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ABSTRACT

A large part of the data on the World Wide Web resides in the deep

web. Executing structured, high-level queries on deep web data
sources involves a number of challenges, several of which arise be-
cause query execution engines have a very limited access to data.
In this paper, we consider the problem of executing aggregation
queries involving data enumeration on these data sources, which re-
quires sampling. The existing work in this area (HDSampler and its
variants) is based on simple random sampling. We observe that this
approach cannot obtain good estimates when the data is skewed.
While there has been a lot of work on sampling skewed data, the
existing methods are based on prior knowledge of data, and are
therefore not applicable to hidden databases.

In this paper, we present two prior-knowledge-free sampling al-
gorithms, Adaptive Neighborhood Sampling (ANS) and Two Phase

adaptive Sampling (TPS), which allow an aggregation query to be
answered with a high accuracy (even when there is a skew), and a
low sampling cost. For this purpose, we have developed robust esti-
mators for aggregation functions including AVG, MAX, and MIN.

Our experiments show that for data with a moderate or a large
skew, ANS and TPS yield more accurate estimates, outperforming
HDSampler by a factor of 4 on the average. Even for the cases
where data has a small skew, our TPS method has an important
advantage, which is that it has only one-third of the sampling costs
of HDSampler.

Categories and Subject Descriptors

H.2.4 [Database Management]: Query Processing

1. INTRODUCTION
A large portion of the data on the World Wide Web resides in the

deep web. To access such hidden data, a user must issue queries
through the input interfaces of deep web data sources. Then, an-
swers are returned to the user as dynamically generated HTML
pages. An study on the deep web estimated that the public infor-
mation in the deep web is 500 times larger than the surface web,
with 7,500 Terabytes of data, across 200,000 deep web sites [3].
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With the growth of the size and popularity of the deep web, it is
becoming increasingly desirable to support structured, high-level
queries over deep web sources. Such support, however, involves
many distinct challenges, depending upon the queries that one may
support [12, 22]. In this paper, we focus on aggregation queries that
require data enumeration. These are distinct from the aggregation
queries that can be answered directly using a data source’s input
interface. For example, the query “find the hotel with the lowest

price in Boston on 2/15/2010” can be directly answered using a
travel web-site, and specifying the city and the date. In contrast,
the following aggregation query requires data enumeration:
Example 1: Suppose a student wants to study US aviation market,

and he wants to obtain the average airfare from the US to Europe,

across all flights in the next week using Expedia.com.

To obtain the exact answer for this aggregation query, one needs
to enumerate every pair of US and European cities, and issue corre-
sponding deep web queries. This can be extremely time-consuming,
if not impossible. In general, finding the exact answer to an aggre-
gation query that requires data enumeration is not practical due to
the following reasons. First, it is extremely hard to obtain all pos-
sible input values to enumerate the data. Second, deep web data
is returned over a network, and thus, executing a large number of
queries can be extremely time consuming. Some data sources even
charge access costs. Third, many deep web sources limit the num-
ber of queries a particular IP address can issue, or the number of
data records can be returned, to either protect their data from being
completely downloaded, or to disallow a denial-of-service attack.

Therefore, deep web aggregation queries can only be answered
approximately, using sampling. This, however, requires effective
and efficient sampling. Even generating random samples from hid-
den databases can be challenging. Recently, Dasgupta et al have
addressed this problem by developing HDSampler and its vari-
ants [10, 8, 11], which are able to select a simple random sample

(SRS) from hidden databases.
Our work is driven by the same motivation, but further considers

the problem that a random sampling approach like HDSampler may
not work effectively, because of the following reasons:
Low Estimation Accuracy on Skewed Data: HDSampler and re-
lated methods obtain a SRS from a hidden database. As is well
known, SRS cannot provide good estimates on skewed data [23,
5]. For hidden databases, we do not know the data distribution in
advance. The problem arising when the hidden data is skewed is
shown in the example below.
Example 2: We have a data source D = (1, 1, 1, 1, 1, 1, 1, 1, 10,
1000). We want to compute the average value on D. The data dis-

tribution in D is highly skewed. The true average is 101.8. Suppose

HDSampler takes a SRS of size 2. There are four possible samples

we could obtain: s1 = (1, 1), s2 = (1, 10), s3 = (1, 1000), and
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Table 1: Different Estimates on Skewed Data
HDSampler
Sample

HDSampler
Estimate

ACS Networks ACS Esti-
mate

s1=(1,1) 1 ({1},{1}) 1

s2=(1,10) 5.5 ({1},{10*,1000}) 273.47

s3=(1,1000) 500.5 ({1},{10,1000*}) 273.47

s4=(10,1000) 505 ({10*,1000*}) 272.98

s4 = (10, 1000). The estimated averages obtained using these

samples are shown in the second column of Table 1. None of them

yields a good estimate for the true average. This is because we

sample data with equal selection probability. However, the skew
causing data, which usually dominates the true average, only ac-

counts for a small portion of the entire data. Therefore, these data

records are often under-sampled.

High Sampling Cost: In the deep web, sampling cost refers to the
network transmission time for the queries issued to obtain the sam-
ple. As studied by Dasgupta et al [10, 11], to obtain one random
sample using HDSampler and its variants, multiple queries are of-
ten needed. Thus, obtaining a modest sized SRS using HDSampler
would involve a high sampling cost.

The limitations of SRS for skewed data are well known, and
many sampling methods have been developed to address these. For
example, many unequal probability sampling techniques have been
developed and demonstrated to be effective with skewed data. Ex-
amples include density biased sampling [23], stratified sampling [7],
sampling with outlier-indexing [5], histogram and wavelet based
sampling [4, 24] and random sampling with supplemental statis-
tics [14]. However, all these methods are built based on two as-
sumptions. First, they require knowledge of the data distribution
or certain key statistics. Second, the sampler has access to the full
dataset, i.e., it can off-line scan the full data at least once, and ob-
tain certain data statistics. These two assumptions are reasonable
in a relational database. However, they do not hold true when there
is a very limited access to hidden data, as in the deep web case.
Furthermore, many deep web sources update data frequently. Even
if we obtain partial data statistics ahead of time, they may not hold
true at the time when we are responding to a user query.

In this paper, we have developed and evaluated two new adaptive

sampling algorithms for the deep web scenario. They are the Adap-

tive Neighborhood Sampling (ANS) algorithm and the Two Phase

adaptive Sampling (TPS) algorithm. Both of them have two advan-
tages over HDSampler. First, both of them can provide accurate
estimation for aggregation queries on skewed data, without requir-
ing any knowledge of hidden data distribution or other statistics.
Second, besides being applicable on skewed data, TPS algorithm
incurs significantly lower sampling costs compared to HDSampler.
In this paper, we considered three types of aggregation queries: Av-

erage (AVG), Maximal (MAX) and Minimal (MIN). In addition, SUM

queries can be answered by combining the results from an AVG

query using our methods and a size aggregate obtained using a re-
cently proposed method [9].

The basic idea underlying the ANS and TPS algorithms is as
follows. Similar to the existing unequal probability sampling algo-
rithms, ANS and TPS select a random sample biased towards the
skew causing data. However, without knowledge of hidden data
distribution, ANS and TPS sample skew causing data by utiliz-
ing neighborhood proximity. We observe that skew causing data,
which also has a low frequency, usually forms clusters with respect
to certain attribute(s). For example, in household income data, very
high income households usually form clusters. i.e., their household

heads may have certain occupations such as doctor or lawyer, or the
physical locations of these households may be clustered. Unlike
existing algorithms that handle each sampled unit independently,
in ANS and TPS, we aggressively consider neighboring units for
sampled units. For this, when upper quantile data (likely but not
necessarily the skew causing data) is sampled, ANS and TPS ex-
plore its neighborhood, so as to increase the selection probability
of the skew causing data.

