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ABSTRACT
In this paper, we study the generation of efficient execu-
tion plans for skyline query processing in large-scale dis-
tributed environments. In such a setting, each server stores
autonomously a fraction of the data, thus all servers need
to process the skyline query. An execution plan defines
the order in which the individual skyline queries are pro-
cessed on different servers, and influences the performance
of query processing. Querying servers consecutively reduces
the amount of transferred data and the number of queried
servers, since skyline points obtained by one server prune
points in the subsequent servers, but also increases the la-
tency of the system. To address this trade-off, we introduce a
novel framework, called SkyPlan, for processing distributed
skyline queries that generates execution plans aiming at op-
timizing the performance of query processing. Thus, we
quantify the gain of querying consecutively different servers.
Then, execution plans are generated that maximize the over-
all gain, while also taking into account additional objectives,
such as bounding the maximum number of hops required for
the query or balancing the load on different servers fairly.
Finally, we present an algorithm for distributed processing
based on the generated plan that continuously refines the ex-
ecution plan during in-network processing. Our framework
consistently outperforms the state-of-the-art algorithm.
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1. INTRODUCTION
The importance of skyline queries [4] has been recognized

for applications that involve decision-making. Skyline queries
do not require an explicit preference function, which may be
difficult for the user to define when the relative importance
of the different criteria is vague. Consider for example a
real-estate database containing information about houses,
represented as tuples. Each tuple stores different character-
istics of a house, for instance its price and its distance to
a point of interest, such as the nearest metro station. A
person that is interested in a house that is cheap and close
to a metro station poses a skyline query to retrieve the best
offers. The houses in the skyline set are those that are not
worse than (not dominated by) any other house in both price
and distance.
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Figure 1: Distributed skyline query processing.

Skyline queries have been studied both in centralized and
distributed environments [3–5,7,10,13,14,16,18,20–24]. How-
ever, planning the execution of skyline queries on different
(potentially overlapping) data fractions, in order to obtain
the skyline set of the entire dataset efficiently, has not re-
ceived adequate attention in the related work. This problem
is particularly important and challenging in distributed en-
vironments, where each server stores only a fraction of the
available data. Moreover, with the advent of large-scale data
centers and cloud computing infrastructures, data is increas-
ingly stored and processed in a distributed way. Thus, it is
necessary to efficiently support complex query types, such
as skyline queries, in distributed environments.
Figure 1 depicts an example of a dataset distributed over

multiple servers, S1 to S6. The query originator Sorg can
directly communicate with any other server. Each server Si

stores autonomously a fraction of the data that in this exam-
ple correspond to the data points enclosed in the rectangle
mi. In order to retrieve the skyline set of the distributed
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dataset, all servers compute the skyline set of the locally
stored data points. Then, Sorg gathers these points and
computes the skyline set of the entire dataset. Before pro-
cessing the distributed query, Sorg first derives an execution
plan that defines the order in which the query is processed
on the different servers.
The execution plan influences the overall performance of

the query. For example, depending on the execution plan,
some servers do not have to be contacted at all. In Figure 1,
S6 can be removed from the execution plan after process-
ing the skyline query at S4, since there exists a point stored
locally at S4 that dominates all points stored at S6. Fur-
thermore, the number of data points transferred back to
Sorg can be drastically reduced, by discarding data points
stored at Si that are dominated by skyline points of servers
that precede Si in the execution plan. In addition, the ef-
ficiency of local query processing at Si can be improved by
using the skyline points of previous servers to immediately
discard points stored locally at Si. On the other hand, the
execution of local skyline queries on consecutive servers is a
blocking operation and may lead to increased response time.
Motivated by this discussion, in this paper, we study the
problem of creating efficient execution plans that improve
the performance of the distributed skyline query.
Our main observation is that a dependency must exist

between consecutive servers, in order to obtain any perfor-
mance gain by reducing the number of contacted servers or
transferred data. A dependency between two servers means
that points of the first server must dominate at least some
points of the following server. Therefore, our approach op-
timizes the performance of distributed skyline computation,
by exploiting the dependencies – when they exist – between
skyline queries on different servers. The dependencies be-
tween skyline queries are complex, and their representation
forms a directed graph with cycles. For example, if the
servers S3 and S4 are considered, both local skyline queries
depend on each other. Thus, it is not feasible to incorporate
all dependencies in the execution plan, and the major chal-
lenge is to derive an execution plan that includes the most
promising dependencies. Our proposed framework, called
SkyPlan, quantifies the efficiency of an execution plan based
on the potential gain obtained by querying different servers
consecutively (henceforth this gain is mentioned as pruning
power), and generates cost-aware execution plans. In more
details, we make the following contributions:

• We propose SkyPlan, a framework that generates cost-
aware execution plans with maximum pruning power
and drastically reduces the response time of distributed
skyline query processing.

• We extend our framework to produce multi-objective
execution plans, when additional objectives – other
than maximizing the pruning power – need to be ful-
filled simultaneously.

• We propose an efficient algorithm that exploits the
generated execution plan for processing skyline queries
in a distributed environment. We further enhance the
performance of query execution by continuously refin-
ing both the execution plan and the filter points, as
the query is being processed in a distributed manner.

• Finally, we perform an extensive experimental eval-
uation that demonstrates that SkyPlan consistently

outperforms the state-of-the-art algorithm [7] by 1-3
orders of magnitude.

The remaining of this paper is organized as follows: Sec-
tion 2 overviews the related work. Then, we present the nec-
essary preliminaries in Section 3 and the overview of Sky-
Plan in Section 4. In Section 5 the dependency graph is
defined, while in Section 6 the quality of a cost-aware exe-
cution plan is introduced and the plan generation algorithm
is presented. In Section 7, we describe multi-objective ex-
ecution plans that satisfy additional constraints. Section 8
presents the distributed skyline computation guided by the
execution plan. Finally, the experimental evaluation is pre-
sented in Section 9 and we conclude in Section 10.

2. RELATEDWORK
Skyline computation [4] has recently attracted consider-

able attention and has been studied in a variety of dis-
tributed systems, including web information systems [3],
parallel systems [17], peer-to-peer systems [5, 10, 13, 18, 19,
21–23], mobile ad-hoc networks [14, 20], as well as more
generic distributed systems [7, 16, 24]. In the following, we
provide an overview of existing approaches for distributed
skyline computation. One of the first approaches, by Balke
et al. [3], focuses on skyline query processing over multi-
ple sources, with each source storing only a subset of at-
tributes (vertical data distribution). Afterwards, most of
the existing approaches focus on highly distributed environ-
ments, such as peer-to-peer networks, assuming that all data
sources store common attributes (horizontal data distribu-
tion). Such approaches can be classified in two categories.
In the first category, the proposed methods assume space

