL conceptual layer and present a solu-
tion that assists consultants in their task of defining the needs and
requirements at the early stages of an integration project. We
present a conceptual model for ETL based on hypercubes and
hypercube operations. This is a formal model that captures the
semantics of ETL at a high-level but that can also be machine-
translated into a logical model for ETL. The use of hypercubes at
the conceptual level renders a design that can be easily unders-
tood by business users and so reduces design and development
time and produces a result that accurately captures service level
agreements and business requirements.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Data warehouse and repository.

General Terms
Algorithms, Management, Design, Languages.

Keywords
Integration flows, ETL design, Business requirements, Data
Warehouse, Hypercubes, Conceptual Model.

1. MOTIVATION
The current state of the art for creating a conceptual model for an
ETL (extract-transform-load) process for a data warehouse is to
describe the ETL concepts such as data sources, targets, and oper-

ations informally using a combination of text descriptions and
diagrams. Business consultants and practitioners with significant
experience with ETL engagements state there is little support for
conceptual designs and, typically, they need to build ETL logical
designs using requirements written in an ad hoc way in text doc-
uments or spreadsheets (also see the upper part of Figure 1).
There is no standard notation or vocabulary; each practitioner
uses their own best practices. Consequently, the details captured
by these models vary widely across ETL projects. Conceptual
models devised for one project may not be comprehensible to
others without help from those who devised the models. The use
of a formal language for defining ETL conceptual models has
several advantages. First, the formal model provides a common
vocabulary of objects and operations so models can be understood
without the help of the designer. Second, use of a formal model
makes feasible the automatic generation of a logical model from
the conceptual model. It also makes feasible the computation of
properties over the model such as differences between successive
versions of the model or provenance information such as which
targets are derived from which sources.

This paper describes the use of hypercubes as a conceptual model
for ETL. This design choice has been made due to several rea-
sons. First, hypercubes are a natural formalism to domain experts,
as business managers and analysts, who provide the ETL business
requirements. Processes expressed using hypercube operations
can be readily understood by them and this helps ensure the ETL
design captures the business requirements. Second, hypercube
operations are easily translated into a logical ETL model because
logical ETL operators are table-oriented and hypercubes are a just
a generalization of relational tables. This reduces development
time for creating the logical model. In summary, the use of a for-
mal, yet comprehensible language for a conceptual model reduces
development time for ETL and improves accuracy and the use of
hypercubes and hypercube operations as the formal model facili-
tates communication between ETL designers and the business
experts who are the end-users of the system.

2. SOLUTION APPROACH
2.1 System Overview
For a period of two years, we have systematically worked on a
system dealing with the ETL and live business intelligence eco-
system. The ultimate goal is to provide a unified solution for the
whole ETL lifecycle that starts with capturing business require-
ments into a high level, easily grasped, yet formal conceptual
model, then continues with the production of logical level design
that can be optimized for a variety of both quantitative objectives
–like performance, recoverability, fault tolerance, freshness– and
qualitative ones –like maintainability, manageability– and finally,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
EDBT 2011, March 22-24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003...$10.00.

503

common
practice

business processes
business level objects

ETL logical flows ETL execution scripts

design using
hypercubes

customer obj

product obj

order obj

product fact

customer fact

tim
e

di
m

location dim

F

F’’

F’

operational
data stores

data
warehouse

Figure 1: ETL design lifecycle

produces an executable package that after undergoing some fur-
ther optimization, performs the integration task. We use the term
QoX to refer to the set of quality objectives. During this lifecycle
several validation steps occur and control the process. The heart
of this system is the QoX optimizer that optimizes logical and
physical flows for a number of QoX metrics like the ones men-
tioned above. Typical optimization strategies considered by our
QoX optimizer include parallelization techniques (e.g., clustering,
MPP), NMR for fault tolerance, streaming processing techniques
and operations, choice of execution engines, resource manage-
ment, and so on. Parts of our system have been described else-
where (see [4], [5], [8], [9], and [11]). In this paper, we focus on
the conceptual layer (see the lower, highlighted part of Figure 1)
and present a methodology that assists consultants in their task of
capturing business needs into a comprehensive design that can be
(semi-)automatically translated into a logical model, which feeds
our QoX optimizer.