The overall contributions of our work can be summarized as fol-
lows. We have developed two novel sampling algorithms, with
mathematical analysis, to approximately answer aggregation queries
on deep web sources. These algorithms yield accurate estimation
on skewed data, without requiring prior knowledge of the data dis-
tribution. In addition, the TPS algorithm has lower sampling costs.
Our experiments show that for data with a moderate or a large skew,
ANS and TPS yield more accurate estimates, outperforming HD-
Sampler by a factor of 4. For data with only a small skew, TPS
method only incurs one-third of the sampling cost of HDSampler.

2. BACKGROUND
In this section, we first review HDSampler, a recently devel-

oped system for obtaining simple random samples from hidden
databases [10, 8]. Then, we give an overview of adaptive cluster

sampling, an existing method for sampling skewed datasets [26].

2.1 HDSampler and Its Estimators
HDSampler performs a random walk through a tree. Each level

of the tree represents an input attribute and the database tuples exist
at some of the leaves. Each path from root to a leaf represents a spe-
cific assignment of values to input attributes. HDSampler performs
a random drill-down by adding randomly selected input attributes
as query predicates, until a tuple is selected. Because a tuple at
higher level of the tree is more likely to be sampled than one at
lower levels, the retrieved tuples are post-processed by rejection

sampling to enforce equal selection probability.
For a data source D with Y being the attribute of interest, we

have S = {y1, y2, . . . , yn} as the SRS selected using HDSampler.
Here, n is the sample size. Each yi in S is a sampled unit. Using
S , the estimates of average, and the maximum values of Y can be

computed as ȳ =
Pn

i=1 yi

n
, and ŷmax = Max(i=1...n){yi}. They

are the estimators of HDSampler.
To evaluate the accuracy of an estimator, we use the metric Ab-

solute Error Rate (AER). For a variable with true value θ and esti-

mated value θ̂, the AER of the estimator θ̂ is AER(θ̂) = |θ̂−θ|
θ

.

2.2 Adaptive Cluster Sampling
The basic idea of the ANS and TPS algorithms is inspired by

Adaptive Cluster Sampling (ACS) [26]. ACS was originally mo-
tivated by the problem of sampling rare and clustered population,
such as rare species like shrimp, which is in high abundance in cer-
tain spatial areas. We may want to estimate the total number of such
animals within a certain area which is partitioned into grids. The
animal population is highly skewed, implying that most grids do
not have any animals, whereas, some areas have a high density. We
are likely to see two key features. First, it is hard to know their dis-
tribution in advance over the entire area. Second, they often form
clusters. Thus, if we find them in one spatial area, we are more
likely to find them in neighboring areas. With such properties, SRS
usually does not perform well.

ACS is proposed for such cases, and works in two steps as fol-
lows. First, a SRS is selected, denoted as the initial sample. If any
unit (grid) in the initial sample satisfies a pre-defined limit condi-
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tion, such as the number of animals in the unit is greater than a
threshold, the unit is called a unit of interest. Then, for each such
unit of interest in the initial sample, its neighboring units are further
sampled. If any neighboring unit also satisfies the limit condition, it
is added to the sample, and this process is repeated. The idea is that
because animals often form clusters, if we examine the neighboring

units of a unit of interest, we are likely to obtain more units of in-

terest into the sample. The neighborhood is usually determined by
spatial adjacency. A unit of interest with all its neighboring units
that also satisfy the limit condition form a network. Thus, in ACS
with an initial sample of size n, we will eventually have n networks
S = {s∗1, s

∗
2, . . . , s

∗
n}, where s∗i is the ith network.

Let us apply ACS to Example 2 in Section 1. We define the
records with values no less than 10 as the units of interest, and
neighborhood is determined based on spatial adjacency, implying
that records 10 and 1000 are neighbors. Using the ACS estimators
in [26], the ACS networks and ACS estimated averages are shown
in Table 1. The unit(s) enclosed within brackets {} represent(s) a
network. In each network, the unit with a ∗ is the initial unit of
interest, and other units are neighboring units. We observe that for
the initial samples s2, s3, and s4, ACS gives much better estimates
than HDSampler, which is based on SRS. This is because in these
three samples, the skew causing data is included. However, if the
initial sample is s1, the ACS estimate is the same as HDSampler.

From this example, ACS appears like a promising approach for
sampling hidden databases. However, ACS also has three limita-
tions. First, the performance of ACS depends on the initial sample.
If there is no unit of interest in the initial sample, ACS degrades to
SRS. Second, ACS has not been developed or analyzed for cases
with a sampling cost limit. In the deep web scenario, since queries
are executed in an interactive setting with a user, it is necessary
to consider a cost limit. This could further include: 1) how many
units in the initial sample are allowed? and 2) how many neighbor-
ing sampled units are allowed? Third, the initial sample in ACS is
selected as a SRS. As stated in Section 1, obtaining SRS on a deep
web source has a high cost.

Our ANS method overcomes the first two limitations of ACS,
and the TPS method addresses the first limitation of ACS and also
provides a practical solution for the third limitation.

3. NEW SAMPLING ALGORITHMS
In this section, we first state several definitions to formulate the

our sampling problem. Then, we describe the ANS and TPS algo-
rithms and develop estimator for each of them, for computing the
average (AVG) aggregation function. Towards the end of this sec-
tion, we develop estimator for the maximum (MAX) and minimum
(MIN) function.

3.1 Problem Formulation
Consider a deep web source D with N (unknown) tuples {r1, . . . , rN}

over a set of m attributes Attr = {A1, . . . , Am}. Attributes can
be numerical or categorical. IN = {A1, . . . , As} is the input at-
tribute set of D. The attribute of interest is a numerical attribute
Aq, where Aq ∈ Attr and Aq /∈ IN . For an aggregation query on
Aq which requires data enumeration, we select a sample S ∈ D, to
estimate the result AGG(Aq).

3.1.1 Unit of Interest

For a record ri, we use yi, the value of ri’s attribute of interest, to
represent ri. Then, we denote a unit yi to be a unit of interest, if yi

satisfies the limit condition yi > η. Here, η is the upper limit value

that is initialized based on domain knowledge (η will be adapted in
our algorithm). For dataset with negative values on the attribute of

interest, the limit condition yi < η′ is also considered.

3.1.2 Data Record Neighborhood
In ACS, the neighborhood is determined based on spatial adja-

cency. Here, we define neighborhood in the deep web scenario.
For a data source D with m attributes, we consider D as an m-
dimensional space, and each record r is a point, denoted as r =
{a1, . . . , as, y, . . . , am}. ai is the value of the attribute Ai. The
first s values correspond to the input attributes, and y is the value
of the attribute of interest. Intuitively, the neighborhood of r is the
set of data records that are adjacent to r with respect to the input
attributes. Specifically, we take data records that have a different
value for at most one of the input (or the first s) dimensions. This
is denoted as

Neighborhood(r) = {r′ = {a1, . . . , neighborhood(aj),

. . . , as, ∗, . . . , ∗}|1 ≤ j ≤ s}

where, ∗ denotes values for non-input attributes of r′. If Aj is a
numerical attribute, neighborhood(aj) = {aj , aj±unit_length},
where unit_length is chosen depending upon the scale of Aj .

