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ABSTRACT
Removing redundancy in the data is an important problem as it
helps in resource and compute efficiency for downstream process-
ing of massive (10 million to 100 million records) datasets. In
application domains such as IR, stock markets, telecom and oth-
ers there is a strong need for real-time data redundancy removal of
enormous amounts of data flowing at the rate of 1Gb/s or higher.
We consider the problem of finding Range Motifs (clusters) over
records in a large dataset such that records within the same clus-
ter are approximately close to each other. This problem is closely
related to the approximate nearest neighbour search but is more
computationally expensive. Real-time scalable approximate Range
Motif discovery on massive datasets is a challenging problem. We
present the design of novel sequential and parallel approximate
Range Motif discovery and data de-duplication algorithms using
Bloom filters. We establish asymptotic upper bounds on the false
positive and false negative rates for our algorithm. Further, time
complexity analysis of our parallel algorithm on multi-core archi-
tectures has been presented. For 10 million records, our parallel
algorithm can perform approximate Range Motif discovery and
data de-duplication, on 4 sets (clusters), in 59s, on 16 core Intel
Xeon 5570 architecture. This gives a throughput of around 170K
records/s and around 700Mb/s (using records of size 4K bits). To
the best of our knowledge, this is the highest real-time through-
put for approximate Range Motif discovery and data redundancy
removal on such massive datasets.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [information filter-
ing]; H.3.4 [Information Storage and Retrieval]: Systems and
Software—performance evaluation

General Terms
Algorithm, Design, Performance

Keywords
Bloom Filter, Range Motif, Locality Sensitive Hash Function, Data
Redundancy Removal, , Multi-core Architecture
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1. INTRODUCTION
Data intensive computing has evolved into a central theme in re-
search community and industry. There has been a tremendous spurt
in the amount of data being generated across diverse application
domains such as IR, telecom (call data records), telescope imagery,
online transaction records, web pages, stock markets, medical records
(monitoring critical health conditions of patients), climate warn-
ing systems and others. Processing such enormous data is com-
putationally expensive. Removing redundancy in the data helps in
improving resource utilization and compute efficiency especially
in the context of stream data, which requires real-time process-
ing at 1 Gb/s or higher. We consider the problem of eliminat-
ing redundant records present in massive datasets in real-time. A
record may be considered redundant, if there exists another record
present in that data stream earlier, which matches approximately
(intuitively, only ǫ fraction of bits differ, for a small ǫ < 1) or
exactly with this record. This is also referred to as the approx-

imate data de-duplication (de-dup) problem. Approximate Data
redundancy removal (ADRR) and approximate de-duplication are
used interchangeably in this paper. We also solve the more generic
problem of real-time approximate Range Motif (ARM) discovery,
over massive datasets. Intuitively, Range Motif discovery involves
finding elements of a set that are closer to each other compared to
elements of other sets.

For many practical application domains it suffices to find an ap-
proximate match for the query objects rather than an exact match.
This observation underlies a large body of research in databases,
including using random sampling for histogram estimation [7] and
median approximation [25], using wavelets for selectivity estima-
tion [26] and approximate SVD [20]. When relevant answers are
much closer than the irrelevant ones, then the approximate algo-
rithm (with a suitable approximation) will return the same result as
the exact algorithm. The approximate algorithm can also provide
time-quality trade-off, using appropriate tuning of the parameters.

Real-time Approximate Range Motif discovery (ARM) and Ap-
proximate de-duplication (ADRR) over massive datasets (10M to
100M records) are computationally challenging problems. Straight-
forward approaches for approximate data redundancy removal (ADRR)
involve pair-wise string comparisons, leading to quadratic com-
plexity. This prohibits real-time redundancy removal over mas-
sive (10 to 100 million) number of records. ADRR can also be
performed using repeated calls to the approximate nearest neigh-
bour search (Approximate NNS) routine with each element in the
given database as a single query. In the NNS problem, one needs
to find K nearest neighbors to a given query object (record). For
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approximate NNS, techniques based on space partitioning such as
k-d trees, SR trees, etc., all degenerate to linear search, per record
to be matched, for large number of dimensions [33], and hence are
not scalable. However, locality sensitive hash (LSH) functions are
known to provide scalable solution [15] for ǫ-NNS (approximate
nearest neighbour search) problem. For this the known time com-
plexity [15] is O(d · n1/(1+ǫ)) , where d is the dimension of the
space of the objects in the database and n is the number of items
in the database. For ADRR, using LSH based repeated queries,
one for each element in the database, one gets the time complexity
for complete ADRR as, O(d · n(2+ǫ)/(1+ǫ)). This is still a com-
putationally expensive solution, for ǫ ∼ 0 and n in the range of
millions of objects (records). In order to handle this computational
challenge, we used locality sensitive hashing with Bloom filters to
achieve approximate de-duplication over the complete dataset in
O(d · n) time complexity.

Bloom filters [6] are space-efficient probabilistic data structures
that provide fast set membership queries but with a small false pos-
itive rate (FPR). When used with locality sensitive hash functions,
the resultant bloom filter is referred to as distance sensitive [21]
Bloom filter. The distance sensitive bloom filter has both a false
positive rate (FPR) and a false negative rate (FNR). The FPR and
FNR can be tuned based on the requirement of the underlying appli-
cation domain. While [21] deals with set membership detection for
queries with respect to a single set, we deal with complete approxi-
mate de-duplication (ADRR) of massive number of records/objects
in the database. Further, we consider the more general problem
of discovery of approximate Range Motifs (ARM) or clusters of
close points, develop asymptotic upper bounds of FPR and FNR
for r sets (clusters) and also demonstrate scalable performance over
multi-core architectures. For the ARM problem, we assume that the
maximum number of underlying sets in the database is a small con-
stant relative to the number of records/objects (n) in the database.

