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ABSTRACT
Search engines are very effective in finding relevant pages for a
query. When a query is ambiguous, the search engine returns a mix
of results for different semantic interpretations of the query. This
paper proposes a method to extract concepts from the search results
of a query, and, treating each retrieved concept as a query, it recur-
sively constructs a network of concepts related to different semantic
interpretations of the query. By connecting networks of concepts
obtained from different queries, a large integrated network, called
Concept Relation Network (CRN), is formed. CRN is a seman-
tic network that can be automatically constructed and maintained
using existing search engines (e.g., Google) on the web. Taking
advantage of large scale commercial search engines, CRN is able
to derive a large number of highly coherent, highly related con-
cepts. We study several ways to weight the connections between
the concepts in CRN. By distinguishing between location concepts
and content concepts, we analyze the ambiguity of each type of
concepts individually. We also propose to extract concept clus-
ters from CRN based on different graph topology. We observe that
complete subgraphs in CRN can be used to effectively determine
semantically related concepts. Finally, we apply CRN to search
engine personalization. Experimental results show that the appli-
cation of CRN to a concept-based personalization algorithm signif-
icantly improves precision comparing to the baseline.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Search
and Retrieval—information filtering, relevance feedback, search
process

General Terms
Algorithms, Search Engines

Keywords
clickthrough data, concept, ontology, personalization, user profiles
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Search engines are effective tools for discovering knowledge from
the sea of information available on the Internet. However, while
search engines can return highly relevant results for a query, the
user has to digest the results page by page in order to understand
the concepts embedded in the results. In this paper, we propose to
a method to extract concepts from the results to build a Concept
Relation Network (CRN). By examining the CRN, users can eas-
ily understand the context of the query, i.e., the concepts that are
highly related to the query. For example, in Table 1 (Section 3.1),
the search engine returns a number of important concepts related to
the query “apple”. We can see that “apple” is related to products
from Apple Computer (“Apple Computer” and “Apple iPhone”),
places (“Apple Valley” and “Apple Orchard”), nickname of New
York City (“Big Apple”) and entertainment (which could refer to
music on Apple iTunes). It is hard to expect a user to be able
to identify so many diversified concepts related to a simple term
“apple”. Represented as a graph, CRN can quickly reveal the con-
text, or concept space, of a query without requiring the user to read
dozens of pages to understand the concepts coming from different
semantic interpretations of the query. CRN does not mean to re-
place the search results, but aims to provide a summary of concepts
and allows users to explore the concepts through their connections.

To construct CRN, a query is submitted to a search engine, impor-
tant terms are extracted from the snippets of the top results and are
taken as concepts related to the query. The extracted concepts are
highly related to the query because they co-exist in close proximity
of the query in the snippets. Once the concepts for the query are
extracted, they can serve as queries to retrieve another set of con-
cepts related to them, and so on. We propose to iterate the process
to obtain a network of related concepts around the topic(s) repre-
sented by the query. Networks of concepts obtained from different
queries can be connected and integrated into a large integrated net-
work, i.e., the Concept Relation Network (CRN). We introduce the
EntropySmooth link analysis algorithm to measure the degree of
ambiguity of the concepts in CRN. EntropySmooth uses entropy to
measure the amount of information associated with a concept and
hence the ambiguity of the concept. Further, it assumes that a con-
cept in CRN is ambiguous if it is associated with many other am-
biguous concepts. Based on this notion, Entropysmooth iteratively
smooths the entropies of the concepts in a way similar to PageRank
computation.

CRN can be used to improve the performance of search recom-
mender systems, such that related relevant information can be rec-
ommended to the user. Most existing recommender systems rely
on a semantic network (e.g., WordNet [7] and ConceptNet [16])
to discover related information. However, one major problem with
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existing semantic networks is that they require human efforts to
maintain the complex relationships in the network. On the other
hand, CRN can be automatically constructed and maintained by
mining concepts and concept relations from search results returned
from a search engine.

There are several advantages of using search engines for creating
CRN. First, since large-scale commercial search engines index a
large number of web pages and constantly keep them up-to-date,
concepts captured in CRN are expected to have a broad cover-
age, unrestricted vocabulary, and reflect the current interests writ-
ten about on the web. Second, most search engines are able to
retrieve highly relevant results for a query. Thus, by focusing on
the top results returned by the search engine, CRN is effective in
terms of the relevance of the discovered concepts and efficient in
terms of the processing time required to create and update the net-
work. Third, by analyzing many more results (100 snippets in our
experiments) than a typical human user is willing to examine man-
ually, CRN can discover many concepts that the user cannot find
by themselves. Last but not least, compared to the static nature of
traditional thesaurus or semantic networks, CRN can be updated
dynamically to reflect the drift of topics written about or conversed
on the web.

The main contributions of this paper can be summarized as follows:

• Most existing semantic networks, such as WordNet and Con-
ceptNet, require extra human efforts to maintain the complex
relationships in the networks. The proposed Concept Rela-
tion Network (CRN) can be automatically constructed and
maintained using existing search engines on the web and an-
alyzing the search results.

• One application of CRN is to discover semantically related
concepts in CRN by studying the connections of the con-
cepts in CRN. Our empirical results show that complete sub-
graphs can be used to effectively determine semantically re-
lated concepts around a topic.

• We introduce the idea of entropy to measure the diversity
of concepts in CRN and develop an iterative algorithm, En-
tropySmooth, to smooth the entropy values. Experiments
show that the smoothed entropy values are more robust than
the original entropies. Content entropy and location entropy
are distinguished and are individually smoothed with En-
tropySmooth. Analysis is conducted to evaluate the effec-
tiveness of EntropySmooth.

• Another application of CRN is to use the extracted concepts
together with the entropies to perform search engine per-
sonalization. Content preference and location preference are
trained separately. Content entropy and location entropy are
used as weights to combine the preference vectors to rerank
the search results to suit the users’ content and location in-
terests.

The rest of the paper is organized as follows. Related work is re-
viewed in Section 2. Section 3 shows the preliminaries of extract-
ing important concepts on the web using search engine. In Section
4, we introduce an iterative algorithm to construct a Concept Re-
lation Network (CRN) using search engine. Applications of CRN
and the corresponding experimental results are presented in Section
5. Finally, Section 6 concludes the paper.

2. RELATED WORK
In this section, we first review some of the existing semantic net-
works that commonly used in web search and recommender sys-
tems in Section 2.1. Then, we discuss how semantic network can
be applied in web search and recommender systems to improve re-
trieval effectiveness.

2.1 Semantic Network
In this paper, we aim at building a semantic network for web search
and recommender systems. A semantic network [19] is a graphic
notation to represent knowledge or to support automated systems
for reasoning about knowledge, in patterns of interconnected nodes
and arcs. Computer implementations of semantic networks were
first developed for artificial intelligence and machine translation,
but earlier versions have long been used in philosophy, psychology,
and linguistics. The most common kinds of semantic networks are
listed below.