For a categorical attribute Aj , we assume its values can be cate-

gorized through domain knowledge. For example, the occupation
attribute can be categorized into high wages, median wages, and
low wages. Thus, in computing the neighborhood of aj for attribute
Aj , neighborhood(aj) contains all values in the same category as
aj .

Then, a neighboring unit r′ of r falls in either of the following
two types: 1). Immediate Neighbor, r′ has the same input attribute
values as r but different values on other attributes, 2). Collateral

Neighbor, r′ has at most one input attribute value different from
that of r, but this value is still adjacent to the corresponding value
for r. As an example, if we have a data record in a 2-dimension
space r = (a1 = 2, y = 4), then the neighborhood of r contains
(2, ∗), (1, ∗),(3, ∗), of which the first one is an immediate neighbor

and the other two are collateral neighbors. For a record r, because
its immediate neighbors have the same input attribute values as r,
they are returned in one result set with r. Therefore, we could con-
sider immediate neighbors being available free of additional sam-
pling cost. This provides our algorithms a critical advantage on
sampling costs. Obtaining each collateral neighbor of r incurs the
same sampling cost as that for obtaining r.

3.2 Adaptive Neighborhood Sampling (ANS)
In this section, we describe how our ANS algorithm address the

first two limitations of ACS (Section 2.2), which are first, the per-
formance of ACS depends on the initial sample, and second, ACS
has not been developed for cases with a time-limit, or a termination

condition on sampling.
The ANS algorithm selects sampled units in two steps. First,

ANS selects an SRS as the initial sample using HDSampler. Sec-
ond, for each sampled unit of interest ri in the initial sample, the
units neighboring ri are further sampled to form the network cor-
responding to ri. Formally, the method is shown as Algorithm 3.1.
We detail these two steps of the ANS algorithm in the following
paragraphs.

3.2.1 Selecting Initial Sample in ANS

The first limitation of ACS is that if there is no unit of interest
in the initial sample, ACS degrades to random sampling. To over-
come this limitation, an intuitive solution is to ensure that a certain
number of units of interest, say k, are included in the initial sam-

ple. For this, we perform random sampling until k units of interest

are observed in the initial sample. However, in order to achieve
k units of interest in the initial sample, the final size of the initial
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sample can be arbitrarily high. Therefore, we must include appro-
priate termination rules while obtaining the initial sample, to limit
the costs.

In a real query system, a user may require an answer to his/her
query should be obtained within a specified time limit, though the
user may be flexible with respect to the accuracy of the results ob-
tained. Based on profile or history information, we may know the
average network delay for one sampled unit. Similarly, we may
also know the average neighborhood size of a data record. Then,
given a cost limit C (in terms of time), we could decide the cor-
responding maximal size of the initial sample allowed, which is
denoted as n.
ANS Termination Rules for Obtaining Initial Sample: In ANS,
to obtain the initial sample, we use HDSampler to select a list of
random sampled units until either of the following two termination

rules are satisfied: 1). we have observed k number of units of
interest in the current initial sample, or, 2) the size of the current
initial sample reaches n. The first termination rule implies that if
we have already obtained the desired number of units of interest in
the initial sample, we could stop sampling even before reaching the
limit n. The second rule implies that if we cannot obtain k units
of interest in the initial sample within the limit n, we need to just
proceed with the initial sample already obtained.

Algorithm 3.1: ANS(k, n, η)

/*The first step, obtain initial sample*/

of_interest = 0 /*number of units of interest in initial sample*/

initialsize = 0; /*size of initial sample*/
/*consider the two termination rules*/

while initialsize < n AND of_interest < k
r = HDSampler() /*find a random sampled unit*/

add r to the initial sample
initialsize + +
if r is a unit of interest
of_interest + +;

/*the second step, explore the neighborhood*/

foreach unit of interest r in the initial sample
networksize = 0
Neighbors = F indNeighbor(r) /*find the neighboring units of r*/

foreach nr ∈ Neighbors
if nr.y > η

/*nr satisfies the limit condition*/

add nr to the network of r
networksize + +
add F indNeighbor(nr) to Neighbors
/*adding neighbors in a recursive manner*/

/*adaptively adjust the value of η*/

if networksize > upperthreshold
/*too many neighbhoring units added*/
η = η + unit_length

else

if networksize < lowerthreshold
/*too few neighbhoring units added*/

η = η − unit_length

3.2.2 Selecting Neighborhood Sample in ANS

In the original ACS method as introduced in Section 3.1, if a
sampled unit r is a unit of interest, i.e., the value of the attribute
of interest of r is greater than the upper limit value η, then r’s
neighbors that also satisfy the limit condition are also included in
the final sample. The original ACS algorithm assumes a fixed η
value for the entire sampling process.

Clearly, the choice of the value of η is important for the process.
If η is too small, too many neighboring units will be added to the
final sample. This could involve extra sampling costs since collat-
eral neighbors have sampling cost. If η is too large, we end up with

too few neighboring units, which in turn could negatively impact
the estimator. In practice, it is hard to find a good value for η at
the beginning. To make our ANS algorithm more flexible and ro-
bust, we have developed a method to adaptively adjust η to control
the number of neighboring units that are added to the final sample
during the execution of the algorithm.

The method works as follows. After neighborhood sampling for
a unit of interest ri in the initial sample is finished, if the current η
has introduced too many neighboring units into the neighborhood
of ri, we will increase the value of η. Thus, for other units of in-
terest left in the initial sample, the number of neighborhood units
added to their network could be decreased. If the current η intro-
duces very few neighboring units into the network of ri, we will
decrease η.

3.3 Estimators for ANS Algorithm
In this section, we develop the AVG estimator for the ANS algo-

rithm. We assume that the number of sampled units in the initial
sample is n, and the number of units of interest in the initial sample
is l. As introduced in Section 3.2.2, the ANS algorithm obtains a
set of sampled networks, which is S = {s∗1 , s∗2, . . . , s

∗
n}, where s∗i

is the ith network formed by the ith unit in the initial sample.
Developing such estimator involves several challenges, since the

algorithm can stop with either of the two termination conditions,
and the value of η can be dynamically modified. Thus, we first
develop the estimator for the case that a fixed η value is used in the
ANS algorithm. Then, we modify the estimator for the case when
different η values are used in the algorithm.

3.3.1 Estimators for Fixed η

In designing the estimator for the ANS algorithm with a fixed
η value, we need to consider two cases, corresponding to the two
termination rules. We first design estimator for the sample selected
based on each termination rule independently, then we combine
them together and provide theoretical analysis.
Estimator for AVG Under 1st Termination Rule: Using the first
termination rule, the initial sample S = {s∗1, s

∗
2, . . . , s

∗
n} contains

k units of interest and the size of the initial sample is smaller than
or equal to the limit n. An intuitive AVG estimator will be the

sample average, i.e., ȳ =
Pn

i=1 ȳ∗
i

n
, where ȳ∗

i is the average value
of the attribute of interest in the network s∗i . However, under the
first termination rule, the size of the initial sample depends on when
the kth unit of interest is sampled. Thus the initial sample size n
is not fixed. As a result, the above estimator, designed for the cases
with fixed sample sizes, is biased [19].