Further, in order to achieve high throughput (1 - 10 GB/s) approx-
imate Range Motif discovery (ARM) and approximate data redun-
dancy removal (ADRR), one needs an efficient parallel algorithm
with scalable performance. We present the design of a parallel
pipelined multi-threaded algorithm based on Bloom filters. Typi-
cal parallel Bloom filter approaches incur k cache-misses with ev-
ery record, where k is the number of hash functions computed per
record to check the bits of the Bloom filter array. This leads to poor
cache performance. Thread pipeline throughput is a critical issue
in parallel Bloom filter design, which if not addressed, can lead to
lower overall performance. Further, there is a trade-off between the
cache performance and memory efficiency [29] in the Bloom fil-
ter design. These issues make parallel real-time Range Motif dis-
covery and approximate data redundancy removal (de-duplication)
over massive datasets a very challenging problem.

In order to achieve high throughput and real-time performance, we
optimized our parallel ARM (ADRR) algorithm on parallel multi-
core architectures. Emerging and next generation many-core archi-
tectures have massive number of hardware threads and multiple lev-
els of cache hierarchy. In order to provide real-time ARM (ADRR),
we consider cache performance at multiple levels of cache hier-
archy as well as thread pipeline throughput with increasing num-
ber of threads. The parallel algorithm makes appropriate trade-offs
between cache locality and memory efficiency. We demonstrate
scalable performance on 10M records using multi-core Intel Xeon
5570 architecture with 16 cores and 64GB memory. This paper

makes the following contributions:

• We present a novel sequential algorithm for in-memory real-
time approximate Range Motif discovery (ARM) and ap-
proximate data redundancy removal (ADRR) over massive
datasets (10 million records). We prove asymptotic bounds
on the false positive rate and the false negative rate for ARM
and hence establish theoretical soundness of our algorithmic
approach.

• We present parallel pipelined algorithm for in-memory real-
time approximate Range Motif discovery (ARM) and ap-
proximate data redundancy removal (ADRR). Asymptotic par-
allel time complexity analysis proves scalable performance
of our parallel algorithm.

• We demonstrate real-time in-memory parallel ARM & ADRR
on 16-core Intel Xeon 5570 multi-core architectures. Our in-
memory algorithm, delivers a throughput of 170K records
per second (around 700 Mb/s for 512 byte records) for ap-
proximate de-duplication and Range Motif discovery (using
4 sets) over 10M records (with negligible false positive and
false negative rates). We also study the impact of variation
of parameters on false positive rate and false negative rate.
To the best of our knowledge, this is the best known through-
put for approximate Range Motif discovery and approximate
data redundancy removal for such large number of records.

2. PRELIMINARIES & BACKGROUND
A Bloom filter is a space-efficient probabilistic data structure that
is widely used for testing membership queries on a set [4]. The
efficiency is achieved at the expense of a small false positive rate,
where the Bloom filter may report falsely the presence of an ele-
ment (record) in the set. However, it does not report false negatives
i.e. elements which are actually present in the set are always rec-
ognized as being present. Representing a set of n elements by a
Bloom filter requires an array of m bits, initially all set to 0. To
insert an element β into the filter, one requires to set k bits (lo-
cations) in the Bloom filter array (BFA) denoted here by INSERT.
These k locations are obtained by the evaluation of k independent
hash functions h1(β), . . . , hk(β). We denote this indexing opera-
tion by HASH. If all the locations are already set to 1, then either
the element β is already a member of the set or a false positive. The
probability of the false positive rate [6] for a standard Bloom filter
is:

FPR ≈
(

1− e−kn/m
)k

(2.1)

Given n and m the optimal number of hash functions k = ln 2 ·
(m/n).

DEFINITION 1. A family H = h : U → V is (r1, r2, p1, p2)-
sensitive with respect to a metric space (U, d) if r1 < r2, p1 > p2,

and for any x, y ∈ U ,

• if d(x, y) ≤ r1 then Prh←H(h(x) = h(y)) ≥ p1, and

• if d(x, y) ≥ r2 then Prh←H(h(x) = h(y)) ≤ p2.

We say that any such family is a (U, d)-locality-sensitive hash (LSH)

family, omitting (U, d) when the meaning is clear.
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This definition can be generalized by the following distance-sensitive
hash family.

DEFINITION 2. Let (U, d) be a metric space, and let pL : R≥0 →
[1, 0] and pH : R≥0 → [1, 0] be non-increasing. A hash family

H : U → V is called (pL, pH)-distance sensitive (with respect to

(U, d)) if for all x, y ∈ U

pL(d(x, y)) ≤ Prh←H(h(x) = h(y)) ≤ pH(d(x, y)).

This generalizes Definition 1, which can be obtained as follows:

Set pL = p1, if r < r1 and 0 otherwise; and set pH = p2, if

r > r2 and 1 otherwise.

In order to determine whether an element u is close to any element
x of the set S, a distance-sensitive Bloom filter [21] can be used. To
answer the membership query for u to a given set S, the distance
sensitive Bloom filter is constructed in the following fashion. Let
H : U → V be a (pL, pH) distance sensitive hash function, fix
some S ⊂ U with n elements, and let A be an array consisting of k
disjoint m′-bit arrays, A[1, 1], ..., A[k,m′] (for a total of m = km′

bits) where k and m′ are parameters chosen heuristically for low
false-positive and false-negative error rates. To initialize the filter,
the hash functions: h1, h2, ..., hk ← H are chosen independently.
Then, all bits in A are set to zero. Finally, for x ∈ S and i ∈ [k],
A[i, gi(x)] = 1. In order to answer the query, whether u is close
to any x ∈ S, one checks the number (B(u)) of u’s hash locations
that are set to 1. It can be seen that B(u) = sumi∈[k]A[i, gi(u)].
Since, A[i, gi(u)] are independent and identically distributed bits,
B(u) ∼ Bin(k, qu) for some qu ∈ [0, 1] (Bin(t, r) denotes the
binomial distribution with t trials and common success probability
r). It can be shown that [21] for any u ∈ U , B(u) lies in the range:

B(u) ≥st Bin(k, pL(d(u, S)))

B(u) ≤st Bin(k, sumx∈SpH(d(x, u)) +
nk

m
· 1(V 6= [m′]))

(2.2)

The Range Motif [28] with range r is the maximal set of points
that have the property that the maximum distance between them is
less than 2r. Formally, for points in database, D, a Range Motif is
described as follows.