partitioning among servers, thus each server is responsi-
ble for a disjoint partition of the data space. Several ap-
proaches belong to this category, namely DSL [23], SSP [21],
SkyFrame [22] and iSky [5]. DSL was proposed by Wu et
al. [23] and it is the first paper that addresses constrained
skyline query processing over disjoint data partitions by us-
ing a structured peer-to-peer overlay, namely CAN. Wang et
al. [21] propose the SSP algorithm based on the use of a tree-
based peer-to-peer overlay (BATON) for assigning data to
servers. Later, the authors present SkyFrame [22] as an ex-
tension of their work. Chen et al. [5] propose the iSky algo-
rithm, which employs an alternative transformation, namely
iMinMax, in order to use the BATON overlay.
In the second category, data partitioning is assumed and

each server autonomously stores its own data. Hose et al. [13]
use distributed data summaries for efficient processing of
approximate skyline queries and provide guarantees for the
completeness of the result. Skyline computation over a super-
peer architecture has been studied in [18,19]. SKYPEER [18]
transforms the multi-dimensional data into one-dimensional
values and utilizes a thresholding scheme in order to reduce
the transferred data. SKYPEER+ [19] extends SKYPEER,
by focusing on efficient routing of skyline queries over the
super-peer network. Fotiadou et al. [10] propose BITPEER
for supporting efficiently continuous subspace skylines in
a distributed setting by using distributed bitmap indexes.
Huang et al. [14] study skyline query processing over mo-
bile ad-hoc networks. In [20], bandwidth-constrained skyline
queries in mobile environments are studied.
In addition, a few methods have been proposed that as-

sume data partitioning among servers without the restriction
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of an existing overlay network, i.e., the query originator can
directly communicate with all servers. Cui et al. [7] pro-
posed the PaDSkyline algorithm, where the data stored at
each server are summarized by MBRs. Initially, the MBRs
of all servers are collected and partitioned to incomparable
groups. For each group of MBRs, an intra-group query exe-
cution order is defined and the authors propose two strate-
gies. The first is the linear execution of queries on servers,
where the MBRs are sorted based on their Euclidean dis-
tance to the origin of the data space. The second strategy
is to build a tree that defines the execution order, but the
generated tree is strongly dependent on the order that the
MBRs were collected and processed. Assuming the same
architecture, in [16], an approach called AGiDS is proposed
that uses a grid-based data summary of the data stored lo-
cally at each server for defining the execution order. In [24],
a feedback-based distributed skyline (FDS) algorithm is pro-
posed, which aims to minimize the bandwidth consumption
at the expense of several round-trips.
Our framework, similarly to [7,16,24], makes no assump-

tion on the existence of a specific overlay network. Differ-
ently than [7], we focus on the execution plan which influ-
ences the overall performance of the distributed query pro-
cessing. In contrast, the execution order proposed in [7]
does not take into account the gain of querying two servers
consecutively and thus, does not optimize the performance
of query processing. In addition, we propose a distributed
query execution mechanism that dynamically eliminates parts
of the plan and constantly refines the filter points. Further-
more, SkyPlan uses MBRs for data summarization in con-
trast to AGiDS [16] that uses a grid-based data summary.
The main shortcoming of AGiDS is that it assumes that the
partitions of the grid-based data summary are common and
known a-priori to all servers, which is not feasible for large
and highly dynamic distributed systems. Moreover, AGiDS
does not produce tree-based execution plans, in contrast to
SkyPlan. Finally, SkyPlan focuses on minimizing the re-
sponse time, which is different than the goal of FDS [24],
since FDS requires several round-trips to process the query,
thus it incurs high response time.

3. PRELIMINARIES
Given a dataset D on a data space defined by a set of

d dimensions {d1, ..., dd}, a point p ∈ D is represented as
p={p1, ..., pd} where pi is the value on dimension di. With-
out loss of generality, we assume that ∀di : pi ≥ 0, and that
smaller values are preferable.

Definition 1. A point p ∈ D dominates another point
q ∈ D, denoted as p ≺ q, if (1) on every dimension di,
pi ≤ qi; and (2) on at least one dimension dj, pj < qj. The
skyline is a set of points SKY which are not dominated by
any other point in D.

Consider the example in Figure 2(a), where each point
represents a hotel and the y-dimension represents the price
of a room, while the x-dimension captures the distance of
the hotel to the beach. A hotel dominates another hotel
because it is cheaper and closer to the beach. Thus, the
skyline points (a, i, m and k) are the best possible trade-
offs between price and distance from the beach.
The notion of skyline queries can be extended to con-

strained skyline queries. Given a set of constraints, a con-
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(a) Skyline example.
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(b) Domination example.

Figure 2: Skyline and domination examples.

strained skyline query returns the skyline points by consid-
ering only the data points enclosed in the data space de-
fined by the constraints. Each constraint is expressed as
a range along a dimension and the conjunction of all con-
straints forms a hyper-rectangle in the d-dimensional data
space. For example, the dashed rectangle in Figure 2(a) de-
fines a constrained skyline query and the constrained skyline
points are a and h. A hyper-rectangle mi(li, ui) is repre-
sented by two points, its lower left corner li and its upper
right corner ui. The dominance relationships between two
hyper-rectangles mi and mj are described as follows:

Definition 2. Given two hyper-rectangles mi and mj,
the dominance relationships are: (1) mi dominates mj, if
ui ≺ lj; (2) mi partially dominates mj, if li ≺ uj, but
ui ⊀ lj; (3) mi and mj are incomparable, if li ⊀ uj and
lj ⊀ ui.

For example in Figure 2(b), m1 and m2 are incomparable,
which means that no point enclosed in m1 can dominate
any point in m2 and vice versa. Moreover, m1 dominates
m3 (since u1 dominates l3), while m2 partially dominates
m3 (since l2 dominates u3 but u2 does not dominate l3).
We also mention that a point p dominates a hyper-rectangle
mi(li, ui) if and only if p ≺ li, i.e., point p dominates the
lower left corner of mi.
As stated in [7], the volume of the dominance area quanti-

fies the pruning power of a data point. The dominance area
of a point p is defined as the area that is enclosed by the
hyper-rectangle that has as lower left corner the point p and
as upper right corner the maximum corner of the universe.
Furthermore, given a hyper-rectangle mi, we introduce the
notion of enclosed dominance area of a point p, as the area
within the hyper-rectangle mi that is dominated by p. Sim-
ilarly, given two hyper-rectangles mi and mj , the enclosed
dominance area Vij of mi on mj is the volume of mj that
is dominated by the lower left corner li of mi. Based on the
above notions, we can define the pruning power PPij of mi

on mj .

Definition 3. Given two hyper-rectangles mi and mj,
the pruning power PPij of mi on mj is defined as PPij =
Vij

Vj
, where Vj denotes the volume of mj and Vij denotes the

enclosed dominance area of mi on mj.

