
Efficient Answering of Set Containment Queries for
Skewed Item Distributions

Manolis Terrovitis
IMIS, RC Athena

Greece
mter@imis.athena-

innovation.gr

Panagiotis Bouros
NTU Athens
Greece

pbour@dblab.ece.ntua.gr

Panos Vassiliadis
Univ. of Ioannina

Greece
pvassil@cs.uoi.gr

Timos Sellis
NTU Athens and IMIS, RC

Athena
Greece

timos@imis.athena-
innovation.gr

Nikos Mamoulis
Univ. of Hong Kong

PR of China
nikos@cs.hku.hk

ABSTRACT
In this paper we address the problem of efficiently evaluating con-
tainment (i.e., subset, equality, and superset) queries over set-valued
data. We propose a novel indexing scheme, the Ordered Inverted
File (OIF) which, differently from the state-of-the-art, indexes set-
valued attributes in an ordered fashion. We introduce query pro-
cessing algorithms that practically treat containment queries as range
queries over the ordered postings lists of OIF and exploit this or-
dering to quickly prune unnecessary page accesses. OIF is simple
to implement and our experiments on both real and synthetic data
show that it greatly outperforms the current state-of-the-art meth-
ods for all three classes of containment queries.

Categories and Subject Descriptors
E.2 [Data Storage Representations]: Composite structures

General Terms
Algorithms, Experimentation

Keywords
Inverted files, containment queries, set-values, ordered inverted files

1. INTRODUCTION
Containment queries are meaningful whenever we need to ex-

amine membership properties (e.g. which records contain items a
and b?) in collections of data. When posing a containment query
we treat the underlying data as collections of sets, but data can be
modelled in various ways; they can be set-values, they can span in
several tuples of a relational table, or they can be XML documents
with additional structural information. The efficient evaluation of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

containment queries is an important issue in several application ar-
eas, e.g., in market basket analysis the transactional logs of cus-
tomers are examined to retrieve those that contain certain items. In
this work we focus on three fundamental containment operators:
subset, set-equality and superset and we propose an inverted file
based index, which efficiently addresses skewed item distributions.

In the research literature there are two main classes of access
methods specialized for supporting containment queries: signature
files [13] and inverted file indices [24, 49]. Surveys have shown that
inverted files outperform signature-based methods for containment
queries on low cardinality set-values [20] and on text documents
[48]. Moreover, inverted files have been shown to outperform tradi-
tional relational methods (B-trees) for containment queries in most
cases [46]. Considering inverted files as the state-of-the-art mecha-
nism for set containment is also supported by the fact that they are
being used by all WWW search engines [45].

Nevertheless, the performance of inverted files suffers when the
size of the indexed dataset becomes very big compared to the do-
main, or when the distribution of the items is skewed. In these
cases, some inverted lists become very long and compromise the
performance of query evaluation. This is due to the fact that the
evaluation algorithms resolve to merge-joins between the lists. Huge
collections of low cardinality set-values from a limited or skewed
domain of items, appear often in practice. From the statistics pro-
vided by the US Food Marketing Institute [22], we infer that only
in 2005, there have been almost 18 billion transactions (i.e., sets
of products bought at a time), in US supermarkets, with the aver-
age supermarket having 45k different products. Indexing such data
with inverted files to provide efficient containment query evalua-
tion (as part of market analysis tasks) would be the best solution
available, but still the performance would not be satisfactory. The
problem is further augmented by the fact that users usually pose
queries involving the most frequent items in the dataset [7].

To compensate for this shortcoming, we propose a novel index-
ing scheme, the Ordered Inverted File (OIF). OIF first orders the
set-values according to their items and then indexes them similarly
to the classic inverted file. The ordering of the set-values confines
the merge-join only to continuous subsets of the inverted lists that
are relevant to the queries. Since these subsets are in fact ranges
over the ordered set-values, OIF employees B-trees to index them
and further prune the number of disk pages that need to be retrieved
from the hard disk.

225

The primary goal of OIF is to reduce the I/O cost for contain-
ment queries. Our approach focuses on non-textual set-valued data,
that become more and more apparent in practice, e.g., transactions
from retail stores, web logs etc. This kind of data is characterized
by skewed distributions and a a large ratio between the number
of transactions and the size of the items’ domain. We assume a
context where the main memory is limited and the index cannot
be memory resident. Many systems employing inverted files are
systems dedicated to answering a single type of queries (e.g., su-
perset in publish/subscribe systems) and they can afford using only
memory resident indices. If there is sufficient memory, the basic
cost in query answering is the CPU cost and specialized techniques
like skip lists [34], or other memory resident structures [25] are
used to reduce this cost. On the other hand, in this work we fo-
cus on containment queries under limited memory budgets. This
is the case of a database that contains both the set-valued data and
other information and has to respond to various types of queries.
As our experiments demonstrate the I/O cost is dominant in evalu-
ating containment queries, if the index is disk resident. We stress
that the proposed approach is not a panacea for all kinds of settings
and queries: therefore, we do not consider textual data sets that are
traditional in IR and have very different characteristics; we do not
consider specialized systems that can afford to have all the indices
in main memory; we also do not consider approximate or ranking
(i.e., similarity) queries.

In short, our contributions are:

• We propose a novel indexing scheme, the ordered inverted
file (OIF), which outperforms the current state-of-the-art for
containment queries. Our proposal is simple to implement
and provides superior performance in all cases.

• We provide new evaluation algorithms for subset, set-equality
and superset queries that take advantage of the proposed in-
dex.

• We show that the OIF performs reduced disk I/O operations
compared to the classic inverted file and scales significantly
better. Moreover, we test OIF’s performance with an imple-
mentation that is built on the Berkeley DB embedded database,
and we assess our proposal by extensive experiments on both
real and synthetic data.

The rest of the paper is organized as follows: Section 2 provides
the problem setting and the necessary background. In Section 3, we
present the structure of the OIF index. In Section 4, we present the
query evaluation algorithms and discuss their performance. Section
5 includes our experimental evaluation, and Section 6 places our
contribution with respect to related works. Finally we conclude the
paper in Section 7.

2. BACKGROUND
Consider a database D, where each record t has two fields: a

unique key t.id and a set-valued attribute, t.s. There are more
than one ways to store such data. In the object-relational model,
attributes are allowed to be set-valued, therefore we can store D,
as a table with two attributes t.id and t.s, as described above and
depicted in (Fig. 1). In the pure relational model, set-valued at-
tributes correspond to a set of tuples, therefore D is modeled as a
table with two attributes id (which is no longer a key) and item,
which takes a single value. For example, in this model, the first tu-
ple of Fig. 1 would be represented as four tuples (101, g), (101, b),
(101, a), and (101, d). Our method applies to both data organiza-
tions; for simplicity, in the rest of this paper we will assume the

id s

101 {g, b, a, d}
102 {a, e, b}
103 {f, e, a, b}
104 {d, b, a}
105 {a, b, f, c}
106 {c, a}

id s

107 {d, h}
108 {b, a, f}
109 {b, c}
110 {j, b, g}
111 {a, c, b }
112 {i, d}

id s

113 {a}
114 {a, d}
115 {j, c, a}
116 {i, c}
117 {a, c, h}
118 {d, c}

Figure 1: Exemplary relationD

Figure 2: Partially shown IF for the example of Fig. 1.

object-relational one. The active domain of t.s is a finite set of val-
ues denoted as vocabulary I (i.e., the values a, b, c, d, e, f, g, h, i, j
for the database of Fig. 1).
Queries. In set containment queries, the user specifies a query

predicate and a query set qs. The queries we are interested in are
the following:

• Subset queries. In subset queries the user asks for all records
t that contain the query set qs, i.e., {t | t ∈ D ∧ qs ⊆ t.s}.

• Equality queries. In equality queries the user asks for all
records, whose set-value is identical to the query set, i.e.,
{t | t ∈ D ∧ qs ≡ t.s}.

• Superset queries. In superset queries the user asks for all
records, whose items are all contained in the query set, i.e.,
{t | t ∈ D ∧ qs ⊇ t.s}.

