
TPM: Supporting pattern matching queries for
road-network trajectory data

Gook-Pil Roh
Department of Computer Science &

Engineering, POSTECH, Pohang, Korea.

noh9pil@postech.ac.kr

Seung-won Hwang
Department of Computer Science &

Engineering, POSTECH, Pohang, Korea.

swhwang@postech.ac.kr

ABSTRACT

With the advent of ubiquitous computing, we can easily col-
lect large scale trajectory data from moving vehicles. This
paper presents TPM (Trajectory Pattern Miner), a software
aimed at pattern matching queries for road-network trajec-
tory data, which complements existing efforts focusing on (a)
a spatio-temporal window query for location-based service
or (b) Euclidean space with no restriction. To overcome lim-
itations of prior research, TPM supports three types of pat-
tern matching queries– whole, subpattern, and reverse sub-
pattern matching for road-network trajectories. We demon-
strate application scenarios for each type of pattern match-
ing queries using large-scale real-life trajectory data.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining, Spatial database and GIS

General Terms

Algorithms, Measurement, Experimentation

1. INTRODUCTION
With the advent of ubiquitous computing, we can easily

acquire the locations of moving objects, e.g., vehicle loca-
tions acquired from global positioning system (GPS). Query-
ing over the paths of such objects, or trajectories, has thus
gained attention lately.

However, most of the previous research efforts focus on
efficiently evaluating the spatio-temporal query, such as sup-
porting range and K nearest neighbor (KNN) queries, from
the given query point, for location-based services [8, 12, 9,
6].

In addition, prior work typically assumes objects can move
anywhere and considers Euclidean space as search space.
However, in many real-life applications, the movements of
objects are often constrained by obstacles such as buildings
or trees.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

In this demonstration, we use scenarios of finding train-
ing partners, among the bike trajectories people posted on
Bikely [1]. The goal in this scenario is (a) finding part-
ners preferring similar routes, while (b) such routes are con-
strained by the availability of bike trails (i.e., underlying
road network). For instance, two routes, that are spatially
adjacent, may not be a good match, if separated by a high-
way and no bike trail to connect the two trajectories. For
this scenario, we present TPM, a mining software support-
ing pattern matching queries over trajectories constrained
by the given road network, overcoming limitations of prior
research identified above.

In particular, we support three types of pattern matching
queries: whole, subpattern, and reverse subpattern match-
ing. Each pattern matching query has distinct similarity
notion. First, whole pattern matching captures the global
similarity between two trajectories and compares them in
their entireties without ignoring any part of them. Second,
subpattern matching considers the query trajectory as whole
and some interesting parts of database trajectories that best
match the query trajectory and ignores the rest of them.
Lastly, the subpattern matching problem can be reversed.
In reverse subpattern matching, the query is typically much
longer than the trajectories in the database and the query
retrieves the trajectories in the database that match a cer-
tain part of the query pattern. Fig. 1 illustrates these three
types of pattern matching.

Data trajectory

Query

(a) Whole pattern matching

Data trajectory

Query

(b) Subpattern matching

Data trajectory

Query

(c) Reverse subpattern matching

Figure 1: Three types of pattern matching queries

The rest of the paper is organized as follows. Section 2
presents the trajectory modeling such as trajectory repre-
sentation and distance measure. Section 3 presents index
structure for efficient query processing. In Section 4, we de-
scribes matching algorithms for each type of pattern match-
ing. Section 5 presents application scenarios.

554



2. TRAJECTORY MODELING
We model a trajectory as a connected sequence of road

segments, such that each road segment of a trajectory should
be connected to the next road segment in the sequence. A
road segment is defined by its starting and ending positions.
With this representation, we can represent the restriction of
road networks and the spatial proximity of road segments,
without being affected by different sampling rates of moving
objects.

The raw trajectories from positioning devices such as GPS,
typically consists of quadruplets (x, y, p, v), where x and y

are location points (2D points), while p and v are the time
stamp and the speed respectively. Most of the prior re-
searches take the raw data “as is” as input, which cannot
represent the restrictions of the underlying road networks.
In contrast, our proposed trajectory representation uses a
sequence of road segments, which requires a pre-processing
phase to transform the raw data into a sequence of road
segments. We leave the details on how to convert raw tra-
jectories into the sequence of road segments, in our technical
paper [10].

Once converted, we use the following distance measures
reflecting the constraints of the underlying road-network,
which we discussed in [10].

Definition 1 (Road segment distance [10]).
Given two road segments ri and rj, the road segment dis-
tance is defined as follows:

d(ri, rj) = max
n

−→

d (ri, rj),
−→

d (rj , ri)
o

, (1)

where
−→

d (ri, rj) is a one-way road segment distance from ri

to rj .

Definition 2 (Trajectory distance [10]).
Given two trajectories Ta = [a1, . . . , an] and Tb = [b1, . . . , bm],
the distance between them is defined as follows:

D(Ta, Tb) = max
n

−→

D(Ta, Tb),
−→

D(Tb, Ta)
o

, (2)

where
−→

D(Ta, Tb) = max
ai∈Ta

min
bj∈Tb

d(ai, bj) is one-way trajec-

tory distance from Ta to Tb.