2.2 Hybercubes
A conceptual model for an ETL process should convey the data
source objects, the warehouse target objects, and a high-level
description of the transformations required to convert the sources
to the targets. High-level means that the model is in terms of
business objects and operations as opposed to the IT-level objects
presented by the ETL logical and physical models (e.g., files and
tables). In other words, the conceptual model should be compre-
hensible to the business domain expert for the flow. Typically, an
ETL flow comprises three phases, extract, transform and load.
Our approach adapts these three phases for a hypercube model.
Specifically, the output of the extract phase is a set of hypercubes
for the data extracted from the sources. The transformation phase
uses the source hypercubes to produce a set of load hypercubes.
The load phase then updates the data warehouse from the load
hypercubes. The details of converting between relational and
hypercube models are encapsulated (and hidden) in the extract
and load phases. We describe in more detail how the conceptual
model represents each phase.

Extract phase. At a conceptual level, the extract phase models the
interface between the data sources and the ETL transformations.
The data sources are the information objects in the operational
systems of an enterprise (e.g., order-entry, supply-chain, shipping,
invoices). These information objects may themselves represent
data objects or business processes. Our technique supports both.
For each instantiation of the ETL process, a subset of information
from the data sources is extracted as input to the transformation
phase. Consequently, the conceptual model for extract must con-
vey the data source objects and the particular subset of interest
(e.g., all orders in the last week, yesterday's invoices).

It is worth noting that the extract phase may itself transform the
input data objects into different objects that are more amenable to
processing in the transformation phase. Those extract transforma-
tions may or may not be exposed to the business user. The impor-
tant point is that the output of the extract phase is a set of business
data objects that are input to the transformation phase. Those data
objects are represented in the conceptual design as hypercubes,
rather than files or tables which are the typical storage format in
operational systems. For example, the conceptual objects ex-
tracted from an order-entry system might be a hypercube for re-
cent orders and individual hypercubes for new products, new
customers, and so on. In contrast, a logical (and physical) ETL
model presents an IT-level view in which data is extracted into
tables and files. This low level of detail is proven not appropriate
for domain experts. Hypercubes present a business view and make
the conceptual model independent of changes at the logical and
physical levels; for example, new tables, indices that might be
added for performance reasons but do not modify the underlying
conceptual objects, and so on. Note that the specific business
objects produced by the extract phase depend on the needs of the
business. For example, information about new orders could be
extracted into a single hypercube or into two hypercubes, one for
order summary information (date, customer, amount) and a
second for order detail information (product number, quantity
sold, unit price). The choice depends on the business.

504

More formally, in the conceptual model the output of the extract
phase is a set of hypercubes: XC1, ..., XCn, where the schema for a
hypercube defines its dimensions (e.g., date, time, customer,
product) and the contents of its cells (e.g., quantity sold, sale
amount, taxes). To enable semi-automatic translation of the con-
ceptual model to a logical model, the conceptual model requires
two additional specifications. It includes a list of the logical
source objects: S1, ..., Sk, in the operational systems, e.g., the spe-
cific tables and files that are read during the extract. It also in-
cludes a mapping from the source objects to the extract hyper-
cubes, i.e., {Si}×{XCj}. In general, these two additional specifica-
tions are not exposed to the domain expert. The conceptual model
only need present the extracted hypercubes. However, there may
be cases where a business need requires a domain expert to know
details of a particular mapping (e.g., for provenance or auditing)
so there is no blanket prohibition. The point is that, depending on
the business needs of a project, the conceptual model may present
various views, each with different levels of abstraction and detail.

Load phase. The load phase of an ETL conceptual model de-
scribes how business data objects are incorporated into the target
data objects. Typically, the target is a data warehouse that is mod-
eled as a star schema in which a large fact table (e.g., orders)
references numerous, smaller dimension tables (e.g., products,
customers, stores, dates). The star schema is naturally modeled as
a hypercube where the cells of the hypercube correspond to val-
ues in the fact table (e.g., order amount, total tax) and the dimen-
sions of the cube correspond to the dimension tables (e.g., cus-
tomer details, product details) that are referenced from the fact
table. In the conceptual model, each fact table and its dimensions
could be modeled as a single hypercube or it could be modeled as
one hypercube for each dimension plus one for the facts. The
choice depends on the business requirements. For example, if a
dimension has some identity and properties that may change over
time, e.g., a customer, then it may make sense to create a separate
business object (hypercube) for that object. Other objects such as
date and time have no real identity and so do not merit a separate
hypercube and should be incorporated directly into the fact
hypercube.

