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ABSTRACT 
The design and implementation of an ETL (extract-transform-
load) process for a data warehouse proceeds from a conceptual 
model to a logical model, and then a physical model and imple-
mentation. The conceptual model conveys at a high level the data 
sources and targets, and the transformation steps from sources to 
targets. The current state of the art is to express the conceptual 
model informally using text descriptions and diagrams. This 
makes the process of deriving a logical model time-consuming 
and error-prone. Our work is towards a system that covers the 
whole ETL lifecycle by injecting several layers of optimization 
and validation throughout the whole process starting with the 
business level objectives and ending with flow execution. In this 
paper, we focus on the ETL conceptual layer and present a solu-
tion that assists consultants in their task of defining the needs and 
requirements at the early stages of an integration project. We 
present a conceptual model for ETL based on hypercubes and 
hypercube operations. This is a formal model that captures the 
semantics of ETL at a high-level but that can also be machine-
translated into a logical model for ETL. The use of hypercubes at 
the conceptual level renders a design that can be easily unders-
tood by business users and so reduces design and development 
time and produces a result that accurately captures service level 
agreements and business requirements. 

Categories and Subject Descriptors 
H.2.7 [Database Administration]: Data warehouse and repository. 

General Terms 
Algorithms, Management, Design, Languages. 

Keywords 
Integration flows, ETL design, Business requirements, Data 
Warehouse, Hypercubes, Conceptual Model. 

1. MOTIVATION 
The current state of the art for creating a conceptual model for an 
ETL (extract-transform-load) process for a data warehouse is to 
describe the ETL concepts such as data sources, targets, and oper-

ations informally using a combination of text descriptions and 
diagrams. Business consultants and practitioners with significant 
experience with ETL engagements state there is little support for 
conceptual designs and, typically, they need to build ETL logical 
designs using requirements written in an ad hoc way in text doc-
uments or spreadsheets (also see the upper part of Figure 1). 
There is no standard notation or vocabulary; each practitioner 
uses their own best practices. Consequently, the details captured 
by these models vary widely across ETL projects. Conceptual 
models devised for one project may not be comprehensible to 
others without help from those who devised the models. The use 
of a formal language for defining ETL conceptual models has 
several advantages. First, the formal model provides a common 
vocabulary of objects and operations so models can be understood 
without the help of the designer. Second, use of a formal model 
makes feasible the automatic generation of a logical model from 
the conceptual model. It also makes feasible the computation of 
properties over the model such as differences between successive 
versions of the model or provenance information such as which 
targets are derived from which sources.  

This paper describes the use of hypercubes as a conceptual model 
for ETL. This design choice has been made due to several rea-
sons. First, hypercubes are a natural formalism to domain experts, 
as business managers and analysts, who provide the ETL business 
requirements. Processes expressed using hypercube operations 
can be readily understood by them and this helps ensure the ETL 
design captures the business requirements. Second, hypercube 
operations are easily translated into a logical ETL model because 
logical ETL operators are table-oriented and hypercubes are a just 
a generalization of relational tables. This reduces development 
time for creating the logical model. In summary, the use of a for-
mal, yet comprehensible language for a conceptual model reduces 
development time for ETL and improves accuracy and the use of 
hypercubes and hypercube operations as the formal model facili-
tates communication between ETL designers and the business 
experts who are the end-users of the system. 

2. SOLUTION APPROACH 
2.1 System Overview 
For a period of two years, we have systematically worked on a 
system dealing with the ETL and live business intelligence eco-
system. The ultimate goal is to provide a unified solution for the 
whole ETL lifecycle that starts with capturing business require-
ments into a high level, easily grasped, yet formal conceptual 
model, then continues with the production of logical level design 
that can be optimized for a variety of both quantitative objectives 
–like performance, recoverability, fault tolerance, freshness– and 
qualitative ones –like maintainability, manageability– and finally,
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Figure 1: ETL design lifecycle 

