
Making Interval-Based Clustering Rank-Aware

Julia Stoyanovich
∗

University of Pennsylvania
Philadelphia, PA, USA
jstoy@cis.upenn.edu

Sihem Amer-Yahia
Yahoo! Research

New York, NY, USA
sihem@yahoo-inc.com

Tova Milo
†

Tel Aviv University
Tel Aviv, Israel

milo@cs.tau.ac.il

ABSTRACT

In online applications, such as online dating, users often query and
rank large collections of structured items. Top results tend to be ho-
mogeneous, which hinders data exploration. For example, a dating
website user who is looking for a partner between 20 and 40 years
old, and who sorts the matches by income from higher to lower,
will see a large number of matches in their late 30s who hold an
MBA degree and work in the financial industry, before seeing any
matches in different age groups and walks of life. An alternative
to presenting results in a ranked list is to find clusters in the result
space, identified by a combination of attributes that correlate with
rank. Such clusters may describe matches between 35 and 40 with
an MBA, matches between 25 and 30 who work in the software
industry, etc., allowing for data exploration of ranked results.

We refer to the problem of finding such clusters as rank-aware
interval-based clustering and argue that it is not addressed by stan-
dard clustering algorithms. We formally define the problem and, to
solve it, propose a novel measure of locality, together with a family
of clustering quality measures appropriate for this application sce-
nario. These ingredients may be used by a variety of clustering al-
gorithms, and we present BARAC, a particular subspace-clustering
algorithm that enables rank-aware interval-based clustering in do-
mains with heterogeneous attributes. We validate the effectiveness
of our approach with a large-scale user study, and perform an ex-
tensive experimental evaluation of efficiency, demonstrating that
our methods are practical on the large scale. Our evaluation is per-
formed on large datasets from Yahoo! Personals, a leading online
dating site, and on restaurant data from Yahoo! Local.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Data min-
ing; H.5.2 [Information Systems]: Information Interfaces and Pre-
sentation—User Interfaces

∗This research was supported in part by NSF grant 0937060 to the
Computing Research Association for the CIFellows Project.
†This research was supported in part by the Israel Science Foun-
dation, by the US-Israel Binational Science Foundation, and by the
EU grant MANCOOSI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

General Terms

Algorithms, Human Factors, Performance

Keywords

Data Exploration, Ranking, Clustering

1. INTRODUCTION
In online applications that involve large structured datasets, such

as Yahoo! Personals and Trulia.com, there are often thousands of
items that match a user’s preferences. In dating sites, a user may
specify the age, height, income, education, political affiliation, and
religion of a potential match. In real estate applications, a user
may describe his dream home by its location, size, and number of
bedrooms. The number of matches is often very high, making data
exploration an interesting challenge.

Typically users also specify ranking criteria for the retrieved items,
e.g., a sort order on a single attribute, or a weighted combination of
multiple attributes. For example, in a dating site, potential matches
may be ranked by decreasing income or increasing age, while in a
real estate site, available houses may be ranked by increasing price
or decreasing size. Ranking helps users navigate the set of results
by making sure that the items users see first are of high quality,
according to their ranking criteria. However, ranking also brings
the disadvantage of match homogeneity: users are often required to
go through a large number of similar items before finding the next
different item. This is illustrated in the following example.

EXAMPLE 1.1. Mike, a user of an on-line dating site, is look-
ing for a partner. Mike specifies that he is interested in women
who are 20 to 40 years old, have at least a Bachelor’s degree, and
live in New York City, and requests that results be sorted on income

from higher to lower. When inspecting the results, Mike notices
that the top ranks are dominated by women in their late thirties
with an MBA degree who work in finance, making $150K - $200K
annually. It takes Mike a while to scroll down to the next set of
matches that are different from the top-ranked ones. In doing so,

he encounters women who are between 25 and 30 years old, have a
BS degree, and work in the software industry making $75K-$125K.
After additional data exploration, Mike realizes that there is a cor-
relation between age, education level, and income. Having looked
at the result set a bit longer, Mike finds a smaller group of women
with age varying over the entire 20-40 range, who have a liberal

arts education, live on the Upper East Side, and are independently
wealthy (i.e., have a high income but do not work full-time).

Mike would have been able to identify the different high-income
groups more easily if results were presented in labeled clusters such
as “36-40 year-olds who have an MBA and work in finance”, “25-
30 year-olds who work in the software industry and make $75K-

$125K”, “matches with a liberal arts education who live on the

437

Upper East Side”, etc. With results presented in this way, Mike
would then be able to explore the result set, deciding to focus on
one particular cluster, or to consider matches from several clusters.

A key point that arises from this example is that a user who is
browsing the result set sequentially, item by item, is only able to in-
fer some trends and correlations in the data after seeing a significant
number of items. Sequential presentation is not very helpful if the
user is trying to explore the data, i.e., understand general proper-
ties of the dataset and identify groups of similar items, particularly
if the dataset is large and some groups are much smaller than oth-
ers. The complexity of manual data exploration further increases
with more sophisticated ranking. So, Mike’s ranking function could
compute a score that is inversely proportional to the distance be-
tween his geographic location and the location of his match, and
directly proportional to the income of the match.

In this paper we build on the intuition of Example 1.1 and pro-
pose to discover clusters in the result space, identified by a combi-
nation of intervals that are correlated with result quality. Here, an
interval is a combination of an attribute name and a range of values
from that attribute’s domain, e.g., age ∈ [20, 24], or an attribute
name and a single value if the domain of the attribute is unordered,
e.g., profession = “software′′. We refer to the problem of
finding such clusters as the rank-aware interval-based clustering
problem. The challenge is to find the most interesting interval com-
binations, and we take the point of view that an interesting set of
intervals contains matches that are best from among comparable

with respect to the user’s ranking function. For example, the pair
age ∈ [25, 30], profession = “software′′ identifies a rank-
aware cluster if many of the top earners in the 25 to 30 age range
coincide with the top earners who work in the software industry.

We now demonstrate the reasons why rank-unaware clustering
is ineffective in our application scenario. Consider James, a user
who shares Mike’s filtering conditions. Suppose that, unlike Mike,
who ranks matches on decreasing income, James is interested in
seeing the same matches sorted by age in increasing order. Which
clusters are best for which user depends on the user’s ranking pref-
erences. In particular, Mike may appreciate seeing the matches who
are between 25-30 years old and work in the software industry in
the same cluster as 35-40 year-olds who work in retail, if the two
groups of matches have similar income. On the other hand, James
would prefer seeing the two groups in separate clusters, because
they differ on age. However, a clustering method that does not ac-
count for ranking cannot distinguish between these two users, and
is therefore inappropriate for rank-aware data exploration.

One may argue that treating the score, or rank, of each item as
an additional attribute, and using it for clustering in a rank-unaware
framework such as CLIQUE [2], is sufficient. However, as we now
demonstrate, this approach fails to address rank-aware data explo-
ration effectively, for two reasons. First, if income (or rank com-
puted based on income) were used as a clustering dimension, in the
same way as other attributes, then Mike may see a high number of
clusters, not all of which are of potential interest to him, e.g., a clus-
ter of 25-30 year-olds with a high income may appear alongside a
cluster of 25-30 year-olds with a low income. If many clusters are
discovered by the algorithm, the potentially more interesting ones
may go unnoticed. Worse yet, the algorithm may decide to merge
together clusters that are of high interest to Mike with those of low
interest, resulting in a potentially large heterogeneous cluster with
homogeneous results dominating the top ranks. We will demon-
strate in Section 6 that this condition arises in real datasets.

Note that which clusters exist in the query result depends on
the composition of the result set and on the ranking function, and

both are specified by the user. For example, higher income and
higher age often co-occur, but this correlation becomes less pro-
nounced in retirement age. Furthermore, correlations between at-
tributes may not hold for all of the user’s matches, i.e., these cor-
relations are local. Considering Mike’s matches (Example 1.1) in
the Yahoo! Personals dataset, we observed that higher income cor-
relates with higher age over the entire 20-40 age range, while the
number of women with post-graduate education increases with age
only until age 29, and then plateaus. Because rank-aware correla-
tions are local, results of rank-aware clustering must be computed
at query time, and they must account for locality.

Our solution is based on subspace clustering — a natural ap-
proach to use when items are described by a high number of at-
tributes, and when correlations are local, i.e., they hold for par-
ticular combinations of attribute values. Subspace clustering is a
feature selection technique that aims to uncover structure in high-
dimensional datasets by looking for multiple, possibly overlapping,
subsets of features, called subspaces [23]. Each subspace repre-
sents an alternative view of the data. Dimensionality of subspaces
is usually lower than that of the original space, and so clusters iden-
tified in subspaces are more easily interpretable by the user.