1. Definitional networks emphasize the is–a relation between
a concept and a newly defined subtype. The resulting net-
work, also called a generalization hierarchy, supports the rule
of inheritance for copying properties defined for a supertype
to all of its subtypes.

2. Assertional networks are designed to assert propositions.
The information in an assertional network is assumed to be
contingently true, unless it is explicitly marked with a modal
operator. Some assertional networks have been proposed as
models of the conceptual structures underlying natural lan-
guage semantics.

3. Learning networks build or extend their representations by
acquiring knowledge from examples. The new knowledge
may change the old network by adding and deleting nodes
and arcs or by modifying numerical values, called weights,
associated with the nodes and arcs.

4. Implicational networks use implication as the primary re-
lation for connecting nodes. They may be used to represent
patterns of beliefs, causality, or inferences.

5. Executable networks include some mechanism, such as marker
passing or attached procedures, which can perform infer-
ences, pass messages, or search for patterns and associations.

6. Hybrid networks combine two or more of the previous tech-
niques.

In this paper, we focus on conceptual graphs, which are assertional
networks. One well-known example of semantic network is Word-
Net [7]. It is a lexical database which groups English words into
sets of synonyms called synsets. It provides a short description on
each synset, and maintains different semantic relationships among
the synsets. Another well-known semantic network is ConceptNet
[16], which organizes words into a relational ontology. More re-
cently, YAGO [21] was developed to extract facts from Wikipedia
and WordNet based on a combination of rule-based and heuris-
tic methods. Although existing semantic networks (e.g., Word-
Net, ConceptNet, and YAGO) contain rich lexical knowledge, most
of them require human efforts to maintain the complex relation-
ships in the semantic network. Thus, we propose Concept Relation
Network (CRN), which can be automatically constructed and self
maintained using existing search engines on the web.
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2.2 Applications of Semantic Network on Web
Search

Semantic network can be useful for Web search in many areas, e.g.,
query suggestion, search personalization, document summarization
and document classification, to recommend accurate and refined set
of search results to the users.

2.2.1 Query Suggestion
A major problem of current Web search is that search queries are
usually short and ambiguous, and thus are insufficient for specify-
ing precisely the user needs. To tackle this problem, most existing
commercial search engines provide query suggestions that are se-
mantically related to the submitted queries so that users can narrow
down their search with the provided suggestions. Semantic net-
work is used in some existing query suggestion methods to deter-
mine a set of semantically related terms for the suggestion. In [9], a
novel method for query suggestion using WordNet and TSN (Term
Semantic Network) was proposed. Based on term co-occurrence,
TSN is used as a filter and a supplement for WordNet in order to
obtain accurate suggestions. Later on, Hsu, et. al., [10] proposed
a novel approach that employs typical coarse-gained classification
problem solving to assign appropriate weights for the candidate
suggestions. In order to improve the performance, both WordNet
and ConceptNet are used in the classification process. More re-
cently, Leung, et. al. [15] proposed a method to provide person-
alized query suggestions according to a user’s conceptual prefer-
ences. Online techniques were developed to extract concepts from
the search results, and use the extracted concepts to identify sug-
gestions for the target query.

2.2.2 Search Personalization
Semantic network can also be used in search personalization to de-
termine a set of topics that a user may prefer in the search results
so that the relevant results can be promoted to the user in order to
improve retrieval effectiveness. In [18], a personalization method
based on the Magellan [2] hierarchy was proposed to improve re-
trieval effectiveness. In [22], a personalization method was pro-
posed to automatically extract a user’s interested topics from the
user’s personal documents (e.g. browsing histories and emails).
The extracted topics are then organized into a Hierarchical User
Profile (or simply called HUP in subsequent discussion), which is
then used to rank the search results according to the user’s topi-
cal needs. Later on, Stamou [20] proposed to employ an ontology
constructed from semantic network (such as WordNet) in order to
compute a user’s topical preferences from the user’s click history.
The semantic association between a query and the pages visited by
the user are examined in order to learn the topics that best describe
a user’s preferences. More recently, Leung, et. al., [14] proposed a
method to personalize the search results according to a user’s con-
ceptual preferences. Concepts (i.e., important terms) are first ex-
tracted from the search results of a query, and are organized into
a semantic ontology representing the possible topics related to the
query. Clickthrough data is then employed to determine the user’s
topical preference within the extracted ontology.

2.2.3 Document Classification
Semantic network can also be used to classify similar documents
into different topical categorizes such that a user can easily dis-
cover documents with the same topic. In [8], a hierarchical cluster-
ing engine (SnakeT) was proposed to organize search results into a
hierarchy of labeled folders. It is capable of organizing on-the-fly
the search results drawn from 16 commodity search engines into

a hierarchy of labeled folders. The hierarchy provides a better or-
ganized view of the search results so that users can easily discover
relevant search results by navigating through the hierarchy.

2.3 Other Applications of Semantic Network
Semantic network can be used on applications other than web search.
Most existing research focuses on using semantic network for doc-
ument summarization. In [13], PubCloud was proposed to sum-
marize the results from search queries over the PubMed database
for biomedical literature based on the Tag Cloud corpus, which is a
collection of tags representing important concepts in a large collec-
tion of information. Later on, Dredze, et. al., [6] proposed an un-
supervised learning framework to summarize important keywords
from users’ emails. Four different methods for selecting impor-
tant summary keywords based on latent semantic analysis and la-
tent Dirichlet allocation were proposed. In [4], faceted search was
introduced to support rich information discovery tasks across var-
ious facet hierarchies. More recently, Koutrika, et. al., proposed
a method to couple the flexibility of keyword search over struc-
tured data with the summarization and navigation capabilities of
tag clouds to help users access a database. The idea of using tag
clouds over structured data was employed to summarize the results
of keyword search over structured data. The tag cloud represents
significant words associated with the search results and can be used
to help users to refine their queries.

Apart from document summarization, semantic network can also
be used to build semantic search engine for knowledge discovery.
Using the YAGO semantic network as the knowledge base, a se-
mantic search engine, namely NAGA [12], was proposed to dis-
cover knowledge among the YAGO. Apart from the normal key-
word search for the casual users, NAGA also supports graph-based
queries with regular expressions for the expert users. It would
search for subgraphs in YAGO that match the query structure, and
display the results using different types of association rules (e.g.,
for the query “Albert Einstein”, we can get the result
“Albert Einstein→typeSwiss Physicists”).

3. PRELIMINARIES
To construct CRN, we first introduce a concept extraction method
to extract important concepts that are related to an input query us-
ing search engine. The idea of extracting meaningful concepts from
a search result list is not new. Previous projects [15] and [14] were
conducted to utilize the extracted concepts on personalized web
search. In Section 3.1, we first introduce our concept extraction
method to discover important topics that are related with an input
query using search engine. In Sections 3.1.1 and 3.1.2, we propose
two entropies, namely content and location entropies, to measure
the ambiguity of the content and location information retrieved us-
ing the input query.