produces an executable package that after undergoing some fur-
ther optimization, performs the integration task. We use the term 
QoX to refer to the set of quality objectives. During this lifecycle 
several validation steps occur and control the process. The heart 
of this system is the QoX optimizer that optimizes logical and 
physical flows for a number of QoX metrics like the ones men-
tioned above. Typical optimization strategies considered by our 
QoX optimizer include parallelization techniques (e.g., clustering, 
MPP), NMR for fault tolerance, streaming processing techniques 
and operations, choice of execution engines, resource manage-
ment, and so on. Parts of our system have been described else-
where (see [4], [5], [8], [9], and [11]). In this paper, we focus on 
the conceptual layer (see the lower, highlighted part of Figure 1) 
and present a methodology that assists consultants in their task of 
capturing business needs into a comprehensive design that can be 
(semi-)automatically translated into a logical model, which feeds 
our QoX optimizer. 

2.2 Hybercubes 
A conceptual model for an ETL process should convey the data 
source objects, the warehouse target objects, and a high-level 
description of the transformations required to convert the sources 
to the targets. High-level means that the model is in terms of 
business objects and operations as opposed to the IT-level objects 
presented by the ETL logical and physical models (e.g., files and 
tables). In other words, the conceptual model should be compre-
hensible to the business domain expert for the flow. Typically, an 
ETL flow comprises three phases, extract, transform and load. 
Our approach adapts these three phases for a hypercube model. 
Specifically, the output of the extract phase is a set of hypercubes 
for the data extracted from the sources. The transformation phase 
uses  the source hypercubes to produce a set of load hypercubes. 
The load phase then updates the data warehouse from the load 
hypercubes. The details of converting between relational and 
hypercube models are encapsulated (and hidden) in the extract 
and load phases. We describe in more detail how the conceptual 
model represents each phase. 

Extract phase. At a conceptual level, the extract phase models the 
interface between the data sources and the ETL transformations. 
The data sources are the information objects in the operational 
systems of an enterprise (e.g., order-entry, supply-chain, shipping, 
invoices). These information objects may themselves represent 
data objects or business processes. Our technique supports both. 
For each instantiation of the ETL process, a subset of information 
from the data sources is extracted as input to the transformation 
phase. Consequently, the conceptual model for extract must con-
vey the data source objects and the particular subset of interest 
(e.g., all orders in the last week, yesterday's invoices). 

It is worth noting that the extract phase may itself transform the 
input data objects into different objects that are more amenable to 
processing in the transformation phase. Those extract transforma-
tions may or may not be exposed to the business user. The impor-
tant point is that the output of the extract phase is a set of business 
data objects that are input to the transformation phase. Those data 
objects are represented in the conceptual design as hypercubes, 
rather than files or tables which are the typical storage format in 
operational systems. For example, the conceptual objects ex-
tracted from an order-entry system might be a hypercube for re-
cent orders and individual hypercubes for new products, new 
customers, and so on. In contrast, a logical (and physical) ETL 
model presents an IT-level view in which data is extracted into 
tables and files. This low level of detail is proven not appropriate 
for domain experts. Hypercubes present a business view and make 
the conceptual model independent of changes at the logical and 
physical levels; for example, new tables, indices that might be 
added for performance reasons but do not modify the underlying 
conceptual objects, and so on. Note that the specific business 
objects produced by the extract phase depend on the needs of the 
business. For example, information about new orders could be 
extracted into a single hypercube or into two hypercubes, one for 
order summary information (date, customer, amount) and a 
second for order detail information (product number, quantity 
sold, unit price). The choice depends on the business. 
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More formally, in the conceptual model the output of the extract 
phase is a set of hypercubes: XC1, ..., XCn, where the schema for a 
hypercube defines its dimensions (e.g., date, time, customer, 
product) and the contents of its cells (e.g., quantity sold, sale 
amount, taxes). To enable semi-automatic translation of the con-
ceptual model to a logical model, the conceptual model requires 
two additional specifications. It includes a list of the logical 
source objects: S1, ..., Sk, in the operational systems, e.g., the spe-
cific tables and files that are read during the extract. It also in-
cludes a mapping from the source objects to the extract hyper-
cubes, i.e., {Si}×{XCj}. In general, these two additional specifica-
tions are not exposed to the domain expert. The conceptual model 
only need present the extracted hypercubes.  However, there may 
be cases where a business need requires a domain expert to know 
details of a particular mapping (e.g., for provenance or auditing) 
so there is no blanket prohibition. The point is that, depending on 
the business needs of a project, the conceptual model may present 
various views, each with different levels of abstraction and detail.  