Our approach is to make subspace clustering rank-aware, adapt-
ing it to our target application scenario. In the remainder of this pa-
per we will present a rank-aware interval-based clustering frame-
work. This framework identifies clusters of results that have three
important properties — they have sufficient clustering quality, are
tight, and are maximal. We now briefly describe these properties.

Clustering Quality The goal of rank-aware clustering is to find
sets of intervals that agree with respect to the highest-ranking matches
that they contain. We will formally define semantics of agreement
at top-N by presenting a family of rank-aware clustering quality
measures in Section 2.2.1. One measure, QtopN , treats the top-
N items of each interval as sets, and is high when the intersec-
tion of these sets is large. Another measure, QSCORE, accounts
for the scores of the items in the intersection at top-N , and is
high for clusters that contain many high-scoring items. Finally,
QSCORE&RANK accounts for both scores and ranks, and is high
for clusters that contain many high-scoring items in high ranks.

Tightness An important question is one of defining the initial
search space of the clustering algorithm, that is, of enumerating the
set of intervals from which to build clusters. For attributes with
ordered domains, two or more consecutive intervals over the same
attribute may be concatenated to produce a larger interval. How-
ever, as we will show in Section 2.2.2, concatenating together con-
secutive intervals is only beneficial if neither of the intervals dom-
inates the other with respect to the ranking function. Intuitively,
one interval dominates another if the items in its top-N are strictly
better, i.e., they have higher scores. For example, when ranking on
income from higher to lower, we may observe that items in the top-
N of age ∈ [20, 24] have lower scores than those in the top-N of
age ∈ [25, 29]. As a result, the top-N of the concatenated interval
age ∈ [20, 29] may coincide with the top-N of age ∈ [25, 29].
In this case concatenating together the intervals will add no new
items to the top-N of age ∈ [25, 29], and will eventually generate
a misleading cluster description. This cluster will suffer from result
homogeneity in top ranks and will not be tight.

Maximality A final requirement that we impose is that clusters
must be maximal. Intuitively, we want to discover sets of intervals
that correlate with result quality and that are as large as possible.
For example, suppose we are given intervals I1 : age ∈ [20, 29],
I2 : edu = MBA, and I3 : income ∈ [75K, 100K]. If two-
dimensional clusters I1I2, I1I3, and I2I3 are discovered, as well
as a three-dimensional cluster I1I2I3, then only I1I2I3 is presented

438

to the user, because it contains many of the same top-N items as its
two-dimensional subspaces. We will formally define maximality
in Section 2.2.3. Maximality is motivated by the requirements of
a web-based application scenario, where only a limited number of
clusters may be shown to a user at any one time.

This paper makes the following contributions: We formally de-
fine rank-aware interval-based clustering, and propose correspond-
ing locality and clustering quality measures (Sec. 2). We demon-
strate how rank-awareness may be introduced into the subspace
clustering framework by presenting BARAC, bottom-up algorithm
for rank-aware clustering, and analyze its complexity (Sec. 3). We
experimentally validate the effectiveness of our approach with a
user study involving more than 400 users of Yahoo! Personals (Sec. 4).
We perform an extensive evaluation of efficiency of BARAC on Ya-
hoo! Personals datasets (Sec. 5). We compare BARAC to density-
based clustering on Yahoo! Local datasets (Sec. 6).

2. FORMALISM
In this section we formalize the rank-aware interval-based clus-

tering problem for structured datasets.

2.1 Intervals and Subspaces
We now introduce the key notions of a ranked interval and a

subspace, as well as their respective notions of dominance and in-
clusion that will be used throughout the paper.

We are given a dataset D where items are described by attribute-
value pairs, including a special attribute id that uniquely identifies
each item. Attributes belong to a set A, and each attribute is repre-
sented by a name and a domain of values. We model three types of
attributes: continuous (e.g., age), ordinal categorical (e.g., educa-
tion), and categorical with no order on the values (e.g., ethnicity).

Our focus is on applications in which a user specifies a filtering
condition over a subset of the attributes A of A that selects a subset
of the items D ⊆ D. The user also specifies a ranking function R

that induces an order on the items in D by assigning a score i.score
to each item i ∈ D. Our approach treats the ranking function as a
black box and is thus not restricted in the type of ranking functions
it admits. We consider one user at a time, and omit D and R from
our notation when these are clear from context.

DEFINITION 2.1 (RANKED INTERVAL). A ranked interval, or
simply interval, I is defined by a triplet 〈a, low, high〉, where a ∈
A is an attribute, and low, high are values in the domain of a. I
contains the items in D in which attribute a takes on a value in the
[low, high] range, and returns the items sorted by i.score. We use
I0 to designate an empty interval.

This definition assumes that the attribute a is over an ordered do-
main and that low ≤ high. For attributes with discrete unordered
domains low = high, and an interval refers to a single value.

In our formalism we will often refer to the top-N items in I ,
which we denote by top(I,N). We use standard competition rank-
ing, e.g., “1224”, and include all items that tie for the last rank into
top(I,N), thus sometimes returning more than N items.

We now define interval dominance, a rank-aware measure of lo-
cality that will be used below to define the search space of a clus-
tering algorithm.

DEFINITION 2.2 (INTERVAL DOMINANCE). Given two con-
secutive intervals I1 and I2 over attribute a, an integer N , and a

threshold θdom ∈ (0.5, 1], we say that I1 dominates I2 at top-N iff

|top(I1, N) ∩ top(I1 + I2, N)|

N
≥ θdom

I1 : age ε [20,24] I2 : age ε [25,29] I1 + I2 : age ε [20,29]

R3 : rel serv (asc)R2 : 0.3inc + 0.7edu (desc)R1 : age (asc)
to

p
-1

0

I2 <10,1 I1! I1 <10,0.8 I2 ! I1 <>10,0.5 I2

to
p

-1
0

Figure 1: An illustration of interval dominance.

We denote this by I2 ≺N,θdom I1.

Here, + is simply the concatenation of two consecutive intervals.
For an attribute a with an ordered domain, I1 and I2 are consecu-
tive if the values I1.high and I2.low, or I2.high and I1.low are
consecutive in the domain of a. No two intervals are consecutive if
the domain of a is unordered. For any interval I , I + I0 = I .

The intuition behind interval dominance is that the top-N items
from the dominating interval are strictly better, w.r.t. the ranking
function R, than the items in the the top-N of the dominated inter-
val. Figure 1 illustrates dominance for intervals I1 : age ∈ [20, 24]
and I2 : age ∈ [25, 29] for N = 10, and for three ranking func-
tions. Consider the function R1 that ranks results on age in ascend-
ing order, and observe that top(I1 + I2, N) = top(I1, N), and so
I2 ≺10,1 I1. For the function R2 : 0.3inc + 0.7edu (descending),
we observe that 8

10
of top(I1 + I2, N) originate from top(I2, N),

and so I1 ≺10,0.8 I2. Finally, for R3 that ranks matches on the fre-
quency with which they attend religious services top(I1 + I2, N)
contains items from the top-10 lists of I1 and I2 in equal propor-
tion, and so neither of the intervals dominates the other for any
θdom ∈ (0.5, 1], which we denote by I1 ≺≻10,0.5 I2.

So far in this section we focused on comparing, and concatenat-
ing together, consecutive intervals over a single attribute. We next
define subspaces, in which intervals over different attributes are
combined. A set of attributes defines a multi-dimensional space
over which clustering operates, we will use the terms attribute and
dimension interchangeably in the remainder of this section.

DEFINITION 2.3 (RANKED SUBSPACE). A ranked subspace,
or simply subspace, S is a set of intervals {I1, . . . , Im} over dis-
tinct attributes a1, . . . , am, interpreted as a conjunction of pred-

icates specified by the intervals. A ranked subspace contains all
items in D that satisfy all predicates, i.e., that belong to the inter-
section of the intervals. We refer to the number of intervals (and
attributes) in a ranked subspace as its dimensionality. Items in S

are ranked by the user’s ranking function R.

The following is a three-dimensional subspace: S : {age ∈
[20, 24], edu = MS, inc ∈ [75K, 100K]}. We overload notation
and denote by top(S,N) the top-N items that belong to S.

An important relationship that may hold between a pair of sub-
spaces is inclusion, which we define below.

DEFINITION 2.4 (SUBSPACE INCLUSION). Given two ranked
subspaces S and S′, we say that S′ is included in S, denoted
S′ < S, if the set of intervals that define S′ are a proper subset
of the intervals that define S.

For example, given S′ : {I1, I2} and S : {I1, I2, I3}, we have
that S′ < S. Note that S′ contains a superset of the items in S.

