
Queries on Dates: Fast yet not Blind
Jaroslaw Szlichta1, Parke Godfrey1, Jarek Gryz1, Wenbin Ma2, Przemyslaw Pawluk1,

Calisto Zuzarte2

1 York University, Computer Science & Engineering, Toronto, Canada

{jszlicht, godfrey, jarek, pawluk}@cse.yorku.ca
2 IBM Laboratory, Toronto Canada

{wenbinm, calisto}@ca.ibm.com

ABSTRACT
Data warehouses are repositories of electronically stored data
which are designed to support reporting and analysis. The analysis
of historical data often involves aggregation over time. Thus, time
is critical in the design of a data warehouse. We describe novel
techniques for storing date information and optimization of
queries that reference the date dimension. We show how to embed
intelligence into the date key and how to exploit monotonic
dependencies. We present the value of these techniques for the
improvement of performance when combined with partitioning
and indexes. We evaluate these techniques on our prototype
implemented in IBM® DB2® V9.7 over the current draft version
of the TPC-DS benchmark.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Query processing

General Terms
Performance, Design, Experimentation

Keywords
Data Warehouse, Business Intelligence, Data Modeling, Time
Dimension, Monotonic Dependencies.

1. INTRODUCTION
The time dimension is a significant aspect of data warehouses.
Data warehouses are often designed to assist in analysis of
business data over a historical period. Tables often include
attributes which refer to time. This makes it possible for business
analysts to detect the existence of temporal patterns [1]. For
example, keeping the date of a sale enables analysis over different
quarters or months of the year, and allows for the comparison of
corresponding quarters or months over various years.

The amount of historical data grows quickly. For example,
consider an organization in the telecommunications industry
tracking phone calls over different cities and countries.

Integration of data is a complex extract-load-transform (ETL)
process that uses multiple sources. In order to make the storage of
data efficient for analysis, the data is often aggregated in a
warehouse. It is important to balance the degree of aggregation so
it supports various types of drill down and roll up queries.
OLAP [11] functions such as SUM, COUNT, MAX, MIN and
AVG support the process of granulating data [2]. As a warehouse
continually grows, it is important to design scalability from the
very beginning so query performance is not sacrificed.

We introduce extensions to modeling of the time dimension in the
data warehouse, and optimization of queries using these
extensions. Section 2 describes our motivation and background.
In Section 3, we show how the standard representation of date can
be improved with embedding intelligence in the key, and we
report the results of our experimental evaluation using monotonic
dependencies. Concluding remarks and future work are described
in Section 4.

Techniques described in this work have been implemented as a
prototype in IBM® DB2® V9.7 [14] and tested on TPC-DS
benchmark which models decision support systems [13].

2. BACKGROUND AND MOTIVATION
Time is often a central component of a data warehouse. Our
observations with customer queries at IBM have shown that
almost all queries involve time attributes. Therefore, being able to
optimize queries with respect to data warehouse's time dimensions
could offer large returns. We observe it to be quite common that
the selectivity (filter factor) for the time predicates in queries to be
the greatest filtering of all the predicates. This means the date
dimension table is often joined first with the fact table in the
query plan. We show that this blind join can be replaced with a
pair of fast probes.
Large fact tables [10] are often partitioned to speed up evaluation
and for easier roll-in and roll-out of data. The date surrogate key
which is a date sequence number enables physical partitioning of
the fact table on the date key (foreign key from the date
dimension). Partitioning the fact table on the date key is well-kept
throughout the changes as date is normally unchanged [3]. We
have observed cases when the optimizer cannot exploit partition
elimination in order to reduce I/O. The entire fact table may need
to be scanned rather than just the relevant partitions for the query.
We need to ensure that the optimizer can take advantage of the
partitioning. We describe this problem and offer a solution in
Section 3.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EDBT 2011, March 22-24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00.