3.1 Concept Extraction
We assume that if a keyword/phrase exists frequently in the web-
snippets1 arising from the query q, it represents an important con-
cept related to the query, as it co-exists in close proximity with the
query in the top documents. Thus, our content concept extraction
method first extracts all the keywords and phrases from the web-
snippets arising from q as the set of candidate concepts for q. Af-
ter obtaining a set of concepts (ci), the following support formula,
which is inspired by the well-known problem of finding frequent
1“Web-snippet" denotes the title, summary and URL of a Web page
returned by search engines.
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item sets in data mining [5], is employed to measure the interest-
ingness of a particular concept ci with respect to the query q:

threshold < support(ci) =
sf(ci)

n
· |ci| (1)

where sf is the snippet frequency of the concept, n is the total num-
ber of snippets and |ci| is the length of the concept. The threshold
is set to 0.03 after experimentation to include as many concepts as
possible into CRN, while eliminating concepts that are too rare to
be considered important.

Concept ci support(ci) Concept ci support(ci)
apple computer 0.06 big apple 0.08

apple iphone 0.03 entertainment 0.03
apple valley 0.03 orchard 0.04

Table 1: Some concepts extracted for the query “apple”

Table 1 shows an example set of concepts extracted for the query
“apple”. Concepts can belong to different types. In general, con-
cepts extracted from web-snippets are referred to as content con-
cepts. In addition, another important type of concepts is location
concepts, which are location information associated with the input
query. In this paper, a concept is considered a location concept
if it matches a geographic name contained in a pre-defined loca-
tion dictionary covering countries and geopolitical areas. Location
concepts are more stable over a long period of time and are very
often attached to search queries to confine the location scope of
the result. The location dictionary used in CRN contains a total of
17, 000 city, province, region, and country names from National
Geospatial [1] and World Gazetteer [3]. Extracted concepts are
matched with the location dictionary. Each match will make the
concept a location concept for the input query. The relationships
between different locations are also modeled in the location dictio-
nary. Specifically, all cities are organized as children under their
provinces, all the provinces are organized as children under their
regions, and all the regions are organized as children under their
countries. The statistics of the location dictionary are provided in
Table 2.

No. of Countries 7 Total No. of Nodes 16899
No. of Regions 190 Country-Region Edges 190
No. of Provinces 6699 Region-Province Edges 1959
No. of Towns 10003 Province-City Edges 14897

Table 2: Statistics of the location concepts

3.1.1 Content Entropy
In information theory, entropy indicates the uncertainty associated
with the information content of a message from the receiver’s point
of view. In the context of search engine, entropy can be employed
in a similar manner to denote the uncertainty associated with the
information content of the search results from the user’s point of
view. The higher the entropy of a query, the more ambiguous the
query is. Some queries may induce the extraction of a larger num-
ber of content concepts. For example, queries such as “mp3” may
retrieve search results ranging from “blog”, “band”, “software”,
”download” to “ipod”. This shows that “mp3” is an ambiguous
query because it is associated with many different concepts. On
the other hand, the query “uno” returns search results about a card
game, and thus there is little diversity observed on the content con-
cepts extracted from the search results. In our experiment, only 18
content concepts were extracted for the query “uno”, but 49 content
concepts were extracted for the query “mp3”.

In the context of this paper, there is no preference of a high entropy
value to a low one, or vice versa. It is simply a measure of infor-
mation content. The following entropy formula is used to compute
the content entropies HC(q) of the content concept retrieved for q.

HC(q) = −
k∑

i=1

p(ci) log2 p(ci) (2)

where k is the number of content concepts C = {c1, c2, ..., ck}
extracted, |ci| is the number of search results containing the content
concept ci, |C| = |c1|+ |c2|+ ... + |ck|, p(ci) = |ci|

|C|

Concept q HC(q) Concept q HC(q)
smartone 5.2149 asp.net 7.4365
uno 5.9353 mp3 7.2642
olympic 6.3807 nokia 7.2015
ibm 6.4748 sport news 7.0305
canon 6.5725 xml 7.0142

Table 3: Content entropies obtained from the sample queries

Content entropies obtained from the sample queries are presented
in Table 3. Note that some queries receive content entropies as high
as 8.38, while others receive content entropies as low as 5.21. As
shown in the table, the previously mentioned query “uno” receives
a low HC(q) of 5.94. On the other hand, “mp3” receives a high
HC(q) of 7.27.

3.1.2 Location Entropy
Similar to the content entropy, we can also compute the location
entropy of an input query. It is computed similar to the content
entropy, but considering the location concepts only.

HL(q) = −
m∑

i=1

p(li) log p(li) (3)

where m is the number of location concepts L = {l1, l2, ..., lm}
extracted, |li| is the number of search results containing the location
concept li, |L| = |l1|+ |l2|+ ... + |lm|, and p(li) = |li|

|L| .

Concept q HL(q) Concept q HL(q)
mp3 6.4650 ski 10.0761
shareware 6.5635 coca cola bear 9.5808
java programming 7.3976 apartment 9.4958
intel dual core 7.5304 oversea study 9.3729
window vista 7.5432 restaurant 9.2621

Table 4: Location entropies obtained from the sample queries

Location entropies obtained from the sample queries vary more
than content entropies do. Some queries receive location entropies
as high as 10.08 and as low as 6.47. For example, the query “apart-
ment” receives a high HL(q) of 9.50, because the query returns
pages that are associated with many different locations, specifically,
a total of 58 locations concepts. On the other hand, queries such as
“window vista” and “shareware” retrieve mainly different content
information from tips and skills to online download and support,
and are associated with only a few locations. Thus, they receive
low HL(q).

4. CONCEPT RELATION NETWORK
To construct CRN, we start with a query2 to extract concepts from
the the top web-snippets. A concept extracted from the query can
2Since a query represents a concept, we refer to a query as a query
concept or simple concept when no ambiguity arise.
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also serve as a query to further retrieve another set of concepts re-
lated to the query. The process is iterated to create CRN. CRN is
constructed offline using a backend search engine. After it is con-
structed, it can be updated dynamically and used in various appli-
cations such as query suggestion, search personalization, document
summarization and document classification (see Section 2.2). We
propose a link analysis algorithm, EntropySmooth, to smooth the
entropy values on CRN. Our algorithm assumes that a concept in
CRN is ambiguous if it retrieves many other ambiguous concepts.
In Section 4.1, we first introduce our iterative algorithm for con-
structing CRN. Then, we introduce in Section 4.2 EntropySmooth
to smooth the content and location entropies on the concepts.