439

id age edu inc prof

m1 39 MBA 500K banker

m2 38 MBA 175K student

m3 39 BS 150K banker

m4 38 MFA 125K artist

m5 37 BS 125K banker

m6 29 MBA 125K banker

m7 34 MFA 100K banker

m8 28 BS 100K student

m9 30 MBA 100K banker

m10 24 BS 90K student

m11 28 BA 90K artist

m12 25 MBA 85K banker

m13 30 MBA 80K banker

m14 30 BA 70K artist

m15 25 BS 50K banker

m16 25 BA 25K artist

m17 23 MFA 25K student

!!"#$%&'(")*(+%," I1 : age ε [20,29] I2 : prof = student

id inc

m6 125K

m8 100K

m10 90K

… …

id inc

m2 175K

m8 100K

m10 90K

… …

id inc

m8 100K

m10 90K

m17 25K

S1 : { I1 I2 }

to
p
-3

id inc

m1 500K

m9 100K

m13 80K

S2 : { I3 I4 I5 } I3 : age ε [30,39] I4 : edu = MBA I5 : prof = banker

id inc

m1 500K

m2 175K

m3 150K

… …

id inc

m1 500K

m2 175K

m6 125K

… …

id inc

m1 500K

m3 150K

m5 125K

… …

to
p
-3

I6 : edu = MFA I7 : prof = artist

id inc

m4 125K

m7 100K

m17 25K

id inc

m4 125K

m11 90K

m14 70K

… …

id inc

m4 125K

S3 : { I6 I7 }

to
p
-3

Figure 2: An illustration of clustering quality measures, with N = 3, θQ = 2

3
, and ranking on income decreasing order.

2.2 Rank-Aware Clustering
As we argued in the introduction, we are interested in identi-

fying subspaces that have three desired properties — rank-aware
clustering quality, tightness, and maximality, and we refer to such
subspaces as clusters. The three properties are explained below.

2.2.1 Rank-Aware Clustering Quality

The first property of a cluster is that it has sufficient clustering
quality. In this work we consider three rank-aware clustering qual-
ity measures. All measures compare the quality of a subspace to
a threshold θQ ∈ (0.5, 1]. Thresholds are often used in clustering
algorithms, and we will explore the effect of thresholds on perfor-
mance in Section 5.

The first clustering quality measure is QtopN ; it states that a k-
dimensional subspace S has sufficient quality if top(S,N) contains
sufficiently many top-N items from each of its intervals.

QtopN :
|top(S,N) ∩ top(I1, N) ∩ . . . ∩ top(Ik, N)|

N
≥ θQ

We illustrate QtopN using a fictional database of personal pro-
files in Figure 2, where we list the id, age, education (edu), income
(inc), and profession (prof) of each profile. Items are sorted on in-
come from higher to lower. Suppose that N = 3 and θQ = 2

3
, i.e.,

that we are interested in agreement between intervals at top-3, and
that intervals have to agree on at least 2 of the 3 items.

Consider intervals I1 : age ∈ [20, 29] and I2 : prof = student,
and note that matches m8 and m10 are there in the top-3 lists of
both intervals (ids designated in bold). The subspace S1 : {I1, I2}
therefore has sufficient clustering quality according toQtopN . Con-
sider now intervals I3 : age ∈ [30, 39], I4 : edu = MBA, and
I5 : prof = banker. Only m1 is common to the top-3 lists of
all intervals, and so the subspace S2 = {I3, I4, I5} does not have
sufficient clustering quality according to QtopN .

The next measure, QSCORE , states that a subspace has suffi-
cient quality if it contains sufficiently many high-scoring items in
its top-N . S will have the highest-scoring items in its top-N if
these items are present in the top-N lists of all of its constituent in-
tervals I1, . . . , Ik. In the best case, the top-N of the intersection of
these subspaces will coincide with the top-N of their union, which
gives rise to the formula:

QSCORE :
Σi∈top(S,N)i.score

Σi∈top(∪kIk,N)i.score
≥ θQ

Consider again Figure 2, and note that, while S2 only contains
one top-3 item from the intersection of I3, I4, and I5, namely, m1,
this item has a very high score. Items m9 and m13 also have fairly
high scores. We compute QSCORE = 500+100+80

500+175+150
= 0.824, and

so S2 has sufficient clustering quality according to QSCORE with
N = 3 and θQ = 0.8. The final subspace in Figure 2, S3, does not
have sufficient quality for QSCORE for any θQ > 0.5.

Finally, we present QSCORE&RANK that models the relation-
ship between item scores and ranks. The intuition is that a subspace
with high-scoring items in high ranks may be just as interesting to
the user as a subspace in which items have intermediate scores.
We define this measure using NDCG (normalized discounted cu-
mulated gain) [13], a common method for comparing ranked lists
in Information Retrieval. NDCG quantifies the quality of a ranked
list by comparing it to the best possible list, called the ideal. In our
setting it is natural to use top(∪kIk, N) as the ideal.

QSCORE&RANK :

AV Gr≤NNDCG(top(S,N), top(∪kIk, N))[r] ≥ θQ

We omit the details of NDCG computation (see [13] for more
information), but note that subspace S3 in Figure 2 has sufficient
quality using QSCORE&RANK with θQ = 0.65.

Which clustering quality measure is appropriate depends on the
distribution of scores in the result set, and we will discuss the inter-
play between the measures and the ranking function in Section 4.3.

An important property of clustering quality measures that allows
for effective pruning of the search space is downward closure, de-
fined below. Downward closure allows for early termination of
bottom-up subspace clustering algorithms such as that presented
in Section 3.

DEFINITION 2.5 (DOWNWARD CLOSURE). We say that down-
ward closure holds for a clustering quality measure Q iff, for any
subspace S, if Q holds over S, then it also holds over every sub-

space S′, s.t. S′ < S (as per Def. 2.4).

440

We now show that downward closure holds for the three rank-
aware clustering quality measures described above.

THEOREM 2.1. The downward closure property holds for QtopN ,
QSCORE , and QSCORE&RANK .

PROOF. The fact that downward closure holds for QtopN fol-
lows directly from the definition of QtopN and from set properties,
namely, that |A ∩ B| ≤ min(|A|, |B|). For a one-dimensional
subspace with N or more items, QtopN = 1. As subspace di-
mensionality increases, new sets are added to the intersection in
the numerator of the expression. Thus the value of QtopN is non-
increasing with increasing dimensionality.

Downward closure holds for QSCORE and QSCORE&RANK .
This is because the top-N of any subspace S consists of the items
that are either in the top-N of all its constituent intervals (i ∈
∩ktop(Ik, N)), or of items that have lower scores: j ∈ (top(S,N)\
∩ktop(Ik, N)). The portion of ∩ktop(Ik, N) in top(S,N) is non-
increasing as more intervals are added to the intersection. Thus,
the value of the numerator of the QSCORE expression, and the
DCG values in QSCORE&RANK are strictly non-increasing in
subspace dimensionality. At the same time, the denominator of
QSCORE , and the values of DCGIdeal for QSCORE&RANK are
non-decreasing in the size of the union. Therefore, the values of
QSCORE and QSCORE&RANK are strictly non-increasing with
increasing dimensionality.

2.2.2 Tightness

The second desirable property of rank-aware clusters is tight-
ness. We first define it formally, then illustrate it using examples.

DEFINITION 2.6 (TIGHT SUBSPACE). For a given clustering
quality measure Q, an integer N and a threshold θdom ∈ (0.5, 1],
we say that a k-dimensional subspace S : {I1, . . . , Ik} is tight
if there does not exist another k-dimensional subspace S′ 6= S,
S′ : {I1 + I ′1, . . . , Ik + I ′k} over the same attributes a1, . . . , ak

where, for all j, I ′j = I0 or Ij ≺N,Qdom
I ′j or Ij ≻N,Qdom

I ′j (as
per Def. 2.2).

Recall that, for numerical and ordinal categorical attributes, two
or more consecutive intervals may be concatenated to produce a
larger interval, which may or may not be beneficial. Consider again
Figure 1 with intervals I1 : age ∈ [20, 24] and I2 : age ∈ [25, 29].
For R1 that ranks matched on increasing age, the top-10 items in
I1 + I2 originate from I1. More interestingly, for R2 that ranks
matches on a combination of income and education, 8 of the top-
10 items in I1 + I2 originate from I2, reflecting that there is a
correlation between higher income and higher age in the 20 to 29
age range. In both cases, it is not beneficial to add I1 + I2 to
the search space, because a cluster that incorporates I1 + I2 will
contain the same, or nearly the same, items at the top-N as a cluster
that incorporates just the dominant interval. In this sense, having a
larger interval I1+I2 in the cluster description adds no information.
We refer to a cluster that incorporates the dominant interval (e.g.,
I2 in the case of R2) as tight according to Definition 2.6, while a
cluster with I1 + I2 is not tight. A cluster that incorporates the
dominated interval, e.g., I2 for R1, is also tight, since no other age
interval has the same items at the top-N as I2.