497

2.1 Multidimensional model
The common design of a data wareshouse is a multidimensional
model based on a star or snowflake structure of fact and
dimension tables [5]. A date dimension refers to a table that is
granulated by day, whereas a time dimension represents the time
of day. Such a dimension is practically universal as it appears in
any data warehouse that is a historical repository of data [3]. It is
often recommended to separate the time of the day from the date
dimension in order to keep the date dimension small. As the time
description is not usually required in a data warehouse, it is a
good practice to keep the time attribute out of the date table in the
fact table. Time of day might be represented as the number of
milliseconds, seconds or minutes since midnight. For optimization
reasons, the granularity of the date in data dimension table is
sometimes even further aggregated to the level of week or month.
It is also a common practice to keep the data from previous years
aggregated with higher granularity.

The time dimension is traditionally used for tracking changes over
measures. A model which allows a conceptual representation of
time-varying levels, attributes and hierarchies is described in [4]
and [7]. In that model, the time dimension can be used
additionally to track changes in the other dimensions. In our work,
we focus on the time dimension as the entry point to the fact table.

2.2 Description of the date
A measure is taken at the intersection of the fact table and
dimensions such as date, item or location. All measurement rows
in the fact table are at the same granularity [6]. Fact measures are
usually numeric and additive. Dimension tables are a fundamental
part of a data warehouse that contain the description of the
data [9]. The dimension tables are necessary to understand the
data in the fact tables. The fact tables can have a very large
number of records, but are compact in terms of the number of
columns. It is typical that the fact tables take about 90% of the
entire space of the data wareshouse. Conversely, the dimension
tables are shallow in their number of records, but have many
columns for the descriptive attributes. Date dimension tables,
apart from storing the date as a column, can also keep descriptions
of the date which can be filtering fields and labels for business
reporting. Columns in the date table can include, for example, day
of week, the day number in a calendar month, the month number
in year, month name, and fiscal periods. We can similarly include
a holiday indicator, weekday indicator, the name of a holiday
(Easter, Thanksgiving, Valentine’s Day), the name of special
events (Back to School, Super Bowl), and so forth.

2.3 Designing the date dimension
Designing date dimensions is a challenge. There are two main
methods to represent the date in a data warehouse. The first
approach is to keep the date dimension in the fact table, as shown
in Fig. 1. If the date attribute is explicitly in a fact table, we can
make a direct SQL query involving date that will not necessitate a
join. Filtering based on date can avoid a join with a date
dimension table (which could be quite expensive), so that the
query is evaluated solely over the fact table.

The second technique is to create a separate date dimension table.
There are good reasons why the second method is used more
often. SQL date functions do not assist in filtering based on

weekdays, weekends, holidays, major events and fiscal periods.
Since there are no such built-in functions, it is better to store these
as data in a dimensional table. Also, most database systems do not
support index calculations using functions (e.g., MONTH,
DAY) [3]. Lastly, the SQL data type DATE may be eight bytes,
whereas INTEGER is four bytes. (Note that DB2 uses a compact
four byte DATE: two for year, one for month and one for the day.)
Therefore, using INTEGER as a surrogate key for date can save
space: for every row, four bytes. If we have a fact table with a
billion rows, every additional byte per row is another gigabyte of
storage. And this storage is not necessarily inexpensive. To
achieve high performance, many providers of data warehouse
systems require expensive, proprietary hardware [12]. Because of
the cost of the disk, which must be efficient and reliable, database
schema designers must pay attention to saving space. More
importantly, most queries scan rows from the fact table. By
making the fact table more compact, this reduces the I/O expense
of evaluating these queries. (Even though there is no space
savings in DB2 as there might be in other database systems,
designers often still use INTEGER surrogate keys to be consistent
with other dimension surrogate keys.) A star schema with an
additional dimension table with date is shown in Fig.2.

Figure 1. Date in fact table.
Designers sometimes replace a date dimension table by
representing time via buckets in the fact table [3]. This solution is
not commonly used though, because it is not flexible. With a
predefined number of buckets which represent month one, month
two, and so on, at some point the table has to be altered in order
to add a bucket for a new month, or to shift all the buckets. This
may not be the best choice as the month first on the list will be
lost. A second disadvantage of this approach is that it is not
possible to keep the description of date as specified in Section 2.2
so there is no way to get information regarding what the date
refers to.