4. SKYPLAN FRAMEWORK
In our system model, a set of |S| servers Si participate

in the distributed skyline computation and each server Si

can directly connect to any other server Sj . Each server Si

stores locally a set of points Di. The entire dataset D is

273



the union of all sets of points Di stored locally at any server
Si (D =

⋃
Di). A skyline query can be initiated by any

server, henceforth also called query originator Sorg. In such
a distributed system, a skyline query is processed by sending
the query to all servers Si, which in turn process the query
locally over their data Di. Then, each server Si reports
its local skyline set SKYi to Sorg for subsequent merging
(discarding of dominated local skyline points), in order to
obtain the global skyline set SKY . The correctness of the
result is ensured by the property that the skyline points over
a horizontally partitioned dataset are a subset of the union
of the skyline points of all partitions (SKY ⊆

⋃
SKYi).

Optimizing the performance of distributed skyline compu-
tation requires defining an appropriate execution plan. The
execution plan defines the order in which the individual sky-
line queries are processed on different servers. By query-
ing the servers consecutively, some servers may not have to
be contacted at all, if all points of a server are dominated
by a point stored locally at another server. Furthermore,
the amount of transferred data can be drastically reduced.
The local skyline points (or a fraction of them called filter
points [7, 14] Fi ⊆ SKYi) of a server Si can be used for
discarding dominated points at another server Sj . In such
a filter-based approach, the servers are accessed based on
an execution order and the filter points of server Si are se-
lected and transferred to the next servers Sj to discard local
skyline points produced by Sj . Filter points not only signif-
icantly reduce the amount of transferred data that need to
be merged, but also the processing time at the subsequent
servers by discarding points with few dominance tests only.
However, the filter points may fail to prune any point of
a server depending on the data distribution. When no gain
can be obtained from querying the servers consecutively, the
parallelism should be preserved, in order to minimize the
latency and therefore also the response time1. To address
this tradeoff, this paper introduces a novel framework, called
SkyPlan, for processing distributed skyline queries that gen-
erates execution plans aiming at optimizing the performance
of query processing.
Creation of efficient execution plans in distributed sys-

tems requires that the query originator Sorg has at least
an abstract knowledge of the data stored on each server.
Therefore, each server Si reports a set of minimum bound-
ing rectangles2 (MBRs) to Sorg as a summarization of its
data. Each MBR reported by a server Si defines a con-
strained skyline query on Si, where the constraints are set
by the boundaries of the MBR. Thus, Sorg generates an exe-
cution plan that defines the order of the constrained skyline
queries on different servers.

Sorg can immediately discard dominated MBRs, since the
local skyline points that belong to those MBRs are defi-
nitely dominated by points of other servers. The remaining
MBRs are partitioned into incomparable groups, such that
any two MBRs that belong to different groups are incom-
parable. Each incomparable group is processed in parallel,
since no gain can be achieved by filtering. Unfortunately,
the MBRs usually form only a few incomparable groups and
thus, the number of MBRs in a group is high. This is because

1The response time is the time that passes between the
query is posed until the results can be reported back to the
user.
2An MBR is a hyper-rectangle and any point of Si is en-
closed by at least one MBR.

the probability of partial dominance between any two MBRs
is high and it increases with dimensionality. Therefore, the
major challenge is establishing the execution order for the
MBRs that belong to the same group. SkyPlan maps the
dominance relationships between MBRs to a weighted di-
rected graph, called skyline dependencies graph (SD-graph).
The weights on the graph edges are defined by the pruning
power, which is used to quantify the potential gain through
filtering. Then, the SD-graph is transformed into an exe-
cution plan that maximizes the total pruning power, while
preserving the parallelism, when no significant gain can be
obtained from processing the queries on different servers con-
secutively. Furthermore, SkyPlan supports multi-objective
executions plans, in case that additional objectives – other
than maximizing the pruning power – need to be fulfilled
simultaneously.
To summarize, SkyPlan consists of three phases: Sorg col-

lects the MBRs of all servers Si and builds a weighted di-
rected graph (Section 5); the graph is transformed into an
execution plan that defines the order of query execution on
servers (Section 6 and Section 7); and the plan is executed
in a distributed manner that enables refinement of both the
execution plan and the filter points during query processing
(Section 8).

5. SKYLINE DEPENDENCIES GRAPH
In this section, we first provide the necessary definition

of the graph that captures the dependencies between the
skyline queries. Thereafter, we present the construction al-
gorithm for the dependencies graph.

5.1 Definition
Given two constrained skyline queries defined by the MBRs

mi and mj , we say that there exists a dependency between
them, if some points of mi may be dominated by points of mj

or vice-versa. Thus, the dominance relationships between
any pair of MBRs also define the dependency between the
corresponding constrained skyline queries. SkyPlan maps
the complex dependencies among a set of non-dominated
MBRs to a graph, mentioned as skyline dependencies graph
or SD-graph for short.

Definition 4. SD-graph G. Given a set of MBRs, the
SD-graph is the weighted directed graph G = (N, E, w), where:

• N is the set of nodes and each node ni ∈ N corresponds
to a non-dominated MBR mi.

• E is the set of edges. E is a set of ordered pairs
eij = (i, j), where mi, mj are MBRs, and mi partially
dominates mj.

• w is a weight function defined as: wij =
|mj |

|D|
PPij,

where |mj | denotes the number of points enclosed in
mj, |D| the cardinality of the dataset D and PPij de-
notes the pruning power of mi on mj.

Each non-dominated MBR mi is represented as a node
(vertex) ni of the graph. Dominated MBRs are immediately
discarded, as they enclose data points that are dominated
and cannot belong to the skyline set. For each MBR mj

that is partially dominated by mi, a weighted directed edge
eij from node ni to nj is added. Consider the set of MBRs
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(a) Set of MBRs.
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(b) SD-graph.

Figure 3: Construction of SD-graph.

depicted in Figure 3(a). In this example, m1 partially domi-
nates m2, because the lower left corner of m1 dominates the
upper right corner of m2. Thus, a directed edge from m1 to
m2 is added to the graph (Figure 3(b)). Note that we use
node ni and MBR mi interchangeably in our examples. The
weight wij of the edge eij is defined as the pruning power
(PPij) of mi on mj normalized by the number of points
|mj | enclosed in mj divided by the cardinality of the en-
tire dataset |D|. The normalization is due to the fact that
if mi has the same pruning power on two different MBRs,
then the dependency between mi and the MBR that has
more enclosed data points is more important for the overall
performance of the distributed query.

5.2 Construction of the SD-Graph
The SD-graph is constructed by comparing each pair of

MBRs. If an MBR is dominated, its node is removed from
the graph. If an MBR is partially dominated, then an edge
is added between the corresponding nodes.
Algorithm 1 presents our algorithm for the construction

of the SD-graph. Given a set of MBRs, our algorithm con-
structs the SD-graph incrementally, by adding to the graph
one MBR in each iteration. Initially, the sets of nodes and
edges of the SD-graph are empty. Then, the algorithm takes
as input the current form of the SD-graph G and a new MBR
mn, which should be accommodated in the existing graph G.
Thus, a new node is added to the graph G that represents
the MBR mn (line 3). Then, each node of G (correspond-
ing to MBR mi) is compared against mn for dominance,
in order to discard dominated MBRs (lines 5,9). If mn is
dominated by or dominates mi, then the dominated MBR is
discarded. Once an MBR is dominated, all edges connected
to the discarded MBR are also eliminated.
Otherwise, mn and mi are tested for partial dominance,

in order to determine potential dependencies and add the
corresponding edges. If mi partially dominates mn (line
14), an edge from mi to mn is created (line 15). In the same
spirit, if mn partially dominates mi (line 17), a directed
edge from mn to mi is added (line 18). Note that when an
edge is added to the graph, the weight of the edge is also
computed. For sake of simplicity, this is not explicitly shown
in the algorithm. At the end of this process, the constructed
SD-graph accurately captures all dependencies between any
pair of MBRs.