Formally, the load phase can be specified by a set of load hyper-
cubes: LC1, ..., LCm, each with their own schema, a set of target
objects in the logical model of the data warehouse: T1, ..., Tr, and
a mapping {LCi}×{Tj} between the two. As with the extract phase,
the mappings are needed for the generation of a logical model and
are generally not exposed in views of the conceptual model, ex-
cept when relevant to some business need.

Transformation phase. Given the source hypercubes produced by
the extract phase and the target hypercubes required for the load
phase, the transformation phase expresses the business rules that
map the sources to the targets. Since both sources and targets are
hypercubes, the business rules are expressed as a series of trans-
formation steps where each step is a hypercube operation. We
assume a set of intrinsic hypercube operators, e.g., slice, join, diff,
rollup, and so on (see [2]). It is important to be able to define
higher-level, abstract operations to represent a series of hypercube
operations. This makes the model more readable and enables
reuse of functionality. Therefore, we assume a set of intrinsic
macro operators that are implemented using intrinsic operators
and other intrinsic macro operators. The macro operators may
have parameters so their instantiation (or expansion) may have
different forms, depending on the parameters. In addition, an ETL

designer may define additional macro operators that are specific
to an ETL project. For example, surrogate key generation is a
frequent operation in ETL and is an appropriate candidate for an
intrinsic macro operation (see the Identity Resolution macro in
Figure 6). On the other hand, normalizing postal addresses may
not be a good candidate for an intrinsic macro operation due to
the wide variety of encodings of addresses and the various tools
for cleaning and transforming addresses.

Formally, we define the transformation phase as a function that
maps the extract hypercubes to a set of load hypercubes, i.e.,
{LCi} = F({XCj}). The function F is itself a graph of operators as
follows. Let TN be the set of all intrinsic hypercube operators and
TM be the set of all macro hypercube operators, and let T be the
set of all hypercube operators, i.e., TN ∪ TM. Then F is a graph of
operators that map one set of hypercubes to another set, i.e., {XCj}
→ f1 → {C1} → f2 → {C2} → ... → fk → {LCi}, where each trans-
formation f is an element of T and Ci represent a set of temporary,
intermediate hypercubes. Also, note that each macro transforma-
tion, TM, when expanded, is itself a series of hypercube operators
as above but where each function f is an intrinsic operator in the
set TN.

2.3 Producing the Logical Design
After having constructed the conceptual design, we transform it to
a logical model, which can be later fed to our QoX optimizer.
Figure 2 abstractly pictures this process. In the upper figure,
hypercubes and hypercube operators are presented. The details of
the extract from data sources and load to the warehouse target
need not be exposed. In the lower figure, the sources and target
tables are shown in detail along with details of the transformation
steps.

Figure 2: Conceptual (top) and logical (bottom) designs

Figure 3 shows a high-level algorithm for generating the logical
ETL model from the conceptual model. The first steps are defin-
ing the extract and load hypercubes and the transformations be-
tween them. Note that there may be dependencies among the load
hypercubes. For example, when loading a hypercube representing
a fact table in a star schema, it is important to first load hyper-
cubes that represent dimensions referenced by the fact hypercube.
Then, for each load hypercube, a semantic consistency check is
performed to ensure that the flow is valid. Next, macro expansion
occurs to produce a flow consisting entirely of intrinsic hypercube
operators. Finally, the logical ETL operators are generated from
the intrinsic hypercube operators.

505

define extract
hypercubes

define load
hypercubes

define transformations from
extract to load hypercubes

compute partial order on load
hypercubes

loop begin: for each load
hypercube (in order)

validate semantic consistency
of transformations

expand macro operations into
intrinsic hypercube operations

generate logical ETL operations
from hypercube operations

more load hypercubes ?

failure exit

success exit

yes
no

invalid

Figure 3: Generating ETL logical flow from conceptual design

Next, instead of delving into a formal representation of the me-
thodology, we demonstrate it through a series of indicative exam-
ples representing frequently used operations, we show how such
operations can be modeled, and for a few of them (due to space
constraints) we illustrate how they expand into detailed operations
that correspond to logical level activities.