Figure 2. Date as additional table.
Surrogate keys are unique identifiers usually generated as
sequential integers [8]. A join between the fact table and a
dimension table is based on surrogate keys if we use surrogate
keys for dimension tables. It is considered good practice to use
surrogate keys instead of operational keys (derived from external
names such as production codes) which may have built-in
dependencies. Avoiding using an operational key as the primary
key of the table is a good idea because our expectations might be
invalidated over the time. In business organizations, operational
codes such as product codes are reassigned after some period of

498

time. Surrogate keys offer the data warehouse a mechanism to
distinguish between two different instances of the same product
with different operational codes. Developing the data wareshouse
with operational keys might be faster, but implementing surrogate
keys can bring benefits in the long run. The main advantage of
surrogate keys is that they enable keeping track of changes
independently from the key. Even if the operational key changes
in the next ETL cycle, it can still stay in the data warehouse with
the same surrogate key. Also, extracting data from multiple
sources may be easier using surrogate keys as they allow
integrating data from multiple source systems even if they do not
have well-matched source keys. Using INTEGER (four bytes) for
a surrogate key is adequate for a dimension table as it provides
over two billion possible values (232-1).

3. QUERY REWRITES
As discussed above, there are often compelling reasons in a data
warehouse to have an explicit dimension table for date, and,
furthermore, one that uses surrogate keys. This is standard
practice. There are disadvantages to this, however. A prevalent
class of queries accesses a fact table, and has predicates on date
that mention natural date values. Their evaluation will blindly join
the fact table to the dimension table. This can be quite expensive.
Often, a fact table will be partitioned over date. Data warehouse
systems use partitioning to accommodate very large tables,
making it easier to administer (back up data, re-organize data,
roll-in new data, and roll-out old data) and to improve query
performance. In this case, however, all partitions of the fact table
will have to be scanned, because the natural date values in the
query cannot be used to establish a range to scan just the relevant
partitions, which are partitioned on the surrogate keys.
We seek to optimize such queries by avoiding the join to the date
table, and selecting just the relevant partitions of the fact table.
We introduce two query-rewrite techniques that achieve this.
In Section 3.1, we consider how to embed information of the
natural date value into the date surrogate key. This preserves most
of the benefits of using surrogate keys, and it lets us rewrite the
query for optimization. There are certain disadvantages to using
embedded surrogate keys, however, so this does not offer a
general solution. In Section 3.2, we introduce a universal solution
that rewrites the query within the optimizer considering
monotonic dependency. The monotonic dependency is a
dependency between two attributes in which one attribute is a
monotonic function of the other. We note that in the
implementation of almost all data warehouses that use surrogate
keys for date, the order of surrogate keys is precisely the same as
the order of the natural date values. That is to say, the surrogate
keys and natural date values are monotone with respect to each
other. We can use this monotonic dependency to rewrite queries.

 Definition 1: A real function f is monotonic on or over
an interval I if it is either increasing on I(f(x1) ≤ f(x2)
whenever x1 < x2) or decreasing on I(f(x1) ≥ f(x2)
whenever x1 < x2).

 Definition 2: Also, function f is strictly monotonic if it
is either strictly increasing or strictly decreasing.

In Section 3.3, we present an experimental evaluation of the
monotonic-dependency rewrite over queries from the TPC-DS
benchmark.

3.1 Embedding the intelligence
Our first consideration is to embed intelligence into the surrogate
key. While this would be problematic for surrogate keys
generally, this can work for time because the date dimension table
is static. The representation of the date does not change over time,
so keys might be assigned in a meaningful way. By embedding
intelligence into the surrogate key, a query can directly filter over
the fact table avoiding an expensive join (assuming all
information for the query which is necessary is embedded in the
key). A typical query with a join between a fact table and a
dimension table taken from TPC-DS benchmark has a form like
query Q12 shown below. The description of the schema of TPC-
DS database can be found in [13].
A critical factor in making the technique efficient and useful is to
find a good function which generates the key. A function which
can be used is one converting the date into a number which
consists of the year, month and day. The date 22th February 1999
would be converted into the key of the date dimension
table: 1999022. This is shown in the query Q12’. A more
sophisticated function can be established for generating the key.
Assume the surrogate key is a 4-byte integer. The date takes eight
digits so there are still free digits. These can be used for indicators
for weekday, holiday, current day, or other fields which appear
often. We can also use a binary representation to make the key
with embedded intelligence more compressed.
Q12
select i_item_desc, i_category
,i_class , i_current_price
,sum(ws_ext_sales_price) as itemrevenue
,sum(ws_ext_sales_price)*100