Consider now the ranking function R3 in Figure 1. Here, neither
of the intervals I1 and I2 dominates the other, i.e., the top-N of
I1 + I2 differs considerably from the top-N of both I1 and I2. In
this case adding I1, I2, and I1+I2 to the search space is beneficial,
because it may allow the algorithm to discover clusters that would
not be identified by looking at either I1 or I2 individually. Clusters
that incorporate I1 + I2 in this case are tight.

2.2.3 Maximality

The final desirable property of rank-aware clusters is maximality.

DEFINITION 2.7 (MAXIMAL SUBSPACE). For a given clus-
tering quality measure Q, we say that a subspace S is maximal if
it has sufficient quality according to Q and if there does not exist
another subspace S′ such that S′ also has sufficient quality, and
S < S′ (as per Def. 2.4).

Going back to our example in Figure 2, S2 is a maximal sub-
space, while S′

2 : {I3, I4} is not.

2.3 Problem Statement
We are now ready to define rank-aware clusters and to formally

state the problem addressed in this paper.

DEFINITION 2.8 (RANK-AWARE CLUSTER). For a given clus-
tering quality measure Q, we say that rank-aware subspace S is a
cluster if its clustering quality is higher than a given threshold θQ,
it is maximal, and it is tight.

The rank-aware interval-based clustering problem is stated as
follows. For a dataset D, a scoring function R, a rank-aware clus-
tering quality measure Q, an integer N , a dominance threshold
θdom, and a quality threshold θQ, find all clusters. We present an
algorithm that solves this problem in the following section.

3. THE BARAC ALGORITHM
Our proposed algorithm BARAC, Bottom-up Algorithm for Rank-

Aware Clustering, has structure similar to CLIQUE [2], a now-
classic bottom-up subspace clustering algorithm. A variety of sub-
space clustering algorithms exist, incorporating particular cluster-
ing quality measures, and navigating the search space top-down,
bottom-up, or using a combined approach. We chose to build upon
CLIQUE because its bottom-up search strategy is simple to imple-
ment and, as we will demonstrate in Section 5, is practical in our ap-
plication domain. While our implementation is based on CLIQUE,
we stress that the ingredients presented in Section 2 may be incor-
porated into other subspace clustering frameworks, such as those
described in [23], making them rank-aware.

The pseudo-code for BARAC is presented in Algorithm 1. We
describe the four subroutines of BARAC and analyze the complex-
ity of the algorithm in the remainder of this section.

Algorithm 1 BARAC: Bottom-up Algorithm for Rank-Aware
Clustering

Require: dataset D, ranking function R, N , θQ, θdom, maxClusters
1: grid = BuildGrid(D,R,N);
2: mergedGrid = Merge(grid,D,N, θdom);
3: subspaces = Join(mergedGrid, θQ);
4: clusters = Choose(clusters,maxClusters);
5: return clusters

3.1 BuildGrid
The procedure BuildGrid (Algorithm 2) starts by computing a

score for each item i ∈ D, and then sorts the items in decreasing
order of score. As the dataset is scanned, all distinct values for each
attribute ai ∈ A are recorded as domain(ai). Next, we consider
each attribute ai with a corresponding domain(ai), and compute a
grid data structure that is an array of one-dimensional histograms,
one for each value in domain(ai). Each histogram bucket con-
tains the list of top-N items, from among those that fall within the
bucket. Bucket j for attribute i is denoted by grid[i][j].

441

For attributes with high-cardinality domains, e.g., height, keep-
ing a bucket per attribute value may be impractical, and we may
instead split the domain into a bounded number of equi-width buck-
ets, with the number of buckets specified by a parameter.

Algorithm 2 Procedure BuildGrid

Require: D,R,N
1: compute a score for each i ∈ D, sort items by i.score;
2: init grid, a matrix with one row per attribute ai ∈ A;
3: for ai ∈ A, where |domain(ai)| > 1 do
4: for valj ∈ domain(ai) do

5: {allocate 1 column in grid[i] per value valj}
6: grid[i][j].range = [valj , valj];
7: grid[i][j].items = top(σai=valjD,N);

8: end for
9: end for

10: return grid

3.2 Merge
Merge runs multiple passes of the procedure OnePassMerge

(Algorithm 3), building mergedGrid — a dominance-based grid
that contains all tight one-dimensional subspaces. OnePassMerge

takes grid as input, and expands the search space of the algorithm
by considering, and possibly merging, runs of neighboring his-
togram buckets along the same dimension. For an attribute ai, if
neither of the two neighboring intervals grid[i][j] and grid[i][k]
dominates the other (Definition 2.2), then the concatenation of the
intervals is added to the grid.

When a run of OnePassMerge completes, it is invoked again
on the output grid, and explores merging additional intervals. The
process terminates when no new intervals are added.

Algorithm 3 Procedure OnePassMerge

Require: grid,D,N, θdom
1: mergedGrid = cloneGrid(grid);
2: for ai ∈ A do

3: for j = 1 to grid[i].length− 1 do

4: {Check dominance among consecutive intervals.}
5: k = j + 1;
6: if (grid[i][j] ≺≻N,θdom grid[i][k]) then

7: {+ denotes interval concatenation.}
8: grid[i][j+k].range = [grid[i][j].low,grid[i][k].high];
9: grid[i][j+k].items = top(σai∈grid[i][j+k].rangeD,N);

10: addToGrid(mergedGrid[i], grid[i][j + k];
11: end if
12: end for

13: end for

14: return mergedGrid

We make three observations about Merge. First, the output grid
is typically much larger than the original grid. Second, the lower
the threshold θdom, the fewer intervals are generated. We explore
the impact of θdom on efficiency in Section 5.4. Third, all sub-
spaces constructed from the intervals produced by Merge are guar-
anteed to be tight (as per Definition 2.6).

3.3 Join
The procedure Join computes high-quality subspaces in higher

dimensions by progressively joining together lower-dimensional sub-
spaces. Note that one-dimensional subspaces trivially have suffi-
cient clustering quality, for any rank-aware clustering quality mea-
sure, and for any value of θQ. Hence, so do all the subspaces com-
puted by Join. This procedure is similar to other bottom-up sub-
space clustering algorithms, and was first proposed in CLIQUE [2].

Algorithm 4 Procedure Join

Require: mergedGrid, θQ
1: SubspacesK−1 = mergedGrid;
2: result = SubspacesK−1;
3: repeat

4: SubspacesK = doJoin(SubspacesK−1, θQ);
5: result = result ∪ SubspacesK ;
6: until SubpsacesK = ∅
7: return result;

Algorithm 5 Procedure doJoin

Require: SubspacesK−1, θQ
1: SubspacesK = ∅;
2: for S1 ∈ SubspacesK−1 do

3: for S2 ∈ SubspacesK−1 do
4: if compatible(S1, S2) then

5: append(SubspacesK , joinSubspaces(S1, S2));
6: end if

7: end for
8: end for

9: SubspacesK = prune(SubspacesK, θQ);
10: return SubspacesK ;

Join is presented in Algorithm 4; it repeatedly invokes the sub-
routine doJoin and terminates when no more subspaces are identi-
fied that have sufficient clustering quality. Procedure doJoin, pre-
sented in Algorithm 5, takes (k − 1)-dimensional subspaces and a
quality threshold θQ as input, and returns a set of k-dimensional
subspaces that have quality higher than θQ. This is done by first
identifying a candidate set of k-dimensional subspaces (lines 2-8),
and then pruning the set by removing all subspaces that do not pass
the quality threshold (line 9). We omit pseudo-code for some of the
subroutines, but describe them verbally below.

Two (k − 1)-dimensional subspaces S1 and S2 are said to be
compatible if they contain k− 2 equal intervals, and if the attribute
name of(k − 1)st interval of S1 is lexicographically lower than
the attribute name of the (k − 1)st interval of S2. joinSubspaces

outputs a k-dimensional subspace described by the union of the
intervals (and the intersection of the items) of S1 and S2.

We will discuss run-time performance of the algorithm in Sec-
tion 3.5, but note here that the lower the value of θQ, the higher
the number of subspaces generated by Join. We will explore the
impact of threshold values on performance in Section 5.4.