3. EXAMPLE CASES
Extract hypercube. Consider the order-entry system of an on-line
retail enterprise. We can assume that the operational systems will
generate order details as well as updates to customer data and
product data as customers and products come and go. From a
business perspective, there are three or four business objects in-
volved, customers, products, orders and order lineitems (individu-
al products) corresponding to three or four source hypercubes1. It
is a business decision if the order data should be viewed as one
object (an orders cube with the lineitem details) or as two separate
objects (one orders summary cube and one lineitems cube). In
addition, consider the customer data. For efficiency, the opera-
tional system may store customer information in multiple, norma-
lized tables. For example, the customer profile information may
be stored separately from the primary customer table; e.g., cus-
tomer profile information in one table, customer demographic
information in another, customer address in another and customer
identity in another. The details of the logical storage schema are

1 Note that mathematically, a single, large hypercube is sufficient

for the extract phase, but this is not natural for a business view.

not relevant to the business user. In fact, including such details in
the conceptual model makes it dependent such that changes to the
source schemas require changes to the conceptual model. This is
undesirable and violates the abstraction required at the conceptual
level.

Consequently, the conceptual model presents customer informa-
tion as a single hypercube regardless of the logical schema at the
source. The conceptual model includes annotations that specify
how that hypecube is created from the source objects; e.g., the
relational algebra operations to join the customer and profile,
tables, surrogate key generation (IdRes, as explained later), and so
on. However, these annotations need not to be exposed to the
business user and are only used in creating a logical model from
the conceptual model. In addition, the annotations must specify
attributes used to specify the subset of source data extracted
(Figure 4). For example, a source hypercube may include a time-
stamp attribute and annotations for the extract phase should speci-
fy the timestamp range for each instance of running the extract
flow; e.g., extract customer changes for the previous hour, the
previous day, last week, and so on.

As another example, suppose the source system generates XML
documents to represent order information where each document
includes order summary and lineitem details. In addition, suppose
the business requirements dictate separate hypercubes for order
summary and details. In this case, the annotations would present
the logical source object as an XML document and include the
XSLT operators to extract the order summary information into
one hypercube and the order detail information into the second
hypercube.

Transform hypercube. The conceptual model for the transforma-
tion phase is expressed as a graph of hypercube operations and
higher-level, macro operations. As a simple example, suppose a
load hypercube presents product sales per week, i.e., the total
sales for each product sold for each week. We assume the extract
phase produces a hypercube with order detail information, either
as a separate hypercube or combined with the order summary. In
this case, the load hypercube can be expressed as a hypercube
roll-up operation over the extract hypercube on the date (week)
and product dimensions (product number) as shown in Figure 5.

Identity resolution. A frequent transformation for data warehouses
is the generation of a surrogate key to represent each unique ob-
ject in the warehouse (customer, order, product). The surrogate

Cust: custId, name,
addr, profId, …

Prof: profId, age, income,
loyaltyPts, …

Extract cust cube

1.Source Tb1: Cust, Prof
2.Trgt CustCube:
 dim custKey, custId
 join Cust, Prof on profId
3.custKey = idRes(custId, custIdMap)

CustCube: custKey, custId, timestamp,
name, addr, age, income, loyaltyPts, …

Figure 4: Extract Hypercube

506

key replaces the natural object identifier from the source system;
e.g., customer identifier, order number. This transformation step
requires a mapping table to record the source object identifier and
its corresponding surrogate key. If the object identifier does not
exist in the mapping table, a new surrogate key is generated and
an entry is added to the mapping table. Conceptually, this is a
simple, one-step operation that is implemented by a hypercube
macro method, which we refer to as Identity Resolution (Figure
6). The concept of identity resolution is meaningful at the busi-
ness level but the details of checking and updating the mapping
table are not relevant. When the logical model is generated, the
macro will be expanded to hypercube operations that are then
converted at the logical level to relational algebra and ETL opera-
tors so the appropriate mapping tables will be accessed and up-
dated. Figure 6 shows the macro expressed as a series of intrinsic
hypercube operations.

Banding. As another example, a common task in data warehouses
is banding, i.e., mapping a numeric value range to a symbolic
value such as the value for age becomes child, teen, adult, senior
or the value for income becomes low, middle, upper-middle, high.
This can be expressed as a single join operation between the ex-
tract hypercube, say customers, and a banding hypercube that
describes the mapping. Although the conceptual model could
present banding as a hypercube join operation, as with surrogate
key generation, it is more meaningful to define an intrinsic macro
operation, banding, that takes as arguments, the extract hypercube
and relevant value and the banding hypercube and banding

dimension. The implementation of the banding macro in terms of
intrinsic hypercube operations is shown in Figure 7.