Load phase. The load phase of an ETL conceptual model de-
scribes how business data objects are incorporated into the target 
data objects. Typically, the target is a data warehouse that is mod-
eled as a star schema in which a large fact table (e.g., orders) 
references numerous, smaller dimension tables (e.g., products, 
customers, stores, dates). The star schema is naturally modeled as 
a hypercube where the cells of the hypercube correspond to val-
ues in the fact table (e.g., order amount, total tax) and the dimen-
sions of the cube correspond to the dimension tables (e.g., cus-
tomer details, product details) that are referenced from the fact 
table. In the conceptual model, each fact table and its dimensions 
could be modeled as a single hypercube or it could be modeled as 
one hypercube for each dimension plus one for the facts. The 
choice depends on the business requirements. For example, if a 
dimension has some identity and properties that may change over 
time, e.g., a customer, then it may make sense to create a separate 
business object (hypercube) for that object. Other objects such as 
date and time have no real identity and so do not merit a separate 
hypercube and should be incorporated directly into the fact 
hypercube. 

Formally, the load phase can be specified by a set of load hyper-
cubes: LC1, ..., LCm, each with their own schema, a set of target 
objects in the logical model of the data warehouse: T1, ..., Tr, and 
a mapping {LCi}×{Tj} between the two. As with the extract phase, 
the mappings are needed for the generation of a logical model and 
are generally not exposed in views of the conceptual model, ex-
cept when relevant to some business need. 

Transformation phase. Given the source hypercubes produced by 
the extract phase and the target hypercubes required for the load 
phase, the transformation phase expresses the business rules that 
map the sources to the targets. Since both sources and targets are 
hypercubes, the business rules are expressed as a series of trans-
formation steps where each step is a hypercube operation. We 
assume a set of intrinsic hypercube operators, e.g., slice, join, diff, 
rollup, and so on (see [2]). It is important to be able to define 
higher-level, abstract operations to represent a series of hypercube 
operations. This makes the model more readable and enables 
reuse of functionality. Therefore, we assume a set of intrinsic 
macro operators that are implemented using intrinsic operators 
and other intrinsic macro operators. The macro operators may 
have parameters so their instantiation (or expansion) may have 
different forms, depending on the parameters. In addition, an ETL 

designer may define additional macro operators that are specific 
to an ETL project. For example, surrogate key generation is a 
frequent operation in ETL and is an appropriate candidate for an 
intrinsic macro operation (see the Identity Resolution macro in 
Figure 6). On the other hand, normalizing postal addresses may 
not be a good candidate for an intrinsic macro operation due to 
the wide variety of encodings of addresses and the various tools 
for cleaning and transforming addresses. 

Formally, we define the transformation phase as a function that 
maps the extract hypercubes to a set of load hypercubes, i.e., 
{LCi} = F({XCj}). The function F is itself a graph of operators as 
follows. Let TN be the set of all intrinsic hypercube operators and 
TM be the set of all macro hypercube operators, and let T be the 
set of all hypercube operators, i.e., TN ∪ TM. Then F is a graph of 
operators that map one set of hypercubes to another set, i.e., {XCj} 
→ f1 → {C1} → f2 → {C2} → ... → fk → {LCi}, where each trans-
formation f is an element of T and Ci represent a set of temporary, 
intermediate hypercubes. Also, note that each macro transforma-
tion, TM, when expanded, is itself a series of hypercube operators 
as above but where each function f is an intrinsic operator in the 
set TN. 

2.3 Producing the Logical Design 
After having constructed the conceptual design, we transform it to 
a logical model, which can be later fed to our QoX optimizer. 
Figure 2 abstractly pictures this process. In the upper figure, 
hypercubes and hypercube operators are presented. The details of 
the extract from data sources and load to the warehouse target 
need not be exposed. In the lower figure, the sources and target 
tables are shown in detail along with details of the transformation 
steps. 