To address this problem, we have developed an alternative es-
timator. In the data source D, suppose the percentage of units of
interest with respect to the entire data set is β. Then, an unbiased
estimator for the population average ȳ for the attribute of interest
using the sample obtained under the first termination rule is

ȳtr1 = β̂ȳ∗
1 + (1 − β̂)ȳ∗

2

Here, ȳ∗
1 =

P

i∈S1
ȳ∗

i

k
, where S1 is the set of networks formed by

the k units of interest in the initial sample. Also, ȳ∗
2 =

P

i∈S2
ȳ∗

i

k
,

where, S2 is the set of networks formed by ordinary units (i.e. units

not of interest) in the initial sample. β̂ is the estimator of β, which

can be approximated by β̂ = k−1
n−1

[20].

LEMMA 3.1. The estimator ȳtr1 is an unbiased estimator un-

der the first termination rule.

PROOF. In a data source D with N records, suppose the total

number of units of interest is M , we know that β = M
N

. We use
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UN−M to represent all ordinary units in D, and use UM to rep-
resent all units of interest in D. Let fi to be the number of times

the ith unit from the set UN−M appears in the sample, and we
have fi ∼ binomial(n − l, 1

N−M
). gi is the number of times

the ith unit from the set UM appears in the sample, and we have
gi ∼ binomial(l, 1

M
). Then the expected value of ȳtr1 can be

obtained as

E[ȳtr1] = E[β̂ȳ∗
1 + (1 − β̂)ȳ∗

2 ] = E[
M̂ȳ∗

1

N
+

(N − M̂)

N
ȳ∗
2 ]

= E[
N − M̂

N − M

P

i∈UN−M
yi

N
+

M̂

M

P

i∈UM
yi

N
] = ȳ

Thus, ȳtr1 is an unbiased estimator under the first termination
rule.

Estimator for AVG Under 2nd Termination Rule: Using the sec-
ond termination rule, the initial sample S = {s∗1, s

∗
2, . . . , s

∗
n} has

a fixed sample size n. As a result, the sample average estimator
can be used here as an unbiased estimator. An unbiased estimator
for the population average ȳ for the attribute of interest using the
sample obtained under the second termination rule is

ȳtr2 =
1

n

n
X

i=1

ȳ∗
i

where ȳ∗
i is the average value of the attribute of interest in the

network s∗i .
Combined Estimator for AVG: We use l to represent the total
number of units of interest in the initial sample. The estimator for
ȳ for ANS algorithm considering two termination rules with fixed
η value is as follow.

ȳANS =

(

β̂ȳ∗
1 + (1 − β̂)ȳ∗

2 l = k,
1
n

Pn

i=1 ȳ∗
i l < k.

When considering the estimators under each termination rule in-
dependently, both of them are unbiased. However, if the two ter-
mination rules are jointly considered, the size of the initial sample
from ANS is not fixed, whereas, one part of the combined estimator
requires a fixed sample size. As a result, the combined estimator is
biased. Lemma 3.2 computes the expectation of ȳANS showing the
bias of this estimator.

LEMMA 3.2. E[ȳANS ] = ȳ × Pr[l ≤ k], where Pr[l ≤ k]
is the probability that the actual number of units of interest in the

final initial sample being smaller or equal to k.

The proof of Lemma 3.2 is similar as Lemma 3.1. The detailed
proof can be found in [27].

Next, lemma 3.3 shows that if k is small, the bias of ȳANS is
small. In our experiment, we show that for relatively small k (k =
8), the biased estimator has good performance.

LEMMA 3.3. For a relatively large data set, if k is small, the

bias factor in ȳANS tends to be 1, i.e., Pr[l ≤ k] → 1 . Therefore,

the bias of the estimator ȳANS is very small.

PROOF. We give a quick sketch of the proof here. The variable
s, the actual number of units of interest in the final initial sample,
follows the hypergeometric distribution s ∼ hypergeometric(N,M, n).
When M ≪ N and k ≪ M , we have

Pr[s ≤ k] =
s

X

k=0

( M

k
)( N−M

n−k
)

( N

n
)

M≪N,k≪M
−−−−−−−−→

( N

n
)

( N

n
)

= 1

In our scenario, since the skew causing data usually only ac-
counts for a very small portion of the entire data, we have M ≪
N . Furthermore, because it is hard to sample the skew causing
data, we have k ≪ M for a modest sized sample. Both of the
above two conditions hold in our scenario, and thus, the result from
Lemma 3.3 can be applied to our case.

In statistics, a biased estimator is not necessarily a poor or unac-
ceptable estimator. If the bias is not severe, at least under some real-
istic conditions, and the biased estimator has other desirable prop-
erties, we still favor a biased estimator over an unbiased estimator
without the same desirable properties. Lemma 3.3 shows that un-
der certain conditions, which often hold in practice, the bias of the
combined estimator described above is very small. This is further
validated by our experiments. Furthermore, the combined estima-
tor has two very desirable properties. First, it supports two practical
termination conditions, whereas the original estimator for adaptive
clustering sampling introduced in Section 2.2 does not consider any
termination condition. Second, as we will show through our exper-
iments, the estimation accuracy of the combined ANS estimator is
better than that of the SRS estimator used by HDSampler.

3.3.2 Estimators for Multiple η

When we use different η values in ANS, the final sample is post-

stratified into a list of stratums based on different η values. There-
fore, we modify the estimator developed for fixed η using post-
stratification. The estimators are modified as follows.
Estimator for AVG with Multiple η: The estimator of the popu-
lation average using post-stratification in the ANS algorithm is

ȳpost =
H

X

h=1

nh

n
w̄h

where nh is the total number of units in the initial sample that be-
longs to the hth stratum. nh can be obtained after post-stratification.
w̄h is the estimated average value using all the sampled units in
the hth stratum. Since all the sampled units in one stratum share
the same η value, w̄h can be computed using the estimator ȳANS

shown earlier. The fraction nh

n
shows the percentage of the sam-

pled units in the initial sample falls into the hth stratum, and it is
used as the weight for the estimated average from the hth stratum.

3.4 Two Phase Adaptive Sampling (TPS)
In the ANS algorithm, we still need to use HDSampler to select

an initial sample, which can result in high sampling costs. In this
section, we present another algorithm, which is the TPS algorithm.

The basic idea of TPS is as follows. We consider all data records
in a data source D as being partitioned into a set of sub-spaces
based on the value of input attributes. For example, if a data source
D has a single categorical input attribute with 5 distinct values,
we could consider the data in D are partitioned into 5 sub-spaces.
Numerical input values can be partitioned according to ranges.

The key observation is that a large set of the records from a sub-
space can be retrieved with a single query over a deep web source
(probably with clicking the “next” button). Most data sources even
allow a range query for a numerical input attribute. Given an over-
flowing query (sub-space), HDSampler considers it as invalid and
continue to drill down. In contrast, TPS will use several data records
from its answer set, but with more advanced estimators. In this way,
with the same sampling cost, TPS could have more sampled units
than HDSampler. In other words, TPS can have a much lower sam-
pling cost for a fixed sample size.

The algorithm proceeds as follows.
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1. Suppose there are M sub-spaces in D. We randomly choose
m sub-spaces. This can be done by random assigning valid val-
ues or ranges for the input attributes and issuing the corresponding
queries to obtain the answer set. The sampling cost for this stage
can be viewed as being proportional to m.