Create load hypercube. Given banding and surrogate key genera-
tion as building blocks, one can envision how a more general
matching operation could be implemented. For example, suppose
the data warehouse records customer details in multiple objects;
e.g., one warehouse dimension for customer identity, a second for
customer demographics, and so on. Therefore, there would be two
corresponding load hypercubes one for each warehouse dimen-
sion. Suppose the extract phase produces a single hypercube con-
taining all the customer details. We have seen how the identity
resolution macro can be used to obtain a surrogate key from the
customer identifier. However, a more general matching operation
is needed for customer demographics that would involve, for ex-
ample, banding the customer age or income, searching the demo-
graphic dimension for a match, adding a new entry if none is
found, and so on. The result would be a surrogate key for custom-
er demographics added to the customer hypercube. Then, two
load hypercubes would be populated by hypercube slice opera-
tions over the customer hypercube (see Figure 8).

Load hypercube. As a final example, data warehouse dimensions
may be static or slowly changing. For example, days of the week
and months of the year do not change. The list of states in the
U.S. may change rarely while the list of cities may change occa-
sionally. On the other hand, the list of products and/or customers
may change with some regularity. For dimensions that change, it
is a business decision if the warehouse should record details of the
changes (the history of the object) or not. When a customer ad-
dress changes, it may not be useful to track the previous ad-
dresses. If a product price changes, it may be important to track
when the price change occurred and the previous price. There are
several techniques for maintaining history for slowly changing
dimensions (e.g., see [6]).

IdRes (Cube, Id, Map)

// Assume Cube has an Id dimension
// Assume Map has one dimension, Id, and a cell value, “Key”

Ids = slice (Cube) on Id
Keys = join (Ids, Map) on Id
NewIds = diff (Ids, Keys) on Id

// add an item to a cell (push), generate a new key (keyGen)
NewKeys = push (NewIds, Id, “Key”) as keyGen (Id)

// update Map
Map = outer join (Map, NewKeys)

// add Key to Cube
Cube = join (Cube, Map) on Id

Figure 6: Identity Resolution Macro (IdRes)

BandDim (Cube, Val, Map)

// Assume Cube has an dimension, Val, to band
// Assume Map has one dimension, Val, that is the lower
// bound of each band and a cell value, “Label”

Vals = slice (Cube) on Val
Vals = merge (Vals) // eliminate duplicate values in dim
Bands = join (Vals, Map) on Val where max (Vals < Low)

// update cube cells with label for dimension Val
Cube = join (Bands, Cube) on Val

Figure 7: Banding Macro

 LineitemCube: orderKey, prodKey, custKey,
 storeKey, weekKey, qty, amt, …

ProdWeekCube: prodKey, weekKey,
totQuantity. totSale, …

 Rollup on prodKey, weekKey
 totQuantity = sum(qty),
 totSale = sum(amt)

Figure 5: Transform Hypercube

// Assume CustCube: custKey, custId, name, addr, age,
// income, …
// Need to create load hypercube for
// Warehouse Customer Dim and Demographics Dim

DemoMatch (CustCube) // adds demographic key to CustCube

CustLoadCube = slice (CustCube)

 on custKey, name, demoKey,…

DemoLoadCube = slice (CustCube)

 on demoKey, ageBand, incomeBand, …

Figure 8: Creating Load Hypercubes

507

As with surrogate key transformations, at the conceptual level,
there is a single, macro operation for maintaining the history.
Annotations are used to hide the detailed hypercube operations so
that a correct logical model can be generated. An example of a
hypercube load operation using a macro for varying dimensions is
shown in Figure 9.

4. RELATED WORK
The current state of the art is to use informal techniques to capture
business requirements and create a conceptual model. A typical
design might be expressed using some combination of MS Visio
diagrams, spreadsheets, and text documents. ETL designers de-
vise their own methodologies and best practices so there is wide
variation in how conceptual models are expressed. A few ETL
conceptual models have been proposed in the past. Some are
based on ad hoc, drawing notation and others use notation like
BPMN or UML (e.g., see [1] and [7]). Our experience shows that
business users are not typically familiar with such notation and
wish to have simpler, more meaningful to them representation.
Also, the production of later design stages like the logical model
is not clear in those approaches. Therefore, adapting such ap-
proaches in our system was not useful.