6. COST-AWARE EXECUTION PLANS
In this section, we first provide the definitions of execu-

tion plan and its quality in terms of pruning power. Then,
we present an algorithm which maps the SD-graph into the
execution plan that has the maximum pruning power.

Algorithm 1 ConstructGraph(G,mn)

1: INPUT: SD-graph G = (N, E), new MBR mn.
2: OUTPUT: The updated SD-graph G = (N, E)
3: N ← N ∪ mn

4: for (∀mi ∈ N) do

5: if (mi dominates mn) then

6: N ← N − mn

7: E ← E − {e�n} − {en�}
8: exit

9: else if (mn dominates mi) then

10: N ← N − mi

11: E ← E − {e�i} − {ei�}
12: continue

13: end if

14: if (mi partially dominates mn) then

15: E ← E ∪ ein

16: end if

17: if (mn partially dominates mi) then

18: E ← E ∪ eni

19: end if

20: end for

6.1 Definitions
During distributed skyline query computation an execu-

tion plan defines the order of execution of the constrained
skyline queries on the individual servers.

Definition 5. Execution plan. Given a distributed sky-
line query, an execution plan P (N, E) is a set of directed
rooted weighted trees (forest), where the nodes N represent
the individual constrained skyline queries processed on differ-
ent servers and the weights of edges E represent the pruning
power associated with pairs of skyline queries.

A first observation is that the execution plan is either a
tree or a set of trees. The edges have a natural orientation
away from the roots. Each tree is processed in parallel and
the children of a node are processed after the parent node.
Thus, the fan-out of a node defines the degree of parallelism,
while the child-parent relation reduces the communication
cost of the skyline computation via filtering. The weight
that is assigned to an edge eij ∈ E indicates the strength
of the dependency between the corresponding queries and
quantifies the gain of processing the skyline query on nj ∈ N

after ni ∈ N . As discussed in Section 5, the pruning power
of a edge is an appropriate measure to quantify the potential
gain of consecutive queries. Thus, the quality of an execution
plan is defined as follows.

Definition 6. Quality of execution plan. The quality
Q(P ) of an execution plan P (N, E) is defined as the sum of
weights on the edges of P :

Q(P ) =
∑

eij∈E
wij

Thus, an execution plan Pi is better than another plan Pj

in terms of quality if: Q(Pi) > Q(Pj).
A straightforward execution plan, also called linear in [7],

is to execute queries in a sequential manner, by defining an
appropriate ordering of queries3. Even though the linear
approach reduces the transferred data through filter points,
it does not exploit parallelism at all, and fails to process in
parallel even queries that are independent. Furthermore, the
dependencies among the constrained skyline queries form a

3In [7] the linear execution plan uses the Euclidean distance
from the origin for sorting.
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(a) MBRs. (b) SD-graph. (c) Dummy node.
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(e) Plan.

Figure 4: Example of dummy node.

complex graph (SD-graph) that contains cycles and multi-
ple incoming edges to some nodes. Therefore, the mapping
of the SD-graph to any execution plan leads to substan-
tial loss in terms of overall pruning power, as several edges
cannot be taken into account. Thus, even for a linear exe-
cution plan, the efficiency in terms of pruning power is not
guaranteed. In the following, we define an execution plan
that is generated from the SD-graph and induces sequential
processing of queries with the most significant (in terms of
pruning power) dependencies, and parallelizes query execu-
tion in other cases.
Notice that the SD-graph can in general be disconnected

and therefore may consist of more than one connected com-
ponents (mentioned as subgraphs), such that no edge con-
nects any two nodes that belong to different subgraphs. In
this case, the connected subgraphs of the SD-graph corre-
spond to the incomparable groups of MBRs (as discussed in
Section 4). Therefore, an individual plan is created (for each
subgraph), which is executed in parallel and their results are
reported independently. Henceforth, we assume that the
SD-graph is connected and present our algorithm for gen-
erating query execution plans. Obviously, if the SD-graph
is disconnected, the algorithm is applied on each connected
subgraph of the SD-graph.

6.2 Maximizing the Pruning Power
Based on Definition 6, an execution plan is better than

another execution plan, if its quality in terms of pruning
power is higher. Consequently, the ideal execution plan is
the execution plan with the maximum pruning power.

Definition 7. Maximum pruning execution plan. Let
Π denote the set of all possible execution plans. The max-
imum pruning execution plan P̂ is the one that maximizes
the quality of any possible execution plan P ∈ Π:

P̂ = argmaxP∈Π Q(P )

The problem of generating the maximum pruning execu-
tion plan from the SD-graph is equivalent to the maximum
spanning tree problem, which is formulated as follows.

Problem 1. The Directed Maximum Spanning Tree

Problem. Consider a directed graph, G(N, E), where N and
E are the sets of nodes and edges respectively. Associated
with each edge eij ∈ E is a weight wij. Given a node nr, the

problem is to find a rooted directed spanning tree P (N, E′)
with root nr, where E′ is a subset of E, such that the sum
of wij for all eij ∈ E′ is maximized. The rooted directed
spanning tree is defined as an acyclic graph that connects
all nodes using |N | − 1 edges, which means that each node
(excluding the root) has one and only one incoming edge.

A prerequisite for the existence of a directed rooted span-
ning tree of the SD-graph is that all nodes must be reachable
from the root node, which means that there must exist a di-
rected path from the root to any other node ni. This may
not hold for any node in the SD-graph, even though the SD-
graph is connected. Consider the small example with three
MBRs depicted in Figure 4(a). The SD-graph has two edges
(Figure 4(b)), i.e., m1 → m2 and m3 → m2. For this graph,
there does not exist a directed tree that connects all nodes,
no matter which node is selected as a root. Therefore, it is
not possible to create an execution plan that consists of one
directed tree from this graph and the only feasible solution
is a set of directed rooted trees.
In order to ensure that there always exists a solution for

the directed maximum spanning tree problem, we use the
following technique. A dummy node nd is added to the
graph, which is directly connected with all other nodes. All
(dummy) edges that start from the dummy node have the
same weight, equal to a very small value ε (Figure 4(c)).
By using the dummy node as the root for the maximum
spanning tree problem, there always exists a directed rooted
tree that is a solution of the problem, since all nodes be-
come reachable from the root. Furthermore, a dummy edge
is selected only in the case where there exists no directed
spanning tree with fewer dummy edges. After the genera-
tion of the spanning tree (Figure 4(d)), the dummy node
is discarded from the execution plan. After the removal of
the dummy node, the execution plan consists of two trees
m3 and m1 → m2 (Figure 4(e)). Notice that the potential
pruning of m2 by data points in m3 cannot be established,
since the execution plan cannot maintain all dependencies,
due to the cycles and multiple incoming edges that exist
in the SD-graph. The definition of the maximum spanning
tree problem guarantees that the produced execution plan
has the highest pruning power as there exists no other tree-
based plan with higher value of pruning power. The usage of
the dummy node ensures that there always exists a spanning
tree and also solves the problem of finding an appropriate
node for the root of the spanning tree.