As an example, assume that the data of Fig. 1 are the entries of a
web log that trace the areas visited in a specific portal. Each record
represents a different user session, and items in I (i.e., a, b, c, etc.)
model URLs. The containment queries have intuitive meanings in
all cases, e.g., “Which users limited their visit in the portal in the
main and downloads sections?” (superset query).
Inverted files. The inverted file [24, 49] is composed by two

main parts: (a) the vocabulary table, which contains all distinct
items that appear in the database, and (b) one inverted list for each
item, which includes references to the sets that contain the item.
The inverted lists of four items (a, b, c, and d) from the database
of Fig. 1 appear in Fig. 2. The gray boxes in Fig. 2 represent disk
pages. The inverted lists can be very long for large databases, there-
fore it is natural to assume that they are stored in the secondary
storage, while the vocabulary can fit in main memory. The latter
is usually organized as an array, with a link from each entry to the
inverted list, which contains references to all sets that include the
respective item. Inverted lists are placed in contiguous regions in
the disk, since querying requires to retrieve the whole lists that are
linked to the query items [26].

A subset query qs is evaluated by fetching the inverted lists of
all items in qs and intersecting them. This computes the record-
ids that contain all items in qs. For example, applying the subset

226

id Items
1 {a}
2 {a, b, c }
3 {a, b, c, f}
4 {a, b, d}
5 {a, b, d, g}
6 {a, b, f}

id Items
7 {a, b, f, e}
8 {a, b, e}
9 {a, c}
10 {a, c, h}
11 {a, c, j}
12 {a, d}

id Items
13 {b, c}
14 {b, g, j}
15 {c, d}
16 {c, i}
17 {d, i}
18 {d, h}

Figure 3: Example relationD with sorted ids

query qs = {a, d} returns {101, 104, 114}, which are indeed the
only records in D containing both a and d. For processing equality
and superset queries, the inverted file is extended, so that for each
record-id in an inverted list, we also store the length (i.e., cardinal-
ity) l of the respective set [20]. An equality query qs is then pro-
cessed in exactly the same way as a subset query, but records with
cardinality different than qs.l are directly pruned while traversing
the lists. A superset query is processed by computing the union of
the inverted lists for the qs-items (as opposed to their intersection
for subset queries). While merging, we count the number of occur-
rences of each id in these lists. If for a record this number is equal
to its length then we know that the record is a result to the superset
query (since the record does not contain any items outside qs). For
example, the superset query qs = {a, c} returns records 106 and
113, since (i) these records appear in the inverted lists of either a or
c and (ii) their cardinalities equal their occurrences in the inverted
lists (e.g., 106 has two values and appears in both inverted lists).

3. THE ORDERED INVERTED FILE
Our proposal, the ordered inverted file (OIF) is an extension of

the classic inverted file, based on the introduction of an ordering
for the database items and records. Examples of possible item or-
derings include the ordering by frequency, alphanumeric value, etc.
Later in the paper, we demonstrate that when containment queries
are posed, this ordering allows the identification of specific areas
in the inverted lists that contain potential answers to the queries.
By coupling this property with a B-tree that organizes the lists as
blocks in sequential disk pages, we are able to significantly de-
crease disk page accesses in query evaluation.

In terms of structure, the ordered inverted file (OIF) index com-
prises the following:

1. An inverted file, where the inverted lists contain references
to the database records, according to a special ordering.

2. A B-tree, which organizes the access to all the parts of each
inverted list. The search key of the B-tree is based on the
value of the last record referenced in the corresponding block.

Ordering of the inverted lists. The ordering we adopt in this
work for the records is based on the ordering of the items of the
vocabulary I . Let the support s() be a function that returns how
many times an item appears in database D. Then, for any two
items oi, oj ∈ D:

oi <D oj =

true if s(oi) > s(oj)
true if s(oi) = s(oj) ∧ oi <a oj
false otherwise

(1)

where <a stands for alphabetic order. Equation 1 provides the def-
inition of a total order operator <D based on frequency. Based on
<D , we define the sequence form, sf , of a set-value.

a

b

c

d

d|a,d|12

key example

Figure 4: Partially shown OIF for data of Fig. 3.

DEFINITION 1. Given a set-value v from a database D, with
n items we define as the sequence form of v, sequence sf(v) =
o1, . . . , on where oi <D oj for i < j.

Consequently, the set-values are ordered lexicographically, after
considering their sf and comparing their contents using the<D op-
erator. The empty set comes first in this order, followed by the set
containing the smallest item in the <D order. Following this lexi-
cographic order, we can assign new ids to the records in D that can
enhance search performance, as we discuss later. Fig. 3 shows the
database of Fig. 1 after the records have been ordered and assigned
a new id. This way, for two records t1, t2, with t1.id < t2.id,
holds that sf(t1.s) ≤ sf(t2.s) in the lexicographic order. De-
pending on the requirements of the application, we can create these
ids in two ways: (a) by using intermediate arrays that associate log-
ical ids with physical links or (b) by placing the records themselves
sequentially in the hard disk following the new order; in this case
we can directly treat the physical links as ids. In the latter case the
ids of Fig. 3 are enough to directly access the records, in the former
the ids of Fig. 3 must be “translated” to physical addresses in order
for a record to be retrieved. This is often the way simple inverted
files work [15].

In the sequel, for simplicity, we drop the subscript D when re-
ferring to the order between items or sets. For example, oi < oj
implies oi <D oj and ti.s < tj .s, implies that the sequence form
of set ti.s is lexicographically smaller than sf(tj .s), with respect
to <D. In addition, when we refer to a specific set-value, we list
the items in it, in their <D order. For example, when referring to
set {oi, oj}, it is implied that oi < oj .
Tagging for inverted lists. Knowing that records are referenced

in lexicographic order (based on <D) in the inverted lists can hint
towards the contents of these records and whether they can con-
tain results to a given containment query qs. Details on how con-
tainment queries are evaluated using the OIF will be provided in
Section 4. To facilitate search, we consider the inverted list as a

227

sequence of blocks, and we employ a tagging mechanism that pro-
vides the lower bound for each such block. Each block is associated
with a tag, which is the sf of the last record that is referenced in
the block. This way, we can avoid fetching the next block from the
hard disk, if we can infer that it is unnecessary. For example, con-
sider an inverted list, which contains a block with record ids 7, 8, 9
of Fig. 3. The tag of this block is {a, c}, i.e., the contents of the
last record (9) in the block.
B-tree indexing for inverted lists. In the classic inverted file

the list is simply positioned in sequential disk pages (in the ideal
case). Since the tagging mechanism allows for pruning parts of the
inverted list during query evaluation, the OIF provides direct access
to intermediate points of the inverted list. To this end, each list is
broken in blocks that are organized in a B-tree. The B-tree stores
blocks by exploiting the associated tags in the key definition. Each
entry in the B-tree has four parts: (a) the item that is associated
with the inverted list, (b) the tag and (c) the id of the last record
of the block, which form the key and (d) the associated block. The
record-id serves two purposes: (a) it guarantees that each key will
be unique and (b) we use it to speed up query evaluation (we give
details in Section 4). Constructing the key in the previous way guar-
antees that all the blocks that belong to one list will be sequential
entries in the B-tree. A part of the OIF for the database of Fig. 1
is depicted in Fig. 4. We do not place the block inside the graphi-
cal B-tree node, but instead we trace the link between the key and
the block by a dotted line for reasons of readability. Moreover, we
depict each inverted list indexed by a different B-tree, instead of
having one single B-tree for all blocks as in the actual implemen-
tation. In the actual implementation we store all blocks in a single
B-tree (since we use a single relation in the BerkeleyDB). Using
the item id as a prefix to the key guarantees a unique key for each
block.

Each block of the inverted list introduces only one entry to the B-
tree. The size of each key depends on the average cardinality n of
the set-values. Assuming each item and record-id occupies k bytes,
each key takes (n+ 2)× k bytes. This size can be reduced, by (i)
compressing the inverted lists and reducing the required number of
blocks, and (ii) considering prefixes of the ordered set-values used
as tags.
Metadata. An interesting consequence of assigning ids to records

according to the order we introduced in Equation 1, is that the com-
binations of the most frequent items of each record define a con-
tiguous region over the id space. For example, all the records whose
smallest (i.e., most frequent) item is o are assigned successive ids
in the id space. It is this item, o, that plays the most important role
in the placement of the record in the total order of D. Based on the
previous discussion, we can easily show the following theorem:

THEOREM 1. For each item o, we can identify a contiguous re-
gion [l, u] in the id space which corresponds to only and all records
whose smallest item is o.