3.4 Choose
The final step of BARAC is a call to the procedure Choose. This

procedure identifies all maximal clusters and then optionally per-
forms cluster selection. Cluster selection is necessary in an on-
line data exploration scenario, if more clusters were discovered
by the algorithm than can be shown to the user. The parameter
maxClusters determines the number of clusters to be selected,
and a more clusters button is available, and gives access to addi-
tional clusters discovered by BARAC.

We omit pseudocode for Choose due to space considerations,
and describe it verbally. As the first step, Choose identifies max-
imal subspaces from among those produced by Join. These are
all the clusters identified by BARAC. If more than maxClusters

were identified, additional selection is needed.
Recall that a distinguishing feature of subspace clustering is the

ability to present multiple alternative views of the data to the user.
We ran a preliminary user study in which we interviewed six users
about their data exploration experience with an early version of our
prototype, with the goal of establishing a meaningful cluster selec-
tion heuristic. The majority of our users commented that they pre-

442

fer seeing clusters with a variety of descriptions, in terms of both
attribute names and value ranges.

In light of this we decided to choose clusters so as to maximize
diversity of cluster descriptions. Other heuristics, such as max-
imizing total item score, or minimizing cluster overlap, are also
possible, and we leave an in-depth study of cluster selection to
future work. Our selection algorithm uses K-means to identify
maxClusters meta-clusters with similar descriptions. Similarity
between clusters accounts for both attribute names and for value
ranges. Having identified maxClusters meta-clusters, we select
a representative that has the highest total score up to top-10.

3.5 Complexity Analysis
The run-time complexity of BARAC is polynomial in the size

of the input |D|, with the exponent determined by the number of
distinct attributes in the schema, i.e., by the dimensionality of the
space. In the worst case, the algorithm considers each subset of
attributes, and, for each such subset, considers all combinations of
consecutive intervals over the attribute. The number of such inter-
vals is bounded by n2, where n is the cardinality of the attributes.
The worst-case exponential dependency in the number of attributes
is unavoidable, as we now demonstrate.

EXAMPLE 3.1. Consider a dataset in which exactly one item
exists for all combinations of attribute values. Therefore, the num-
ber of items in D is the product of domain cardinalities of all at-
tributes, and therefore exponential in the number of attributes. Fur-
ther, assume that a scoring function assigns an arbitrary distinct

score to each item.
Now, suppose that N = 1, i.e., that we are interested in finding

clusters in which the intervals agree on the top-1 element (using,
e.g., QtopN). Following Definition 2.8, each item will correspond
to a cluster. Thus, the number of clusters is also exponential in the
number of attributes.

Such exponential dependency is not unexpected, since even count-
ing the number of distinct maximal frequent itemsets is #P-complete
[28]. However, as we will show experimentally in Section 5, in
practice the algorithm terminates much sooner, for two reasons.
First, correlations are local and clusters commonly are of low di-
mensionality. Second, we can prove that, for a given pair of at-
tributes ai and aj , each interval over ai is compatible with at most
one interval over aj . This is because the quality threshold requires
that intervals agree on more than 50% of their top-N items to be
compatible. This implies that as soon as the compatibility between
ai and aj is established, the algorithm can stop looking for other
a′
i for aj (resp., a′

j for ai).

4. EVALUATION OF EFFECTIVENESS

4.1 The Experimental Dataset
Dataset. We evaluated the performance of BARAC on a dataset

from Yahoo! Personals, a leading on-line dating service with mil-
lions of registered users. Users of the service create a personal
profile in which they describe themselves using 30 structured at-
tributes. Users also commonly store one or several target profiles,
expressed in terms of the same structured attributes. When specify-
ing that profile, users designate attributes as required and desirable.
Required attributes are used as filtering conditions for exact match-
ing against personal profiles, while desirable attributes are used for
ranking exact matches.

In our experiments we focus on computing matches for male
users, whom we call seekers, as there are at least one order of mag-
nitude more males searching for females. We use 19 of the total

30 attributes, because there was no meaningful correlation between
the ignored attributes (e.g., astrological sign) and other attributes,
making them less suitable for clustering. Two of the 19 attributes,
has photo and gender, have only two distinct values, and we use
them for filtering, but not for clustering. So, there are 19 filtering
attributes and 17 clustering attributes in our dataset. Therefore, for
any given query, the number of clustering dimensions is at most 17.

Ranking. The ranking functions we consider use 6 attributes:
age, height, body type, education, income, and religious services
(the frequency with which the user attends religious services). We
chose these attributes because they are either continuous or ordinal
categorical, thus inducing a natural order on their values. Which
of the 6 attributes are included in the scoring function depends on
which attributes are marked as desirable in the target profile.

The first scoring function we used, attribute-rank, assigns equal
weights to each ranking attribute, and computes the score of an
item as the sum of distances between the item and the ideal item
along each attribute dimension. Here, an ideal item has the best
possible value for each ranking attribute from among items in the
filtered dataset. Distances along each dimension are normalized
by the difference between extreme values for the corresponding at-
tribute found in the filtered dataset. Note that this function is per-
sonalized in two ways. First, the user specifies which attributes are
included in the scoring function. Second, the value of each ranking
attribute contributes to the score based on how it compares to the
best and worst values for that attribute, from among items that pass
the filtering conditions of the target profile.

The second function, geo-rank, scales the value returned by
attribute-rank by the geographic distance between the seeker and
his match: geo_rank = attribute_rank

1+(geo_distance/100)
.

We will discuss in detail in Section 4.3 that, because the cluster-
ing outcome depends on the combination of a user’s filtering con-
dition and the distribution of scores imposed by a particular scoring
function, it is not always possible to find a meaningful clustering.
The intuition is that rank-aware clustering does not apply if ranking
does not discriminate well between high-quality and low-quality
results, that is, if all, or most, of the items in the result set are tied
for the same score. For example, selecting users with income =

50K, and then ranking on income, is not helpful, since all users
will share the same score. Users whose scoring function assigned
the top score to more than 30% of their profile matches were ex-
cluded from our evaluation.

4.2 User Study
We evaluated the effectiveness of BARAC by inviting a subset

of registered Yahoo! Personals users to participate in a user study.
The dataset is described in Section 4.1; we used the complete live
dataset for the user study. As is done by the dating service it-
self, we use location-based filtering (e.g., find matches who live
within 250 miles of Austin, TX) in addition to attribute-based filter-
ing. Our implementation achieves sub-second response times for
most searches.

User Study Design. Our user study ran for a period of five
weeks. 454 users participated in our study and executed 861 searches.
We implemented the attribute-rank ranking function (see Section 4.1).

Our users are accustomed to ranked lists, which differ from BARAC

clusters in two ways. First, the set of results that appear in high
ranks, and that the user sees first, may be different, i.e., content is
different. Secondly, results are presented in labeled clusters, i.e.,
presentation is different. Our user study was designed so as to
isolate the effects of these two aspects. Figure 3 summarizes the
design of our study, in which we compare four treatments.

The top list treatment shows the top-100 matches in a traditional

443

Figure 3: User study design matrix.

treatment total searches prod. searches

top list 331 17%
top groups 304 14%
BARAC list 100 15%
BARAC groups 126 20%

Table 1: Productive searches by treatment.

treatment faves per search faves per prod. search

top list 0.84 5.05
top groups 0.87 7.33
BARAC list 0.74 4.93
BARAC groups 1.55 12.38

Table 2: Number of faves per search.

ranked list. The BARAC groups treatment is our rank-aware clus-
tering. Matches are clustered and 10 clusters are chosen and pre-
sented. The user may expand a cluster to see its content. All clus-
tering is done with θQ = 0.7, θdom = 0.51. We will explore the
effect of thresholds on quality in a future study. The top groups
treatment isolates the effect of presentation, with data coming from
the ranked list, i.e., the content is the same as in a ranked list. The
user is presented with 10 groups of 10 results each. The first group
corresponds to the first 10 matches and is labeled Top 1-10, fol-
lowed by the next 10 matches labeled Top 11-20, etc. The BARAC

list treatment presents matches produced by BARAC groups as a
ranked list. The list is generated by taking the top-10 results from
each group, then the next best results are added in a round-robin
fashion from each group, until a total of 100 results are selected.
The interface is the same as for top list.

Users are randomly assigned to one of the four treatments. How-
ever, as we discussed in Section 4.1, rank-aware clustering is not
always applicable. In cases where BARAC groups or BARAC list
do not apply due to scores being too uniform, the system defaults
to top groups and top list, respectively.

We evaluate the effectiveness of treatments using an intuitive rat-
ing mechanism. Users are asked to fave an individual match or a
group, by clicking on a star next to the match or group.

Results. The first metric we use to compare the treatments is
the percentage of productive searches – searches that resulted in
the user faving at least one match or group. Of 861 searches, 140,
or 16%, were productive. Table 1 presents a break-down by treat-
ment. We observe that BARAC groups has the highest percentage of
productive searches, followed by top list. However, the difference
between any two treatments is not statistically significant.