Edmonds algorithm. To derive the maximum directed
spanning tree of a graph G, we employ the algorithm of
Edmonds [6,8]. In the sequel, we briefly sketch Algorithm 2.
The algorithm takes as input a node vroot that is the root
of the spanning tree. In our case, the root of the spanning
tree is always the dummy node. First, for each node, except
for the root, the incoming edge with the maximum weight
is selected. Therefore, |N | − 1 edges are selected in set S,
as many as the edges of the spanning tree (lines 3-6). If
there does not exist a cycle, the algorithm terminates by
returning the spanning tree. Otherwise, the main idea of
the algorithm is to add those edges that lead to minimum
loss in terms of weights, compared to the weights of the edges
that form the cycle. Thus, for each cycle, an edge ekj of the
cycle pointing to a node vj is removed and replaced by an
unselected edge (eij ∈ E) pointing to vj (line 15). To this
end, all edges pointing to a node that belongs to the cycle
are examined and inserted in set M (lines 9-13). The edge
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Algorithm 2 GenerateExecutionPlan(G(V,E),vroot)

1: INPUT: SD-graph G(V, E), vroot the root.
2: OUTPUT: Spanning tree T (V, S)
3: for (∀vi ∈ V –{vroot}) do

4: e : max(wji), ∀j /* incoming maximum weighted edge */
5: S ← S ∪ e
6: end for

7: while (∃cycle in T (V, S)) do

8: wmax ← max weight of any edge in cycle
9: M ← ∅
10: for (∀eij ∈ E such that vj ∈ cycle and vi /∈ cycle) do

11: wij ← wij + (wmax − wkj), ekj ∈ cycle
12: M ← M ∪ eij

13: end for

14: e ← eij ∈ M with minimum loss in weight
15: update S by replacing ekj ∈ cycle with e
16: replace cycle in G with a pseudo-node
17: end while

18: return T (V, S)

in M that minimizes the loss in weights is selected (line 14),
which is the edge with maximum wij (as computed in line
11). Furthermore, in each iteration the cycle is replaced by a
pseudo-node (line 16) and the weights pointing to the cycle
are modified (line 11). This ensures that parts of the graph
G that have been mapped to a subtree by removing a cycle,
are not examined further. The algorithm terminates when
all cycles are eliminated. This algorithm is a polynomial-
time algorithm for finding a maximum directed spanning
tree. A more efficient implementation of the algorithm with
complexity O(|E|+ |N |log|N |) is presented in [11].
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Figure 5: Construction of the execution plan.

Example 1. Figure 5 depicts the process of generating
the execution plan that corresponds to the SD-graph of Fig-
ure 3(b). First, the dummy node is added to the SD-graph
(Figure 5(a)). Then, in the first iteration of Algorithm 2 the
edges depicted in Figure 5(b) are selected. Since there exists
a cycle, the edge pointing from m3 to m1 is replaced with the
edge from nd to m1 (Figure 5(c)). Afterwards, Algorithm 2
terminates, since there exists no other cycle. Finally, the
dummy node is removed leading to the execution plan de-
picted in Figure 5(d). Based on the definition of the maxi-
mum spanning tree for the given SD-graph, there exists no
other execution plan with higher sum of the edges’ weights
than the depicted execution plan. The node m1, which has
a high dependency to m2 and m3, is the root node of the
execution plan. On the other hand, the MBRs m2 and m3

are processed in parallel without any loss of pruning power
since they are incomparable. Nevertheless, in order to break
the cycles that exist in the SD-graph, points of m1 cannot be
pruned by points of m2 nor m3 based on the execution plan,
since m1 has a higher pruning power on m2 and m3.

7. MULTI-OBJECTIVEEXECUTIONPLANS
Depending on the characteristics or the current load of a

distributed system, the generation of execution plans that
satisfy additional objectives, apart from maximizing the to-
tal pruning power, is desirable. Such an objective is to re-
strict the number of hops that the query has to be forwarded,
so that the latency of the system is bounded and the overall
execution time is improved. Another objective is to share
the processing load fairly to the servers, by producing bal-
anced execution plans, so that bottlenecks and single points
of failure are avoided. In this section, we extend SkyPlan
to a generic framework that supports a variety of execution
plans in order to adapt to the requirements of different dis-
tributed systems.

7.1 k-Hop Execution Plan
A major concern in many distributed systems is bounding

the number of hops that are required for query processing.
This is particularly important for many applications that
require low latency during query processing. The number of
required hops is determined by the height of the execution
plan. To bound the number of hops, we define the k-hop
execution plan and show that the SkyPlan framework can
be adapted to support such plans efficiently.

Definition 8. k-hop execution plan. Given a con-
straint of k hops, the k-hop execution plan P̂k is the exe-
cution plan with height at most k (height(P̂k) ≤ k) that has

the maximum quality Q(P̂k) among all execution plans with
height at most k.

The problem of producing a k-hop execution plan is equiv-
alent to the hop-constrained maximum spanning tree problem
that produces the spanning tree with height at most k that
has the maximum sum of edges’ weights. This problem is
NP-Hard [12], therefore we employ a heuristic algorithm to
produce the k-hop execution plan efficiently. Specifically,
we adapt a solution proposed by Abdalla et al. [1] for the
diameter-constrained minimum spanning tree problem, since
the hop-constrained maximum spanning tree problem is a
simplification of the bounded-diameter minimum spanning
tree problem [15]. Notice that the dummy node added to
the SD-graph ensures that there always exists at least one
spanning tree with maximum height k (k ≥ 1).
The algorithm that builds the k-hop execution plan works

as follows. First, the maximum pruning execution plan is
created by applying Algorithm 2 on the SD-graph. If the
length of the longest path is at most k, then the generated
execution plan is also the k-hop execution plan and our algo-
rithm terminates. Otherwise, the generated execution plan
is modified by reducing the height of the tree iteratively until
its maximum path length is at most k. During each itera-
tion, the tree is traversed and the longest path of the tree
is detected. Then, the edge with minimum pruning power
(excluding dummy edges) in the path is replaced with an-
other edge of SD-graph that reduces the path in at least one
hop. Notice that in our case any edge of the plan can be
replaced by a dummy edge that reduces the length of the
path, because the dummy node is connected to all nodes. If
more than one edge that reduce the length of the path exist,
then the edge with the highest pruning power is selected. In
the next iteration, the current longest path is selected and
its length is reduced, until the length of the longest path is
at most k.
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7.2 Capacity Constrained Execution Plan
Another desirable feature of distributed query processing

is to balance the load fairly to all participating servers. Load
balancing is important in order to avoid bottlenecks in the
system when the query workload increases. To this end, we
define the capacity constrained execution plan that aims to
balance the load, and we describe the process of generating
such balanced plans by SkyPlan.