2. For the ith sampled sub-space, we select a first-phase random
sample of size ni1. Since the data records in the ith sampled sub-
space have been delivered to the system, selecting these samples
does not cause any additional queries, and thus can be viewed as
free of sampling costs. One exception may be that we need to click
the “next” button in the web browser to obtain additional page(s),
but we consider this a part of the sampling cost in step 1.

3. For the ith sampled sub-space, if any unit in the first-phase
sample satisfies the limit condition, we select a second-phase ran-
dom sample from the sub-space with the size ni2. Otherwise, we do
not select the second-phase sample, i.e., ni2 = 0. These are also
obtained from the data records obtained originally, and thus, we
view second-phase sampling as not imposing any additional costs.
The underlying idea is that based on neighborhood proximity, if
any unit in the first-phase sample is a unit of interest, it is likely
that this sub-space contains other units of interest.

Then, for the ith sampled sub-space, the final sample is si with
the size ni = ni1 + ni2. We denote si = {y1, y2, . . . , yni

}. We
use Ni to denote the total number of data records in the ith sub-
space, which is the total number of matched records of a query that
most data sources often return. We first try to find the summation
estimator for the ith sampled sub-space.
Summation Estimator for the ith Sub-space: Due to the use of
overflowing queries in TPS (similar to [11]), the selection prob-
ability for the units in the TPS sample for the ith sub-space is
not uniform. Thus, an intuitive estimator for summation, t̂i =
Ni

ni

Pni

j=1 yj , is biased.
In the following, we first propose a trivial unbiased estimator

then, we use the Rao-Blackwell Theorem to improve the efficiency

of the trivial unbiased estimator.
Considering the first two drawn units yi1 and yi2 in the TPS sam-

ple for the ith sub-space only, we have a trivial unbiased estimator
for the sub-space SUM for the ith sub-space as.

t̂i = yi1 +
yi2(1 − pi1)

pi2

where pi1 and pi2 are the probabilities of choosing yi1 and yi2 in
the sample for the ith sub-space respectively.

We use two indicator variables, Iij , which is 1 if yij is the first

sampled unit in the sample si and 0 otherwise, and I
′

ij
′ which is 1

if y
ij

′ is the second sampled unit in the sample si and 0 otherwise.

Then, we can write the above estimator as

t̂i_trivial =

Ni
X

j=1

Ni
X

j
′
>j

yijIij +
y

ij
′ (1 − pij)

p
ij

′

I
′

ij
′

Next, we improve the above estimator using the Rao-Blackwell
Theorem.

THEOREM 3.4. (Rao-Blackwell Theorem [25]) Let T be any

unbiased estimator of a parameter φ, and let W be sufficient for φ.

Define

Tw = E[T |W ] = η(W )

Then Tw is an unbiased estimator of T , and Tw is more efficient

than T .

Based on the Rao-Blackwell theorem, we improve the estimator

t̂i_trivial. We define si to be the final sample we selected for sub-

space i and si is a sufficient statistic for t̂i_trivial. Applying the

Rao-Blackwell theorem, we have a new estimator

t̂i = E[t̂i_trivial|si] =
X

j

X

j
′
,j

′
>j

(yij +
y

ij
′ (1 − p)

p
)
P (si, ti)

P (si)

=
X

j

X

j
′
,j

′
>j

yijP (si, ti)

P (si)
+

y
ij

′ (1 − p)P (si, ti)

pP (si)

We have

P (si, ti) = P (si|ti)P (ti) = P (si|j, j
′

)p
p

1 − p

As a result, we have

t̂i =
X

j

X

j
′
,j

′
>j

P (si|j, j
′
)

P (si)
(
p2yij

1 − p
+ py

ij
′ )

We denote qi to be the total number of units in the sample si for
the ith sub-space, which are the units of interest, and we have the

following result for
P (si|j,j

′
)

P (si)
as shown in Figure 1.

Estimator for AVG for Data Source D: Based on the summation
estimator for the ith sub-space in D, the AVG estimator for D using
TPS is as follows.

ȳTPS =

Pm
i=1 t̂i

Pm
i=1 Ni

3.5 Estimating MAX and MIN
Using any of the above proposed algorithm, we obtain a sample

of size n as S = {r1, r2, . . . , rn}. The attribute of interest of ri

is denoted as yi. Then the estimator for the population maximum
ŷmax, and population minimum ŷmin are ŷmax = Maxn

i=1{yi},
and ŷmax = Minn

i=1{yi}.

THEOREM 3.5. (Chebyshev Inequality [25]) If a random vari-

able X has a finite mean µ and a finite variance σ2, then for any

ǫ ≥ 0, we have Pr[|X − µ| ≥ ǫ] ≤ σ2

ǫ2

We consider the attribute of interest as a random variable X,
using Theorem 3.5, for MAX estimation ŷmax, we could find a
bound on the probability that |X−µ| ≥ ŷmax−µ. In Theorem 3.5,

we set ǫ = ŷmax −µ, we could get Pr[X ≥ ŷmax] ≤ σ2

(ŷmax−µ)2
.

In other words, we could say that ŷmax is at least the 1− σ2

(ŷmax−µ)2

quantile of the values of the attribute of interest. We could build
similar bound for the minimum estimator as well.

4. EVALUATION
In this section, we evaluate the sampling algorithms we have de-

veloped. First, we evaluate each of the sampling algorithms indi-
vidually. Second, we compare our new sampling algorithms with
HDSampler.

4.1 Data Sets
We have used 8 data sets, including six synthetic datasets and

two real data sets.
Synthetic Data sets: The synthetic datasets were generated us-
ing MINITAB2, a statistical software package. We generated six
datasets, corresponding to data skew values 0, 1, 3, 5, 7, and 9, and
refer to them as synskew0,synskew1, synskew3,synskew5,

2http://www.Minitab.com
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)
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ni2 > 0 and qi < ni2 and j or j
′
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Ni(Ni−1){(ni1+ni2−2)!−ni2!
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(ni1+ni2)!−ni2!
(ni1+ni2−qi)!

(ni2−qi)!

ni2 > 0 and qi < ni2 and neither j nor j
′

satisfies the condition.

Figure 1:
P (si|j,j

′
)

P (si)
factor for the TPS algorithm

synskew7, and synskew9, respectively. Each dataset has 1000
data records and 7 attributes (columns). The first attribute is the
attribute of interest and the other 6 attributes are used as input at-

tributes to query the data. Each of the 6 input attributes has a dif-
ferent neighborhood proximity error (NPE), detailed in Section 4.2,
with respect to the attribute of interest. The NPEs for the 6 synthetic
datasets range from 0.46 to 1.72, and larger NPE value indicates
weaker neighborhood proximity.
US Census Dataset: The Census dataset comprises of the 2002 US
Economic Census data on Wholesale Trade Product Lines listed by
the Kind of Business. This dataset can be downloaded at American
FactFinder2. This dataset is referred to as IBQ. After removing
free text, we have 6 attributes and 24984 data records. We use
the sales attribute as the attribute of interest, and the number of

establishments as the input attribute. The skew of the sales

data in IQB is 8, and the NPE value is 0.67, implying that this
dataset has good neighborhood proximity.
Yahoo! Auto Data set: The Yahoo! Auto data set, denoted as
Auto, comprises of the data crawled from a subset of a real-world
hidden database at http://autos.yahoo.com/. Particularly, we down-
load the data on used Ford cars from any model between 2000 and
2009 and located within 50 miles of a zipcode address. This yields
a dataset with 1146 data records. We consider the price attribute
as the attribute of interest. The data skew of the price data in
Auto is 0.7. The NPE value of Auto is 0.31, which also indicates
good neighborhood proximity.