 

Figure 2: Conceptual (top) and logical (bottom) designs 

Figure 3 shows a high-level algorithm for generating the logical 
ETL model from the conceptual model. The first steps are defin-
ing the extract and load hypercubes and the transformations be-
tween them. Note that there may be dependencies among the load 
hypercubes. For example, when loading a hypercube representing 
a fact table in a star schema, it is important to first load hyper-
cubes that represent dimensions referenced by the fact hypercube. 
Then, for each load hypercube, a semantic consistency check is 
performed to ensure that the flow is valid. Next, macro expansion 
occurs to produce a flow consisting entirely of intrinsic hypercube 
operators. Finally, the logical ETL operators are generated from 
the intrinsic hypercube operators. 
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Figure 3: Generating ETL logical flow from conceptual design 

Next, instead of delving into a formal representation of the me-
thodology, we demonstrate it through a series of indicative exam-
ples representing frequently used operations, we show how such 
operations can be modeled, and for a few of them (due to space 
constraints) we illustrate how they expand into detailed operations 
that correspond to logical level activities. 

3. EXAMPLE CASES 
Extract hypercube. Consider the order-entry system of an on-line 
retail enterprise. We can assume that the operational systems will 
generate order details as well as updates to customer data and 
product data as customers and products come and go. From a 
business perspective, there are three or four business objects in-
volved, customers, products, orders and order lineitems (individu-
al products) corresponding to three or four source hypercubes1. It 
is a business decision if the order data should be viewed as one 
object (an orders cube with the lineitem details) or as two separate 
objects (one orders summary cube and one lineitems cube). In 
addition, consider the customer data. For efficiency, the opera-
tional system may store customer information in multiple, norma-
lized tables. For example, the customer profile information may 
be stored separately from the primary customer table; e.g., cus-
tomer profile information in one table, customer demographic 
information in another, customer address in another and customer 
identity in another. The details of the logical storage schema are 
                                                                 
1 Note that mathematically, a single, large hypercube is sufficient 

for the extract phase, but this is not natural for a business view. 

not relevant to the business user. In fact, including such details in 
the conceptual model makes it dependent such that changes to the 
source schemas require changes to the conceptual model. This is 
undesirable and violates the abstraction required at the conceptual 
level. 

Consequently, the conceptual model presents customer informa-
tion as a single hypercube regardless of the logical schema at the 
source. The conceptual model includes annotations that specify 
how that hypecube is created from the source objects; e.g., the 
relational algebra operations to join the customer and profile, 
tables, surrogate key generation (IdRes, as explained later), and so 
on. However, these annotations need not to be exposed to the 
business user and are only used in creating a logical model from 
the conceptual model. In addition, the annotations must specify 
attributes used to specify the subset of source data extracted 
(Figure 4). For example, a source hypercube may include a time-
stamp attribute and annotations for the extract phase should speci-
fy the timestamp range for each instance of running the extract 
flow; e.g., extract customer changes for the previous hour, the 
previous day, last week, and so on. 

 

As another example, suppose the source system generates XML 
documents to represent order information where each document 
includes order summary and lineitem details. In addition, suppose 
the business requirements dictate separate hypercubes for order 
summary and details. In this case, the annotations would present 
the logical source object as an XML document and include the 
XSLT operators to extract the order summary information into 
one hypercube and the order detail information into the second 
hypercube. 

Transform hypercube. The conceptual model for the transforma-
tion phase is expressed as a graph of hypercube operations and 
higher-level, macro operations. As a simple example, suppose a 
load hypercube presents product sales per week, i.e., the total 
sales for each product sold for each week. We assume the extract 
phase produces a hypercube with order detail information, either 
as a separate hypercube or combined with the order summary. In 
this case, the load hypercube can be expressed as a hypercube 
roll-up operation over the extract hypercube on the date (week) 
and product dimensions (product number) as shown in Figure 5. 