DEFINITION 3. S is a Range Motif with range r iff

∀Px, Py ∈ S, dist(Px, Py) ≤ 2r,

and ∀Pd ∈ (D − S)dist(Td, Ty) > 2r.

Range Motifs correspond to dense regions or high dimensional bumps

in the space of the points considered.

3. RELATED WORK
Data deduplication has been studied extensively in the context of
storage systems. Here data deduplication was primarily used to im-
prove the compression ratio rather than achieving high throughput.
Storage systems used file-level hashing to detect duplicate files [1,
32, 12], but such approaches achieved a low compression ratio. Se-
cure hashes were used by Venti [30] to remove duplicate fixed-size
data blocks. This work used a disk-based hash table divided into
buckets where a hash function is used to map chunk hashes to ap-
propriate buckets. However, it used an on-disk index cache which

had no locality and thus ended up with a throughput of less than 7
MB/sec. Dividing a file into content-based data segments and us-
ing such segments for deduplication was shown by [5]. The TAPER
system [19] was the first to use Bloom Filters to detect duplicates
instead of detecting a new segment. However these studies did not
investigate deduplication throughput issues. [34] addresses the is-
sue of throughput in deduplication systems. They used a combina-
tion of techniques such as Summary Vector (Bloom Filter) and Lo-

cality Preserved Caching to reduce disk index lookups and simulta-
neously to obtain throughput values over 210 MB/s. Recently, [23]
uses a combination of content-based chunking and sparse-indexing

to solve large scale disk based deduplication. They also claim to
use less RAM compared to all other existing approaches but don’t
focus on throughput issues. In this paper, we consider Range Mo-
tif discovery and appoximate de-duplication algorithm design to
achieve low false positive and false negative rates. Further, we per-
formed optimizations to deliver real-time throughput and scalable
performance.

Bloom filters have been proposed for various purposes. These in-
clude, counting Bloom filters [13], compressed Bloom filters [27],
hierarchical Bloom filters [35], space-code Bloom filters [22] and
spectral Bloom filters [31]. Counting Bloom filters replace an array
of bits with counters in order to count the number of items hashed
to a particular location. We design and analyze a variation of the
counting Bloom filter for approximate Range Motif discovery and
optimize its throughput.

Bloom filters have been broadly applied to network-related applica-
tions. Bloom filters are used to find heavy flows for stochastic fair
blue queue management scheme [14]. Bloom filters provide a use-
ful tool to assist network routing, such as packet classification [2],
per-flow state management and the longest prefix matching [11].
[21] presents the design of distance-sensitive Bloom filters using
LSH functions. It addresses the problem of solving membership
queries to a single set, using threshold based decision for deciding
closeness. We present a novel sequential algorithm that uses maxi-

mum count based decision, in Bloom filter based data structure with
LSH functions, to solve a more generic problem of real-time Range
Motif discovery and approximate de-duplication over the complete
dataset. While [21] presents results for only N = 10K records, we
demonstrate real-time (single pass over the data) scalable perfor-
mance along with extremely low FPR/FNR for N = 10M records.
We also prove theoretical upper bounds on the false positive and
false negative rates for the Range Motif discovery problem. [9]
deals with streaming data (limited buffer space and infinite stream
of data), where it is necessary to remove stale state using a novel
data structure referred to as Stable Bloom Filter (SBF). It considers
matching exact strings such as apple with itself, though approxi-
mately with FPR/FNR because SBF with limited buffer space is
used. We consider approximate matching of strings such as apple

with apxle which are close strings. For some applications in data
mining this is what is needed instead of looking for exactly the
same string. Due to this, we have to use LSH and further we use
bloom filter to make it fast and hence also do this work approxi-
mately because we get finite but small FPR/FNR due to LSH func-
tion usage with Bloom filters. We also consider the general ver-
sion of ADRR problem i.e. Approximate Motif Discovery (ARM)
(see Introduction section) which is not considered by [9]. We also
demonstrate the low FPR/FNR achieved by our algorithm and their
variation with the parameters such as the size of the bloom filter
used and the number of hash functions used. [16] considers the
problem of detecting duplicates in a single pass over a data stream
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of length n over an alphabet [m] where n > m. It provides the
first randomized algorithm for this problem that uses sub-linear
(O((logm)3)) space. This algorithm also solves the more general
problem of finding a positive frequency element in a stream given
by frequency updates where the sum of all frequencies is positive.

[10] presents the design of parallel bloom filters, implemented in
hardware, to match patterns in network packet payload. It demon-
strates matching 10, 000 strings on the network data at a line speed
of 2.4 Gbps using state-of-the-art FPGAs. We perform real-time
approximate Range Motif discovery and de-duplication on large
datasets (10M and higher) using a novel parallel bloom filter algo-
rithm, with performance optimizations for multi-core architectures.
[8] proposes a new design of Bloom filter in which every two mem-
ory addresses are squeezed into one I/O block of the main memory.
With the burst-type data I/O capability in the contemporary DRAM
design, the total number of memory I/Os involved in the member-
ship query is reduced to half. This leads to a reduction in query
delay and an improvement in overall performance, with a small in-
crement in the false positive rate. Our in-memory algorithm design
supports any desirable false positive rate and false negative rate
while providing scalable performance.