4.1 Relation Network Construction
Algorithm 1 shows the pseudo code of how each query is pro-
cessed. Similar to the construction of hierarchical user profiles in
[22], we employ the following formula to compute the parent–child
scores from a query concept to its child nodes. Basically, it com-
putes the probability of a retrieved content concept given the query
concept:

Algorithm 1 processNode(query)
1: results ← search(query)
2: concepts ← extractConcepts(results)
3: query.ChildNodes ← concepts
4: query.HC ← calculateHC (concepts)
5: for all url in results.URLs do
6: moreWebpages.add(get_http(url))
7: end for
8: concepts.add(extractConcepts(moreWebpages))
9: query.HL ← calculateHL(concepts)

Parent–Child Score of q to ci = p(ci|q) =
support(ci)

support(q)
(4)

Figure 1: A sample branch showing c2, c3 and c4 as the child
nodes of c1.

Figure 1 illustrates the simplicity of this conceptual graph design.
What we need to store are the concept nodes and the weighted di-
rected links between them. Note that the query is not necessar-
ily the parent of the retrieved concepts (e.g., the query “iphone”
may retrieve “apple”, which is the actual parent of “iphone”). The
parent-child relationship is computed over the query and the con-
cept using Equation (4).

The CRN construction process is illustrated in Algorithm 2. The
input to Algorithm 2 is a queue containing the initial queries. In our
experiments, we employ a set of 250 initial queries to make sure
that the constructed CRN can cover topics of different categories
on the Web. A termination condition is needed to limit the size of
CRN. In our experiments, we terminate the iteration at level 2.

After the graph building step, we will obtain a huge interconnected
graph instead of a tree, because a concept may retrieve a concept
that has already been retrieved in a previous iteration or by a previ-
ous query. Hence, a concept can point back to any of the existing

Algorithm 2 buildGraph(queue)
1: while queue.NotEmpty do
2: if terminationCondition = TRUE then
3: return
4: end if
5: query ← queue.FirstElement
6: processNode(query)
7: CRN.add(query)
8: for child in query.ChildNodes do
9: if CRN.contain(child) or queue.contain(child) then

10: continue
11: else
12: queue.add(child)
13: end if
14: end for
15: remove query from queue
16: end while

concepts in the graph. Figure 2 shows a small fraction of the CRN
graph around “research”. The concepts’ links are not fully repre-
sented, but we can still observe that there are a diversity of ways to
connect the nodes. In general, level i has more concepts than level
i− 1.

Figure 2: A fraction of the CRN graph

4.2 EntropySmooth
The initial entropies obtained from Equations (2) and (3) only take
into account the number of retrieved concepts and their occurrence
probabilities. However, we believe that if a concept retrieves am-
biguous concepts, the concept itself should also be ambiguous. On
the other hand, if a concept retrieves non-ambiguous concepts, the
concept itself should also be non-ambiguous. We call this the Am-
biguity Proposition. In other words, the ambiguity of a concept de-
pends not only on the counts of the retrieved concepts, as the orig-
inal entropy formulas imply, but on the ambiguity of the retrieved
concepts. Thus, the ambiguity of a concept should be defined recur-
sively. Thus, we propose an iterative algorithm, EntropySmooth,
which is similar to PageRank [17] to smooth the initial entropy val-
ues. The PageRank algorithm assumes that a node will get a high
PageRank, if it has pages with high PageRank pointing to it. The
assumption is similar to the Ambiguity Proposition that we have
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defined above. Our model focuses on outgoing links (an ambigu-
ous concept can retrieve many other ambiguous concepts), while
the PageRank model focuses on incoming links (an authority page
is pointed at by many other authority pages).

Figure 1 shows an example of CRN with concept c1 as the parent
of the concepts c2, c3, and c4. According to the Ambiguity propo-
sition, c1 should have high entropy value if the concepts it retrieves
(i.e. c2, c3, and c4) also have high entropy values. Assume that the
initial entropies of c1, c2, c3, and c4 computed using Equation (2)
are HC(c1), HC(c2), HC(c3), and HC(c4). In order to propagate
the entropies of c2, c3, and c4 to the entropy of c1, the following
equation is used to compute the EntropyScore of c1 (CS(c1)) us-
ing the initial entropies of c1, c2, c3, and c4 (i.e. HC(c1), HC(c2),
HC(c3), and HC(c4)).

CS(c1) = (1− dC)HC(c1) + dC(HC(c2) · pr(c2|c1)

+HC(c3) · pr(c3|c1) + HC(c4) · pr(c4|c1))
(5)

where pr(c2|c1), pr(c3|c1), and pr(c4|c1) are the probabilities of
c2, c3, and c4 existing as concepts in the search results of c1. For
example, if c2 and c3 each appears once while c4 appears twice
in the search results of c1, then pr(c2|c1) = 1

1+1+2
= 0.25,

pr(c3|c1) = 1
1+1+2

= 0.25, and pr(c4|c1) = 2
1+1+2

= 0.5,
which sum up to 1 (pr(c2|c1) + pr(c3|c1) + pr(c4|c1)) = 1.
HC(ci) is the initial entropy of a concept ci computed using Equa-
tion (2). dC is a damping factor to balance the load between the
initial entropy HC(c1) of c1 and the initial entropies, HC(c2),
HC(c3), and HC(c4), propagated from c2, c3, and c4.

4.2.1 Content EntropyScore CS(c)
Assume that there are n concepts in the CRN, with HC as a vec-
tor containing the initial content entropies (as discussed in Section
3.1.1) of the concepts as follows.

HC =




HC(c1)
HC(c2)
HC(c3)

...
HC(cn)




Let A be a matrix containing the relationships between two con-
cepts ci and cj as pr(cj |ci) as follows (if there is an edge from ci

to cj in the CRN, we will fill the item in the ith row and jth column
with pr(cj |ci) in the matrix A).

A =




0 pr(c2|c1) pr(c3|c1) ... pr(cn|c1)
pr(c1|c2) 0 pr(c3|c2) ... pr(cn|c2)
pr(c1|c3) pr(c2|c3) 0 ... pr(cn|c3)

... ... ... ... ...
pr(c1|cn) pr(c2|cn) pr(c3|cn) ... 0




where the conditional probabilities of each row sum up to 1
(
∑n

j=1 pr(cj|ci) = 1).

Given the above initial entropy vector HC and relationship matrix
A, and a damping factor dC , the content EntropyScore CS vector
of the concepts is iteratively updated using the following equation:

CSi+1 = (1− dC)HC + dC(A · CSi) (6)

where the initial entropies in HC are used as the initial content
EntropyScore CS0 (CS0 = HC ). The resulting content Entropy
Scores in Equation (6) determine the ambiguity of the concepts in
the CRN. If a concept ci is ambiguous (i.e. ci can have multiple
meanings), then CS(ci) should be high, and vice versa.

4.2.2 Location EntropyScore LS(c)
As discussed in Section 3.1.2, concepts can also be associated with
an initial location entropy HL(ci) representing the diversity of lo-
cation information associated with the search results. We can also
use the Ambiguity proposition and assume that if a concept is lo-
cation ambiguous, it can retrieve many other location ambiguous
concepts. Thus, given the initial location entropy vector HL, the
relationship matrix A, and a location damping factor dL, we can
compute the location EntropyScore LS(c) vector of the concepts
in a CRN iteratively as follows.