Identity resolution. A frequent transformation for data warehouses 
is the generation of a surrogate key to represent each unique ob-
ject in the warehouse (customer, order, product). The surrogate  

Cust: custId, name, 
addr, profId, … 

Prof: profId, age, income, 
loyaltyPts, … 

Extract cust cube 

1.Source Tb1: Cust, Prof 
2.Trgt CustCube:  
            dim custKey, custId 
            join Cust, Prof on profId 
3.custKey = idRes(custId, custIdMap) 

CustCube: custKey, custId, timestamp,  
name, addr, age, income, loyaltyPts, … 

Figure 4: Extract Hypercube 

506



 
key replaces the natural object identifier from the source system; 
e.g., customer identifier, order number. This transformation step 
requires a mapping table to record the source object identifier and 
its corresponding surrogate key. If the object identifier does not 
exist in the mapping table, a new surrogate key is generated and 
an entry is added to the mapping table. Conceptually, this is a 
simple, one-step operation that is implemented by a hypercube 
macro method, which we refer to as Identity Resolution (Figure 
6). The concept of identity resolution is meaningful at the busi-
ness level but the details of checking and updating the mapping 
table are not relevant. When the logical model is generated, the 
macro will be expanded to hypercube operations that are then 
converted at the logical level to relational algebra and ETL opera-
tors so the appropriate mapping tables will be accessed and up-
dated. Figure 6 shows the macro expressed as a series of intrinsic 
hypercube operations.   

 
Banding. As another example, a common task in data warehouses 
is banding, i.e., mapping a numeric value range to a symbolic 
value such as the value for age becomes child, teen, adult, senior 
or the value for income becomes low, middle, upper-middle, high. 
This can be expressed as a single join operation between the ex-
tract hypercube, say customers, and a banding hypercube that 
describes the mapping. Although the conceptual model could 
present banding as a hypercube join operation, as with surrogate 
key generation, it is more meaningful to define an intrinsic macro 
operation, banding, that takes as arguments, the extract hypercube  
and relevant value and the banding hypercube and banding 
 

 
dimension. The implementation of the banding macro in terms of 
intrinsic hypercube operations is shown in Figure 7. 

Create load hypercube. Given banding and surrogate key genera-
tion as building blocks, one can envision how a more general 
matching operation could be implemented. For example, suppose 
the data warehouse records customer details in multiple objects; 
e.g., one warehouse dimension for customer identity, a second for 
customer demographics, and so on. Therefore, there would be two 
corresponding load hypercubes one for each warehouse dimen-
sion. Suppose the extract phase produces a single hypercube con-
taining all the customer details. We have seen how the identity 
resolution macro can be used to obtain a surrogate key from the 
customer identifier. However, a more general matching operation 
is needed for customer demographics that would involve, for ex-
ample, banding the customer age or income, searching the demo-
graphic dimension for a match, adding a new entry if none is 
found, and so on. The result would be a surrogate key for custom-
er demographics added to the customer hypercube. Then, two 
load hypercubes would be populated by hypercube slice opera-
tions over the customer hypercube (see Figure 8). 

 

 

Load hypercube. As a final example, data warehouse dimensions 
may be static or slowly changing. For example, days of the week 
and months of the year do not change. The list of states in the 
U.S. may change rarely while the list of cities may change occa-
sionally. On the other hand, the list of products and/or customers 
may change with some regularity. For dimensions that change, it 
is a business decision if the warehouse should record details of the 
changes (the history of the object) or not. When a customer ad-
dress changes, it may not be useful to track the previous ad-
dresses. If a product price changes, it may be important to track 
when the price change occurred and the previous price. There are 
several techniques for maintaining history for slowly changing 
dimensions (e.g., see [6]).  