4.2 Evaluation Metrics
In our experiments, four metrics are used.

Absolute Error Rate (AER): AER, as defined in Section 2.1, cap-
tures the estimation accuracy, with a small AER value indicating
higher accuracy.
Sample Size: We consider two types of samples. As stated in Sec-
tion 3.1.2, immediate neighbors of a sampled data record are free of
sampling cost. We denote all these cost-free samples as associated

samples, and all other cost-involving samples as direct samples.
The total sample size is the sum of the sizes of the direct sample
and the associated sample.
(Projected) Sampling Cost: An initial study shows that the av-
erage network transmission cost for the Yahoo! Auto web-site is
about 250ms for obtaining one direct sampled unit. We use this
measurement to project the actual sampling costs for our sampling
algorithms.
Neighborhood Proximity Error: To quantify neighborhood prox-
imity for a particular data source, we define the metric Neighbor-

hood Proximity Error (NPE). This is computed by evaluating NPE
of the attribute of interest with respect to the input attributes. We
partition the data into clusters based on data record neighborhood
as introduced in Section 3.1.2. Then, NPE is computed as a func-

2http://factfinder.census.gov/

tion of the intra-cluster variation and inter-cluster variation. The
details of computing NPE can be found in [27].

4.3 Performance of HDSampler on Synthetic
Skewed Datasets

In this experiment, we use HDSampler to select a SRS of size 50
(5% of total data records) to estimate the average and maximal val-
ues of the attribute of interest for each of the 6 synthetic datasets.
We examine the AER of the estimates on data with different skews.
We observe that with the increase of data skew, the estimation ac-
curacy obtained using HDSampler degraded dramatically. For the
data sets with skew of 3, 5, 7 and 9, the AERs of the AVG (MAX)
estimates obtained by HDSampler are 40% (20%), 50% (30%),
70% (46%), and 88% (87%), respectively. This confirms that a
random sampling approach like HDSampler is not appropriate for
skewed data.

We conducted another experiment. Using the same datasets, we
measure the least number of direct sampled units needed to achieve
an AER of 10% using HDSampler. We observe that for the datasets
with skew of 3, 5, 7 and 9, the necessary sample size needed by
HDSampler is 22%, 50%, 70% and 90%, respectively, of the total
dataset size.

4.4 Evaluation of ANS Algorithm
In this section, We evaluate the ANS algorithm, separately con-

sidering some variants, with different termination conditions and/or
fixed/variable upper limit values.

4.4.1 Parameter Evaluation

For this experiment, we consider the cost limit to be infinite. This
implies that only the first termination rule of ANS is used. In this
case, there are two important parameters in the ANS algorithm,
which are k, the number of units of interest in the initial sample,
and the upper limit value η.
Impact of Parameters on AER: We examine the effect of the two
parameters on the AER of the estimators. For each data set, we vary
k from 2 to 30 and η from 80% upper quantile of the data to 95%.
We record the AERs for the AVG and MAX estimates. The results
for the datasets synskew3, synskew7, and IBQ are shown in
Figure 2. Results for other data sets are similar and omitted due to
lack of space. In Figure 2, the x-axis is the k value and the y-axis
shows the AER values.

From Figure 2, we have the following observations. For both
AVG and MAX estimates, ARE decreases with the increase of k.
The greatest decrease in AER happens when k increases from 2 to
8, and for k>8, either the decrease rate in AER slows down, or the
AER stays still or even has a small increase. For AVG estimates,
for different upper limit values and datasets with different skew, a
relatively low AER of 20% can be achieved at k = 8. For upper
limit value to be 0.95, and k = 8, we achieve an AER around 10%
for the AVG estimates for all datasets. For MAX estimates, we
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(a) (b) (c)

Figure 2: The Effect of k and η on AER - ANS Algorithm: (a) synskew3, (b) synskew7, (c) IBQ (skew=8)

(a) (b) (c)

Figure 3: The Effect of k and η on Sampling Cost - ANS Algorithm: (a) synskew3; (b) synskew7; (c) IBQ (skew=8)

have similar observations. This shows that while small k impact
the algorithm negatively, very large k are not necessary. This is be-
cause for data with a large skew, small k cannot effectively find the
data that causes the skew. But, once such data can be identified, ac-
curacy is not improved by larger values of k. Another observation
is that when k>8, AER of MAX estimation is lower than the AER
of AVG estimation for most cases. The ANS algorithm can iden-
tify data with large values, and as MAX estimation depends only
on the maximal value, the algorithm is more effective in estimating
it. The results also show an expected result that for both AVG and
MAX estimation, the AER values become lower with the increase
of upper limit quantile values.
Impact of Parameters on Sampling Costs: In this experiment,
we vary the value of k and the upper limit quantile. We record
the direct sample size and (projected) sampling cost. The results
for synskew3, synskew7 and IBQ are shown in Figure 3. In
Figure 3, the x-axis is the k value, the left y-axis shows the direct
sample size (bar chart), and the right y-axis shows the (projected)
sampling cost in term of seconds (line chart).

From Figure 3, we observe that with the increase of k and the
upper limit quantile, both the direct sample size and sampling costs
increase. For all upper limit quantile cases, the sampling costs
for k>10 exceed 40 seconds. Based on the results from the above
two experiments, in our following experiments, with the ANS al-
gorithm, we set k = 8 and upper limit quantile to be 0.95.
Impact of Data Skew: Besides k and η, data skew is another fac-
tor which impacts the performance of the ANS algorithm. In this
experiment, we show the AER values of the ANS algorithm on data
with different skew. The results are shown in Figure 4. We observe
that for both AVG and MAX estimation, AER increases moder-
ately (i.e. the accuracy decreases) with the increase in data skew.

When k = 8, the AERs of the ANS algorithm are always lower
than 19% for different data skew which illustrates the effectiveness
of our ANS algorithm.

4.4.2 Evaluation of Bias

Lemma 3.3 shows that the bias of the ANS estimator is very
small when k is small, such as k = 8. Here, we validate this aspect.
We use the IBQ data set, and consider two cases, corresponding to
cost limits of 200 and 500 direct sampled units, respectively. We
focus on the AVG estimate in this experiment. For each case, we
show the AERs of the AVG estimate and the direct sample sizes
with respect to the different values of k. The results are shown in
Figure 5. The results for other datasets are similar. In Figure 5, the
x-axis is the k values, the y-axis on the left panel shows the AERs
of the AVG estimate, and the y-axis on the right panel shows the
direct sample sizes.

For the cost limit of 200, on the left panel in Figure 5, AER first
decreases to about 7% when k = 8, then when k>10, AER in-
creases (bias occurs) moderately. From the corresponding chart of
the direct sample size on the right panel in Figure 5, for the cost
limit of 200, when k = 10, we reached the cost limit of 200. We
have similar observation for cost limit of 500 case. AER begins to
increase moderately when k = 30 (left panel), which corresponds
to where the cost limit of 500 is reached (right panel). Figure 5
shows that when the cost limit is reached, bias indeed occurs. How-
ever, as long as the k value is relatively small w.r.t. the dataset size,
the increased AER value is still reasonable, and we can still achieve
good estimation using the ANS algorithm.