In business process modeling, the business artifact centric ap-
proach has been proposed (e.g., see [3]). Business artifacts refer to
objects in the OLTP databases that are manipulated by the opera-
tional business processes throughout their lifecycle. Hypercubes
in contrast, follow the cube paradigm which is inherent in busi-
ness analysis and decision support.

Previous work has described how to translate hypercube opera-
tions into the relational algebra required at the logical level (for
example, see [2] and [10]). We adapt those results in compiling
our intrinsic hypercube operators.

5. CONCLUSIONS
This paper presents a solution for eliminating the disconnect in
ETL projects between the capturing of business rules and the
creation of a logical model. It describes the use of hypercubes as
the basis for a conceptual model and shows how to model extract,

transform and load phases using intrinsic hypercube operators
along with high-level macros built on other operators. This ap-
proach has several advantages over the ad-hoc techniques current-
ly in use for conceptual modeling. It provides a formalism that is
familiar to business users and analysts who are the domain experts
responsible for defining business requirements and validating that
the flow meets the objectives. Second, it facilitates direct transla-
tion to a logical model through conversion of the hypercube oper-
ators to relational and ETL operators. This reduces design and
development time and improves accuracy because the conceptual
model can be read and understood by domain experts.

6. ACKNOWLEDGMENTS
Our thanks to our colleagues Umeshwar Dayal, Malu Castellanos,
and Ravigopal Vennelakanti for their feedback and collaboration,
and also many thanks to Paul Watson, Paul Urban, John Bicknell,
Rom Lin-hares, Heather Wainscott, Tom Harrocks, Werner
Rheeder, and Blair Elzinga for sharing with us their insights and
experience regarding the ETL practice and needs in real-world,
large-scale projects.

7. REFERENCES
[1] Z. E. Akkaoui and E. Zimányi. Defining ETL worfklows

using BPMN and BPEL. In DOLAP, pp. 41-48, 2009.

[2] Rakesh Agrawal, Ashish Gupta, Sunita Sarawagi. Modeling
Multidimensional Databases. In ICDE, pp. 232-243, 1997.

[3] Kamal Bhattacharya, Cagdas Evren Gerede, Richard Hull,
Rong Liu, Jianwen Su. Towards Formal Analysis of Artifact-
Centric Business Process Models. In BPM, pp. 288-304,
2007.

[4] Umeshwar Dayal, Malú Castellanos, Alkis Simitsis, Kevin
Wilkinson. Data integration flows for business intelligence.
In EDBT, pp. 1-11, 2009.

[5] Umeshwar Dayal, Kevin Wilkinson, Alkis Simitsis, Malú
Castellanos. Business Processes Meet Operational Business
Intelligence. In IEEE Data Eng. Bull. 32(3), pp. 35-41, 2009.

[6] Kimball, R., et al. The Data Warehouse Lifecycle Toolkit. John
Wiley & Sons, 1998.

[7] Sergio Luján-Mora, Panos Vassiliadis, and Juan Trujillo.
Data Mapping Diagrams for Data Warehouse Design with
UML. In ER, pp. 191-204, 2004.

[8] Alkis Simitsis, Kevin Wilkinson, Malú Castellanos, Umesh-
war Dayal. QoX-driven ETL design: reducing the cost of
ETL consulting engagements. In SIGMOD Conference, pp.
953-960, 2009.

[9] Alkis Simitsis, Kevin Wilkinson, Umeshwar Dayal, Malú
Castellanos. Optimizing ETL workflows for fault-tolerance.
In ICDE, pp. 385-396, 2010.

[10] Panos Vassiliadis. Modeling Multidimensional Databases,
Cubes and Cube Operations. In SSDBM, pp. 53-62, 1998.

[11] Kevin Wilkinson, Alkis Simitsis, Umeshwar Dayal, Malu
Castellanos. Leveraging Business Process Models for ETL
Design. In ER, 2010.

Product Dimension: prodKey, prodName, timestamp,
 prevProdKey, price, color, …,

Load product dim

1. Target tbl: product
2. type 2 varying dim on
 price, color, link prevProdKey
3. use now() as timestamp
4. …

ProdCube: prodKey, prodName,
 price, color, …

Figure 9: Load Hypercube

508