/sum(sum(ws_ext_sales_price)) over
(partition by i_class) as revenueratio

from web_sales, item, date_dim
where ws_item_sk = i_item_sk

and i_category in
('Sports', 'Books','Home')

and ws_sold_date_sk = d_date_sk
and d_date between

cast('1999-02-22' as date)
and (cast('1999-02-22' as date)

+ 30 days)
group by i_item_id, i_item_desc ,i_category

,i_class, i_current_price
order by i_category, i_class, i_item_id

,i_item_desc, revenueratio
fetch first 100 rows only
With embedding intelligence in the key, it is possible to keep
historical information as well as some years into the future in the
dimension table, because the function used is known in advance.
One hundred fifty years of daily records is around 54,750 rows,
which is a small table compared to fact tables which are counted
in terabytes. An ETL process also takes benefit from filling the
date dimension table in advance. Whenever the records are
inserted to the fact table, a join between the fact table and the date
dimension table is not needed to find the surrogate key.
Q12”
select i_item_desc, i_category ...
from web_sales, item, date_dim
where ...and d_date_sk

between 19990222 and 19990324
group by ...order by ...fetch...

499

3.2 Monotonic dependencies
In this section, our technique using monotonic dependencies is
described. This technique was used in our prototype which has
been implemented in DB2 V9.7. The following rewrites were
considered as part of developing the prototype within the
optimizer.
If in the table there is monotonic dependency between the
surrogate key and another column, a small number of lookups can
be used as part of the query. Two probes can be made into the
dimension table in order to calculate the range of the surrogate
keys to be used as a filter over the fact table. Query Q12, with the
observation of the monotonic dependency between the date
surrogate key and the natural date values, can be rewritten to the
form shown below (query Q12’). The two probes are selected
from date table: mindate and maxdate surrogate key. These two
probes provide us with minimum and maximum surrogate values
of the key which are used to set the filter in the WHERE clause.
In our first attempt, we have rewritten the query to use subqueries
for these probes in the WHERE clause. Based on our experiments
and analyzing the access paths, we discovered that the optimizer
does not treat it as a predicate on the same field, which meant it
was not giving the optimal access plan. Our next try was to put the
subqueries for the probes into the FROM clause. This is
successful. The optimizer then gives the same access plans as it
does for queries with constants in a BETWEEN range predicate.
Q12’
select ...
from tpcds.web_sales, tpcds.item

,(select t1.mindate, t2.maxdate from
(select min(d_date_sk) as mindate
from tpcds.date_dim
where d_date >= cast('1999-02-22'

as date)) as t1,
(select max(d_date_sk) as maxdate
from tpcds.date_dim
where d_date <= (cast('1999-02-
22' as date) + 30 days)) as t2

) as dt
where ws_item_sk = i_item_sk and i_category

in ('Sports', 'Books', 'Home')
and ws_sold_date_sk between

dt.mindate AND dt.maxdate
group by ... order by ...fetch...
The following conditions are required in order to implement an
efficient automatic rewrite:

1. Relationship integrity predicate (condition for
optimization). The primary key from table A matches a
surrogate foreign key from table B (B.fk = A.pk) and
relationship between table A (tpcds.date_dim in Q12)
and B (tpcds.web_sales in Q12) is one to many.

2. Partitioning or index key (condition for
optimization). The foreign key B.fk is a range
partitioning key, or there exists an index on it which can
be used by the index manager for the subquery range
predicate as a start and stop key.