LSi+1 = (1− dL)HL + dL(A · LSi) (7)

where the initial location entropies in HL are used as the initial
location EntropyScore LS0 (LS0 = HL), and HL is an initial
location entropy vector as follows.

HL =




HL(c1)
HL(c2)
HL(c3)

...
HL(cn)




The resulting location Entropy Scores in Equation (7) determine
the location ambiguity of the concepts in the CRN. If a concept ci

is location ambiguous (i.e. ci can refer to multiple locations), then
LS(ci) should be high, and vice versa.

5. EXPERIMENTAL RESULTS
In this section, we evaluate CRN using Google as the backend
search engine. In Section 5.1, we present the setup for CRN con-
struction. In Section 5.2, we evaluate the accuracy of semantically
related concepts mined from CRN. We then evaluate the Entropy
Scores obtained from CRN in Sections 5.3, 5.4, and 5.5. Finally,
we apply CRN personalized web search, and the performance is
evaluated in Section 5.6.

5.1 Experimental Setup
In the experiments, 250 concepts are randomly selected as initial
queries (i.e., concepts in level 0) from 15 different categories as
shown in Table 5 to construct the CRN using Algorithm 2 with
Google as the backend search engine for the construction. A Pen-
tium machine with 2 GB of memory was employed to construct
CRN as described in Section 4.1. The concept extraction process
is performed offline, and it takes approximately 1 second for each
query and approximately 12 hours for all of the 42477 concepts in
the CRN. Figure 3 shows the relationship between the number of
extracted concepts and the CRN construction time.

The initial queries are selected from different categories in order to
make sure that they are succinct and of interest to a large number of
users. It is easy to imagine that the resultant CRN structure can be
a tree with great breadth. However, the statistics in Table 6 shows
that many higher level nodes point back to previous nodes, meaning
that many concepts retrieved in a later iteration had already been
retrieved in an earlier iteration. Thus, we obtain CRN as a large
interconnected graph rather than a tree. Table 6 also summarizes
the number of nodes in each level and the distribution of the links
between the nodes at different levels. We observe that the number
of nodes increases rapidly as the number of level increases, and the
level-1 nodes are referred to by most other concepts.

In our previous work [15] and [14], we believe that level 1 is al-
ready the “golden level” of all concepts, and subsequently extracted
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1 Amusement Parks 6 Dining 11 Photography
2 Animal 7 Hotels 12 Sports
3 Charity 8 Technologies 13 Travelling
4 Courses 9 Locations 14 Video Games
5 Programming 10 Movies 15 Weather

Table 5: Topical categories of the test queries

# level 0 nodes 228 # level 0 → 0 links 350
# level 0 → level 1 links 15735

# level 1 nodes 4575 # level 1 → 0 links 6185
# level 1 → 1 links 263931
# level 1 → 2 links 76502

# level 2 nodes 37674 # level 2 → 0 links 42340
# level 2 → 1 links 2062060
# level 2 → 2 links 532071

Table 6: Statistics of CRN

Avg. Out-links Avg. In-links
Level 0 nodes 71 214
Level 1 nodes 76 512
Level 2 nodes 70 16

Table 7: Analysis of the statistics concerning CRN

Figure 3: CRN construction time vs no. of extracted concepts

concepts will repeat the level-1 concepts or point to them, produc-
ing very few new concepts in level 2. Thus, if we want to infer the
meaning of a query, it is enough to simply examine the conceptual
space that is close to the query (i.e., the level-1 concepts). How-
ever, Table 7 shows that we can still obtain a significant number of
concepts at level 2 (37674 concepts at level 2). This shows that if
we want to interpret the meaning of a query, we should at least ex-
amine both level-1 (i.e., the closest concepts) and level-2 (i.e., the
2nd closest concepts) concepts of the query.

5.2 Semantically Related Concepts in CRN
As discussed in Section 2, semantic network can be used to deter-
mine a set of semantically related terms for query suggestions on
search engine. Concepts that are semantically related to one an-
other can be easily discovered by finding complete subgraphs in
CRN. Complete subgraphs are smaller parts of the graph, in which
each node within the subgraph is linked to every other node in the
same subgraph. With directed links, the requirement is stricter,
where each pair of nodes must point to each other. Figure 4 il-
lustrates complete subgraphs with sizes 2, 3, and 4. Bidirectional
links are highlighted in black. The grey links and nodes are the
other links outside the complete subgraphs.

Figure 4: An illustration of complete subgraphs with different
sizes

CRN is a graph connecting different related concepts together. Thus,
it is possible to study the relations between concepts by studying
the complete subgraphs of CRN. A complete–link single–pass clus-
tering algorithm is run to obtain a set of complete subgraphs. The
similarity between two concepts is defined to be the sum of the
parent-child scores (as defined in Equation 4) between the two con-
cepts in both directions. The concepts are input into the algorithm
one by one in the order of their first retrieval, i.e. first-in-first-out, in
CRN. Each concept is then checked against the existing complete
subgraphs. It will join the first subgraph that it can form bidirec-
tional links with every other concept in the subgraph. If it cannot
join any existing complete subgraphs, it is left as a new complete
subgraph with size 1 by itself.

No. of Subgraphs 1401
Maximum Subgraph Size 7
# Size 3 Subgraph 1156
# Size 4 Subgraph 203
# Size 5 Subgraph 33
# Size 6 Subgraph 6
# Size 7 Subgraph 3
Average Subgraph Size 3.20
Average coocurrence score 0.4283

Table 8: Statistics of the complete subgraphs

Figure 5: Distribution of complete subgraphs

According to Table 8, there are 1401 complete subgraphs extracted.
Complete subgraphs of size 2 are not considered, because there are
too many of them. The distribution of complete subgraphs with
different sizes is shown in Table 5. The average subgraph size is
close to 3, and the maximum size is 7. It is difficult to obtain a
complete subgraph of size 7 in a CRN with only 3 levels, because
many intra-level links are needed in order to produce a complete
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subgraph of large size.

We define the Coocurrence score as the summation of all of the
parent–child scores within a complete subgraph. Since the parent–
child links are bidirectional, the parent-child scores of both direc-
tions, which could be different, are summed. Coocurrence score
is used to measure the coherence of a resulted complete subgraph.
Table 9 shows the 10 complete subgraphs with the highest coocur-
rence scores. We observe that the top 10 complete subgraphs can
effectively cluster semantically related terms together (e.g. “coca
cola”, “coke”, and “soft drink”). On the other hand, Table 10 shows
the 10 subgraphs with the lowest scores, 0.18 is almost the lowest
possible value for all group members to qualify as a child node in
the first place. Comparing to the results in Table 9, we observe
that sometimes unrelated concepts such as “class schedule” and
“yoga” can be grouped into the same cluster. We observe that the
coocurrence score is a good indication of the strength of the con-
nectively with a complete subgraph. If high coocurrence scores
are obtained (as shown in Table 9), concepts within the subgraphs
are more likely to be semantically related to one another. On the
other hand, if low coocurrence scores are obtained (as shown in Ta-
ble 10), then sometimes general concepts such as “class schedule”
may be mistakenly grouped as similar concepts in the complete
subgraphs. We also observe that we can obtain meaningful clusters
most of the time even when the coocurrence scores are low, show-
ing our strict criteria (i.e., complete subgraphs, bidirectional links)
are helpful in generating precise clusters.