[18] proposes a new Bloom filter structure that can support the
representation of items with multiple attributes and allow the false
positive probability of the membership queries at a very low level.
The new structure is composed of parallel Bloom filters and a hash
table to support an accurate and efficient representation for query-
ing of items. [17] extends Bloomjoin, the state-of-the-art algorithm
for distributed joins, in order to minimize the network usage for the
query execution based on database statistics. [24] discusses how
Bloom filters can be used to speed up name to location resolution
process in large scale distributed systems. The approach presented
offers trade-offs between performance (the time taken to resolve an
object’s name to its location) and resource utilization (the amount
of physical memory to store location information and the number
of messages exchanged to obtain the object’s address). Our paral-
lel bloom filter design for multi-core architectures can be leveraged
to accelerate these network processing applications that use bloom
filters.

4. APPROXIMATE RANGE MOTIF DISCOV-

ERY ALGORITHM
The approximate Range Motif discovery and data redundancy re-
moval algorithm uses a novel data structure. The data structure
consists of k BFAs (Bloom Filter Arrays), where k is the number
of locality sensitive hash functions used by the algorithm. Each
BFA[q] (q ∈ [1..k]) is an array of structures. Each structure con-
sists of the following fields:

• Bloom Bit: One bit that represents whether any prior seen
record in the input set that bit. This bit is set to 1 in case any
prior record set it, else it has value 0.

• Set Membership Array: Array of r bits that represents the
membership of records to the k sets (Range Motifs) over
which the input data needs to be partitioned. When an input
record hashes (using qth LSH, q ∈ [1..k]) onto a particular
bit location, say i, in the BFA[q], and it is determined that this
record belongs to set, j, then the bit j in the Set Membership
Array at BFA[q][i], is set to 1.

Table 1: Notation for Time Complexity

Symbol Definition

N Total number of input records

D Number of records per batch

Tp Number of pre-processing threads

Tf Number of front-end threads

Tb Number of back-end threads

k Number of locality sensitive hash functions

X Size (length) of a record

X ′ Size of each input to secondary hash functions

l′ Number of bits for the output of one LSH function

m′ = 2l
′

Size of each partition of the Bloom Filter array

m = km′ Size of the total Bloom Filter array

r Number of sets / Range Motifs in the input data

c Collision array size (pre-processing (PP) phase)

Ke Number of hash indices in PP phase

The sequential algorithm for hashing the input records and assign-
ing them Range Motifs consists of two main modules: Frontend

Module and Backend Module. Each input record goes through both
the Frontend and the Backend Modules in sequence. In the Fron-
tend module, k locality sensitive hash functions are computed for
each record. For the qth (q ∈ [1..k]) locality sensitive hash func-
tion computation, l′ bits are chosen from locations independently
and randomly selected from the input record. Here, the size of

each BFA, m′ equals 2l
′

. The l′ bits thus obtained are concate-
nated to form an integer, i = hq . This integer is used to index into
BFA[q][i].

In the Backend Module, we decide to which this input record be-
longs, whether an existing populated set or a new set. Here, for
each of the k locations across the k BFAs, we count the number of
1s in each set. The set that has maximum number of 1s is referred
to as the winning set. In case there is a clear single winning set and
the number of 1s is not small, then the input record is assigned to
that set and the corresponding bits in the Set Membership Arrays
for that set are set to 1. In case there are multiple winner sets but
the number of 1s is small, then a new set is populated, and its cor-
respondng locations in the Set Membership Arrays are set to 1. The
last case, in which there are multiple winner sets, and the number
of 1s is not small, then we assign that record to any of these winner
sets randomly. We could also (though not necessary) use an addi-
tional threshold as an input data dependent parameter, to generate
more accurate Range Motifs.

4.1 Asymptotic Bounds on FPR & FNR
In this section, we present the asymptotic bounds on the false pos-
itive rate and the false negative rate achieved by our approximate
Range Motif discovery algorithm. The notation used is given in
Table 1.

The locality sensitive hash function H (section 2) is a (pL, pH)-

distance sensitive hash function for pL(z) = pH(z) = (1− z)l
′

.

THEOREM 4.1. The hash function, H , for any fixed u ∈ U ,

achieves the following bounds on the false positive rate and the

false negative rate.

(a) False Positive Rate(S∗), ≤ e−((l′ǫ−l′δ)2k/2

if, ∀j ∈ [0..(r − 2)] d(u, Sj) ≥ δ, and, d(u, Sr−1) ≤ ǫ.
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(b) False Positive Rate(S∗) ≤
∏

j=[0..(r−1)] e
−(l′ǫ−l′zj)

2k/2

if, d(u, Sj) = zj (general case)

(c) False Negative Rate(S∗) ≤ (r − 1) ∗ e−(l′ǫ−l′δ)2k/2

PROOF. The False Positive Rate is the probability that an ele-
ment u ∈ U is not close to any element x ∈ S0, i.e. d((u, S0) ≥ δ,
but, ∀j ∈ [1..r − 1]B(u, S0) > B(u, Sj).
First consider the case (a), where u is close to one Set, w.l.o.g. say
S(r−1), but u is far from other set, i.e.
∀j ∈ [0..(r − 2)] d(u, Sj) ≥ δ, and,
d(u, Sr−1) ≤ ǫ.

Let, Ej denote the even that B(u, S0) > B(u, Sj). The FPR is
given by the following equation.

FPR = Prob(B(u, S0) is maximum | d(u, S0) ≥ δ)

= Prob(E1 ∩ E2 ∩ ... ∩ E(r−1)))

=
∏

j=1..(r−1)

Prob(Ej) ∵ B(u, Sj)are all independent

= Prob(E(r−1)) ∗
∏

j=1..(r−2)

Prob(Ej))

≤ e(l
′ǫ−l′δ)2k/2 ∗ 1

(4.1)

The last inequality follows from Hoeffding inequality. To deter-
mine the bound on the difference between two Binomial variables,
Y ∼ Bin(k, q) and X ∼ Bin(k, p), we express it as the sum of k
differences between bernoulli random variables, Bp(i)−Bq(i).