3. Local predicate (condition for optimization). Table A
has a simple local predicate in the form of ‘A.col
<relational operator> literal’ where the relational
operator is one of ≥, ≤, >, <, = and A.col is not A.pk. In
our implementation, we consider queries with a binary

relationship predicate. This can be extended to queries
with more complex expressions such as the IN operator.
This kind of query also exists in the TPC-DS
benchmark.

4. Monotonic dependency (semantically required
condition). There exists a monotonic dependency
declaration between the primary key of table A, column
A.pk, and A.col in the local predicate in the query. At
present in our prototype in DB2, we have a way to
express this increasing or decreasing monotonic
dependency internally. We are working to have a
mechanism to declare such dependencies as formal
constraints. Note that maintenance of such a
dependency declaration is not expensive. When a new
row is inserted in table A, only the rows with
immediately preceding and succeeding values of A.pk
by order need to be checked to ensure that the new
A.col value maintains the monotone condition. Given
there will be an index on the primary key of A, this
check is inexpensive. The dependency between
attributes d_date_sk and d_date is strict monotonic.

5. No select on the A dimension table (condition for
optimization). Table A is not involved in the select.
The fact that A has no column output from the current
select is optional. If there is no column output from A,
the join is eliminated. Otherwise, we can still do the
rewrite and take advantage of partitioning.

In the proposed query rewrite, the function MIN and MAX is
used because there are no guarantees that the fill rate in the date
dimension table is 100%. There is currently no method to inform
the query rewrite engine about this. With the possibility of passing
this information, we would be able to simplify the query by
removing MIN and MAX and replacing the relational operators
by an offset equation so fewer IOs would be used for the probes.
Note that the rewritten query makes appropriate use of the
partitioning. All the fact tables in the TPC-DS benchmark include
the surrogate key from the date dimension, but they do not include
the actual date. So the original query cannot take advantage of the
partitioning with the surrogate key from the date dimension
because the filter is based on the natural date value. The situation
is different with the proposed query rewrite algorithm. The filter
uses the surrogate key from the date dimension so it perfectly
matches the partitioning key which is kept in the fact table.
Partitioning for large fact tables is highly effective because it
allows old data to be removed gracefully and new data to be
loaded and indexed without disturbing the rest of the fact table.
Also selecting the data based on partitioning key is more efficient.
We have checked the access plan for our rewritten query, and the
partition key based on the date surrogate key is used.
The second query from the TPC-DS benchmark we considered is
Q7 which joins the fact table with the date dimension and uses a
description of the date as a filter. In the TPC-DS schema, there is
an additional column which keeps the year (d_year). In the query
Q7, the filter is set to the year 2000. We chose this query because
it selects over many more days (one year) whereas Q12 was only
over 30 days. This query involves a select on a column in the date
dimension table. We wanted to check how the proposed query
rewrite behaves with a higher selection of data from the database.

500

The rewrite can be done with the same technique as for Q12, but
this time with an equality operator (filtering for year 2000). The
rewrite cannot be used if instead of a predicate on d_date there is
a predicate on d_month. Here the monotonic dependency is only
local and there is no monotonic dependency between d_date_sk
and d_month defined. On the other hand if there is predicate on
both columns: d_year and d_month then the suggested strategy to
optimize the query can still be used. In Q7’ if we would be able
to pass information that the fill rate is 100%, and assuming there
is check constraint d_year = YEAR (d_date), the rewritten query
could have just used a filter on a d_date. At present, we have not
addressed this. Therefore, we can use MIN and MAX in the same
way we did for query Q12.