We next consider the effect of content and of presentation on the
user experience. For top groups and BARAC groups, we compare
the percentage of searches where users faved one or more groups,
and the total number of faved groups. Of 304 total top groups
searches, 12 resulted in faved groups. A total of 14 groups were
faved in these 12 searches. The group Top 1-10 was faved 11 times,
and Top 11-20 was faved 3 times. No other groups were faved, sug-
gesting that user preference is guided by global ranking.

For BARAC groups, of 126 searches, 11 resulted in faved groups,
and a total of 21 groups were faved. Groups with diverse de-

Figure 4: Top-100 for geo-rank for 3 users.

scriptions were faved, indicating that preference is based on group
descriptions and content rather than on global ranking. BARAC
groups outperforms top groups, with a statistically significant dif-
ference in the number of searches with faved groups (p < 0.05).

Finally, let us compare the four treatments according to a quality
score that computes the average number of faves per search. We
denote by F the number of distinct results that were faved by the
user, either directly, or because the match was in the top-10 of a
faved group. When a group is faved, all matches within the group
are faved. Indeed, with the exception of one case, when users faved
an entire group, they did not fave matches in that group, thereby
implying that all matches in the group are faved. Note that top-
10 lists of groups do not overlap in top groups, but may overlap
in BARAC groups. We focus on the top-10 results for each group
because this is the number of results that is accessible in top groups.
More results may be accessed in BARAC groups, but we use 10 as
the common denominator to make the methods comparable.

Table 2 presents the ratio of F to the total number of searches,
and to the number of productive searches. We observe that BARAC
groups significantly outperforms other methods, with an average of
1.55 faves per search, and 12.38 faves per productive search.

In summary, users are more engaged with BARAC groups, where
they explore and fave more matches.

4.3 Choosing a Clustering Quality Metric
As we discussed in Section 2, QtopN favors subspaces that con-

tain many items that are in the top-N lists of their constituent in-
tervals, irrespective of scores and ranks. Conversely, QSCORE and
QSCORE&RANK assign a higher score to a subspace in which the
top-N lists of the constituent intervals intersect at top ranks, partic-
ularly if top-ranked items have significantly higher scores.

Ideally, a rank-aware clustering quality measure should be rich
enough to capture the distribution of scores imposed by the ranking
function. QtopN treats all items with N highest scores equally, and
is thus appropriate for ranking functions where the best N items
have higher scores than the rest of the items, but where there is
no significant variability in scores among the top-N . The rank-
ing function attribute-rank is one such function (see Section 4.1).
Conversely, QSCORE and QSCORE&RANK are most meaningful
if there is a significant variability in scores among items in the top-
N . For example, for N = 100 it should hold that the first 10 items
have much higher average scores than the following 10 items etc.
The function geo-rank (see Section 4.1) is one such function.

However, while QSCORE&RANK is sensitive to the distribution
of scores, the same ranking function, e.g., geo-rank, may not gener-
ate a distribution of scores that is appropriate for QSCORE&RANK

for all users because their filtering conditions may differ. For users

444

who live in sparsely-populated areas this function may produce
very few high-scoring items. Consider the distribution of top 100
scores for three users in Figure 4. Users user1 and user2 have sim-
ilar distributions, while user3 only has four high-scoring items in
his top-100, followed by 96 items with similar low scores. user3 is
not a good candidate for QSCORE&RANK , and a score-insensitive
quality measure like QtopN should be used instead.

5. EVALUATION OF PERFORMANCE
Our experimental prototype is implemented in Java and oper-

ates on memory-resident data. All performance experiments in this
section were executed on a 64-bit machine with two Intel Xeon
2.13GHz processors and 4GB of RAM, running RedHat EL AS
4. We focus on the QtopN clustering quality measure and the
attribute-rank scoring function in our performance experiments.

Performance experiments in this section were executed over a
snapshot of the dataset that was taken during a recent consecu-
tive one-month period, and contains all profiles that were registered
with the dating service up to and including that month. Unlike in
Section 4.2, where we used location-based filtering in conjunction
with attribute-based, we do not use location-based filtering in the
experiments in this section. This results in much larger datasets,
and allows us to better test the scalability of BARAC.

We analyze performance in terms of three distinct stages: Build-

Grid, Merge, and Join. See Section 3 for a description of these
stages. We do not present performance numbers for the cluster se-
lection stage, Choose, that uses the K-means algorithm to generate
meta-clusters based on similarity of cluster description. K-means
converged after at most 3 iterations in all cases, and the run-time
overhead of this stage was under 10ms in all cases, or less than
0.1% of the total processing time.

User Sampling. We evaluated the performance for 100 target
profiles. We chose a representative sample of profiles that cover a
range of filtering and ranking attributes, as well as different number
of matches. The chosen target profiles specify between 3 and 15 fil-
tering attributes, and between 1 and 6 ranking attributes. Because
data exploration is most meaningful for large datasets, we selected
profiles with at least 1,000 matches for our evaluation. Our proto-
type operates on memory-resident data, and does all processing in
memory. Due to a limitation in available RAM, we restrict our at-
tention to users whose target profiles match up to 500,000 profiles.
The chosen target profiles generated between 1,107 and 489,090
matches (median 102,492). Note that the size of the result set will
often be reduced in practice by applying additional filtering criteria
such as geographic distance between the seeker and the match, the
freshness of the profile of the match, etc.

Parameters of the Algorithm. BARAC takes several parame-
ters as input. The parameter N models the user’s attention span –
the number of items the user is likely to explore sequentially [20].
We used N = 100 for all experiments in this section. We modified
the procedure BuildGrid (see Algorithm 2) by specifying an upper
bound on the number of intervals per dimension, which we set to
5. This value is chosen according to age, the attribute with highest
cardinality, and is set so that the values falling into a particular age
interval are perceived as similar by a typical user. For most other
dimensions, the domain cardinality is lower than 5, and so the up-
per bound is never reached, and the actual domain cardinality is
used instead. We study the scalability of BARAC as a function of
the dominance and quality thresholds θdom and θQ. There are no
additional parameters in our formalism.

5.1 Scalability
In the first experiment, we ran BARAC for 100 users in the full

Execution time(ms)
med avg min max

BuildGrid 1756 2317 336 7814
Merge 13 23 6 119
Join 862 2912 258 37442

Total 3102 5499 600 40015

Table 3: Median, average, max and min processing times for

QtopN for 100 users, with θdom = θQ = 0.51.

space of 19 filtering attributes and 17 clustering attributes. Val-
ues of the dominance and quality thresholds were fixed at θdom =
θQ = 0.51 for this experiment. Table 3 summarizes the median,
average, minimum, and maximum run times of BARAC, with all
times listed in milliseconds.

According to Table 3, the median run time of BARAC is 3.1 sec,
and the average run time is 5.5 sec. The run time of BARAC is
dominated by BuildGrid and Join, as the execution time of Merge

is negligible even in the worst case. While the maximum value for
Join is quite high, motivating future performance optimizations,
the run time reported in Table 3 may be unrealistically high. This is
because the actual clustering dimensionality may be far lower than
17 for specific queries, and we further explore this in Section 5.3.

Figure 5(a) presents the run time of BARAC as the percentage of
cases that completed under a certain time limit. BARAC completes
in under 5 seconds in most cases, and takes longer than 10 seconds
in only a handful of cases. In the remainder of this section we
analyze the factors that contribute to the performance of BuildGrid

and Join, and explore scalability as we vary the size of the dataset
and the clustering dimensionality.

5.2 Varying Dataset Size
Figure 5(b) shows the performance of BuildGrid for 100 users

as a function of dataset size – the number of items that pass the
filtering conditions of the target profile. The data presented in this
figure is the same as was used in Table 3 and Figure 5(a). Each
data point corresponds to a particular target profile, and thus to a
particular dataset size. All time measurements are in milliseconds.
As before, the dominance and quality thresholds θdom and θQ were
both set to 0.51.

During BuildGrid, the seeker’s filtering conditions are applied
to memory-resident data in a single linear scan of the data, matches
are identified, and a score is computed for every match. Items are
then sorted on score in decreasing order. Finally, a data grid of
matches is computed. We determined experimentally that score
computation is the dominant factor in the execution time of Build-

Grid. As Figure 5(b) demonstrates, the execution time of this stage
increases linearly with the number of matches.