Prob((Y −X) ≥ 0) = Prob((Y −X + k(p− q)) ≥ k(p− q))

≤ e−2k2(p−q)2/4k

≤ e−(p−q)2k/2

(4.2)

Using the above Hoeffding equality, we get:

∀j ∈ [0..r − 2]Prob(B(u, S0) > B(u, Sj))

≤ e−(pH−pH )2k/2 ≤ 1
(4.3)

Further, we get,

Prob(B(u, S0) > B(u, S(r − 1)))

≤ e−(pL−pH)2k/2

≤ e−((1−ǫ)l
′

−(1−δ)l
′

)2k/2

≤ e−(l′ǫ−l′δ)2k/2

(4.4)

Next, consider the general case, when, d(u, Sj) = zj ∈ [ǫ, δ]. In
this case, one can see that the False Positive Rate becomes:

FPR ≤
∏

j=1..(r−1)

e(l
′zj−l′ǫ)2k/2

(4.5)

False Negative rate for a Set, (w.l.o.g.) say S0, is given by:

FNR(S0) = Prob(B(u, S0)is not maximum)

= Prob(∃j ∈ [0..(r − 1)] : B(u, S0) ≤ B(u, Sj))

(4.6)

Now, let Ej denote the event that (B(u, S0) ≥ B(u, Sj)). So,

FNR(S0) = 1− Prob(B(u, S0)is maximum)

= 1− Prob(E1 ∩ E2 ∩ ... ∩ E(r − 1))

= 1− Prob(E1) ∗ Prob(E2) ∗ Prob(E(r − 1))

(4.7)

The last equality follows since Ej are mutually independent. Now,

Prob(B(u, S0) ≥ B(u, Sj)) = 1− Prob(B(u, S0) < B(u, Sj))

= 1− e−(l′ǫ−l′δ)2k/2

(∵ using Hoeffding bound)

(4.8)

Using this in equation (4.11), we get,

Prob(B(u, S0)is not maximum) =

1−
∏

j∈[1..(r−1)]

(1− e−(l′ǫ−l′δ)2k/2)

= 1− (1− e−(l′ǫ−l′δ)2k/2)(r−1)

(4.9)

Let, α = e−(l′ǫ−l′δ)2k/2, then,

Prob(B(u, S0)is not maximum) ≈ (r − 1) ∗ α (4.10)

In the above equation, we used the approximation:
(1− α)(r−1)

∼ 1− (r − 1) ∗ α+Ω(α2)..

Hence, we get that the false negative rate for set, S0 is given by:

FNR(S0) ≤ (r − 1) ∗ e−(l′ǫ−l′δ)2k/2
(4.11)

One can intuitively understand and also verify with equation (4.11)
that the false negative rate decreases with:

• Increase in k, the number of locality sensitive hash functions
used,

• Increase in difference between ǫ and δ, which represents how
separated the sets (range motifs) are in the underlying data.

• Decrease in the number of sets.

• Increase in the size of the sub-arrays of the Bloom filter,

m′ = 2l
′

.

5. PARALLEL BLOOM FILTER BASED AL-

GORITHM
We present here the design of our parallel Bloom filter (PBF) for
approximate Range Motif discovery over r-sets. For the purpose
of modularity, we process batches of size D instead of processing
the N elements, as a whole. The PBF has three modules (phases)
namely Pre-Processing (PP) module (phase), Front-End (FE) mod-
ule (phase) and Back-End (BE) module (phase). We assign Tp, Tf

and Tb threads to each of these modules respectively. These phases
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work in a pipelined fashion to deliver high performance on multi-
threaded multi-core architectures.

5.1 Pre-Processing Module
The PP module performs the task of detecting duplicates within the
batch being currently processed, by using hash tables in parallel.
To begin with, the PP module assigns to each record in the batch, a
unique identification number (UID) by using a cryptographic hash
function (such as MD5). This assignment is used to avoid costly
compare operations due to large size of the records. Next, the batch
is partitioned into Tp parts, each containing around (D/Tp) records
( [3]). This record based partitioning strategy (Fig. 1) gives equal
processing load to each of the Tp threads. Each of the Tp threads,
computes a hash function on the records assigned to it and stores
them in the hash table associated with it. Thereafter, hash index
based partitioning is used to merge the hash tables generated by
each thread (Fig. 1). During merge, the duplicate records are dis-
carded. Thus, at the end of the PP module, the batch being pro-
cessed consists of only unique records (within itself).

batch_(i)  of records

         Record based partitioning

         for parallel execution

Hash Index based partitioning

for parallel merge by PT1

Hash Index based partitioning

for parallel merge by PT2

         PT1 PT2record(2):xyz record(9):xyz

record(2):xyz

Merged HashTable for batch_(i)

Figure 1: Parallel Hash Table Merge (α = 2)

5.2 Frontend and Backend Modules
5.2.1 Frontend Module

The FE module is responsible for computing the k independent lo-
cality sensitive hash (LSH) functions for each record and storing
them in the queue assigned for each record. (Fig. 2). The LSH is
computed by selecting l′ bits of the input record at random and then
concatenating them to form the resulting integer. Each of these k
hash functions is used to access the k separate bloom filter sub-
arrays BFA).

5.2.2 Backend Module
The k BFA’s are assigned to Tb backend threads, such that each
thread gets roughly equal number of BFAs. Here, each thread de-
termines locally the count of the number of 1’s in each of the r-

sets. Thereafter, a reduction operation is performed to determine
the global count of the number of 1’s across all the sets. This is
achieved by either (a) by equally assigning r sets to Tb threads and
each backend thread determines the global count of the number of
the number of 1s for each set assigned to it; or, (b) by parallel re-
duction across the threads where each thread looks at all sets. The
choice of (a) vs. (b) depends upon whether r > Tb or otherwise
to deliver scalable performance in the backend phase. Finally, the
set with the highest count is declared as the winner set. Ties are
broken randomly. One can also use a threshold, t, to make sure
that in the initial phases of input data read, new sets get created.
Here, if there are multiple winner sets and all of their number of
1’s count is less that the threshold (t), then the record might belong
to a new set, hence a new set is created. The bit representation for
set membership per bit of the BFAs, is efficient so it can model
moderate number of sets, though it is assumed that the number of
sets, r, is much smaller than the total number of records, N , in the
input dataset. Finally, all unset bits corresponding to corresponding
k locations in the winner set are set in parallel by the Tb threads.