Definition 9. Capacity constrained execution plan.

Given a capacity b, an execution plan satisfies the capacity
constraint, if every subtree s of the root node has at most
b nodes (size(s) ≤ b). The capacity constrained execution

plan P̂b is the execution plan that has the maximum quality
Q(P̂b) among all execution plans that satisfy the capacity
constraint.

The problem of producing a capacity constrained execu-
tion plan is equivalent to the problem of computing a capac-
itated maximum spanning tree (CMST) [2]. In the general
case of CMST, both edges and nodes have weights and the
capacity of a subtree is the sum of the weights of all nodes
in the subtree. The CMST is the problem of finding the
spanning tree with maximum quality that satisfies the ca-
pacity constraint for all subtrees. One interesting instance
of the CMST problem is when all weights of the nodes are
set to one (except of the weight of the root node that is
set to zero). This problem is known as equal weight CMST
and it has also been shown to be NP-hard [2]. The equal
weight CMST problem can be employed for finding the ca-
pacity constrained execution plan. We employ an approxi-
mate algorithm [9] to obtain the execution plan efficiently.
The existence of the dummy node again guarantees that the
SD-graph can always produce such a plan.
The algorithm starts with generating the maximum span-

ning tree using Algorithm 2 and then checks if the produced
execution plan satisfies the capacity constraint. If the con-
straint is satisfied, no modification is needed and the algo-
rithm terminates. If not, the algorithm separates the nodes
ni of the generated execution plan in two sets A and B. The
set A contains all nodes that are in subtrees that satisfy the
capacity constraint, while the set B contains the remaining
nodes. The algorithm then selects the edge eij with smallest
weight such that nj ∈ B. This edge is replaced with another
edge elj of the SD-graph such that (a) nl ∈ A, and (b) the
replacement causes the reduction of the overall capacity of
the plan. The algorithm terminates when all subtrees have
at most b nodes.

8. DISTRIBUTED QUERY PROCESSING
Any server in the system can pose a skyline query and

the querying server is referred to as query originator Sorg.
The query execution starts with Sorg requesting in paral-
lel the MBRs of all servers Si. Each Si reports a set of
MBRs to Sorg, and while the MBRs from the servers Si

are received, Sorg builds the SD-graph G(N, E) using the
incremental construction algorithm (Algorithm 1). The in-
cremental property of the algorithm ensures that Sorg does
not need to wait until it receives all MBRs, but starts as soon
as it receives MBRs from any server Si. After receiving all
MBRs and building the SD-graph, an appropriate execution
plan is established as described in Sections 6 and 7.

Algorithm 3 QueryProcessing(Si,F ,P )

1: INPUT: Filter points F = {f1, . . . , fk},
Execution plan P .

2: OUTPUT: Local skyline
3: m ← P .getRootMBR()
4: sky ←computeSkyline(m)
5: P ′ ←refinePlan(P , sky)
6: F ′ ←refineFilters(F , sky)
7: S′ ← P ′.getNextServers()
8: for (∀Sj ∈ S′) do

9: skyj ←QueryProcessing(Sj , F ′,P ′
j)

10: end for

11: sky ←mergeSkyline(sky, skyj)
12: return sky

The distributed skyline query is processed based on the
execution plan. The query originator Sorg sends a skyline
query to the root of every directed tree in the execution plan.
The query sent to a server Si consists of the execution plan
and a set of k filter points F = {f1, . . . , fk}. Initially, the
set of filter points F is empty.

8.1 Query Execution and Plan Refinement
Query execution on a server Si is initiated when the exe-

cution of the plan reaches an MBR mj of Si. This initiates a
constrained skyline query on mj . Server Si takes as input a
set of filter points F and the execution plan4. Si produces as
output the local skyline points, computes a new set of filter
points and refines the execution plan, as will be explained
shortly. Then, Si forwards the query to the servers that are
next based on the refined execution plan.
Algorithm 3 provides the pseudocode for query process-

ing on server Si that received a skyline request. Initially,
Si processes locally the constrained skyline query (line 4)
defined by the MBR m that is the root of execution plan P

(line 3). The locally computed skyline set with constraint
m is denoted as sky. Then, Si refines the execution plan
(line 5), by removing MBRs that are dominated by one of
the local skyline points sky. Notice that Si also removes
the current MBR from the execution plan. In addition, Si

is able to refine the filter points F ′ (line 6), by taking into
account the local skyline points and the filter points in the
set F . Finally, Si determines the next set of servers S′

that should process the query based on the refined plan P ′

(line 7), and sends a skyline query to each of them (line 9),
passing as arguments the refined filter points F ′ and the re-
fined plan P ′. Each server Sj receives a different execution
plan P ′

j that corresponds to the part of the execution plan
that has as a root the MBR of the server Sj . Eventually,
Si gathers the local result sets of the servers Sj (that had
received the query through Si) and merges them by discard-
ing dominated points (line 11). Local processing on server
Si terminates by returning the local merged skyline points
to the previous server based on the execution plan.
The refinement of the execution plan P at server Si pro-

duces a new execution plan P ′ that does not contain the
nodes (representing MBRs) that are dominated by the local
skyline points of Si. In order to maintain the connectivity
of the execution plan, when a node is removed, its children
nodes substitute it in the plan. For an illustrative example
see Figure 6(a), which depicts an execution plan P (left)

4Henceforth, we will refer to the subtree of the execution
plan that Si receives as execution plan at Si.
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(a) Plan refinement example.
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(b) Filter points.

Figure 6: Plan refinement and filter points.

and a refined plan P ′ (middle). Assume that server Si de-
termines that m3 is dominated by local results and should
therefore be discarded. In the refined execution plan P ′, the
children MBRs of m3, namely m5 and m6, substitute m3.
Essentially, as the execution plan is forwarded to servers

during query processing, a distributed query execution mech-
anism is established, which is not coordinated rigidly by one
server. Instead, it is a loose approach in which each server is
assigned not only the task of local query processing, but also
the refinement of the execution plan and the continuation of
query processing.