Score Subgraph
2.93 drapery, window fashion, window treatment
2.74 animated cartoon, flash cartoon, funny animated
2.47 bioinformatic, genome, sequence
2.30 magic, pagan, ritual, witch
2.24 adventure tour, tour offer, tour provide
2.00 dental association, dental health, oral health
1.97 aircraft sale, cessna, general aviation
1.81 compare price, comparison shopping, product price
1.63 coca cola, coke, soft drink
1.35 tattoo art, tattoo studio, tattooing

Table 9: Complete subgraphs with top 10 coocurrence scores

Score Subgraph
0.18 boot company, cowboy boot, handmade boot
0.18 offer tandem, tandem skydive, tandem skydiving
0.19 annual festival, festival held, music festival
0.19 ashtanga, class schedule, yoga
0.19 comedy hypnosi, hypnotist, stage hypnosi
0.19 dedicated hosting, hosting server, shared hosting
0.19 dreamweaver, frontpage template, web template
0.19 vegetarian restaurant, vegetarian vegan, veggie
0.19 appliance center, appliance sale, appliance store

Table 10: Complete subgraphs with bottom 10 coocurrence
scores

5.3 CS(c)/LS(c) vs HC(c)/HL(c)
Figure 6(a) and Figure 6(b) show the smoothed distribution of the
content and location entropies of the initial query concepts (i.e.,
concepts at level 0) before and after running EntropySmooth as de-
scribed in Section 4.2. The smoothing is done by spreading the en-
tropy value of a concept to its neighboring concepts. In Figure 6(a),
we observe that initial content entropies HC(c) are less stable and

the content Entropy Scores CS(c) computed using EntropySmooth
induces a spread of the peak, with the average remains the same
throughout. The same observation can also be derived from the
initial location entropies HL(c) and the location Entropy Scores
LS(c), as shown in Figure 6(b).

(a) Content Entropies

(b) Location Entropies

Figure 6: The distribution of entropies before/after EntropyS-
mooth

We also compare the accuracy of HC(c) and HL(c) against CS(c)
and LS(c). We employ human judges to compare HC(c) and
HL(c) against CS(c) and LS(c) manually. CS(c) and LS(c) are
considered to have been improved if they reflect the ambiguity of
a concept more accurately comparing to HC(c) and HL(c), and
vice versa. We observe that 78.95% of the concepts obtain bet-
ter CS(c) comparing to HC(c), and 73.68% of the concepts ob-
tain better LS(c) comparing to HL(c), showing that the Entropy
Scores which are computed recursively from the CRN can more
accurately determine the ambiguity of a concept, comparing to the
initial entropies which are computed based on a single level of con-
cept extraction.

Fraction of CS(c) better than HC(c) 78.95%
Fraction of LS(c) better than HL(c) 73.68%

Table 11: Comparison of initial entropies and Entropy Scores

Table 12 shows example Content Scores CS(c) and Location Scores
LS(c) obtained from our CRN. The symbol ↑ means that the En-
tropy Score has increased comparing to the initial entropy,'means
that the Entropy Score stays roughly the same as the initial entropy,
and ↓means that the Entropy Score has decreased comparing to the
initial entropy.
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Concept Category HC(c) CS(c) Concept Category HL(c) LS(c)
coca cola bear ↑ 6.286 8.657 mp3 ↑ 6.465 8.7991
magic history ↑ 6.0917 9.4388 nokia ↑ 7.3913 10.0105
playing card ↑ 6.6474 9.0696 psp ↑ 7.0994 9.5968

hotpot ' 5.7855 5.7895 cpu ' 8.0603 8.0619
sushi ' 7.0469 7.0404 starbucks ' 9.1795 9.1404

training dog ' 7.2295 7.2415 the great wall ' 8.2372 8.2601
dow jones index ↓ 6.3892 4.8355 empress dowager cixi ↓ 8.8564 1.8267

redcross ↓ 7.0538 4.9645 sun yat sin ↓ 10.6442 5.628
spca ↓ 7.2015 5.3829 tian tan buddha ↓ 11.0548 1.6452

Table 12: Sample concepts categorized in the directions of changes in entropies

The ↑ concepts, such as “coca cola bear”, “magic history” and
“playing card”, receive larger content Entropy Scores CS(c) com-
paring to their initial entropies HC(c), because they retrieve many
ambiguous concepts in the CRN. For example, “coca cola bear” is
ambiguous because it can refer to other ambiguous concepts, such
as “coca cola product”, “polar bear”, and “Teddy Bears”. Simi-
larly, the concept “playing card” can also refer to a large variety of
card games, such as “bridge card”, “poker”, and “uno”, and thus
resulting in larger CS(c).

On the other hand, concepts, such as “dow jones index”, “red-
cross”, and “spca”, receive a lower CS(c) comparing to their ini-
tial entropies HC(c), because these concepts retrieve commonly
known information, such as well-known financial indices or well
known associations, with little ambiguity observed. Finally, con-
cepts, such as “hotpot”, “sushi”, and “training dog”, receive content
Entropy Scores CS(c) which are similar to their initial entropies
HC(c). HC(c) of “bmx” is initially low because it is a commonly
known bike brand, and its Content Score remains low after smooth-
ing. HC(c) and CS(c) of “training dog” are both high before and
after EntropySmooth because the search results are mostly about
different tips, equipments, and schools for dog training.

For the location Entropy Scores LS(c) presented in the table, we
made the following observations. Concepts, such as “nokia” and
“psp”, receive a larger LS(c) comparing to their initial location en-
tropies HL(c), because they are international brands, and thus are
associated with concepts that are location ambiguous. On the other
hand, concepts, such as “tian tan buddha” receive lower LS(c) be-
cause it refers to a tourist site in Hong Kong. It is obvious that
these concepts are related to some specific locations that should not
receive high location entropy. Thus, the location Entropy Scores
LS(c) of these concepts are also improved comparing to the initial
location entropies HL(c). Finally, the LS(c) for “startbacks”, “the
great wall”, etc., stays because, HL for “starbuck” is generally high
because it is an international brand, and LS for “the great wall” re-
mains low because it refers to a specific sightseeing spot in Beijing,
China, as in the case of “tian tan buddha”.