The process of assignment of a record to a set proceeds sequen-
tially, though the intermediate steps from hash function generation
till the determination of the winner set and setting the bits in that set
proceeds in parallel as described above. This entire process helps in
discovering Range Motifs over r-sets. When r = 1, this problem
reduces to that of approximate de-duplication over the complete
dataset.

We now explain why the PP module performs a local de-duplication
operation (within the records of each batch). Consider the set:
{a, b, d, b, f, h}, where the index of the records in the set starts
from 0. The record b at position 3 (denoted by b3) in this set is a
duplicate of b1. If the number of FE threads, Tf ≥ 2, then the
thread Tp0 computes k hashes of {a, b, d} and Tp1 does so for
{b, f, h}. If the order of k accesses by the two threads is inter-
leaved, then they might not be able to see the duplicate presence of
the record b. This might lead to false negative results, which is an
undesirable outcome. Also, if the computation for b3 is completed
and enqueued before that of b1, then the BE thread responsible for
record b will report b1 as the duplicate instead of b3. This might
not be desirable for some application domains, where all but the
first occurrence of a record need to be marked as duplicate and dis-
carded. In order to take care of both these issues, we need to have
local de-duplication (within the records of each batch) in the PP
module. However, we use this PP module whenever we attempt to
assign records to different sets in parallel.

The PP module does the pre-processing operation independent of
the remaining modules. After it completes operation on a batch,
it signals the corresponding FE module to start the HASH oper-
ation. As soon as, the FE module starts filling up the queues, it
sends a signal to the BE module to start the INSERT operations.
However, the FE module waits for the BE module to complete be-
fore it takes up the next batch. This pipelined parallelism results
in high throughput and scalable performance of our parallel ADRR
algorithm.

5.3 Asymptotic Parallel Time Complexity
This section presents asmyptotic analysis of the time complexity
of the parallel ADRR algorithm. For each of the three phases: (a)
Pre-Processing phase, (b) Frontend phase and (c) Backend phase,
the parallel time complexity is analyzed below.
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Figure 2: Parallel Bloom Filter Design (Tp = 4, Tf = 2, Tb =
4)

5.4 Pre-Processing Phase
In the PP (Pre-processing) phase, the MD5 computation requires
overall O(N · X) work. Using Tp threads, the time taken for
the MD5 computations over the complete dataset is O(N ·X/Tp).
Further, every batch (or block) of D records (each of size X ′), is
processed by Tp threads/cores, and checked for existence of exact
duplicates with that batch (block). Here, first the records/objects
within the block are partitioned equally to each thread/core for in-
sertion into a hash-table per core. The time for insertion into the
hash-table per thread/core is O(D ·X ′/Tp). Then, using hash key
based partitioning, each thread/core is assigned equal number of
keys in the hash-table. Each thread uses the same hash function
and key space and we assume that the records/objectsin each thread
get evenly distributed across the keys. Now, each thread gtes same
number of keys = Ke/Tp. Each thread looks at all the Tp hash
tables and goes over all the keys assigned to it in a sequential fash-
ion and checks for any duplicate records. hence, the time taken per
thread is O(clog(c) ·Ke/Tp+c ·Ke+D/Tp). Thus, the total time
for the Pre-processing phase is O(NX/Tp + (N/D) ∗ [clog(c) ·
Ke/Tp + cKe]).

5.5 Frontend Phase
The first step in the FE (Frontend) phase consists of computing k
Bloom filter locations for each record. Each of the k Bloom fil-
ter locations is computed using using l′ bits randomly chosen from
the record. Since the input records are equally partitioned across Tf

threads, therefore, the time complexity per block isO

(

D · k · l′

Tf

)

.

Hence, the overall complexity of the FE phase is O

(

kNl′

Tf

)

.

5.6 Backend Phase
In the BE (Backend) phase, for each block the following operations
happen sequentially per record. First, each thread works on k/Tb

sub-arrays and determines the number of 1s seen per set. Here, the
time taken by each thread is O(r · k/Tb). Then, the threads syn-
chronize and start reducing the number of 1s for each set, with each
working on (r/Tb) sets. Since, there are (k/Tb) values to reduce.
The time taken by each thread here is O(rk/T 2

b ). Finally, after
determination of the winner set, each thread works on (k/Tb) sub-
arrays and assigns 1 to appropriate locations in the sub-arrays. The
time taken per thread is O(k/Tb). Hence, the total time taken for all
records in a block is O(D(rk/Tb+rk/T 2

b )), which makes the total
time for Backend phase over the complete dataset as O(N∗rk/Tb).

Since the three phases work in a pipelined fashion, the overall time
of our parallel ADRR algorithm is bounded by the maximum of
time taken by PP, FE and BE phases. Hence, the overall execution
time for the parallel ADRR ((ADRR)algorithm is:

TADRR = max{Nrk/Tb,

Nkl′/Tf ,

(NX/Tp +N/D ∗ (clog(c)Ke/Tp + cKe))}

(5.1)

This model can be used to distribute the threads across the pipeline
phases to maximize ADRR throughput, by appropriately consider-
ing the constants in the equation, on various multi-core architec-
tures. The constants would reflect the impact of multi-level cache
hierarchy and memory bandwidth on multi-core performance.