5.3 Varying Clustering Dimensionality
We now explore the impact of dimensionality on the performance

of Join. For this experiment, we fix θdom = θQ = 0.51 and vary
the dimensionality of the clustering space from 3 to 17. The first 3
clustering attributes are selected, and attributes are added one at a
time in subsequent rounds. Attributes are added in the same order
for all users, but this order was chosen randomly. We attempted
several orders of adding attributes, and noticed no difference with
respect to the performance trends of Join. We thus report our re-
sults with one particular order of adding attributes. Note that the
filtering criteria and the scoring function are specified by the user’s
target profile, and are applied as before.

Figure 5(c) presents the execution time of Join as a function of

445

(a) BARAC as percentage of cases that
completed under a certain time limit.

(b) BuildGrid as a function of dataset
size.

(c) Join as a function of clustering di-
mensionality.

Figure 5: Run-time performance of BARAC.

Figure 6: Join as a function of θdom.

clustering dimensionality. Each point is an average of execution
times for the fixed dimensionality across all users. We observe that
the execution time of Join increases with increasing dimensional-
ity, but that it increases more significantly in some cases than in oth-
ers. The general trend, with the exception of attributes 12, 13, and
17, discussed below, is that the execution time on Join increases
approximately quadratically with increasing dimensionality.

Adding a clustering dimension to the set of dimensions for a
particular user may not have an effect on the run time of the algo-
rithm. For example, if we are adding the dimension drinking, but
the user’s filtering conditions are specifying a single value for this
attribute, drinking = no, the attribute will not be added to the data
grid, and so clustering will proceed as it did before the dimension
was added. Attributes 12, 13 and 17 happen to be marital status,
wants more kids, and drinking — low-cardinality attributes com-
monly restricted to a single value in the users’ filtering conditions.

5.4 Varying Parameters of the Algorithm
Let us now see how the dominance and quality thresholds im-

pact runtime performance. The dominance threshold θdom is used
in Merge; the lower the threshold, the fewer intervals will Merge

produce, and pass along to Join. Consequently, the run time of
Join should increase as θdom increases. Figure 6 demonstrates that
this trend holds for datasets of different dimensionality. Here, we
fix θQ = 0.51, and report the average run time of Join for each
value of θdom, and for most dimensionality settings. A similar
trend holds for the omitted dimensions, and we do not include them
to make the chart more readable.

Varying the quality threshold θQ has the opposite effect on the
run time of Join. This is because the higher the threshold, the fewer
clusters are generated by Join, and the sooner it terminates. This in-

Figure 7: Join as a function of θQ.

tuition is supported by our experimental findings in Figure 7. Here,
we set θdom = 0.51 and present the average run time of Join for
each value of θQ, and for most dimensionality settings. A similar
trend holds for the omitted dimensions.

6. COMPARISON WITH CLIQUE
Having evaluated the effectiveness and efficiency of rank-aware

clustering on Yahoo! Personals datasets, we now present the final
set of experiments, in which we compare the clustering outcome
achieved by BARAC with that of CLIQUE [2], a density-based
subspace clustering algorithm that is rank-unaware. The goal is
to demonstrate that treating the score, or rank, of each item as an
additional attribute, and using it for clustering in a rank-unaware
framework in insufficient. We used a dataset from Yahoo! Local
that contains restaurant ratings by users with varying demograph-
ics. We decided to use this dataset to demonstrate wider applica-
bility of our techniques.

6.1 Experimental Dataset
The Yahoo! Local dataset contains ratings of over 250,000 restau-

rants by Yahoo! users. The CLIQUE algorithm operates over or-
dered data and assumes that the domain of values of each attribute
can be split into an equal number of equi-width histogram buckets.
In order to make BARAC and CLIQUE comparable, we used 17
numerical attributes, each with five distinct values or value ranges.
These attributes are described below.

A restaurant has an associated price range, on a scale of 1 (cheap-
est) through 5 (most expensive). Ratings are likewise assigned on
a scale of 1 (lowest) through 5 (highest). A user who rates a restau-
rant has an associated age group and occupation. For each restau-
rant, we computed an average rating assigned to the restaurant by

446

CLIQUE 〈price ∈ [1, 3] and RTG26−30 = 1〉
〈RTG18−25 ∈ [4, 5] and RTG61−100 ∈ [4, 5]〉
〈price ∈ [1, 3] and RTG18−25 ∈ [4, 5] and RTG26−30 ∈ [3, 5]〉

BARAC 〈price = 1 and RTGstudent = 5 and RTGacad = 5 and
RTG18−25 = 5 and RTG26−30 = 5 and RTG41−45 = 5〉

〈RTG31−35 = 5 and RTG51−60 = 5〉
〈RTG31−35 = 5 and RTG41−45 = 5〉

Table 4: Clusters generated by CLIQUE and BARAC.

users in each of the following eight age groups: [18, 25], [26, 30],
[31, 35], [36, 40], [41, 45], [46, 50], [51, 60], and [61, 100]. Sim-
ilarly, we computed an average rating by users with each of the
following eight occupations: student, professional, academic, tech-
nology, sales, trade, unemployed, and retired.

Our ranking function was attribute-rank with 5 score compo-
nents, and included price range, from lower to higher, and ratings
by users in the 18-25 and 26-30 age groups, and with student and
academic occupation, from higher to lower. (See Section 4.1 for a
detailed description of attribute-rank).

Both CLIQUE and BARAC operated over the full space of at-
tributes, and over the entire dataset (that is, we did not specify any
filtering conditions). BARAC was executed with the QtopN clus-
tering quality measure, θdom = 0.7, θQ = 0.51, and N = 100.
These are the same settings as used in our user study in Section 4.2.

CLIQUE takes a density threshold θdense as input. We experi-
mented with various values of θdense, and report results for θdense =
0.03. This threshold was tuned manually to return a non-trivial
number of interesting clusters and, in our judgment, corresponds to
the best setting for our dataset.

6.2 Results
CLIQUE. Table 4 (line 1) lists a representative sub-set of clus-

ters discovered by CLIQUE. The first cluster contains restaurants
in the low to medium price-range that received the lowest possi-
ble rating from 26-30 year-olds. This cluster is not a good result
for a user who is interested in restaurants with high ratings. The
second cluster represents restaurants that were rated highly (with
4 or 5 stars) by users in the 18-25 and 61+ age groups, and rep-
resents a good clustering outcome, although it is not tight — the
top-ranking restaurants in this cluster have a rating of 5 in both age
groups. Similarly, the third cluster is not tight because the top-
ranking restaurants in it have a rating of 5 in both age groups, and
a price of either 1 or 2.

We also considered adding the rank of an item, computed based
on item score, as an additional dimension for CLIQUE. However,
this did not improve the clustering outcome for CLIQUE, due to the
distribution of scores. Figure 8 presents the distribution of scores in
our dataset, with the attribute-rank ranking function. Observe that
the majority of items have low scores, and only 1% of the items
have a score between 4 and 5. (Note that, while we report results
with a single ranking function in this section, similar trends hold for
attribute-rank with different ranking attributes, and with a different
number of attributes.) Because few items have a high score, high-
scoring items form a region of low density along the score attribute.
Thus, if the density threshold is set too high, high-scoring items
will not be part of the clustering result. An example of a cluster
with low-scoring items is 〈price ∈ [1, 3] and score ∈ [1, 3]〉.

Lowering the density threshold also does not improve cluster-
ing. This is because, as demonstrated in Figure 8, density increases
with decreasing score. Therefore, if the density threshold is suffi-
ciently low to include high-scoring items, it will also include low-
scoring items, and so a density-based algorithm will merge together
consecutive intervals along the score dimension. An example of a

!"#
$"#

!%"#

&%"#

'!"#

!"#$%&$!'#$"&$!(#$'&$!)#$(&$ *+#$)&$

"
#(
)
*)
+
,
*#
-
.*
/
#+
0
1
2,
#

+012,#

Figure 8: Score distribution with attribute-rank

cluster where this occurs is 〈RTGtech ∈ [1, 5] and score ∈ [1, 4]〉.
This cluster was derived with θdense = 0.01.

We observed that CLIQUE was very sensitive to the value of the
density threshold θdense, with lower values of the threshold result-
ing in more clusters, but in clusters being less tight. Despite exten-
sive manual turning of θdense, we were unable to find a threshold
value that would produce tight clusters, or that would consistently
place high-quality and low-quality items into separate clusters.

BARAC. Table 4 (line 2) lists a representative sub-set of clusters
discovered by BARAC. All clusters are rank-aware and tight, ad-
dressing the problems observed for CLIQUE. We observe that there
is some redundancy in terms of cluster descriptions, and items, in
clusters two and three. Both clusters contain items that were rated
highly by 31-35 year-olds. However, the two clusters are reported
separately, because there does not appear to be sufficient agreement
between the 41-45 and 51-60 age groups.