This theorem allows us to reduce the size of the inverted lists;
instead of indexing all the ids of the records whose smallest item is
o in the inverted list of o, we simply store the boundaries [l, u] of
the region that contains them. The smallest the item o is in the total
order of I , the greater the effect of keeping only the boundaries
[l, u] will be; if o = a then all the records who contain a will
reside in [1, ua], since there is no item that is smaller than a. If
o = b, then in [lb, ub] the ids of all records that contain b and not
a will be included, since it is only item a that is smaller than b.
Ordering the items of I as we did in Equation 1, i.e., according
to their frequency of appearance, maximizes the gains of keeping
only the [l, u] boundaries instead of all the ids. We store all these

a

b 2 3 4 5 6 7 8

c 2 3 9 10 11 13

c|a,c|9

d 4 5 12 15

a

b

c

d

1 12

13 14

15 16

17 18

metadata table

Figure 5: Using a metadata table can reduce the OIF of Fig. 4

regions in a metadata table, which we consult during runtime.
The ordering also has one more interesting consequence. If [l, u]

is the contiguous region that contains records whose smallest item
is o, then no record with id greater than u will contain o. If o is the
smallest item of the records that appear in [l, u], all records which
appear after u will have a smallest item o′ > o, else they should
have been contained in [1, u]. Moreover, since the [l, u] region lies
at the end of the [1, u] range, [l, u] always describes the suffix of o’s
inverted list in the OIF. By bookkeeping this suffix as a range [l, u]
in the metadata table, we simply cut the lists shorter. An example
of a more compact version of the OIF, which uses a metadata table,
for the database of Fig. 3 is depicted in Fig. 5. As it will become
clear in Section 4 smaller lists lead to faster query evaluation. For
instance, to answer the subset query {a, b} using the OIF of Fig. 5,
it suffices to intersect the inverted list of the least frequent item (b)
with the metadata range of a, which is cheaper than the intersection
of the two lists of the OIF depicted in Fig. 4. The gains from using
the metadata are substantial; for every record we avoid creating a
posting for its most frequent item. Thus in terms of postings we
avoid explicitly storing 1/l of the total postings kept in a simple
inverted file (l stands for the average record length in D).
Compression. The most common technique for reducing I/O

accesses for the simple inverted file is compression. Several com-
pression techniques have been proposed in literature [31, 37]. Their
main idea is to code the contents of the inverted lists in some vari-
able bit or variable byte encoding to reduce storage requirements.
To further enhance the effect of the encoding, they avoid storing the
actual record ids in each inverted list, but instead they store the d-
gaps between them; the d-gaps are the differences between sequen-
tial ids. For example the inverted list of item d as shown is Fig. 4
is {2, 5, 12, 15, 17, 18}; the d-gaps would be {2, 3, 7, 3, 2, 1}. The
benefit from this approach is that the inverted list contains smaller
values, thus the variable size encodings are more efficient. In prac-
tice, compression techniques can reduce the size of the inverted file,
down to 30% of the original size, which can be even smaller than
the database size [48]. These techniques are directly applicable on
the OIF and they have an additional benefit due to the order we
adopt in Equation 1. Instead of having in each list ids from any

228

part of the database, we only have ids ranging from [1, u] or [1, l]
if we use the metadata table, thus their average d-gaps are smaller.
In our implementation we adopt a byte-wise compression scheme
[44], due to its reduced CPU cost in the decompression phase.

4. QUERY EVALUATION
In simple inverted files, where the ids of the records have no spe-

cial meaning, the answers to an arbitrary query are usually scattered
throughout the inverted lists of the involved items. The evaluation
of set-containment queries over inverted files, is reduced to merge
joins between the inverted lists, as discussed in Section 2. Thus, in
order to retrieve the query result we usually have to scan the entire
lists. There has been extensive work on list intersection algorithms,
that is applicable to inverted files [5, 38, 42]. The focus in these
works lies in reducing the CPU cost, since they are mostly aimed
at specialized systems, which answer few types of queries and can
afford to have all lists in main memory. In this section we do not
try to propose novel list intersection algorithms, but rather proof-of-
concept algorithms that will demonstrate how OIF can significantly
reduce the I/O cost in query evaluation. Most list intersection algo-
rithms that work for the inverted file can also exploit OIF to retrieve
the lists from the disk, without significant changes. Such a scenario
does not reduce the effectiveness of OIF since it still reduces the I/O
by retrieving only the part of the list that is related with the query.
Moreover, OIF results to smaller lists due to the use of the meta-
data. The basic aim of our query evaluation algorithms is to offer a
fair basis of comparison between the inverted file and the OIF. The
experiments of Section 5 show that even if the CPU cost of a query
posed against an inverted file is 0, it would still be slower than the
OIF due to its increased I/O.

The OIF reduces the I/O by having the records ordered in the
inverted lists as we proposed in Section 3. The ordering allows the
identification of a range of record-ids that contains the answer to
each query. We call this the Range of Interest (RoI) of the query.
The knowledge of the theoretic bounds of a query’s RoI allows the
effective utilization of the B-tree; instead of accessing the complete
inverted lists, we use the tree to locate and access only the blocks
that contain candidate results.

The algorithms for the evaluation of the subset, set-equality and
superset queries against a database indexed by an ordered inverted
file have two basic steps:

1. The identification of the RoI .

2. The merge-join of the inverted list regions that cover the
RoI .

The most significant difference from the evaluation of the same
queries against classic inverted files lies at the first step. Using the
RoI , the part of the inverted lists that is examined is significantly
pruned. Query evaluation also benefits from the existence of the
metadata, which reduce the size of the lists and consequently the
amount of data to be joined. Finally, the join exploits the direct ac-
cess to different blocks provided by the B-tree. During query eval-
uation the candidate solutions might be limited to a region smaller
than the RoI . Using the B-tree we can access only this region,
further increasing the pruning done by the RoI .

The bounds of the RoI can be computed based only on qs and
the type of the query predicate. Having identified them, we know
the broadest possible region of the search space that contains the
answer. Using the B-tree we can trace the sequence of blocks
whose tags cover the RoI , without accessing the whole inverted
list. The first block of this sequence is the first block in the list that
has a tag greater or equal to the lower bound of the RoI and the tag

of the last one must be strictly greater than the greater bound of the
RoI . For reasons of simplicity we overload the notation of RoI
to also denote the sequence of blocks that covers the actual RoI in
the description of the algorithms.

In the rest of this section, we present the evaluation algorithms
for each query predicate and we define the RoI for each case.
Moreover, we show that examining the RoI is adequate to trace
the entire answer to each query. The proofs of the theorems are
straightforward in all cases so we refer the interested reader to [39]
for further details.

4.1 Subset queries
We define RoIsub, i.e., the RoI for subset queries as follows:

DEFINITION 2. (RoIsub) Given a subset query qs = {oq1 ,
. . . , oqn}, oq1 < · · · < oqn containing items from a domain
I={o1, . . . , oN} with o1 < o2 < · · · < oN , the Range of Interest
RoIsub is a region with the lower bound being set to {o1, o2, . . . ,
oqn)} and the upper bound set to {oq1 , oq2 , . . . , oqn , oN}.

THEOREM 2. It is sufficient to search for records withinRoIsub
to answer a subset query.

Assume, for example, that I = {a, b, . . . , j} and we would like
to retrieve all the records that contain qs = {b, c} from the relation
of Fig. 1. Then, RoIsub = [(a, b, c), (b, c, j)]. Any record t with
t.s < {a, b, c} does not contain c and any record t′ with t′.s >
{b, c, j} lacks b or c or both.

The algorithm for evaluating subset queries is depicted in Algo-
rithm 1. The evaluation starts by joining the smallest inverted lists,
which belong to the greatest items (i.e., least frequent ones). This
is done in order to detect possible void answers faster and to avoid
having a large number of candidate solutions. At each step, the al-
gorithm performs 2-way merge intersection join between the candi-
dates and the current list. Each join can only reduce the number of
candidates, since valid solutions need to appear in all the inverted
lists. Knowing that during query evaluation we are only going to
dismiss candidate solutions and not to discover any new ones al-
lows for further pruning. We can progressively limit the range of
the list that we are going to examine (initially, equal to RoIsub)
considering the minimum and the maximum candidate ids. For
example, if our candidates are {4, 6, 9, 12} then we only need to
examine the part of the remaining inverted lists that contains ids
in the [4, 12] range. If after the next intersection join the remain-
ing candidates are {4, 6, 9} we can further limit this range to [4, 9].
The candidates are kept as in a sparse set representation in mem-
ory (i.e., as a bitset or list depending on the number of candidates).
Intersections are then performed as bitwise joins or merge joins.