We extended the intuition of Hausdorff distance to our
trajectory representation. Similar to Hausdorff distance, the
distance measure can be explained as the longest path from
each road segment to its closest road segment in another
trajectory and the distance measure is metric [10].

3. INDEX STRUCTURE
For an efficient query processing, we index trajectories

with M-tree [7] index structure based on the distance mea-
sure [10] between trajectories.

As our distance measure fulfills the metric property [10],
we can use any index structures designed for the metric
space, i.e. metric tree, such as the gh-tree [11], the GNAT [5]
and the M-tree [7]. These metric trees all exploit the trian-
gular inequality of distance metric to prune out irrelevant
objects. Among these trees, we pick M-tree as our choice
of the index structure for the following reasons: M-tree is
the only one that is optimized for large secondary memory-
based data sets [4]. Other metric trees are main memory in-
dex structures, which cannot handle the trajectory database

... ...

...

... ...

...

...

O6O4

O5

O4O3O1O2 O6O5

(a)

6OO2

O4

O31O

O5

(b)

Figure 2: M-tree example: (a) M-tree structure and
(b) covering radii

whose size is bigger than the capacity of the main memory.
In addition, M-tree is reported to be more scalable than
other approaches in [7].

As preliminaries, we briefly overview how M-tree works:
The leaf node of M-tree contains the objects, whereas the
non-leaf node stores the representative objects, which are
selected among objects in the sub-tree using a selection al-
gorithm described in [7]. Both leaf and non-leaf node also
include the distance to the parent object. In the case of non-
leaf node, two additional features are stored, in addition to
the representative object: a pointer to the sub-tree and a
covering radius that is the distance between the representa-
tive object and the farthest object from the representative
object in the sub-tree. We illustrate an example of the M-
tree structure in Fig. 2(a) with the covering radii denoted
by dashed arrows for three representative objects, i.e. O4,
O5, and O6, in Fig. 2(b).

4. QUERY PROCESSING
Given a query trajectory, TPM supports the three types

of pattern matchings: whole, subpattern, and reverse sub-
pattern pattern matching. For each type of pattern match-
ing, TPM supports two types of similarity searches: range
search and k -NN (nearest neighbor) search. The range search
is to find the trajectories with distance smaller than user-
specified threshold value. The k -NN search is to find the k

trajectories with the smallest distance.

4.1 Whole pattern matching
Whole pattern matching searches for the trajectories whose

movement patterns are globally similar to the given query
trajectory. To support the range and KNN search, we can
simply employ the range and KNN search algorithm of M-
tree [7]. During the traversal of M-tree, for each non-leaf
node, we need to decide whether its sub-tree can be pruned
out– Fig. 3 shows the pruning condition of the whole pat-
tern matching. If the distance d between a query trajec-
tory Tq and a representative trajectory tr(Oi) of a non-leaf
node Oi is bigger than the sum of search range ε and scope
s(Oi), the distance between every object in the sub-tree of
Oi and Tq is also bigger than ε, which suggests that Oi can
be safely pruned out. With this pruning condition, we can
conclude that, in the case of Fig. 3, we do not need to inves-
tigate the child nodes of O1, because the pruning condition
d > ε + s(O1) is satisfied.

4.2 Subpattern matching
Subpattern matching searches for all the trajectories which

555



s(O1)

s(O2)

ε d

O2

O1
Tq

Figure 3: Pruning for whole pattern matching

include a similar pattern to a query trajectory. While we
used two-way distance for the whole pattern matching, as
we need to consider all the road segments of the trajectories
to globally match the query, in the subpattern matching, we
only need to consider the closest segment to the query, to
quantify how well the specific closest segment to the query
matches the query pattern.

The one-way distance,
−→

D(Tq , T ), perfectly captures such
a notion, which is only affected by the nearest road segment
of a trajectory T from each road segment of Tq. If the one-

way distance
−→

D(Tq, tr(O)) between a query trajectory and
the representative trajectory tr(O) of a non-leaf node O, is
bigger than ε + s(O), all the trajectories in the sub tree of
O can be safely pruned out.

For subpattern matching, we can thus simply modify the

pruning condition by using one-way distance
−→

D(Tq, T ) to
identify the closest subpattern to the query pattern. KNN
and range search algorithms for subpattern matching can
be straightforwardly implemented by replacing the pruning

conditions to use one-way distance,
−→

D(Tq, T ).

4.3 Reverse subpattern matching
Reverse subpattern matching is used when the database

contains short trajectories and the users want to know which
trajectories are included in the query trajectory. For this

matching, another one-way distance
−→

D(T, Tq) can capture
the notion well, by identifying the closest query segment

to trajectory data, instead of
−→

D(Tq, T ) used for subpat-
tern matching. Similarly to subattern matching, KNN and
range search algorithms for reverse subpattern matching are
straightforwardly implemented by replacing the pruning con-

ditions to use one-way distance,
−→

D(T, Tq).