4.4.3 ANS with Post-stratification: Trade off between
Sample Size and AER

In Section 3.2.2, we show that if an upper limit value η brings
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Figure 4: ANS Performance w.r.t. Data

Skew, Upper Limit Quantile=0.95

Figure 5: Analysis of Bias for ANS on

IBQ Data, Cost Limit=200/500

Figure 6: ANS Algorithm With Post-

stratification

too many neighbors into the sample, we increase η, resulting in a
decreased sample size and lowered sampling cost. There is a trade-
off between reducing sample size and estimation accuracy. In this
experiment, we evaluate the ANS algorithm with dynamically ad-
justing η values (post-stratification), using IBQ and synskew3.
The results for other data sets are similar. By adjusting η by differ-
ent values, we control the percentage of the sampled units saved.
Then, for each case, we record the difference of the AER values
of the AVG estimate between using post-stratification and without
post-stratification (i.e., using a fixed η). The results are shown in
Figure 6.

In Figure 6, we observe that the differences of AER between
using post-stratification and without post-stratification are always
within 10% (small decrease in accuracy), even if we saved a rela-
tively large (35%) percentage in sample size. This shows the effec-
tiveness of ANS with post-stratification. If we significantly reduce
the sample size (over 50%), the estimation accuracy is lowered sig-
nificantly, as we will expect.

4.5 Evaluation of TPS Algorithm
In this subsection, we evaluate the TPS algorithm.

Effect of Initial Selected Sub-space Size: In this experiment, we
evaluate the performance of TPS w.r.t. the number of sub-spaces
selected. Intuitively, the more sub-spaces selected, the better the
estimation accuracy but higher sampling cost. We vary the number
of selected sub-spaces, and record the AER values of the AVG and
MAX estimates as well as the direct sample sizes. The results for
synskew1, synskew3, IBQ and Auto are shown in Figure 7.
The results for other data sets are similar. In Figure 7, the x-axis
is the percentage of selected sub-spaces, the left y-axis is the AER
values and the right y-axis shows the direct sample sizes.

From Figure 7, we observe that the AER for both AVG and MAX
estimates decreases (better accuracy), and sample size increases,
with the increase of selected sub-space size. When selected sub-
space size is 30%, we have relatively low AERs (below or around
15%) and small sample size (20 samples, below 1% of the total
data set size). This shows that with small sampling cost, TPS could
achieve good estimation accuracy. In our following experiments,
we set the selected sub-space size to be 30%.
Effect of Data Skew: Here, we measure the AERs of the AVG
and MAX estimates using TPS on synthetic datasets with different
skew levels. The results are shown in Figure 8. Similar to the ANS
algorithm, the AER of both AVG and MAX increases when there
is a larger data skew. However, for our chosen selected sub-space
size, which is 30%, the AERs are always smaller than 17%. This
shows that TPS works well even when there is a significant skew.

Figure 8: TPS Performance w.r.t. Data Skew

4.6 Comparison of Three Sampling Algorithms
In this section, we compare the performance of our two new sam-

pling algorithms, ANS and TPS, with HDSampler.

4.6.1 Absolute Error Rate Comparison

We first compare the estimation accuracy of the three sampling
algorithms. We fix the sampling cost, and compare the AER values
of both AVG and MAX estimates of the three algorithms. For syn-
thetic dataset, we fixed the sampling cost to be 5% of the dataset
size. The result are shown in Figures 9.

From Figure 9, we observe that for small skew (skew ≤ 1), the
AERs of the three sampling algorithms are comparable. However,
with the increase in data skew, the estimation accuracy of HDSam-
pler degraded severely. In these cases, ANS and TPS algorithms
outperform HDSampler, with AER being better by a factor of 4 on
the average. In particular, the AER values of ANS and TPS are
always below 20%. The performance of ANS and TPS are close to
each other.

For data sets IBQ and Auto, since their data skew is fixed, we
vary the sample size and compare AER values. The results are
shown in Figures 10 and 11.

For IBQ (Figure 10), for both MAX and AVG, ANS and TPS
outperform HDSampler for all direct sample size cases by a factor
of 3 on the average. For Auto, ANS and TPS outperform HDSam-
pler for MAX, with average AER being lower by a factor of 3. This
shows the advantage of using ANS and TPS for obtaining the large
value data, even when the skew is small. For AVG estimation on
Auto, since the data skew is small, the performance of the three al-
gorithms is comparable. However, as Section 4.6.4 shows, the TPS
method has lower sampling cost than HDSampler on small skew
data. As a result, we still favor our proposed method.

4.6.2 Estimation Variance Comparison
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Figure 7: The Effect of Selected Sub-space Size - TPS Algorithm: (a)synskew1; (b) synskew3; (c) IBQ (skew=8); (d) Auto (skew=0.7)

Figure 9: Compare AER for Three Al-

gorithms on Synthetic Data

Figure 10: Comparing AER for Three

Algorithms on IBQ (skew=8)

Figure 11: Comparing AER for Three

Algorithms on Auto (skew=0.7)

Table 2: Estimation Variance Comparison
IBQ synskew1

HDSampler ANS TPS HDSampler ANS TPS

1.06E+11 2.4E+10 1.09E+10 90 3 22

In this experiment, we compare the estimation variances with the
use of these three sampling algorithms. Table 2 shows the compar-
ison results on IBQ and synskew1 datasets. The results on other
datasets are similar and omitted due to lack of space. From Ta-
ble 2, we can observe that our ANS and TPS methods can achieve
smaller estimation variance than HDSampler on both large-skewed
data (IBQ) and small-skewed data (synskew1).

4.6.3 The Effect of Neighborhood Proximity: HD-
Sampler vs ANS

In this experiment, we evaluate the effect of neighborhood prox-
imity on estimation accuracy of ANS. Each synthetic dataset has 6
input attributes with different neighborhood proximity error (NPE)
with respect to the attribute of interest. We execute ANS with cost
limit of 100 direct samples on synthetic data sets using different
input attributes and examine the AERs. The result on synskew5
is shown in Figure 12. The results on other synthetic datasets are
similar. In Figure 12, the x-axis is the neighborhood proximity er-
rors (larger error means weaker neighborhood proximity), and the
y-axis is the AERs. The largest NPE in Figure 12 indicates the
input attribute that is generated completely independent from the
attribute of interest.

Since HDSampler doesn’t explore neighboring units, we have
horizontal lines for HDsampler. From Figure 12, we observe that
with the increase of NPE, the estimation accuracy of ANS de-
creases. This is reasonable, because weaker neighborhood prox-

imity implies that larger number of neighboring units selected are
not skew causing data. However, the AERs of ANS, even for the
largest NPE case, are consistently lower than HDSampler. This
shows that even for data sets with weak neighborhood proximity,
ANS still outperforms HDSampler.

4.6.4 Sampling Cost Comparison between HDSam-
pler and TPS for Small Skew Data

In this experiment, we show that for small skew data, to achieve
the same AER, TPS incurs lower sampling costs than HDSam-
pler. We use synskew1 and Auto (skew=0.7) here. We vary the
AERs and record the least number of direct sampled units needed
to achieve the same AER for TPS and HDSampler, as well as the
total sample size (direct and associated samples) for TPS. The re-
sults for the two datasets are shown in Figure 13 and Figure 14.

In Figure 13 and 14, the numbers around each data point show
the sampling cost in terms of number of seconds. We have the fol-
lowing observations. First, to achieve a low AER (2% or 5%), TPS
requires only one third of the sampling cost of HDSampler. Sec-
ond, although the sampling cost of TPS is lower than HDSampler,
the total number of sampled units TPS uses are larger than HDSam-
pler. This illustrates the key advantage underlying TPS. It should be
noted that newer extensions to HDSampler [11] reduce some of the
sampling costs, though we are currently unable to compare against
these methods. The key distinctive aspect, however, of TPS is that
it applies on skewed data, unlike HDSampler and its variants.