The direct effect of using the metadata in the evaluation of the
subset queries is basically limited to the smallest (i.e., the most
frequent) item (lines 11-14 of Alg. 1). For all other items, the part
of the list that is described solely by the metadata is always out of
the RoI . For example, the metadata range of item c is irrelevant to
query qs = {b, c}, because this range contains records that have c
as their smallest item (and therefore cannot contain b). Therefore,
the evaluation of a subset query qs = {oq1 , . . . , oqn} using the
metadata, follows the lines of Algorithm 1, however, the inverted
list of oq1 needs not be accessed; it suffices to intersect the current
candidate set with the metadata range of oq1 .

The worst case for the OIF is to examine the complete lists of
the qs items, if the RoIsub fails to prune any block. To estimate
the part of each inverted list that is accessed during subset eval-
uation, one has to estimate the placement of the RoIsub in the or-
dered records. The lower bound of the RoIsub is always positioned

229

Algorithm 1 Subset Query Evaluation
subset(qs = {oq1 , . . . , oqn}, oq1 < . . . < oqn)

1: determine RoIsub

2: retrieve candidates = ln ∩ RoISub ! we insert to candidates the part of ln
that falls in RoIsub

3: for all oi ∈ (qs \ oqn) do ! we take items from qs in reverse order, i.e.
oqn−1 , . . . , oq1

4: range = RoIsub

5: for all (blocks bi in range) do ! we access blocks bi from the list of oi
sequentially.

6: for all postings ci in candidates do
7: while posting p from bi p < ci do
8: get next posting p from bi
9: if p #= ci then
10: remove ci from candidates
11: if oi == o1 then
12: for all remaining postings ci in candidates do
13: if ci not in metadata bounds then
14: remove ci from candidates
15: range = [lidc, uidc] ! lidc is the id of the first item in candidates

and uidc is the id of the last
16: return candidates

very near to the start of the list, so the pruning depends mainly in
the placement for the upper bound. For a qs = oq1 , . . . , oqn this
bound is RoIu = oq1 , . . . , oqn , oN , where oN is the last item of
I . Since the order of records is lexicographical the most important
term in the formula is the first. An immediate consequence of this
is that the greater the least item of qs is, the worse the RoIu will
be, and thus the pruning result from the RoI will be limited. On
the other hand, in a skewed distribution, an item that is big in I
will be infrequent and its inverted list small, thus the subset query
evaluation for a qs where all the items are big in I will be computa-
tionally cheap (if the smallest item is big in I , then all the record’s
items will be big in I). In other words, the greater the inverted lists
that must be accessed during query evaluation are, the greater the
pruning provided by the RoI , will be.

4.2 Equality queries
While in the classic inverted file equality queries have similar

evaluation cost to subset queries, in the case of the OIF they are sig-
nificantly less expensive to compute. The range of interest RoIeq,
for the set equality query is a single point in the search space. We
define it as follows:

DEFINITION 3. (RoIeq) Given an equality query with a query
set qs, RoIeq is a continuous region with lower and upper bound
the query set qs.

Intuitively, to evaluate an equality query, we trace the blocks in
each inverted list that contain the answer via the B-tree and merge-
join them. The evaluation algorithm is virtually the same with the
subset evaluation algorithm depicted in Algorithm 1. The basic
difference is that now we use the RoIeq and that we filter records
according to their set-length, which is stored in the inverted lists;
only records that have length equal to the query cardinality are con-
sidered in the merge join.

When the data are indexed by a classic inverted file, the worst
case (which is also the most common one) for the equality queries
is the same as for the subset query; the entire inverted lists have
to be examined. In the average case, query processing is slightly
faster than in subset queries due to the usage of the length as an
additional filter. The RoIeq practically defines a single block in
each list, i.e., |qs| entries in the B-tree. The only exception to this
happens when there exist enough duplicates of the qs that do not fit
in a single block, and take up several blocks on the index. Moreover
the list of the smallest item in the query needs not be accessed at

all, since all the valid answers must lie inside the bounds traced in
the metadata table for this item. As a result, the evaluation of the
equality queries with OIF depends linearly on the size of the query
set |qs| and only logarithmically to the size of the inverted lists
and consequently to the size of D. The logarithmic dependence is
due to the traversal of the B-tree, which takes place in the process
of deciding the RoIeq of the query. Thus the cost of evaluating
an equality query is O(|qs|logb(|D|

bc
)), where b is the order of the

B-tree and bc is the number of postings that fit in a block.

4.3 Superset queries
Superset queries return records that include only items that be-

long to the query set (i.e., the record is a subset of the query set).
A superset query is equivalent to 2|qs| equality queries. Defining
the Range of Interest as 2|qs| distinct points is not efficient, thus
we group them in larger areas, based on the first (i.e., most signifi-
cant in the ordering) item of each combination. Unlike the case of
the subset and equality queries, the Range of Interest for a superset
query is different at each inverted list. This follows from the fact
that each inverted list contributes to a partly different set of solu-
tions (i.e., all the solutions that contain the associated item), since
in superset it is not required that all the qs items are present in all
lists, as in the previous queries.

DEFINITION 4. (RoIsup)Given a query set qs = {oq1 , . . . , oqn},
where oq1 < · · · < oqn the RoIsup is defined as

RoIsup−oq1
= [(oq1), (oq1 , oqn)]

RoIsup−oq2
= [(oq1 , oq2), (oq1 , oq2 , oqn)], [(oq2), (oq2 , oqn)]

...
RoIsup−oqn = [(oq1 , . . . , oqn), (oq1 , oqn)], . . . , [(oqn), (oqn)]

Intuitively, in the list of the smallest item oq1 of qs we identify the
region of all records whose smallest item is oq1 . In the list of the
second smaller item of qs, oq2 we identify two regions of interest:
one that contains the records where the smallest item is oq1 and one
with records whose smallest item is oq2 . For oq3 , we identify three
such regions and so on. The benefit of this region definition is that
the last region always falls in the range of ids stored in the metadata
table and not in the inverted lists, thus it is a lot cheaper to verify if
an id is included or not in it.1 In Fig. 6, the RoIsup for the case of
qs = {a, c, f} is depicted. To make it more easily interpretable we
represent the records with all their items (instead of their ids) and
we depict all the bounds of the regions like existing records.

The algorithm for evaluating superset queries with the OIF index
is depicted in Algorithm 2. The evaluation of superset queries is
more expensive than the evaluation of subset and equality queries,
because candidates do not get disqualified just for not appearing in
one inverted list. To decide that a certain record is a valid solution,
it must appear in the inverted lists of qs as many times as its length,
1A subtle problem arises from the fact that we do not trace the
length of the sets in the metadata. This problem is actually limited
only to records of size 1. Since the regions stored in the metadata
have no overlap, it is certain that if a record contains more than
1 items, a posting containing its id and size should appear in at
least one more list. If this id qualifies as a solution for the superset
query, then the evaluation algorithm must have examined it and it
must know its set cardinality. Finally, it is easy to solve the problem
of records that contain only one item by adding one more field in
the metadata table; the upper bound u1 of the region [l, u1] which
corresponds to ids of the records that contain only one item. This
region will always lie in the beginning of [l, u].

230

Algorithm 2 Superset Query Evaluation
superset(qs = {oq1 , . . . , oqn}, oq1 < . . . < oqn)

1: determine RoIsup ! we use RoIj
sup−i for the j-th RoI of item i

2: retrieve candidates = ln ∩ (RoIi
sup−n ∪ . . .∪RoIn

sup−n)∧ length ≤
|qs| ! we retrieve the part of the list ln of on that falls in RoIsup−n and have
record length less or equal to |qs|

3: results =
4: for all oi ∈ (qs \ on) do ! we take items from qs in reverse order, i.e.

on−1, . . . , on−1

5: range = RoI1
sup−i

6: for all (blocks b in range) do ! we access blocks b from the list of oi
sequentially.