8.2 Filter Point Selection and Refinement
SkyPlan discovers an appropriate execution order to exe-

cute the constrained skyline queries on servers Si by using
the pruning power. The filter points facilitate pruning of
local data points, hence the selection of the k filter points
F = {f1, . . . , fk} influences the overall performance. The
filter points are selected from the points that belong to local
result set and the previous filter points. We refer to these
points as candidate filter points.
In [7], the volume of the dominance area is used to esti-

mate the pruning power of a potential filter point. The main
shortcoming of this approach is that the volume of the dom-
inance area does not necessarily relate to the area within an
MBR that is dominated by a filter point. For example, in
Figure 6(b), even though filter point f has a high volume of
dominance area, the actual area dominated in m2 is much
smaller. Furthermore, for different MBRs, different filter
points may be appropriate. Again in Figure 6(b), point f is
not appropriate for m3 since it cannot dominate any point
enclosed in m3, although it prunes points in m2.
In order to alleviate such deficiencies, we propose two dif-

ferent methods for filter point selection that rely on the en-
closed dominance area of filter point f . In Figure 6(b), the
enclosed dominance area of filter point f on m2 is depicted
as the dashed area. Obviously, the enclosed dominance area
quantifies the pruning power of a candidate filter point in a
more accurate way by taking into account the MBRs of the
execution plan.
Our filter strategies discover the filter points that maxi-

mize the pruning power based on the queries that will be
processed in the next step. Therefore, given an execution
plan, the MBRs corresponding to the children of the current
node are taken into consideration. The first strategy selects
as refined filter points the set of k candidate points that
maximize the total enclosed dominance area for all children
MBRs. Therefore, for each candidate filter point fi, the vol-
ume of enclosed dominance area is computed for each child
MBR mj and the total volume is defined as the sum of the
volumes. Thus, the first strategy selects the same set of fil-
ter points for all children MBRs of the current node in the
execution plan. The second strategy refines the filter points

even further, by defining a different set Fi of filter points for
each child MBR. In this case, for each MBR mi the k filter
points with the highest volume of the enclosed dominance
area in mi are selected.

9. EXPERIMENTAL EVALUATION
In this section, we provide an experimental evaluation on

the performance of SkyPlan. SkyPlan was implemented
in Java, while the network aspects were simulated using
DesmoJ5, an event-based simulator framework. All experi-
ments were conducted on a PC equipped with a 3GHz Dual
Core AMD processor and 2GB RAM. The parameters and
values used in our experiments are outlined in Table 1 (the
values in bold are the default values).

Parameter Values

Dimensions 3, 4, 5, 6
Number of servers 1K, 2K, 3K, 4K
Cardinality of each server 1K, 2K, 3K, 4K
Data distributions RL, CL, UN, CO, AC
Network speed (Mbit/s) 0.05, 0.2, 0.8, 3.2, 12.8

Table 1: Experimental parameters and values.

We employed both synthetic and real datasets. For the
synthetic datasets we examined different distributions, namely
uniform (UN), clustered (CL), correlated (CO), and anti-
correlated (AC). For the clustered dataset (CL), each server
picks cluster centroids randomly and the points follow a
Gaussian distribution on each axis with variance 0.025, and a
mean equal to the corresponding coordinate of the centroid.
The correlated (CO) and anticorrelated (AC) datasets were
generated as described in [4]. For our experiments on syn-
thetic data, we report the average results over 20 different
instances of the data set. We generate the different instances
by keeping the parameters fixed and changing the seeds of
the random number generator. We adopt this approach in
order to factor out the effects of randomization. The real
dataset (RL) contains information about real estate all over
the United States (crawled from http://www.zillow.com/ ).
It is a 5-dimensional dataset containing more than 2M en-
tries with the following attributes: number of bathrooms,
number of bedrooms, living area, price and lot area. In all
cases, the dataset is horizontally partitioned evenly among
the servers. In our experiments, we set the maximum num-
ber of filter points k equal to 5, but k does not exceed the
10% of the local skyline points.
Our main metrics are: (i) the response time, which is

the total time until the final result is produced at Sorg (in-
cluding the time for generating the execution plan), and (ii)
the amount of transferred data. In addition, we measure
the Data Reduction Rate (DRR), which has been used in
both [7] and [14]. The DRR at a server Si is measured using
the following equation:

DRRi =
|SKYi| − |SKYi

R| − |Fi|

|SKYi|
where |SKYi| is the cardinality of the skyline of Si without
filtering, |SKYi

R| is the cardinality of the skyline of Si after
filtering, and |Fi| is the cardinality of the filter point set
received by Si. The DRR quantifies the gain in transferred
data that is obtained when filter points are used.
In Section 9.1, we compare SkyPlan against the state-of-

the-art algorithm (PaDSkyline [7]), which has two variants:
5http://desmoj.sourceforge.net/home.html
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Figure 7: Comparative performance of SkyPlan against PaDSkyline for uniform (UN) data distribution.
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Figure 8: Comparative performance of SkyPlan against PaDSkyline for clustered (CL) data distribution.

Linear and Tree. PaDSkyline-Tree constructs an execution
plan in which the order of accessing servers depends on the
order that the MBRs are received by Sorg. We implemented
PaDSkyline in the same framework as SkyPlan with recur-
sive data transfer according to the execution plan. In addi-
tion, we evaluate the different filter point strategies in Sec-
tion 9.2, and compare the performance of the multi-objective
execution plans to the maximum pruning execution plan in
Section 9.3. We emphasize that the maximum pruning exe-
cution plan is used as the default execution plan of SkyPlan
in our experimental evaluation.

9.1 Comparative Performance Study
In Figures 7, 8 and 9 we present a thorough compara-

tive study of SkyPlan against PaDSkyline for miscellaneous
setups and different data distributions. We assess the per-
formance of both approaches using the same filter strategy,
in order to compare the produced execution plans directly,
without interference from other factors. Notice that the y-
axis is in logarithmic scale in all these charts.
First, we assess the performance of SkyPlan for uniform

data distribution in Figure 7. In order to test the scalability
of SkyPlan, we vary the dimensionality (Figure 7(a)), the
number of points stored at each server (Figure 7(b)), and the
number of servers (Figure 7(c)). In Figure 7(a), we compare
the response time of SkyPlan against PaDSkyline. SkyPlan
is 2-3 orders of magnitude better than PaDSkyline-Tree, and
this gain is sustained with increased dimensionality. This
result verifies that the execution plan deployed by SkyPlan
improves the performance of query processing. The height of
the generated plans are 6-11 in all setups thus verifying that
it does not degenerate to the linear execution plan (figures
are omitted due to lack of space). As expected, the response
time required by PaDSkyline-Linear is even higher, which
deems it impractical for distributed settings. Hence, it is
omitted in the following charts.
Then, in Figure 7(b), we depict the number of total trans-

ferred data by SkyPlan compared to PaDSkyline-Tree for
varying the number of points per server. In all cases, Sky-

