
Subspace Clustering for Indexing High Dimensional Data:
A Main Memory Index based on Local Reductions

and Individual Multi-Representations

Stephan Günnemann Hardy Kremer Dominik Lenhard Thomas Seidl
Data Management and Data Exploration Group

RWTH Aachen University, Germany
{guennemann, kremer, lenhard, seidl}@cs.rwth-aachen.de

ABSTRACT
Fast similarity search in high dimensional feature spaces is
crucial in today’s applications. Since the performance of
traditional index structures degrades with increasing dimen-
sionality, concepts were developed to cope with this curse of
dimensionality. Most of the existing concepts exploit global
correlations between dimensions to reduce the dimension-
ality of the feature space. In high dimensional data, how-
ever, correlations are often locally constrained to a subset
of the data and every object can participate in several of
these correlations. Accordingly, discarding the same set of
dimensions for each object based on global correlations and
ignoring the different correlations of single objects leads to
significant loss of information. These aspects are relevant
due to the direct correspondence between the degree of in-
formation preserved and the achievable query performance.

We introduce a novel main memory index structure with in-
creased information content for each single object compared
to a global approach. This is achieved by using individual
dimensions for each data object by applying the method of
subspace clustering. The structure of our index is based on a
multi-representation of objects reflecting their multiple cor-
relations; that is, besides the general increase of information
per object, we provide several individual representations for
each single data object. These multiple views correspond to
different local reductions per object and enable more effec-
tive pruning. In thorough experiments on real and synthetic
data, we demonstrate that our novel solution achieves low
query times and outperforms existing approaches designed
for high dimensional data.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods

General Terms
Algorithms, Performance
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1. INTRODUCTION
Similarity search in databases is an active research area with
a wide range of application domains. In many of these do-
mains, fast query times are crucial and long waiting periods
are prohibited. For example, even minutes can be fatal in
medical applications. Similarity search is typically realized
in a content-based fashion, i.e. features like histograms are
extracted from objects and the similarity between objects
is modeled by a similarity function operating in the feature
space. Usually distance functions are used for this purpose.
The Lp-norm is a family of well suited distance functions:

d(q, p) =
∑d

i=1
p
√
|qi − pi|p. For p = 2 it corresponds to the

Euclidean Distance. An often used query type in similarity
search is the k-Nearest-Neighbor(kNN) query that calculates
the k most similar objects to a query object.

For efficient query processing on multidimensional feature
spaces index structures were introduced, and they are mostly
based on hierarchically nested minimal bounding regions.
With increasing feature space dimensionality or information
content, many of the first solutions, e.g. the R-Tree [14],
are inapplicable for the given tasks [7, 9, 31]. This is of-
ten denoted as the curse of dimensionality: with rising di-
mensionality or information content index performance de-
grades, eventually becoming slower than a sequential scan
of the database.
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Figure 1: Hierarchically nested local reductions

Filter-and-refine frameworks as well as revised and new in-
dex structures were introduced to weaken the effects of high
dimensionality. In filter-and-refine frameworks, an index
is built on a dimensionality reduced representation of the
database allowing for fast computation of possible candi-
dates. The exact distances to these candidates are then
computed in the subsequent refinement step. The dimen-
sionality reduction is performed by exploiting correlations
between the feature space dimensions corresponding to re-
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dundancy in the data. An example is the principal com-
ponent analysis [17], which transforms the original feature
space to a lower dimensional one containing most of the
relevant information. Such filter-and-refine frameworks as
well as the mentioned index structures weaken the curse of
dimensionality, but the general problem is still not solved.
The reason is the complex structure hidden in the data: spe-
cific correlations between the dimensions are often local, i.e.
they are constrained to subsets of the data, and every object
in the data can participate in several of these correlations.
Reductions based on global correlations, however, cannot re-
flect the local correlations in an advantageous way for index
construction; all objects in the data will be reduced to the
same dimensions, and therefore many dimensions are dis-
carded that are important for specific subsets of the data.
In the remaining dimensions the values in these subsets have
a high variance preventing compact minimal bound regions
in the index and resulting in unnecessary large query times.
An example is shown in Figure 1 where two coordinate sys-
tems represent a 4-dimensional feature space. The values
of the shown objects are scattered over the full-dimensional
feature space. Examining all objects together, there is no
correlation between the dimensions that enables a reduction
beneficial for index construction; that is, finding patterns in
a single reduced space allowing the construction of compact
minimal bounding regions is not possible. It is, however,
obvious that the data contains several good patterns when
only subsets of the data are considered. They are marked
as C1, C2, C1a, and C1b. For each of the corresponding ob-
ject sets a sound reduction can be found corresponding to a
local dimensionality reduction. An index constructed based
on such local reductions is more effective: dimensions with
high variances in the value distributions are avoided and
thus more compact bounding regions are achieved winding
up in faster query processing due to earlier pruning of can-
didates. For example, the local reductions for C1 and C2

allow compact bounding regions that are good for pruning
parts of the data.