7: for all (postings p in b) do
8: get next c from candidates
9: while (c < p) do
10: if (c.length − c.found > |qs| − i) then
11: remove c from candidates
12: get next c from candidates

13: if (p > c) then
14: if (p.length ≤ |qs| − i) then
15: insert p in candidates
16: else
17: c.found++
18: if (c.length = c.found) then
19: remove c from candidates
20: insert c in results
21: range = RoIx

sup−i ! RoIx
sup−i is the next RoI of i which is not

covered by the previously examined block b
22: if (range = RoIisup−i) then ! if it is the last RoI for i
23: insert all the ids that lie in [l, u1] to results
24: increase the found counter for all candidates that appear in [u1, u]

25: return results

i.e., all its items must appear in qs. We can discard a candidate only
if it has missed enough matches in the examined inverted lists, and
safely decide that it contains additional items to those that appear in
qs. To this end, for each candidate c we keep the additional infor-
mation c.found, marking the number of times we encountered c
in the examined inverted lists. After examining each list, we check
if the total items of c that have not yet been found (i.e., the differ-
ence between the length of the record c.length and those already
found, c.length− c.found) are more than the remaining unexam-
ined inverted lists. If this holds, then we can safely discard c as a
candidate, since it contains at least one item that does not appear in
qs. Unlike the case of subset and equality queries, where each suc-
cessive merge-join only disqualifies candidates, here, joining the
candidates with additional inverted lists can result in an increase
to the candidate members. Actually, all entries that fall inside the
RoIsup should be inserted in the candidates, except the case where
we can conclude from their length that they cannot be valid solu-
tions. When the algorithm has completed the join of the lists, it has
to examine the ids from the metadata table. Again, it increases the
found counters of existing candidates that were found. No new
candidates will be inserted from this region, except those having
length one. Those containing multiple items should have already
been inserted to candidates, since the additional items can only be
greater than the one currently examined. Finally, before asking
for the blocks that are contained in the next RoIsup of the same
inverted list, the algorithm checks if this RoIsup is not already in-
cluded in the previously retrieved block. Such might be a common
case for small inverted lists.

The basic steps of the algorithm for evaluating superset queries
are common both for classic inverted files and for ordered inverted
files. Their performance is differentiated due to the ability of the
OIF to limit its search to a limited part of the inverted list and its
ability to exploit the metadata table. A coarse bound for the RoI’s
in each inverted list is the range between (oq1 , oqi) and (oqi , oqn),
where oqi is the item that is linked to the inverted list, oq1 is the

Figure 6: The ranges of interest for the superset query {a, c, f}.

first item of the query set and on the last. As a general result we
have two conclusions: (a) the closer the items are placed in the
order of I , the more selective the RoI will be, and (b) the smaller
the o1 is, the smaller the RoI will be. Moreover, due to the usage
of the metadata, the inverted lists stop before the appearance of
the first record whose smallest item is oqi . The remaining records
are examined by using the bounds [u1, u] for item oqi from the
metadata table (see lines 23–25).

4.4 Updates
A requirement for the inverted file to work efficiently is to store

the inverted lists in a contiguous way on the secondary storage.
This requirement leads update techniques that rely on batch, offline
procedures. A popular technique for making new records instantly
available is to construct a second, small, memory-resident inverted
file and index them there, until the batch update takes place. The
main difference between updating the OIF and the classic inverted
file lies at the need to sort the data in order to provide new ids. This
extra cost in the update procedure makes updating the OIF a more
costly procedure than updating the classic inverted file, but still, the
difference is not such that limits the applicability of OIF. In our ex-
periments, OIF has 3-5 slower update times than IF and it behaves
practically linearly to the update size as IF does. Due to space lim-
itations we do not include the update details and experiments in the
paper. They are available in the long version of the paper [40].

5. EXPERIMENTAL EVALUATION
We evaluated the performance of the proposed OIF index by

comparing it to the state-of-the-art for containment queries, the in-
verted file (IF). We implemented the two indexes in C++, using
Berkeley DB as our storage engine. Berkeley DB supports rela-
tions that have two fields: key and data. There is no type restriction
for any of the fields and they can be any binary object. In our im-
plementations each block is stored at the data field of the relation.
In the implementation of the OIF, we split the inverted lists into
blocks, which are stored as independent entries in the relation, with
a B+-tree primary organization. Each block is associated with a key
that is formed by combining the item that is associated with the list
and the content of the last record (i.e., the tag), together with its
id. Each inverted list is populated by postings which are comprised
by the id and the length of the records. The ids are represented as
series of d-gaps compressed by a v-byte compression. The same

231

compression is used for the lengths of the records.
For the IF, we use the most efficient implementation scheme re-

ported [29]: each tuple has as key value an item o from I and as
data value the whole inverted list that is associated with o. The re-
lation is indexed by a hash over the key values. The postings are
compressed exactly as in the case of the OIF. Note that Berkeley
DB always retrieves the whole tuple, i.e. there is no way to retrieve
a part of the inverted list.
Data. We evaluated the OIF using two real datasets from UCI

KDD repository [21]. The first, denoted as msweb, is a one-week
log tracing the virtual areas that users visited in the web portal
www.microsoft.com. There are 32K records and the vocabulary of
the dataset contains 294 distinct items (areas). The distribution of
the items in the records is skewed and the average size of the record
is 3. To be able to draw informative conclusions on a large database,
we replicated the dataset 10 times. This replication is meaningful,
since it simply simulates a 10-week log from the web portal. The
second dataset, denoted msnbc is again a log of users behavior at
another web portal, msnbc.com, containing 990K records. The vo-
cabulary here is very limited, comprising only 17 distinct items and
unlike the previous one, the distribution of the items is relatively
uniform. The average cardinality of a set-value is 5.7.

To assess the performance impact of several statistical properties,
we used synthetic data containing set-values with length varying
from 2 to 20. We considered datasets of 1M, 5M, 10M and 50M
set-values containing items from vocabularies of sizes 500, 2K and
8K. The frequency of items in the set-values is a moderately skewed
Zipfian distribution of order 0.8. Unless explicitly stated we use as
default parameters a domain of size 2K and 10M records with a
distribution of order 0.8.
Queries. As in other approaches [20], we evaluated our pro-

posal using queries that always have an answer, considering them
more informative than those that do not. We created such queries
by using existing set-values, selected uniformly from all D. The
selectivities of the subset queries are less than 3%, with the less
selective being those with |qs| = 2. The most common case for
larger |qs| and for equality queries is that there are less than 5 an-
swers. On the other hand the selectivity of the superset queries can
surpass 3% for large |qs| on the real data. To provide representative
results we created 10 queries of each size and type.
Performance evaluation. In our experiments, we primarily eval-

uate the I/O cost. For this reason, we set up the database cache
to the minimum (32K) and we circumvent the operating system
cache. This leaves only the effect of the hard disk cache, which is
limited. We minimize the effects of caching to observe more ac-
curately how the index would scale for larger datasets, when given
limited cache size. We would like to stress that the important factor
is the percentage of available memory to the underlying database
size: in realistic situations where the DBMS will have to simulta-
neously support multiple queries, the memory assigned per query
is bounded. Therefore, our approach is intentionally tailored and
tested to sustain bounded -in fact, small- memory budgets. We
trace the actual disk page accesses, reported as cache misses by
the database. Berkeley DB does not report separately sequential
and random disk page accesses. The query evaluation algorithms
need a few random disk page accesses to trace the beginning of the
list (or of the RoI in the case of the OIF) in the disk, and then they
retrieve sequential disk pages from the inverted list. The random
disk page accesses when using the OIF are more frequent than in
the case of the IF, due to the B-tree indexing and the large number
of keys. Still, our experiments show that this overhead is propor-
tional to the query size and not to the database or the domain size
and its effect is quite limited. To better understand how sequen-

tial and random accesses affect the IF and the OIF we present the
query evaluation time and we distinguish it in CPU and I/O time by
repeatedly counting clock ticks and total time in an system where
no other operation runs. We present runtimes only for the synthetic
datasets which are large enough not to be significantly distorted by
caching and prefetching operations by the hard disk.
Subset. The OIF outperforms the IF both for real and for syn-