6. RESULTS & ANALYSIS
We implemented our parallel ARM / ADRR algorithm using Posix
Threads / NPTL(Native Posix Thread Library) API. Random test
data, with variable number of records and record sizes, was used to
evaluate the performance and scalability of our algorithm. The ex-
periments were performed on 16-core Intel architecture, with four
Quad-core Xeon 5570 chips. Each core has a private L1 instruction
and a L1 data cache of size 32KB and a private 256KB L2 cache.
Four cores share 8MB L3 cache. The affinity of each thread was
set to a different core using the thread affinity API in NPTL. We
use the following notation in this section. X represents the size of
a record in bytes; D represents the size of a batch in number of
records (per batch in in-memory execution); N represents the to-
tal number of records over which to perform de-duplication; N0:
represents the total number of records used to determine the size of
the bloom filter array. Note, N ≤ N0 to maintain the false positive
rate (FPR); T : represents the total number of threads used.

6.1 FPR/FNR Analysis
In this section, we study the impact of variation of the parameters

l′ (m′ = 2l
′

is the size of each sub-array of the Bloom filter) and k

491



(number of hash functions) on the total FPR and FNR, as well as on
the maximum FPR over all sets and maximum FNR over all sets.
In the first configuration, (a), we chose N = 1M records, r = 4
sets, δ = 0.25, ǫ = 0.1, l = 512 bits and threshold t = ⌈k/2⌉. In
the second configuration, (b), we chose N = 1M records, r = 8
sets, δ = 0.125, ǫ = 0.05, l = 512 bits and threshold t = ⌈k/2⌉.

6.1.1 FPR / FNR variation with l’
Fig. 3 presents (for configuration (a)) the impact of variation in
l′ on the total FPR across all 4 sets and the maximum and min-
imum FPR over all sets. Here, k is kept constant as 8 locality
sensitive hash functions. The total FPR decreases exponentially

with increase in l′. As l′ (respectively m′ = 2l
′

bits) varies from
12 (m′ = 4096 bits) to 19 (m′ = 512K bits), the FPR total de-
creases from 19% to 0. The maximum FPR per set over all the
4 sets decreases from 15% to 0. The minimum FPR per set, over
all sets, remains low for all sets with a small increase in between
for l′ = 15. This can be intuitively explained by the fact that as the
number of bits in the Bloom filter (m = m′k) increases, the system
will consume more memory but the error rate should go down as
more bits are used to represent each set. This exponential decrease
of FPR with increase in l′ also agrees with the theoretical bound on
FPR given by Theorem 4.1.

Fig. 4 presents (for configuration (a)) the impact of variation in
l′ on the total FNR across all 4 sets and the maximum and min-
imum FNR over all sets. Here, k is kept constant as 8 locality
sensitive hash functions. The total FNR decreases exponentially

with increase in l′. As l′ (respectively m′ = 2l
′

bits) varies from
12 (m′ = 4096 bits) to 19 (m′ = 512K bits), the FNR total de-
creases from 19.48% to 0. The maximum FNR per set over all the
4 sets decreases from 19% to 0. The minimum FNR per set, over
all sets, remains low for all sets. This exponential decrease of FNR
with increase in l′ also agrees with the theoretical bound on FNR
given by Theorem 4.1. As explained above, with increase in Bloom
filter size, the memory consumed increases, but the error rate also
goes down due to more bits that represent each set.

Figure 3: FPR Variation with l’ (4 sets)

Figure 4: FNR Variation with l’ (4 sets)

Fig. 5 presents (for configuration (b)) the impact of variation in
l′ on the total FPR across all r = 8 sets and the maximum and
minimum FPR over all sets. Here, k is kept constant as 12 locality
sensitive hash functions. The total FPR decreases exponentially

with increase in l′. As l′ (respectively m′ = 2l
′

bits) varies from 16
(m′ = 4096 bits) to 26 (m′ = 64M bits), the FPR total decreases
from 25% to 0. The maximum FPR per set over all the 8 sets
decreases from 25% to 0. The minimum FPR per set, over all sets,
remains low for all sets. This can again be intuitively explained
by the fact that as the number of bits in the Bloom filter (m =
m′k) increases, the false positive rate goes down as more bits are
used to represent each set. This exponential decrease of FPR with
increase in l′ also agrees with the theoretical bound on FPR given
by Theorem 4.1.

Figure 5: FPR Variation with l’ (8 sets)

492



Fig. 6 presents (for configuration (b)) the impact of variation in
l′ on the total FNR across all r = 8 sets and the maximum and
minimum FNR over all sets. Here, k is kept constant as 12 locality
sensitive hash functions. The total FNR decreases exponentially

with increase in l′. As l′ (respectively m′ = 2l
′

bits) varies from 16
(m′ = 4096 bits) to 26 (m′ = 64M bits), the FNR total decreases
from 25% to 0. The maximum FNR per set over all the 8 sets
decreases from 11.4% to 0. The minimum FNR per set, over all
sets, remains low for all sets. This exponential decrease of FNR
with increase in l′ also agrees with the theoretical bound on FNR
given by Theorem 4.1.

Figure 6: FNR Variation with l’ (8 sets)

6.1.2 FPR / FNR variation with K
Fig. 7 presents the impact (for configuration (a)) of variation in k
(number of LSH functions) on the total FPR across all 4 sets and
the maximum and minimum FPR over all sets. Here, l′ is kept con-

stant as 12, i.e. m′ = 2l
′

= 4096 bits. The total FPR decreases
exponentially with increase in k. As k varies from 12 LSH func-
tions to 24 LSH functions, the total FPR decreases from 10% to 0.
The maximum FPR per set over all the 4 sets decreases from 4.8%
to 0. The minimum FPR per set, over all sets, remains low for all
sets with a small increase in between for k = 14. This can be
intuitively explained by the fact that as the number of LSH func-
tions used increases, the error rate should go down as more hash
functions are used to determine the membership of an element to
a set. This exponential decrease of FPR with increase in k also
agrees with the theoretical bound on FPR given by Theorem 4.1.
Note that the decrease of FPR with k is slower than w.r.t. l′ with
k constant, since l′ term comes with exponent of 2, while k comes
with exponent of 1.