5.4 Noise Tolerance Property of CS(c)/LS(c)
One major effect of EntropySmooth is that the entropies no longer
rely solely on the concepts extracted at search time. Thus, even
if a certain concept gains a much higher or lower initial content
or location entropy because of some noise concepts extracted from
the search results, the entropies can still converge to a stable point.
Thus, we conduct experiments to try to add noise to the initial con-
tent entropies of the concepts as shown in Table 13. HC +5 means
that a score of 5 has been added to the initial content entropies
as noise, and CS′ at HC + 5 is the content Entropy Scores ob-
tained with 5 units of noise added to the initial content entropies.

As before, ↑ means an increase of CS(c) comparing to HC(c), '
means that little change between CS(c) and HC(c), and ↓ means
a decrease of CS(c) comparing to HC(c). We observe that among
all of the different classes of concepts, the noise content Entropy
Scores, i.e. CS′ and CS′′, computed with 5 and 10 units of noise
added to the initial content entropies, i.e. CS′ and CS′′, can still
converge to values that are close to the original content Entropy
Scores CS(c) after 100 iterations.

By adding noise to the initial entropies, the original total entropy of
the CRN is changed. However, we observe that the new equilibrium
point is still accurate within 3 significance figures. We also tried
adding more noise (e.g., 10) to the initial content entropies of these
concepts and run EntropySmooth. We observe that the resulting
content Entropy Scores can also converge to values that are close to
the original content Entropy Scores CS(c). Finally, we reduce the
initial content entropies by 5 or 10, and the content Entropy Scores
remain stable and close to the original content Entropy Scores.

We also performed similar experiments on the location entropies.
The results are shown in Table 14. HL + n means that a value of
n has been added or subtracted from the initial location entropies
as noise. Again, the location Entropy Scores remain stable even
when noise are added to the initial location entropies, showing that
Location Scores are tolerant to initial noise. Thus, even if noisy
concepts are extracted from the search results of a query concept,
the Location Score of the concept can still converge to a meaning-
ful and stable point after the EntropySmooth algorithm has been
applied.

5.5 Classifying Concepts with Entropies
Concepts can be classified into different types according to their
initial entropies. We use K-Means to cluster the concepts into four
classes according to their initial entropies HC(c) and HL(c), and
display them on a scatter plot with HL(c) as x-axis and HC(c) as
y-axis as shown in Figure 7. We can observe that the four concept
classes have clear distinction along the location entropy axis in that
“Cluster 1” contains concepts with low location entropies, “Cluster
2” and “Cluster 3” with higher and higher location entropies, and
“Cluster 4” the highest. The concepts classes do not meaningfully
describe the characteristics of the concepts, because the classifi-
cation is mainly on HL(ci), while HC(ci) has little effect on the
classification.

We also conduct the same procedures for the content and location
Entropy Scores obtained from EntropySmooth, and display them
on a scatter plot with LS(c) at the x-axis and CS(c) at the y-axis
as in Figure 8. We again use K-Means to cluster the concepts into
four classes, which are shown in Figure 8. In Figure 7, the concepts
are close to one another, thus making them difficult to classify into
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Concept Category HC CS HC + 5 CS′ HC + 10 CS′′
coca cola bear ↑ 6.2860 8.6570 11.2860 8.6578 16.2860 8.6585
magic history ↑ 6.0917 9.4388 11.0917 9.4396 16.0917 9.4404
playing card ↑ 6.6474 9.0696 11.6474 9.0704 16.6474 9.0712

hotpot ' 5.7855 5.7895 10.7855 5.7901 15.7855 5.7906
sushi ' 7.0469 7.0404 12.0469 7.0410 17.0469 7.0416

training dog ' 7.2295 7.2415 12.2295 7.2422 17.2295 7.2428
dow jones index ↓ 6.3892 4.8355 11.3892 4.8359 16.3892 4.8363

redcross ↓ 7.0538 4.9645 12.0538 4.9650 17.0538 4.9654
spca ↓ 7.2015 5.3829 12.2015 5.3834 17.2015 5.3838

Concept Category HC CS HC − 5 CS′ HC − 10 CS′′
coca cola bear ↑ 6.2860 8.6570 1.2860 8.6563 0.0000 8.6561
magic history ↑ 6.0917 9.4388 1.0917 9.4380 0.0000 9.4378
playing card ↑ 6.6474 9.0696 1.6474 9.0688 0.0000 9.0686

bmx ' 5.7855 5.7895 0.7855 5.7890 0.0000 5.7889
sushi ' 7.0469 7.0404 2.0469 7.0398 0.0000 7.0395

training dog ' 7.2295 7.2415 2.2295 7.2409 0.0000 7.2407
dow jones index ↓ 6.3892 4.8355 1.3892 4.8351 0.0000 4.8350

redcross ↓ 7.0538 4.9645 2.0538 4.9641 0.0000 4.9640
spca ↓ 7.2015 5.3829 2.2015 5.3825 0.0000 5.3823

Table 13: Changes of CS(c) by adding noise to HC(c)

Concept Category HL LS HL + 5 LS′ HL + 10 LS′′
mp3 ↑ 6.4650 8.7991 11.4650 8.7997 16.4650 8.8003
nokia ↑ 7.3913 10.0105 12.3913 10.0112 17.3913 10.0119
psp ↑ 7.0994 9.5968 12.0994 9.5975 17.0994 9.5981
cpu ' 8.0603 8.0619 13.0603 8.0625 18.0603 8.0630

starbucks ' 9.1795 9.1404 14.1795 9.1411 19.1795 9.1417
the great wall ' 8.2372 8.2601 13.2372 8.2607 18.2372 8.2613

empress dowager cixi ↓ 8.8564 1.8267 13.8564 1.8269 18.8564 1.8270
sun yat sin ↓ 10.6442 5.6280 15.6442 5.6284 20.6442 5.6288

tian tan buddha ↓ 11.0548 1.6452 16.0548 1.6453 21.0548 1.6454
Concept Category HL LS HL − 5 LS′ HL − 10 LS′′

mp3 ↑ 6.4650 8.7991 1.4650 8.7984 0.0000 8.7982
nokia ↑ 7.3913 10.0105 2.3913 10.0098 0.0000 10.0095
psp ↑ 7.0994 9.5968 2.0994 9.5961 0.0000 9.5958
cpu ' 8.0603 8.0619 3.0603 8.0613 0.0000 8.0609

starbucks ' 9.1795 9.1404 4.1795 9.1398 0.0000 9.1393
the great wall ' 8.2372 8.2601 3.2372 8.2595 0.0000 8.2591

empress dowager cixi ↓ 8.8564 1.8267 3.8564 1.8266 0.0000 1.8265
sun yat sin ↓ 10.6442 5.6280 5.6442 5.6276 0.6442 5.6272

tian tan buddha ↓ 11.0548 1.6452 6.0548 1.6451 1.0548 1.6450

Table 14: Effects to LS(c) by adding noise to HL(c)

meaningful clusters. Comparing to Figure 7, the concepts in Fig-
ure 8 are more spread out because of the smoothing of the entropy
values with EntropySmooth. The clustering result now gives equal
importance to content and location entropies, and thus we can in-
terpret the four classes of concept clusters introduced in Figure 8
with the notion of ambiguity as follows.