thetic data. Moreover, it exhibits two very good properties (see Fig.
7 and 8). As the length of the query set grows and thus, queries have
fewer answers, it manages to use the B-tree efficiently and detect
fast the areas of interest in each list. This way, its cost drops, un-
like the case of the IF, which suffers when it has to examine many
inverted lists and cannot benefit from the small selectivity. Another
good property of the OIF is that it scales well as the database D
grows. This is again attributed to the B-tree and the limited RoI .
When the size of the database and consequently the size of the lists
is small, the random access I/O nullifies the advantages of the OIF
and the I/O cost is similar to that of the IF for the smallest dataset
of 1M records. As the size of the database grows, the gains of
avoiding large amounts of sequential disc accesses grow evident.
As we can see the I/O time grows as the query size grows, whereas
the disk page accesses remain fairly stable. This reflects the fact
that the OIF needs more random accesses for detecting the RoI in
a list, than the IF needs for detecting a list. Thus, when the num-
ber of lists increases the I/O time increases too due to the random
accesses needed to find the RoI inside each list.
Equality. As expected from the complexity analysis, the cost of

the OIF is practically constant (see Fig. 7 and 9), since it can access
directly the small set of disk pages where the possible answer lies.
In contrast , the IF does not have the opportunity to prune ids using
RoI and, as experiments on both real and synthetic data confirm, it
has significantly higher cost. Finally, the ability of the OIF to prune
the candidates very effectively, results in unnoticeable CPU cost.
Superset. Superset allows less pruning of the lists compared to

the other queries, but still the OIF systematically outperforms the
IF in both real (Fig. 7) and synthetic data (Fig. 10) for all domain,
database, and query-set sizes. In the real data sets, it is clear that
the benefits from the OIF are not as drastic as in the two other
cases; this is due to the fact that the databases and the vocabularies
are rather small, so the the query-set size (and thus, the number
of examined lists) is significant compared to the vocabulary. The
percentage of pages examined by the OIF is still substantially lower
than in the case of the IF, but the OIF is forced to do more random
I/O. This is reflected on the I/O times. The random I/O accesses
are again proportional to the query size, and not to the domain or
the database size. The pruning power of the OIF is reflected in the
smaller CPU cost, which is a result of producing less intermediate
results and of the exploitation of the metadata table. The benefits
are more clear in Fig. 10 if one looks at the way the IF and the OIF
scale with respect to the database size. Similar observations can be
made as qs increases.

For all query types, it is noteworthy that the OIF is more robust
to the skewness of the data compared to the IF. While in uniform
distributions (zipfian order = 0) the two structures perform almost
equally well (with the IF having a slight advantage in the superset
queries), as the skew increases, the performance of the IF quickly
drops by an order of magnitude for subset and equality queries and
by 25-30% for superset queries.
Space overhead. As explained in Section 3, the inverted lists of

the OIF can be compressed as the lists of the IF, and the metadata
table can be used to further reduce space requirements. In contrast,
since each original list breaks to smaller ones, we need to keep the
first record id of each sub-list explicitly and not as a d-gap from a

232

 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400

 2 3 4 5 6 7

di
sk

 p
ag

e
ac

ce
ss

es

|qs|

Subset

IF
OIF

 0
 200
 400
 600
 800

 1000
 1200
 1400

 2 3 4 5 6 7

di
sk

 p
ag

e
ac

ce
ss

es

|qs|

Equality

IF
OIF

 0
 200
 400
 600
 800

 1000
 1200
 1400

 2 3 4 5 6 7

di
sk

 p
ag

e
ac

ce
ss

es

|qs|

Superset

IF
OIF

 100
 200
 300
 400
 500
 600
 700
 800
 900

 2 3 4 5 6 7

di
sk

 p
ag

e
ac

ce
ss

es

|qs|

Subset

IF
OIF

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 2 3 4 5 6 7

di
sk

 p
ag

e
ac

ce
ss

es

|qs|

Equality

IF
OIF

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 2 3 4 5 6 7

di
sk

 p
ag

e
ac

ce
ss

es

|qs|

Superset

IF
OIF

Figure 7: Average performance of queries on real datasets - First rowmsweb data and second rowmsnbc data

previous one. As a result, in our implementation, the size the in-
verted lists in the OIF are only marginally (5%) smaller than the IF
lists. Still, the size of the Berkeley DB table for the OIF is signif-
icantly larger; the OIF occupies 35% of the space of the original
data, whereas the IF occupies just 22% of the that space. The over-
head of the OIF is due to several reasons: the large size of the keys
(we did not use prefixes or other compression on them); the fact that
we chose to have one B-tree instead of many smaller ones, one for
each inverted list; and due to the B-tree fill factor. If a reassignment
map is required (i.e., the record ids in the OIF are not the original
ids that are used in the relation that stores the data) we would need
an extra table taking 8% of the original data, raising the OIF space
requirements to almost double than those of the IF (43% vs 22%).
Nevertheless, as our evaluation shows, the space overhead of the
OIF over the IF does negate its performance benefits.
Impact of the OIF ordering. An interesting question about the

OIF is whether its performance is attributed to the special ordering
and the metadata or to the indexing of the inverted lists. To investi-
gate this issue we performed the following experiment. We created
a B-tree for the inverted lists exactly in the same way we created
the OIF (same block size) but without any ordering for the records.
Moreover, we used only the record id as a key for the B-tree in-
stead of the whole records, thus we ended up with a more compact
structure compared to the OIF. The resulting unordered B-tree does
not have any advantage over the OIF or the IF for superset queries,
since the scanning of the whole lists cannot be avoided at each iter-
ation of Algorithm 2. For equality queries (with small selectivities)
both the OIF and the unordered B-tree have a similar performance
since the candidate solutions are usually very limited and can be
directly accessed using the B-tree. The most interesting case is that
of the subset queries. We performed an experiment on our default
synthetic dataset varying the query selectivity from 10−7 (only 1
answer) to 10−2. The results showed that the OIF outperforms the
unordered B-tree on the inverted lists in all cases. Due to space
limitations we do not detail the experiments here but we refer the
interested reader to the long version of the paper [40]. This ex-
periment throws also light to the relation between the OIF and the
other structures that offer access to intermediate points in the in-

verted lists, e.g., skip lists. The ordering and the metadata of the
OIF provide a benefit that is orthogonal to the indexing of the lists
and other indexing schemes for the lists can benefit for them.
Performance summary. With faster query evaluation and slower

update times (see [40] for the updates’ performance), OIF offers a
different tradeoff between performance and maintenance compared
to the IF. In the example of the dataset with 1M records from a
domain of 2000 items, the average query evaluation time (for all
three predicates together) took 133 msec for the IF and 25 msec
for the OIF. On the other hand inserting 200K records in the same
dataset took 12 sec for the IF and 27 sec for the OIF, which results
to an average of 0.06 msec per record for the IF and 0.135 msec per
record for the OIF. This implies that a workload with a ratio of up-
dates to queries smaller than 766:1, would be handled faster by the
OIF. Common applications that use inverted files are not update-
intensive, i.e., queries are more frequent than updates, therefore the
increased update cost of the OIF, compared to the IF is gracefully
compensated by the great gains in query performance.

In summary, the OIF significantly outperforms the IF in all query
cases. The benefits systematically become more clear as the frac-
tion of the database over the domain grows (and the lists of the IF
become longer, while the OIF is constrained to few pages due to
the appropriate RoI). This is evident both when the database size
increases and when the domain is quite small. As a tradeoff to this
the OIF is slower than the IF in updates and has increased space
overhead, but this disadvantage is leveraged by the fact that in both
cases the updates have to be done in a batch manner and also by the
small amortized cost of the updates compared to query evaluation.