Q7
select i_item_id,
cast(avg(cast(ss_quantity as decfloat))

as decimal(10,6)) agg1,
cast(avg(ss_list_price) as

decimal(10,6)) agg2,
cast(avg(ss_coupon_amt) as

decimal(10,6)) agg3,
cast(avg(ss_sales_price) as

decimal(10,6)) agg4
from store_sales, customer_demographics,

date_dim, item, promotion
where ss_sold_date_sk = d_date_sk

and ss_item_sk = i_item_sk
and ss_cdemo_sk = cd_demo_sk
and ss_promo_sk = p_promo_sk
and cd_gender = 'M'
and cd_marital_status = 'S'
and cd_education_status = 'College'
and (p_channel_email = 'N' or
p_channel_event = 'N') and d_year = 2000

group by i_item_id order by i_item_id
fetch first 100 rows only
The rewritten query then with the filter on year is shown as below.
Q7’
select ...
from store_sales, ..., promotion

,(select t1.mindate, t2.maxdate from
(select min(d_date_sk) as mindate

from date_dim
where d_year = 2000) as t1,

(select max(d_date_sk) as maxdate
from date_dim
where d_year = 2000) as t2) as dt

where ss_item_sk = i_item_sk
and ss_cdemo_sk = cd_demo_sk
and ss_promo_sk = p_promo_sk
and cd_gender = 'M'
and cd_marital_status = 'S'
and cd_education_status = 'College'
and (p_channel_email = 'N' or

p_channel_event = 'N')
and ss_sold_date_sk between

dt.mindate and dt.maxdate
group by...order by...fetch...

3.3 EXPERIMENTAL EVALUATION
The query transformations described above have been
implemented in DB2 V9.7 The experiments were performed on a
performance testing machine with operating system SUSE Linux
Enterprise Server SP1 with 4 processors (Intel(R) Xeon(R) CPU

5160 @ 3.00GHz), 22GB memory using TPC-DS benchmark
with size 1GB. The performance test results are shown in bar
chart Fig 3.

In our experiments, we measured the performance of the 13
queries from the benchmark that use dates in predicates and that
match our rewrite rules. As expected a significant reduction of the
execution time is achieved. The optimization is achieved primarily
by avoiding the join between the fact table and the date table.
Also, as we have mentioned, the cardinality reduction due to the
selection on the date table is greater than due to the selections on
other tables, so the first join is done between the fact table and the
dimension table. Eliminating this first join from the access plan
brings significant benefits. An index on the date foreign key in the
fact table is enough for efficient evaluation. Note that more
substantial performance improvements could be achieved if the
date foreign key in the fact table is also a partitioning key.

Figure 3. Visualized performance test results.

Fig. 3. shows the execution times for the 13 queries from the
benchmark executed with and without our rewrite. The results
demonstrate significant performance improvement, on average a
reduction of 48% in elapsed time. For the queries discussed in
Section 3.2, the reduction was from 116.34 seconds to 38.98
seconds (66%) for Q7 and for the query with smaller filter, Q12,
from 4.26 seconds to 2.11 seconds (50%).

4. CONCLUSIONS AND FUTURE WORK
Queries that involve predicates over time and date are exceedingly
common for most data warehouses. For many design reasons
(Section 2.3), date is often represented explicitly as a dimension
table of its own, with the primary key of the date table done as a
surrogate key. While this design can have compelling advantages,
the surrogate key can cause problems for queries.

A majority of queries are over a fact table. A query often uses
natural date values in predicates. However, date in the fact table is
recorded by surrogate key. This necessitates a potentially quite
expensive join between the fact table and the date dimension table
when the query is evaluated. There is an additional problem when
a fact table has been partitioned by date, as it is common practice
in data warehouse systems in order to accommodate very large
tables (e.g. in distributed systems). Since the date range (surrogate
values) over the fact table cannot be determined from the query
(natural values) all the partitions of the fact table must be scanned.

501

We have sought to optimize such queries involving date in data
warehouses by removing this join, and by choosing just the
relevant partitions of the fact table when the table is distributed.
We explored two solutions (Section 3). The first is to encode date
information into the so-called surrogate key. In some situations,
this is acceptable, and it preserves most of the advantages of using
a surrogate key. Such an embedded surrogate key, however,
makes it possible to execute many queries without a join to the
date table. However, embedded surrogate keys are not always
acceptable. Our second solution is more general. We introduce the
notion of monotonic dependency, and show that surrogate data
keys will be monotone with respect to the natural data values they
represent in most any data warehouse design. By making this
monotone dependency known to the query optimizer, queries with
date predicates can often be rewritten to avoid a join with the date
table, and to select just the relevant partitions of the fact table.