4.6.5 Effect of Query Selectivity

In this experiment, we vary the selectivity of queries from 10%
to 100% and record the AERs for AVG and MAX estimates of the
three algorithms. Due to lack of space, we omit the figure for this
experiment. We have the following observations. First, for MAX
estimation, the ANS and TPS algorithms outperform HDSampler
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Figure 12: ANS Performance Evalua-

tion w.r.t. Neighborhood Proximity on

synskew5

Figure 13: Sampling Cost Comparison

for TPS and HDSampler Fixing AER

Level on synskew1

Figure 14: Sampling Cost Comparison

for TPS and HDSampler Fixing AER

Level on Auto(skew=0.7)

for all query selectivity values by a factor of 3 on the average. Sec-
ond, for AVG estimation, the ANS algorithm consistently outper-
forms HDSampler by a factor of 2. The TPS algorithm outperforms
HDSampler for moderate and large selectivity queries, but is com-
parable with HDSampler for low selectivity queries. This is be-
cause many selected sub-spaces in TPS are filtered out if the query
has a low selectivity.

5. DISCUSSION
We now briefly discuss two issues with respect to the applicabil-

ity of our proposed algorithms.
Customizing Algorithms by Adjusting Parameters: In practice,
users may want aggregation results to be estimated with different
levels of accuracy based on their needs and domain information.
As shown in our experiments in Section 4.4.1 and 4.5, the esti-
mation accuracy and the sample size of the ANS algorithms can
be adjusted by parameters k and η. A smaller k and/or η can help
decrease the sample size, which results in a coarser estimation, but
with a faster response time. Conversely, a larger k and/or η may
lead to a larger sample size, and finer estimation, with associated
higher response time. Similarly, the TPS algorithm can also be ad-
justed by changing the Initial Selected Sub-space Size parameter.
Applicability to a Real Deep Web Integration System: To en-
able detailed evaluation, our work has not been based on real deep
web data sources. However, our work has been driven by our expe-
riences in developing two real deep web integration systems. In our
prior work, we have developed SNPMiner [28]. SNPMiner was de-
veloped to integrate several widely used SNP databases and extract
relevant information from these databases for end users. SNPMiner
is a web-based search tool, and it has a convenient user interface.
The system integrates eight biological databases, including general
purpose databases and specialized databases for SNPs. SNPMiner
includes modules for parsing information from each of these data
sources, and a rich query planning support that could enable key-
word queries.

Another system we developed integrated four popular web-sites
for finding hotels online [21]. This system focused on comparing
the hotel room offerings from different web-sites for different cities
in the world, with the goal of developing an understanding of the
key differences in what they offer.

Neither of the these two systems supported sampling based query
processing. Such a support can be provided by extending these sys-
tems with the sampling methods presented in this paper. However,
there are also several other practical challenges in developing a real
deep web integration system. For example, in integrating travel re-

lated web-sources, we found that parsing HTML from these data
sources can be quite challenging. Moreover, as the format of the
web-sources changed frequently, these parsers had to be updated
often.

6. RELATED WORK
We now compare our work with existing work on related topics,

including online aggregation, approximate query answering, and
hidden web sampling.
Online Aggregation: Hellerstein et al [13] have developed tech-
niques for online aggregation. Approximate answers for aggrega-
tion queries are generated and further refined when all data has
been processed. Jermaine et al [15] proposed a online aggregation
method for the DBO engine. We are considering a distinct prob-
lem. First, we focus on sampling algorithms to obtain a sample
with sampling cost and developing efficient estimators to provide
accurate estimates. Second, in our case, query is answered only
using the sample, but in online aggregation, eventually, all data is
processed and an exact answer is obtained. Finally, skewed data is
not considered in the above online aggregation efforts.
Approximate Query Answering: To provide better estimates for
aggregation queries on skewed data, efforts have focused on pre-
processing the data. Histograms [24] and wavelets [4] can be pre-
computed and used. Chaudhuri et al [7, 2, 5, 6] have conducted
extensive studies on approximate aggregation queries answering
using workload information and biased samples. The approaches
include partitioning the database into fundamental regions [6, 7]
or groups [2], based on a given workload of queries. Each funda-
mental region or group is considered as a stratum. Then, a stratified
sample is selected from each stratum based on some property of the
stratum. The sample thus chosen is used to answer future queries
which are similar to the workload initially provided. To handle
skewed data, an outlier indexing technique has been developed [5].
Joshi et al designed sampling methods and estimators for low se-
lectivity queries [17] and subset-based queries [18]. Wu et al [29]
have developed a Bayesian method for estimating the extreme val-
ues in a dataset based on the learned characteristics of a previous
workload. Palmer et al [23] have used density biased sampling to
improve data mining queries on a large dataset. Jermaine et al [14,
16] proposed the APA (approximate pre-aggregation) and APA+
methods to answer aggregation queries on skewed data using an
SRS combined with a small set of statistics about the data.

The above approaches cannot be applied in the deep web sce-
nario. First, to build fundamental regions, stratums, histograms,
wavelets, or gathering supplemental data statistics, at least one scan
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of the entire database is required. Without the access to the full
data, as is the case in the deep web, this is not possible. Another
distinct aspect of our approach is that we do not assume that we
have a workload and future queries are going to be similar to the
queries in the workload.
Hidden Web Sampling: The prominent work in this area is by
Dasgupta et al. [10, 8], who have developed HDSampler. We have
extensively compared our work with their method. More recent
work from the same authors focuses on estimating the counts [9]
and improving efficiency of the sampling process [11]. The work
in [9] has not considered challenges associated with skewed data.
The work in [11] considered methods to lower down sample skew,
which is the data skew in the sample. It does not solve the problem
when the dataset itself is skewed. In comparison, our work focuses
on estimating accurate aggregations from skewed datasets. In the
future, we will like to undertake a detailed comparison with the
sampling process described in [11].

Afrati et al [1] developed an adaptive sampling algorithm for an-
swering aggregation queries on web-sites with hierarchical struc-
tures. They assume that a hierarchical structure partitions a dataset
into groups, and focus on adjusting the sample size assigned to each
group based on the estimation error in each group. In our problem,
no such hierarchical structure assumed. We focus on adaptively
selecting samples, not adjusting sample sizes.

7. CONCLUSIONS
In this paper, we have developed two novel adaptive sampling

algorithms, adaptive neighborhood sampling (ANS) and two phase
adaptive sampling (TPS), to approximately answer deep web ag-
gregation queries. Without any prior knowledge of hidden data’s
distribution, our algorithms can obtain accurate estimations with
low sampling costs. Our detailed experimental evaluation has shown
that 1) For data with a moderate or a large skew, ANS and TPS al-
gorithms obtain an average estimation accuracy around 90% for
AVG and 95% for MAX, which is about 4 times better than HD-
Sampler. 2) The TPS algorithm further improves the sampling ef-
ficiency. 3) We confirm our theoretical analysis that the bias of the
ANS estimator does not impact the estimation performance, and
4) By adaptively adjusting the upper limit value η in the ANS al-
gorithm, we can reduce the sampling costs by one-third, with less
than 10% decrease in the estimation accuracy.
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