Fig. 8 presents the impact (for configuration (a)) of variation in k
on the total FNR across all 4 sets and the maximum and minimum
FNR over all sets. Here, l′ is kept constant as 12. The total FNR
decreases exponentially with increase in k. As k varies from 12
to 24 LSH functions, the total FNR decreases from 10.5% to 0.
The maximum FNR per set over all the 4 sets decreases from 10%
to 0. The minimum FNR per set, over all sets, remains low for

all sets. This exponential decrease of FNR with increase in k also
agrees with the theoretical bound on FNR given by Theorem 4.1.
As explained above, with increase in the number of hash functions,
the memory consumed increases, and the error rate also goes down
as more LSH functions are used to determine the membership per
set.

Figure 7: FPR Variation with K (4 sets)

Figure 8: FNR Variation with K (4 sets)

Fig. 9 presents (for configuration (b)) the impact of variation in
k (number of LSH functions) on the total FPR across all r = 8
sets and the maximum and minimum FPR over all sets. Here, l′

is kept constant as 16, i.e. m′ = 2l
′

= 4096 bits. The total FPR
decreases exponentially with increase in k. As k varies from 14
LSH functions to 30 LSH functions, the total FPR decreases from
12.9% to 0. The maximum FPR per set over all the 8 sets decreases
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from 12.8% to 0. The minimum FPR per set, over all sets, remains
low for all sets. This exponential decrease of FPR with increase
in k also agrees with the theoretical bound on FPR given by Theo-
rem 4.1. Note that the decrease of FPR with k is slower than w.r.t.
l′ with k constant, since l′ term comes with exponent of 2, while k
comes with exponent of 1.

Fig. 10 presents (for configuration (b)) the impact of variation in
k on the total FNR across all r = 8 sets and the maximum and
minimum FNR over all sets. Here, l′ is kept constant as 16. The
total FNR decreases exponentially with increase in k. As k varies
from 14 to 30 LSH functions, the total FNR decreases from 12.9%
to 0. The maximum FNR per set over all the 8 sets decreases from
10.5% to 0. The minimum FNR per set, over all sets, remains low
for all sets. This exponential decrease of FNR with increase in
k also agrees with the theoretical bound on FNR given by Theo-
rem 4.1. As explained above, with increase in the number of hash
functions, the memory consumed increases, and the error rate also
goes down as more LSH functions are used to determine the mem-
bership per set.

Figure 9: FPR Variation with K (8 sets)

6.2 Performance Analysis
This section presents the strong scalability, weak scalability and
data scalability analysis for in-memory execution with constantX =
512 bytes, l′ = 25 bits and k = 32 hash functions. The FPR and
FNR observed in all these experiments were very close to zero (
< 1e − 5). The time measured for these experiments represents
the total time for approximate Range Motif discovery. In all these
experiments we obtained FPR (false positive rate) and FNR (false
negative rate) as zero as the parameters l′ and k were chosen to be
large.

6.2.1 Strong Scalability Analysis
For strong scalability, we keep both N and N0 constant, while in-
creasing the number of threads, T , from 4 to 16 (with increments
of 4 threads). Fig. 11 displays the variation of the total time (with
N = 10M , N0 = 10M ) with increasing number of threads. On
Intel Xeon 5570, The total time decreases from 129s for 4 threads

Figure 10: FNR Variation with K (8 sets)

to 59s for 16 threads. This gives a relative speedup of around 2.2×
with 4× increase in the number of threads (cores). This demon-
strates the strong scalability of our parallel algorithm. Further, the
Intel Xeon performance for T = 16 threads, gives the process-
ing rate (for all 10M record processing) as 10M/59 ≈ 170K
records/s and (170K ∗ 4096bits) ≈ 700Mb/s (since each record
is of the size 4096 bits).

Figure 11: Strong Scalability: Range Motif

6.2.2 Weak Scalability Analysis
For weak scalability, we increase N as well as N0, from 2M to
8M (in increments of 2M ) while maintaining N = N0. At the
same time, the number of threads, T , is also increased from 4 to
16 (in increments of 4 threads). Fig. 12 displays the variation of
the total time with the increasing number of threads and data. In
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case of Intel Xeon 5570, the total time increases from 25.76s for 4
threads to 47s for 16 threads. Thus, there is only 1.82× increase
of time with 4× increase in the number of threads and the number
of input objects/records. Thus our parallel algorithm demonstrates
weak scalability as well.

Figure 12: Weak Scalability: Range Motif

6.2.3 Data Scalability Analysis
For data scalability, N as well as N0, from 1M to 8M (increas-
ing by factor of 2×) while maintaining N = N0. The number of
threads, T , is kept constant at 16. Fig. 13 displays the variation of
the total time with the increasing input data (number of records).
The total time increases from 5.84s for 1M records to 47s for 8M
records. The time increases by 8× with 8× increase in data. Thus,
there is linear increase in time with increase in the input data. Thus
our parallel ADRR algorithm also demonstrates data scalability.

7. CONCLUSIONS & FUTURE WORK
Real-time approximate Range Motif discovery and data redundancy
removal for huge datasets (10s to 100s of millions of records) is
a very challenging problem. We have presented novel sequential
and parallel algorithms for real-time approximate Range Motif dis-
covery and data redundancy removal. Theoretical analysis for the
asymptotic upper bounds on the false positive and false negative
rates has been provided. Further, performance model for analysis of
overall ARM / ADRR throughput has been provided. We demon-
strated real-time approximate parallel data redundancy removal and
Range Motif discovery using a random dataset of 10M records. We
delivered a throughput of around 170K records/second or around
700Mb/s for records of size 4096 bits. In-depth study of the vari-
ation of FPR and FNR with changing design parameters has been
provided. To the best of our knowledge, this is the best known
throughput for approximate data redundancy removal. We hope our
research will lead to further advances into data redundancy removal
and motif discovery research. In future, we intend to investigate
more general locality sensitive hash functions as well as scalability
on many-core hybrid systems.
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