We built a prototype of this in IBM DB2 V9.7, (as a branch of the
code base). We ran the benchmark experiments over TPC-DS to
demonstrate the efficiency of our approach using the monotonic
dependency. Of TPC-DS's 99 queries, 13 matched our rewrite.
Every one of the 13 benefited, with an average performance gain
of 48% (Section 3.3). The other queries in TPC-DS were not
affected as they were not rewritten. (There is an additional
optimization cost because of the additional rewrite rules, but it is
marginal.)

There are some things that we plan do to extend this work:

 Many more than 13 of the 99 queries in TPC-DS involve
date predicates. We know that we can extend our rewrite
rules to cover many more of the cases seen in TPC-DS
queries (for instance, to cover the case of sub-queries in an
IN predicate). This is a matter of further implementation.

 We are working to improve the integration of our
monotonic-dependency methods into the cost-based
optimizer to achieve better cardinality estimation. This
could potentially improve the performance gain we already
observe for queries with date predicates a good deal more.

 In our prototype, the monotonic dependency is presented to
the DB2 optimizer in an internal fashion. There is a way to
declare such dependencies explicitly. We are working to
state them as integrity constraints (devising a new class of
constraints to support that cover monotonic dependencies).

 These techniques can be extended, we feel, to cover more
dimensions in data warehouses. Monotonic dependencies
exist elsewhere too, specifically with geo-spatial
information. Thus, these techniques should extend well for
other common data types.

We have demonstrated that dramatic gains in query performance
can be had in data warehouse queries by recognizing monotonic
dependencies over time data. Our techniques look promising to
generalize many more types of queries that involve time and
spatial predicates.

5. ACKNOWLEDGMENT
IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corp., registered
in many jurisdictions worldwide. Other product and service names
might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.
Intel is a trademark or registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
TPC-DS is the trademark of The Transaction Processing
Performance Council.

6. REFERENCES
[1] Pedersen, T., Jensen, Ch., and Dyreson, C. 2001.

A foundation for capturing and querying complex
multidimensional data. Information Systems 26 (2001)
383-423.

[2] Riedewald, M., Agrawal, D., and Abbadi, A.E. 2002.
Efficient Integration and Aggregation of Historical
Information. Proceedings of the 2002 ACM SIGMOD
international conference on Management of data.

[3] Kimball, R., Ross, M., 2002. The Data Wareshouse Toolkit
Second Edition. The Complete Guide to Dimensional
modeling. John Wiley & Sun.

[4] Malinowski, E., Zimányi, E. 2006. A conceptual Solution for
Representing Time in Data Warehouse Dimensions.
Conferences in Research and Practice in Information
Technology Series, Vol. 166.

[5] Inmon, W. 2002. Building the Data Warehouse. John
Wiley & Sons.

[6] Jarke, M., Lenzerini, M., Y., Vassiluiou & Vassiliadis, P.
2003. Fundamentals of Data Warehouse. Springer.

[7] Gregersen, H. & Jensen, C. 1998. Conceptual modeling of
time-varying information. Technical report, Time Center,
TR-35.

[8] Lightstone, S., Teorey, T., Nadeau, T. 2007. Physical
database design. Morgan Kaufmann.

[9] Agrawal, R., Gupta A., Sarawagi, S. 1995. Modeling
multidimensional databases. IBM Technical Report 1995.
Appeared also in Proceedings of the 13th International
Conference on Data Engineering 1997, pp 232-243.

[10] Gyssens, M., Lakshmanan, L.V.S. 1997. A foundation for
multidimensional databases, Proceedings of the 23rd
Conference on Very Large Databases, pp 106-115.

[11] Shoshani, A. 1997. OLAP and statistical databases:
similarities and differences, Proceedings of the 16th ACM
Symposium on Principles of Database Systems, pp 185-196.

[12] http://www.ibm.com/software/data/db2.
[13] http://www.tpc.org.
[14] http://publib.boulder.ibm.com/infocenter/db2luw/v9.

502