6. RELATED WORK
Set-containment queries. Research on set containment queries

in a database context has been limited [17, 20]. Recently, there has
been work on error-tolerant set-containment queries [1], which lie
closer to similarity queries. Moreover, the authors of [1], differ-
ently from our context, focus mostly on main-memory evaluation
and not on disk resident indices. The most basic results for con-
tainment queries stem from the Information Retrieval (IR) and text
databases areas. In these areas, containment is considered in the

233

 0

 2000

 4000

 6000

 8000

 10000

 500 2000 4000 6000 8000
|I|

IF
OIF

 0

 5000

 10000

 15000

 20000

 25000

1000 5000 10000 50000
|D| in 1000’s

IF
OIF

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 2 4 6 8 10 12 14 16 18 20
|qs|

IF
OIF

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 0.4 0.8 1
Zipf value

IF
OIF

 0

 500

 1000

 1500

 2000

IF OIF
IF OIF

IF OIF
|I|=500 |I|=200 |I|=8000

i/o
cpu

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

IF OIF
IF OIF

IF OIF
IF OIF

 |D|=1m |D|=5m |D|=10m |D|=50m

i/o
cpu

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 2 4 6 8 10 12 14 16 18 20
|qs|

IF
OIF

 0

 500

 1000

 1500

 2000

 2500

IF OIF
IF OIF

IF OIF
IF OIF

 zipf=0 zipf=0.4 zipf=0.8 zipf=1

i/o
cpu

Figure 8: Average performance of subset queries on synthetic datasets - First row shows disk page accesses and second row time in msecs

 0

 2000

 4000

 6000

 8000

 10000

 500 2000 4000 6000 8000
|I|

IF
OIF

 0

 5000

 10000

 15000

 20000

 25000

1000 5000 10000 50000
|D| in 1000’s

IF
OIF

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 2 4 6 8 10 12 14 16 18 20
|qs|

IF
OIF

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 0.4 0.8 1
Zipf value

IF
OIF

 0

 500

 1000

 1500

 2000

IF OIF
IF OIF

IF OIF
|I|=500 |I|=200 |I|=8000

i/o
cpu

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

IF OIF
IF OIF

IF OIF
IF OIF

 |D|=1m |D|=5m |D|=10m |D|=50m

i/o
cpu

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 2 4 6 8 10 12 14 16 18 20
|qs|

IF
OIF

 0

 500

 1000

 1500

 2000

 2500

IF OIF
IF OIF

IF OIF
IF OIF

 zipf=0 zipf=0.4 zipf=0.8 zipf=1

i/o
cpu

Figure 9: Average performance of equality queries on synthetic datasets - First row shows disk page accesses and second row time in msecs

 0

 2000

 4000

 6000

 8000

 10000

 500 2000 4000 6000 8000
|I|

IF
OIF

 0

 5000

 10000

 15000

 20000

 25000

1000 5000 10000 50000
|D| in 1000’s

IF
OIF

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 2 4 6 8 10 12 14 16 18 20
|qs|

IF
OIF

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 0.4 0.8 1
Zipf value

IF
OIF

 0

 500

 1000

 1500

 2000

IF OIF
IF OIF

IF OIF
|I|=500 |I|=200 |I|=8000

i/o
cpu

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

IF OIF
IF OIF

IF OIF
IF OIF

 |D|=1m |D|=5m |D|=10m |D|=50m

i/o
cpu

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 2 4 6 8 10 12 14 16 18 20
|qs|

IF
OIF

 0

 500

 1000

 1500

 2000

 2500

IF OIF
IF OIF

IF OIF
IF OIF

 zipf=0 zipf=0.4 zipf=0.8 zipf=1

i/o
cpu

Figure 10: Average performance of superset queries on synthetic datasets - First row shows disk page accesses and second row time in msecs

234

context of text documents in natural language. The most profound
example is the case of WWW search engines, where web docu-
ments that contain2 the query terms that have been provided by the
user, are retrieved from a collection of millions of web pages. Re-
search in the database field has given more focus on set-containment
joins [6, 27, 30, 35, 36, 43] and similarity queries [16, 28] and less
on simple containment evaluation as we do in this paper.
Inverted files. Inverted files [24, 49] are the indexing solution

employed by all WWW search engines and the most efficient in-
dex structure for text query evaluation in research literature. In
terms of storage allocation, the most effective physical storage al-
location scheme for inverted lists is to store them contiguously in
the disk [47]. Alternatives in the research literature and in prac-
tice are motivated by the difficulty to support contiguous storage
in the case of updates. To deal with maintenance operations effi-
ciently, alternative approaches either overallocate space for future
updates or split the long lists of the inverted file in smaller chunks
of disk pages, stored contiguously in the disk. All strategies that
require that the inverted lists are stored contiguously, store the up-
dates initially in a main memory inverted file. When the available
memory gets full, it is necessary to move all the postings from the
main memory to disk. This way we only do batch updates in a
frequency depending on the rate of updates and the available mem-
ory buffer [47]. Several enhancements of the inverted files rely
on treating long and short inverted lists differently. Having lists
that vary substantially in size, is a result of skewed item distribu-
tions in the database, which is a common real world case. The
Hybrid Trie Inverted file (HTI) [41], breaks up the larger inverted
lists to smaller sublists that contain known combinations of items.
This approach provides superior performance over the inverted file
for skewed distributions (a comparison with OIF appears in [39]).
In [25], König et. al. propose a index structure that similarly to
HTI creates inverted lists for combinations of items. It balances the
number of indexed item-combinations with the length of the lists,
using a cost-model for main-memory access to trade off between
these two factors. It is not directly comparable to OIF since it is
memory resident and focus only on a specific query (i.e., superset).
Finally, in [7] the authors propose an indexing scheme for contain-
ment queries that also relies on keeping inverted lists for frequent
term combinations, but it is focuses on indexing natural language
text documents . Through the suitable choice of term combinations
the authors manage to keep the size of the resulting index compa-
rable to the size of a simple inverted index.
Signatures. Signature files [13, 14] are the basic alternative

method to the inverted file and traditional RDBMS methods for
containment queries. The main idea behind signatures is to hash
each item of I to a fixed size word and then to superimpose the
codes of all the items of a record, to create the records’ signature.
Superimposing relies usually to the usage of some some binary op-
eration (AND, OR, XOR etc) between two signatures. Apart
from the traditional signature approaches, the indexing of signa-
tures has also been explored in the literature, with the most promi-
nent idea being the signature trees [12, 28, 8, 32]. Signatures trees
organize the records’ signatures following the same lines as R-trees
and B-trees. Each node has a signature, which is the result of su-
perimposing the signatures of its immediate descendants.
XML search. Inverted files have also been employed for search-

ing semi-structured data. XML documents are as trees and their
elements and values are encoded as intervals that capture the an-
cestor/descendant relationships in the tree hierarchy. Inverted files
have been used to index the encodings of XML structural elements
2The matching criteria are more complex; still containment is a
vital part of the retrieval process.

in order to efficiently answer XML path and twig queries, which
can be modeled as containment joins between the intervals [2, 46].
Follow-up research [23] has shown that indexing the inverted lists
can further improve performance. The XML indexing problem for
path query evaluation is essentially different to the classic set con-
tainment search problems we study in this paper and OIF is not
comparable to XML indexes, structurally or operationally.
Alternative organizations for inverted lists. Special orderings

for the postings in inverted lists have been studied in several con-
texts. In [33] the postings are sorted according to the in-document
frequency of each term and in [3, 4, 19] the sorting criterion is
the normalized in-document frequency. These approaches focus on
the evaluation of IR queries, which require ranking of the results.
Ranking queries benefit from these orderings, since most IR simi-
larity measures are directly affected by the in-document frequency
of each term. During the evaluation, the algorithm exploits the or-
dering of the lists to retrieve the results in the desired sort order
or to decide on similarity bounds which are used as thresholds for
terminating the query evaluation. For similar purposes, inverted
lists are sorted according to the record length in [18]. In this case,
the record length is used to provide bounds for the similarity be-
tween different records. Knowing the bounds allows to limit the
search in only a part of the inverted lists. The aforementioned ar-
chitectures are reminiscent to the OIF, however, their organizations
are not suitable for the boolean containment queries studied here
[47]. A significant difference also lies in the fact that in these ap-
proaches the records are sorted locally in each inverted list, and not
globally as in the case of OIF. Finally, in [9], postings are ordered
by taking into account spatial information. The main objective is
to support combined geographic and keyword search to web docu-
ments. Each document can be associated to one or more geograph-
ical regions on a map, based on the location of its hosting site, or
location information in its content. By encoding these spatial ar-
eas in the document ids, querying for documents based on both
their textual content and spatial proximity to a location of interest
is possible (e.g. find all documents about “yoga” which are associ-
ated to locations near Brooklyn). The inverted lists corresponding
to the textual query terms are intersected, but regions in these lists
that contain document ids not related to the spatial query compo-
nent are not accessed. A problem of the previous approaches is that
they reduce the effectiveness of compression techniques, since they
lead on larger average d-gaps [47].
List Intersection. Although in this work we focus on the index

structure, relevant work to the query evaluation part appears in the
literature concerned with list intersection algorithms. In [10, 11] an
adaptive algorithm for computing set intersections, unions and dif-
ferences is described. The first algorithm of [11] polls each list in
a round robin fashion, and it is ameliorated in [10]. In [42], the au-
thors propose a main memory list intersection algorithm for sorted
and unsorted lists. The algorithm exploits the characteristics of
modern hardware and focuses on balancing the load between mul-
tiple cores. Moreover it probes the lists in order to gather statistics
that would allow efficient exploding of the multi-level cache hier-
archy. Unlike our approach it does not deal primarily with the disk
I/O. Efficient exploitation of multiple core CPU is also in the focus
of [38], which proposes inter-query parallelism and intra-query par-
allelism. The former exploits parallelism between different queries,
while the latter parallelizes the processing within a single query.
Finally, [5] offers an experimental comparison of several popular
methods of list intersection with respect to their CPU cost.