5. DEMONSTRATION SCENARIOS
We designed our demo to demonstrate three types of pat-

tern matching queries (whole, subpattern, and reverse sub-
pattern matching) for the real dataset that we collected from
Bikely website [1].

Specifically, we collected 12971 real-life bike trajectories
in California from Bikely. The average number of sampling
points in trajectories is 470 and the average length of tra-
jectories is 38.54 (km). We obtained the road network data
of California in a TIGER/LINE format from U.S. Census
Bureau [2].

Figure 4 illustrates our user interface of TPM where users
can issue a query by uploading a query trajectory file in the
GPX format that most GPS softwares support or choosing
a query trajectory among example trajectories. Given the
query trajectory, TPM shows the top ranked trajectories,
superimposed on underlying road network, for all three types
of pattern matching queries.

Figure 4: User interface of TPM

We implemented TPM in C/C++ programming language
on top of R-tree [3] (for indexing road networks) and M-
tree [7] (for indexing trajectories), and web interface in Perl
programming language. Our Web-based demo is available
at http://ids.postech.ac.kr/TPM.

We present application scenarios for each type of pattern
matching and illustrate top ranked trajectories that TPM
returns in each scenario. Note that a thick polyline indicates
a data trajectory while a thin polyline indicates a query
trajectory in Fig. 5, 6, and 7.

Example 1. Whole pattern matching

Suppose trajectory q3 of Fig. 4 represents a commute from
work to home of some user. He can then query a whole pat-
tern matching with q3 to retrieve other trajectories sharing
globally similar routes to train with. Fig. 5 illustrates top-
4 trajectories that are retrieved by whole pattern matching
query when the query trajectory is q3.

(a) Rank 1 (b) Rank 2

(c) Rank 3 (d) Rank 4

Figure 5: Top-4 trajectories of whole pattern

Example 2. Subpattern matching

Suppose that there is a road construction plan, say q3 in
Fig. 4. An administrator plans to alert the users who may

556



be affected by the construction. Then, he can query a sub-
pattern matching with q3, which can retrieve users whose
trajectories contain q3 as a subpattern (see Fig. 6).

(a) Rank 1 (b) Rank 2

(c) Rank 3 (d) Rank 4

Figure 6: Top-4 trajectories of subpattern

Example 3. Reverse subpattern matching

Suppose a user considers a plan for a new bicycle route and
he wishes to know information for the route before he begins
to ride. Reverse subpattern matching can be useful to find
users who already have an experience in some parts of a new
route. For example, if q3 in Fig. 4 is the new bicycle route,
trajectories of Fig. 7 are the candidates.

(a) Rank 1 (b) Rank 2

(c) Rank 3 (d) Rank 4

Figure 7: Top-4 trajectories of reverse subpattern

6. ACKNOWLEDGMENTS
This work was supported by Microsoft Research Asia and

the National IT Industry Promotion Agency (NIPA) under
the program of Software Engineering Technologies Develop-
ment.

7. REFERENCES

[1] www.bikely.com.

[2] http://www.census.gov/geo/www/tiger.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-Tree: An efficient and robust access
method for points and rectangles. In Proc. SIGMOD,
pages 322–331, 1990.

[4] C. Böhm, S. Berchtold, and D. A. Keim. Searching in
high-dimensional spaces: Index structures for
improving the performance of multimedia databases.
ACM Comput. Surv., 33(3):322–373, 2001.

[5] S. Brin. Near neighbor search in large metric spaces.
In Proc. VLDB’95, pages 574–584, 1995.

[6] S. Chen, B. C. Ooi, K.-L. Tan, and M. A. Nascimento.
ST2B-tree: a self-tunable spatio-temporal b+-tree
index for moving objects. In Proc. SIGMOD, pages
29–42, 2008.

[7] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An
efficient access method for similarity search in metric
spaces. In Proc. VLDB, pages 426–435, 1997.

[8] H. Hu, J. Xu, and D. L. Lee. A generic framework for
monitoring continuous spatial queries over moving
objects. In Proc. SIGMOD, pages 479–490, 2005.

[9] S. Rasetic, J. Sander, J. Elding, and M. A.
Nascimento. A trajectory splitting model for efficient
spatio-temporal indexing. In Proc. VLDB’05, pages
934–945, 2005.

[10] G. Roh, J. Roh, S. Hwang, and B. Yi. Supporting
pattern matching queries over trajectories on road
networks. IEEE Transactions on Knowledge and Data
Engineering, 99(PrePrints), 2010.

[11] J. K. Uhlmann. Satisfying general
proximity/similarity queries with metric trees.
Information processing letters, 40(4):175–179, 1991.

[12] X. Xiong, M. Mokbel, and W. Aref. Sea-cnn: scalable
processing of continuous k-nearest neighbor queries in
spatio-temporal databases. In Proc. ICDE’05, pages
643–654, 2005.

557