Plan transfers more than 1 order of magnitude fewer data.
This indicates that SkyPlan defines the execution order of
the queries in such a way that the amount of transferred
data is reduced. In Figure 7(c), we study the response time
for varying number of servers and we provide a cost break-
down analysis of the response time, in order to clearly il-
lustrate the effect of networking and processing cost. The
chart shows that the total gain in response time is both due
to the reduction of transferred data (networking cost) as
well as the reduction of processing time (plan generation,
skyline computation and result merging). Moreover, notice
that SkyPlan’s processing cost for the generation of the ex-
ecution plan is amortized over the cost of query execution.
We also investigate the performance of SkyPlan against both
variants of PaDSkyline for clustered data distribution in Fig-
ure 8. Again, we observe that SkyPlan shows consistently
better performance than PaDSkyline for all evaluated met-
rics and for different setups.
Furthermore, in Figure 9, we evaluate the response time

and total transferred data of SkyPlan and PaDSkyline for
different data distributions. This experiment includes addi-
tionally correlated, anti-correlated and real data. We notice
that SkyPlan achieves better processing and transfer time
(Figure 9(a)) regardless of the data distribution. Even in
the case of the demanding anti-correlated dataset, SkyPlan
is almost 2 orders of magnitude better than PaDSkyline.
In Figure 9(b), we evaluate the total amount of transferred
data. Again SkyPlan is much more efficient (usually more
than 1 order of magnitude) in transferred data in all se-
tups. In Figure 9(c), we vary the network speed, in order to
verify that the gain in transfer time of SkyPlan is sustained.
Obviously both approaches present almost constant process-
ing time for varying network speed. Also, as expected, the
transfer time is reduced with higher network speed for both
approaches. The important finding is that the improvement
of SkyPlan in transfer time is sustained both for lower and
higher transfer rates. This is a strong argument in favor of
SkyPlan, as its performance gains are attained irrespective
of the network speed.
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Figure 9: Comparative performance for different data distributions and network speed (UN distribution).
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(a) DRR for clustered data.
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(c) DRR for uniform data.

Figure 10: Data reduction rate (DRR) for different filter point strategies.
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Figure 11: Multi-objective execution plans for vary-
ing number of servers.

9.2 Effect of Filter Points
In the next series of experiments, we focus on the filter

strategy and compare the different strategies using Data
Reduction Rate (DRR). We also define a theoretical opti-
mal filter strategy that is an upper bound of DRR that can
be achieved. The optimal strategy assumes that the com-
plete skyline SKYi and the complete set of received filter
points Fi are sent to the next servers Sj . In this case the
filter points received by Sj are Fj = SKYi

⋃
Fi. By trans-

ferring all these points, we capture the maximum pruning
power possible. In order to define an optimal value for DRR,
instead of using the |Fj | during the DRR computation we
use min(k, |Fj |). Thus, the optimal approach transfers all
available points, while paying only for k points as a cost.
This optimal is not realistic nor feasible, but it still defines
an upper bound for the DRR, thus establishing a ceiling for
the performance of any algorithm.
Figure 10 presents the DRR for different filter strategies

and various settings. In Figure 10(a) and Figure 10(b) we
study the performance for clustered data distribution. Our
strategy that sends the same filter points to all servers is de-
noted as RefinedCom, while RefinedDif denotes the case that
different filter points are used for each server. We compare
to the maxSum strategy proposed in [7], here denoted as
Simple. Our strategies perform better than the competitor
approach by 15%-33%. It is noteworthy that the RefinedDif
strategy manages to significantly reduce the gap to optimal
and to achieve gains in transferred data that are close to
the theoretical optimal. Moreover, our strategies scale with
the number of servers (Figures 10(a)) and the cardinality on
each server (Figure 10(b)). In terms of comparison of our
strategies, we observe that RefinedDif outperforms Refined-
Com, because RefinedDif refines the filter points for each
MBR individually, thus achieving better pruning power. For
uniform data distribution, presented in Figure 10(c), all ap-
proaches are comparable which is expected as data objects
are uniformly distributed in the data space. However, all
filter strategies achieve high DRR values.

9.3 Multi-objective Execution Plans
In this section, we evaluate the performance of multi-

objective execution plans, namely the k-hop execution plan
(SkyPlan-KH ) and the capacity constrained execution plan
(SkyPlan-CC ), compared to the maximum pruning execu-
tion plan (SkyPlan-MP). The maximum number of hops for
the SkyPlan-KH is set to 3, while the maximum capacity
for SkyPlan-CC is set to 20. In Figure 11, we compare
the performance of the execution plans varying the num-
ber of servers for clustered data distribution. Figure 11(a)
depicts the total transferred data for the different execution
plans. SkyPlan-MP transfers fewer data than SkyPlan-KH
and Skyplan-CC because its execution plan has the highest
pruning power (Figure 11(b)). The high pruning power of
the maximum pruning execution plan leads to filter points
that prune more local skyline points. Consequently, the to-
tal transferred data is reduced. Figure 11(b) shows the total
pruning power, i.e., the sum of edges’ weights of the differ-
ent execution plans. Clearly, there is a small loss in pruning
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Figure 12: Multi-objective execution plans for vary-
ing cardinality.

power for the multi-objective query plans caused by the im-
posed constraints. On the other hand, SkyPlan-KH presents
the best performance in terms of response time, as depicted
in Figure 11(c). The main reason is that the maximum num-
ber of hops required to process a skyline query is bounded
by the fixed height of the execution plan. This leads to lower
latency, thus reducing the response time. SkyPlan-CC gen-
erates balanced execution plans, which indirectly leads to
plans with smaller height than SkyPlan-MP, because the ca-
pacity constrained execution plan avoids the existence of one
long path. Therefore, SkyPlan-CC outperforms SkyPlan-
MP in terms of response time for small number of servers,
but for higher number of servers (> 3000) SkyPlan-MP per-
forms better. The height of the different execution plans is
depicted in Figure 11(d).
Figure 12 presents a comparative performance of different

execution plans varying the number of points stored at each
server for clustered data distribution. Figure 12(a) depicts
the total amount of transferred data for each execution plan.
SkyPlan-MP transfers around 50% fewer data than the other
plans. This verifies that an execution plan with high prun-
ing power reduces the amount of transferred data. In Figure
12(b), we evaluate the response time of the different execu-
tion plans. SkyPlan-KH achieves the smallest response time
followed by Skyplan-CC. Nevertherless, the performance of
all approaches is not influenced by the cardinality of the
dataset, indicating the robustness of our framework when
the size of the dataset increases.

10. CONCLUSIONS
In this paper, we address the problem of deriving effi-

cient execution plans for distributed skyline computation.
A distributed skyline query can be processed by evaluating
multiple constrained skyline queries on different servers. We
propose a novel framework, called SkyPlan, that maps the
dependencies between the queries into a graph and generates
cost-aware execution plans. Our main goal is to maximize
the pruning power between consecutive queries, while at the
same time increase parallelism, when no significant depen-
dencies exist among queries. Moreover, SkyPlan supports
multi-objective execution plans when additional constraints
– other than maximizing the pruning power – need to be
enforced. Based on the derived execution plan, we propose
a distributed query execution mechanism that allows con-
tinuous refinement of the execution plan during in-network
query processing. In our experimental evaluation, we show
that SkyPlan outperforms the state-of-the-art algorithm.
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