1. Explicit Concepts: Concepts with low degree of ambiguity,
in both the content and location aspects, i.e. they have small
content and location entropies, specifically a small (CS(c)+
LS(c));

2. Content Concepts: Concepts with high CS(c), only am-
biguous in terms of the content;

3. Location Concepts: Concepts with high LS(c), only am-
biguous in terms of the location;

4. Ambiguous Concepts: Concepts with high degree of am-
biguity, in both the content and location aspects, i.e. they
have large content and location entropies, specifically a large
(CS(c) + LS(c)).

Example concepts from the above four different query classes are
presented in Table 15. Explicit Concepts receive both low CS(c)
and LS(c), because the information retrieved for these concepts
are very focused, e.g. “jacky chan” being the name of a movie star
is associated with a narrow set of concepts. Information retrieved
using Content Concepts is rich in content information but weak in
location information. “asp.net” returns information about computer
programming, with only a little location information. Information
retrieved using Location Concepts is rich in location information
but weak in content information, e.g. “travel agent” returns much
information about traveling at different locations. Finally, Ambigu-
ous Concepts retrieve diversified content and location information.
“apple” is about both Apple computers and apple the fruit, and the
retrieved information is associated with all possible locations of
Apple computer stores or famous places for growing of apple.

5.6 Applying CRN in Personalized Web Search
As discussed in Section 2, semantic network can be used in search
personalization to determine a set of topics that a user may prefer
in the search results. Thus, we propose to apply CRN as an exten-
sion of a concept-based personalization project [14]. The goal of
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Figure 7: HL(c) vs HC(c), and the concept clusters

Figure 8: LS(c) vs CS(c), and the concept clusters

the project is to learn the user’s content and location preferences,
specified with a set of concepts, by mining the user’s preferences
from his/her clickthrough data, and apply the preferences to pro-
vide personalized ranking on the search results. The process flow
of CRN personalization is shown in Figure 9. Location concepts
and content concepts are extracted from the top 100 search results
using CRN. The clickthrough data is collected to determine the
user’s preferences. The content preference and the location pref-
erence are separately trained and combined by a weighted average
to obtain a single weight vector to rerank the search results. In our
previous work, the initial content entropies and location entropies,
HC(c) and HL(c), are used in the calculation of the combination
parameter e. The weight for the content preference vector is e, as in
Equation (8), and that for the location preference vector is (1− e).
In this paper, we use the Entropy Scores, CS(c) and LS(c), to
compute the combination parameter eES as shown in Equation (9).
The 250 initial query concepts in the CRN are used as the candidate
queries for the personalization, and the details of the personaliza-
tion method can be obtained in [14].

e =
HC(c)

HL(c) + HC(c)
(8)

eES =
CS(c)

CS(c) + LS(c)
(9)

Explicit CS(c) LS(c) Content CS(c) LS(c)
jacky chan 5.6875 7.0340 asp.net 7.9251 8.3380
liu xiang 5.3722 7.7743 batman 6.9981 8.0669

keira knightley 6.4033 7.2809 bike price 7.0734 8.3717
kobe bryant 6.4246 7.3177 bike repair 6.9439 8.6022
ronaldinho 7.4965 6.3702 bike repair 6.9439 8.6022
Location CS(c) LS(c) Ambiguous CS(c) LS(c)

campus life 4.9564 9.1260 coca cola bear 8.6570 9.0615
football 6.1945 8.4043 magic history 9.4388 8.1086

columbia 6.0302 8.0618 cat 7.4642 10.0375
disneyland 6.2841 8.2792 apple 8.2140 9.1081
travel agent 6.5188 8.2666 dessert 7.0844 9.0086

Table 15: Example Content/Location Entropy Scores

Figure 9: The general process flow of CRN personalization

In the evaluation, we compare e and eES for each query concept
against the optimal combination threshold oe. To find the opti-
mal combination threshold oe, we repeat the experiment to find the
precisions for each query concept by setting oe ∈ [0, 1] in 0.05 in-
crements. The oe value is then obtained when it results the highest
precision. We compare oe against e and eES using root-mean-
square error rate as shown in Equation (10). The original e yields
the error rate 0.2844, while eES yields 0.2751 error. This shows
that eES is a better combination parameter for the personalization
with 0.2844−0.2751

0.2844
= 3% improvement.

Error =

√
1

N

∑
i

(ei − oe)2 (10)

Figure 10 shows a precision graph comparing personalization ef-
fectiveness using the combination parameter 0 (i.e., location pref-
erences only), 1 (i.e, content preferences only), oe, e, and eES . The
original ranked results returned by the Google without personaliza-
tion (i.e., the Original method) and the Joachims method [11] (i.e.,
a clicked-based personalization method) are served as the baseline
methods in the comparison. We observe that our methods (i.e.,
location, content, oe, e, and eES) perform better than the origi-
nal method. As we have discussed in our previous work [14], the
baseline method is good for explicit queries, but it has very poor
precisions for ambiguous queries, and thus yielding lower preci-
sions comparing to our methods. On the other hand, the click-
based Joachims method can successfully improve the precisions by

423



promoting the clicked search results in the result list. However,
Joachims method yields lower precisions comparing to content, oe,
e, and eES methods, because it cannot promote the semantically
relevant results in the result list by relying on the clickthroughs
only (without the use of concept extraction or CRN). Finally, we
observe that the use of both content and location preferences (i.e.,
the oe, e, and eES methods) in personalization yields better preci-
sions comparing to the use of content or location preference alone
(i.e., the content and location methods). We also observe that the
eES method can further improve the top 1 precision from 0.8816 to
0.8932, comparing to the e method. This shows that eES , which is
computed based on the Entropy Scores from CRN, is a more effec-
tive combination parameter compared to the original combination
parameter e.

Figure 10: Top N with different methods

6. CONCLUSIONS
We propose Concept Relation Network (CRN), which is a seman-
tic network that can be automatically constructed and self main-
tained using existing search engines on the web. Taking advantage
of large scale commercial search engines, CRN is able to derive a
large number of highly coherent and highly related concepts. Our
results show that the concepts are highly coupled in the complete
subgraphs, which can be used to effectively discover semantically
related concept clusters in CRN. We also introduce the notion of
entropies to measure the ambiguity of a concept in CRN. Content
entropy and location entropy are derived separately. Our experi-
mental results show that the Entropy Scores computed using CRN
is noise tolerant and can improve the accuracy in terms of the clus-
tering quality and the application of entropy as a measure of ambi-
guity. We also employ CRN in the context of search engine person-
alization. Our results show that personalization using the semantic
information in CRN yields better performance comparing to the
baseline method.
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