To conclude, we demonstrated that BARAC discovers rank-aware
tight clusters, while CLIQUE does not discriminate between clus-
ters of high-quality and low-quality items. Finally, note that, while
the dataset used in this section contains only ordered attributes,
BARAC also handles categorical attributes, as shown in Sections 4
and 5. On the other hand, CLIQUE only handles ordered attributes.

7. RELATED WORK
Subspace Clustering: Subspace clustering has been used exten-

sively for data exploration in a variety of domains, see [15, 23] for
reviews. CLIQUE [2] is the first bottom-up subspace clustering al-
gorithm that relies on a global notion of density — the percentage
of the overall dataset that falls within a particular subspace. EN-
CLUS [11] uses information entropy as the clustering objective,
and shows a relationship between entropy and density, correlation,
and coverage. Several extensions of the original algorithm were
developed: MAFIA [22] creates an adaptive grid that takes into
account the data distribution, CLTree [19] uses a decision-tree ap-
proach to identify high-density regions, while Cell-Based Cluster-
ing [8] improves scalability by partitioning the data so as to produce
fewer clusters. We propose an algorithm that uses a rank-aware grid
to determine locality, and relies on rank-aware clustering quality
measures that are conceptually different from previous proposals.

Clustering Web Documents: The motivation for this work is
similar to ours, namely, that grouping results and generating de-
scriptions for these groups improves the user’s ability to understand
vast datasets. Clustering of text documents has been explored ex-
tensively in Information Retrieval (e.g., [6, 17]. Bonchi et al. [6]
use search query logs to cluster results into coherent well-separated
sets for presentation purposes. Leuski [17] experimentally demon-
strates that presenting clusters of documents can be significantly
more effective than presenting a ranked list. Our focus is on struc-
tured data, and on clustering in presence of ranking.

447

Clustering Relational Data: Li et al. [18] argue for native sup-
port of clustering and ranking operators in relational databases. In
their framework, clustering and ordering attributes, and the number
of clusters are specified by the user, and the focus is on efficiency.
In addition to efficiency, we focus on automatically finding combi-
nations of clustering attributes given a scoring function.

Ranking in Structured Datasets: Chaudhuri et al. [9] showed
how correlations among attribute values can be used to automati-
cally derive a ranking function. A related problem was also studied
by Agrawal et al. [3]. Das et al. [12] considered rank-aware at-
tribute selection, where the goal is to select a subset of ranking
attributes that best reflect the ranking. In contrast, we assume that a
ranking function, such as that discovered in [9], or a reduced rank-
ing function such as that of [12], is given, and propose a clustering
approach based on correlations between attributes and ranking.

Integrating Ranking with Clustering: A preliminary version
of our work appeared in [24], and included motivation for rank-
aware clustering and a qualitative analysis of clustering outcomes.
Our current submission also includes a formalization of the prob-
lem, a description of a rank-aware clustering algorithm and an anal-
ysis of its complexity, and an extensive experimental evaluation.
Sun et al. [25] presented RankClus, a framework that integrates
ranking with clustering in a heterogeneous information network
such as DBLP. RankClus is based on a mixture model that uses
mutual reinforcement between clustering and ranking. Our high-
level motivation is also to treat clustering and ranking as parts of
a unified framework. However, our application domain — struc-
tured datasets with user-defined ranking functions, and technical
approach are very different.

Diversification: Our work is related to result diversification in
Web search [1, 4, 7, 16, 27], database queries [10, 26], and recom-
mendations [5, 29]. Diversifying Web search results and recom-
mendations aims to achieve a compromise between relevance and
result heterogeneity, and the approaches do not rely on structured
data. In [4], taxonomies are used to sample search results in order
to reduce homogeneity. In [16], search results are clustered into
groups of related topics that reflect different user interests. In rec-
ommendations [29, 14, 21], results are typically post-processed us-
ing pairwise item similarity in order to generate a list that achieves a
balance between accuracy and diversity. While similarity functions
can rely on structured data, only one list is returned, and it is not
labeled. In the database context, Chen and Li [10] propose to post-
process structured query results, organizing them in a decision tree
for easier navigation. In [26], a hierarchical notion of diversity in
databases is introduced, and efficient top-k processing algorithms
are developed. While these approaches rely on structured data, they
do not account for ranking.

8. CONCLUSION
In this paper we developed a clustering technique for the effec-

tive exploration of large structured datasets in the presence of rank-
ing. Our approach is applicable to datasets with a large number of
heterogeneous attributes. We formalized the rank-aware interval-
based clustering problem and developed BARAC, a Bottom-up Al-
gorithm for Rank-Aware Clustering. Our evaluation on datasets
from a leading dating site showed that (i) users are more engaged
with data exploration when presented with rank-aware clusters, and
(ii) good run-time performance is achievable.

9. ACKNOWLEDGMENTS
We thank Duncan Watts and Jake Hoffman for valuable discus-

sions during the initial stages of this project. We also thank Janet

George, Tejaswi Kasturi, Tom Gulik, Prasenjit Sarkar, George Levchenko,
Jacob Leatherman, and Tom Maher for their help with the imple-
mentation and release of the Yahoo! Find Love prototype. We thank
Mor Naaman for his advise on user study design.

10. REFERENCES
[1] E. Agichtein, E. Brill, and S. T. Dumais. Improving web search

ranking by incorporating user behavior information. In SIGIR, 2006.

[2] R. Agrawal et al. Automatic subspace clustering of high dimensional
data for data mining applications. In SIGMOD, 1998.

[3] S. Agrawal et al. Automated ranking of database query results. In
CIDR, 2003.

[4] A. Anagnostopoulos, A. Z. Broder, and D. Carmel. Sampling
search-engine results. WWW, 2005.

[5] R. Boim, T. Milo, and S. Novgorodov. DiRec: Diversified
recommendations for semantic-less collaborative filtering. In ICDE,
2011.

[6] F. Bonchi et al. Topical query decomposition. In CIKM, 2008.

[7] J. G. Carbonell and J. Goldstein. The use of mmr, diversity-based
reranking for reordering documents and producing summaries. In
SIGIR, 1998.

[8] J.-W. Chang and D.-S. Jin. A new cell-based clustering method for
large, high-dimensional data in data mining applications. In SAC,
2002.

[9] S. Chaudhuri et al. Probabilistic ranking of database query resuls. In
VLDB, 2004.

[10] Z. Chen and T. Li. Addressing diverse user preferences in
sql-query-result navigation. In SIGMOD, 2007.

[11] C. H. Cheng et al. Entropy-based subspace clustering for mining
numerical data. In KDD, 1999.

[12] G. Das et al. Ordering the attributes of query results. In SIGMOD,
2006.

[13] K. Järvelin and K. Kekäläinen. Cumulated gain-based evaluation of
IR techniques. ACM TOIS, 20(4), 2002.

[14] J. A. Konstan. Introduction to recommender systems. In SIGMOD,
2008.

[15] H.-P. Kriegel et al. Clustering high-dimensional data: A survey on
subspace clustering, pattern-based clustering, and correlation
clustering. TKDD, 3(1), 2009.

[16] K. Kummamuru et al. A hierarchical monothetic document clustering
algorithm for summarization and browsing search results. In WWW,
2004.

[17] A. Leuski. Evaluating document clustering for interactive
information retrieval. In CIKM, 2001.

[18] C. Li et al. Supporting ranking and clustering as generalized order-by
and group-by. In SIGMOD, 2007.

[19] B. Liu et al. Clustering through decision tree construction. In CIKM,
2000.

[20] U. Manber et al. Experience with personalization of Yahoo!
Commun. ACM, 43(8), 2000.

[21] S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not
enough: how accuracy metrics have hurt recommender systems. In
CHI Extended Abstracts, 2006.

[22] H. S. Nagesh. High performance subspace clustering for massive
data sets. In Master’s thesis. 1999.

[23] L. Parsons et al. Subspace clustering for high dimensional data: a
review. SIGKDD Explorations, 6(1), 2004.

[24] J. Stoyanovich and S. Amer-Yahia. Rank-aware clustering for
structured datasets. In CIKM, 2009.

[25] Y. Sun et al. RankClus: integrating clustering with ranking for
heterogeneous information network analysis. In EDBT, 2009.

[26] E. Vee et al. Efficient computation of diverse query results. In ICDE,
2008.

[27] D. Xin et al. Extracting redundancy-aware top-k patterns. In KDD,
2006.

[28] G. Yang. The complexity of mining maximal frequent itemsets and
maximal frequent patterns. In KDD, 2004.

[29] C. Yu, L. V. S. Lakshmanan, and S. Amer-Yahia. It takes variety to
make a world: diversification in recommender systems. In EDBT,
2009.

448