IdRes (Cube, Id, Map) 

// Assume Cube has an Id dimension 
// Assume Map has one dimension, Id, and a cell value, “Key” 

Ids = slice ( Cube )  on Id 
Keys = join ( Ids, Map )  on Id 
NewIds = diff ( Ids, Keys )  on Id 

// add an item to a cell (push), generate a new key (keyGen) 
NewKeys = push ( NewIds, Id, “Key” ) as keyGen ( Id ) 

// update Map 
Map = outer join ( Map, NewKeys )     

// add Key to Cube 
Cube = join ( Cube, Map ) on Id     

Figure 6: Identity Resolution Macro (IdRes) 

BandDim (Cube, Val, Map) 

// Assume Cube has an dimension, Val, to band 
// Assume Map has one dimension, Val, that is the lower 
//      bound of each band and a cell value, “Label” 

Vals = slice ( Cube )  on Val 
Vals = merge ( Vals )   // eliminate duplicate values in dim 
Bands = join ( Vals, Map )  on Val where max ( Vals <  Low ) 

// update cube cells with label for dimension Val 
Cube = join ( Bands, Cube ) on Val 

Figure 7: Banding Macro 

  LineitemCube: orderKey, prodKey, custKey, 
  storeKey, weekKey, qty, amt, … 

ProdWeekCube: prodKey, weekKey, 
totQuantity. totSale, … 

      Rollup on prodKey, weekKey 
            totQuantity = sum(qty),   
            totSale = sum(amt) 

Figure 5: Transform Hypercube 

 

// Assume CustCube: custKey, custId, name, addr, age,  
//                                income, … 
// Need to create load hypercube for  
//          Warehouse Customer Dim and Demographics Dim 

DemoMatch  ( CustCube )  // adds demographic key to CustCube

CustLoadCube = slice ( CustCube )  

                            on  custKey, name, demoKey,… 

DemoLoadCube = slice ( CustCube )  

                            on demoKey,  ageBand, incomeBand, … 

Figure 8: Creating Load Hypercubes 
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As with surrogate key transformations, at the conceptual level, 
there is a single, macro operation for maintaining the history. 
Annotations are used to hide the detailed hypercube operations so 
that a correct logical model can be generated. An example of a 
hypercube load operation using a macro for varying dimensions is 
shown in Figure 9. 

4. RELATED WORK 
The current state of the art is to use informal techniques to capture 
business requirements and create a conceptual model. A typical 
design might be expressed using some combination of MS Visio 
diagrams, spreadsheets, and text documents. ETL designers de-
vise their own methodologies and best practices so there is wide 
variation in how conceptual models are expressed. A few ETL 
conceptual models have been proposed in the past. Some are 
based on ad hoc, drawing notation and others use notation like 
BPMN or UML (e.g., see [1] and [7]). Our experience shows that 
business users are not typically familiar with such notation and 
wish to have simpler, more meaningful to them representation. 
Also, the production of later design stages like the logical model 
is not clear in those approaches. Therefore, adapting such ap-
proaches in our system was not useful.  

In business process modeling, the business artifact centric ap-
proach has been proposed (e.g., see [3]). Business artifacts refer to 
objects in the OLTP databases that are manipulated by the opera-
tional business processes throughout their lifecycle. Hypercubes 
in contrast, follow the cube paradigm which is inherent in busi-
ness analysis and decision support.  

Previous work has described how to translate hypercube opera-
tions into the relational algebra required at the logical level (for 
example, see [2] and [10]). We adapt those results in compiling 
our intrinsic hypercube operators.  

5. CONCLUSIONS 
This paper presents a solution for eliminating the disconnect in 
ETL projects between the capturing of business rules and the 
creation of a logical model. It describes the use of hypercubes as 
the basis for a conceptual model and shows how to model extract, 

transform and load phases using intrinsic hypercube operators 
along with high-level macros built on other operators. This ap-
proach has several advantages over the ad-hoc techniques current-
ly in use for conceptual modeling. It provides a formalism that is 
familiar to business users and analysts who are the domain experts 
responsible for defining business requirements and validating that 
the flow meets the objectives. Second, it facilitates direct transla-
tion to a logical model through conversion of the hypercube oper-
ators to relational and ETL operators. This reduces design and 
development time and improves accuracy because the conceptual 
model can be read and understood by domain experts. 
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Product Dimension: prodKey, prodName, timestamp, 
                                  prevProdKey, price, color, …,  

Load product dim 

1. Target tbl: product 
2. type 2 varying dim on 
    price, color, link prevProdKey 
3. use now() as timestamp 
4. … 

ProdCube: prodKey, prodName,   
                  price, color, … 

Figure 9: Load Hypercube 
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