7. CONCLUSIONS
In this paper we proposed a novel indexing scheme, the ordered

235

inverted file (OIF). The key idea of the index is to order the data
suitably to allow early pruning in query evaluation time. We have
described query evaluation algorithms that take advantage of the
OIF and theoretically showed that the OIF manages fewer disk page
accesses and faster evaluation times than the simple inverted file.
This claim has also been supported by extensive experiments on
both real and synthetic data. The results show that the performance
of the OIF is often orders of magnitude superior to that of the in-
verted file and that it exhibits good scaling properties.

We do not propose the OIF as a total replacement for the in-
verted file, since in a variety of applications, especially in the IR
context, the individual inverted lists are not that big, and the na-
ture of the queries does not permit skipping a significant part of
the involved lists. Still, our contribution serves the purpose of an-
swering containment queries with exact semantics, under limited
memory budgets. OIF is especially efficient for large collections
of records from a limited item domain, or from domains where the
item’s distribution is skewed. We consider the above assumptions
realistic and the OIF to be a practical and superior solution, since it
outperforms inverted files for all kinds of containment queries.

Future work can be directed towards the efficient evaluation of
composite predicates and other type of predicates (e.g., similarity).

8. REFERENCES
[1] P. Agrawal, A. Arasu, and R. Kaushik. On indexing error-tolerant set

containment. In SIGMOD, 2010.
[2] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and

D. Srivastava. Structural joins: A primitive for efficient xml query
pattern matching. In ICDE, 2002.

[3] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with
effective early termination. In SIGIR, 2001.

[4] V. N. Anh and A. Moffat. Impact transformation: effective and
efficient web retrieval. In SIGIR, 2002.

[5] J. Barbay, A. López-Ortiz, T. Lu, and A. Salinger. An experimental
investigation of set intersection algorithms for text searching. J. Exp.
Algorithmics, 14:3.7–3.24, 2009.

[6] J.-Y. Cai, V. T. Chakaravarthy, R. Kaushik, and J. F. Naughton. On
the complexity of join predicates. In PODS, 2001.

[7] S. Chaudhuri, K. W. Church, A. C. König, and L. Sui. Heavy-tailed
distributions and multi-keyword queries. In SIGIR, 2007.

[8] Y. Chen. On the signature trees and balanced signature trees. In
ICDE, pages 742–753, 2005.

[9] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in
geographic web search engines. In SIGMOD, 2006.

[10] E. D. Demaine, L.-O. Alejandro, and J. I. Munro. Experiments on
adaptive set intersections for text retrieval systems. In ALENEX,
2001.

[11] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive set
intersections, unions, and differences. In SODA, 2000.

[12] U. Deppisch. S-tree: A dynamic balanced signature index for office
retrieval. In SIGIR, 1986.

[13] C. Faloutsos. Signature files. In Information Retrieval: Data
Structures & Algorithms, pages 44–65. 1992.

[14] C. Faloutsos and S. Christodoulakis. Signature files: an access
method for documents and its analytical performance evaluation.
ACM Trans. Inf. Syst., 2(4):267–288, 1984.

[15] W. B. Frakes and R. A. Baeza-Yates, editors. Information Retrieval:
Data Structures & Algorithms. Prentice-Hall, 1992.

[16] A. Gionis, D. Gunopulos, and N. Koudas. Efficient and tunable
similar set retrieval. In SIGMOD, 2001.

[17] R. Goldman and J. Widom. Wsq/dsq: A practical approach for
combined querying of databases and the web. In SIGMOD, 2000.

[18] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava. Fast
indexes and algorithms for set similarity selection queries. In ICDE,
2008.

[19] D. Hawking. Efficiency/effectiveness trade-offs in query processing.
SIGIR Forum, 32(2):16–22, 1998.

[20] S. Helmer and G. Moerkotte. A performance study of four index
structures for set-valued attributes of low cardinality. VLDBJ,
12(3):244 – 261, 2003.

[21] S. Hettich and S. D. Bay. The UCI KDD Archive. Univ. of California,
Dept. Information and Comp. Science, http://kdd.ics.uci.edu. 1999.

[22] F. M. Institute. Supermarket facts & figures.
http://www.fmi.org/facts_figs/superfact.htm, 2006.

[23] H. Jiang, H. Lu, W. Wang, and B. C. Ooi. Xr-tree: Indexing xml data
for efficient structural joins. In ICDE, 2003.

[24] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, 1973.

[25] A. C. König, K. Church, and M. Markov. A data structure for
sponsored search. In ICDE, 2009.

[26] N. Lester, J. Zobel, and H. E. Williams. Efficient online index
maintenance for contiguous inverted lists. Inf. Process. Manage.,
42(4):916–933, 2006.

[27] N. Mamoulis. Efficient processing of joins on set-valued attributes.
In SIGMOD, 2003.

[28] N. Mamoulis, D. W. Cheung, and W. Lian. Similarity search in sets
and categorical data using the signature tree. In ICDE, 2003.

[29] S. Melink, S. Raghavan, B. Yang, and H. Garcia-Molina. Building a
distributed full-text index for the web. ACM Trans. Inf. Syst.,
19(3):217–241, 2001.

[30] S. Melnik and H. Garcia-Molina. Adaptive algorithms for set
containment joins. ACM Trans. Database Syst., 28(1):56–99, 2003.

[31] A. Moffat and J. Zobel. Self-indexing inverted files for fast text
retrieval. ACM Transactions on Information Systems, 14(4), 1996.

[32] A. Nanopoulos and Y. Manolopoulos. Efficient similarity search for
market basket data. The VLDB Journal, 11(2):138–152, 2002.

[33] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval
with frequency-sorted indexes. J. Am. Soc. Inf. Sci., 47(10), 1996.

[34] W. Pugh. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM, 33(6):668–676, 1990.

[35] K. Ramasamy, J. M. Patel, J. F. Naughton, and R. Kaushik. Set
containment joins: The good, the bad and the ugly. In VLDB, 2000.

[36] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates.
In SIGMOD, 2004.

[37] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Compression of
inverted indexes for fast query evaluation. In SIGIR, Aug. 2002.

[38] S. Tatikonda, F. Junqueira, B. B. Cambazoglu, and V. Plachouras. On
efficient posting list intersection with multicore processors. In SIGIR,
pages 738–739, 2009.

[39] M. Terrovitis. Modelling and operational issues in pattern base
management systems. PhD thesis, El. and Comp. Eng., NTUA,
available at http://www.dblab.ece.ntua.gr, 2007.

[40] M. Terrovitis, P. Bouros, P. Vassiliadis, T. Sellis, and N. Mamoulis.
Efficient answering of set containment queries for skewed item
distributions. Technical Report TR-IMIS-2010-1, IMIS, 2010.

[41] M. Terrovitis, S. Passas, P. Vassiliadis, and T. Sellis. A combination
of trie-trees and inverted files for the indexing of set-valued
attributes. In CIKM, 2006.

[42] D. Tsirogiannis, S. Guha, and N. Koudas. Improving the
performance of list intersection. PVLDB, 2(1):838–849, 2009.

[43] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity
joins using mapreduce. In SIGMOD, 2010.

[44] H. E. Williams and J. Zobel. Compressing Integers for Fast File
Access. The Computer Journal, 42(3):193–201, 1999.

[45] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan
Kaufmann, 2nd edition, 1999.

[46] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M. Lohman.
On supporting containment queries in relational database
management systems. In SIGMOD, 2001.

[47] J. Zobel and A. Moffat. Inverted files for text search engines. ACM
Comput. Surv., 38(2):6, 2006.

[48] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus
signature files for text indexing. ACM Transactions on Database
Systems, 23(4):453–490, 1998.

[49] J. Zobel, A. Moffat, and R. Sacks-Davis. An efficient indexing
technique for full text databases. In VLDB, 1992.

236