Accordingly, for complex data indexing frameworks are need-
ed whose corresponding filter steps are based on local reduc-
tions. One possible solution is to build an index for every
local pattern in the data, i.e. every index corresponds to a
different filter with another set of reduced dimensions [8, 29].
These approaches, however, have a serious drawback: They
do not consider that every object can participate in several
local reductions, i.e. every object is only assigned to one of
these reductions. The potential for several different filters
for each data object and better pruning based on these filters
is therefore wasted.

In this paper, we introduce a novel index structure that is
based on local reductions and that in particular regards the
multiple local correlations of single data objects. This is
achieved by building a hierarchy of local reductions that cor-
responds to the structure of the index tree; that is, a local
reduction-based minimum bounding region can itself con-
tain local reductions that enable compact bounding regions
in lower levels of the index tree. As mentioned before, an
index on dimensionality reduced data objects acts as a filter
in filter-and-refine frameworks. Accordingly, our single in-
dex corresponds to a series of different filters for every data
object; every query passes through an individual cascade of

filters until it reaches a leaf node. An example for such a
pattern hierarchy is displayed in the right part of Figure 1.

Technically, we realize these new ideas by transferring meth-
ods from the data mining domain: we detect patterns in the
data which are used to construct a better index. For detect-
ing data subsets combined with a set of dimensions suitable
for local reduction, we use subspace clustering. Cluster-
ing in general is used to find natural object groupings in
data. The objects contained in such groups are good can-
didates for generating minimal bounding regions in index
structures. Subspace clustering goes beyond fullspace clus-
tering: A subspace cluster is a grouping of objects that are
only similar in a subset of their dimensions and thus mini-
mum bounding regions that are induced by subspace clusters
are very compact. The underlying structure of our proposed
index structure is a hierarchy of nested subspace clusters. A
key aspect is the recursive use of subspace clustering, i.e.
all levels of the index tree are constructed by reclustering
existing subspace clusters thus generating subclusters. For
example, in Figure 1 our approach can identify the illus-
trated hierarchical nesting. There are interesting implica-
tions: Due to the nature of subspace clustering, it is possible
that subspace clusters on deeper levels have other relevant
dimensions than their parent clusters. This corresponds to
a multi-representation of objects, i.e. on each level objects
can be represented by a different set of dimensions defining
individual local reductions.

When clustering is used for index construction, there are is-
sues: Clustering algorithms are often unstable, i.e. they are
very parameter-sensitive and they deliver different results on
every run; therefore we introduce a method that is motivated
by train-and-test, a paradigm that is well established in the
data mining and machine learning domain, e.g. for decision
tree construction. In applications where the underlying dis-
tribution of incoming data objects changes, our index adapts
its underlying clustering structure dynamically.

Many existing index structures are designed for secondary
storage, and thus technical constraints as block size must be
adhered to. In many domains, however, these index struc-
tures are becoming obsolete: Main memory capacity of com-
puters is constantly increasing and in many applications per-
sistence of the index structure or even the data set has lost
importance compared to the need for fast responses. An ex-
ample are stream classification scenarios. For main memory
indexing, random I/O is no longer a problem allowing the
development of more flexible index structures. For exam-
ple, our unbalanced index structure can reflect the inherent
structure of the data better than structures that are con-
strained by balance properties: different parts of the data
set can be represented in different granularities, thus allow-
ing more efficient access.

Summarized, our contributions are:

• Our novel index structure is based on local reductions
determined by subspace clustering.

• The objects are multi-represented with different local
reductions that are hierarchically nested. Queries have
to pass through an individual series of filters allowing
for faster pruning of candidates.

238



• The index construction is enhanced by a train-and-test
method providing more compact minimal bounding re-
gions and the underlying structure of the index adapts
to new data distributions by reclustering subtrees.

The paper is structured as follows: Section 2 discusses ex-
isting work on indexing techniques and subspace clustering.
Section 3 introduces our new approach. Section 4 presents
experimental evaluation and Section 5 concludes the paper.

2. RELATED WORK
In this section we give a short overview of relevant related
work on indexing. Since our novel index structure is based
on subspace clustering, we also give a short overview of this
research area.

Indexing techniques. Indexing techniques for fast similar-
ity search can be categorized into approximate and correct
solutions. Methods from the former category trade accuracy
for speed, and one well-known example is Local Sensitive
Hashing [30, 12]. Methods from the latter category produce
exact results, i.e. there are no false dismissals or false posi-
tives in the result set. Since our proposed index is from this
category, we focus on exact solutions in the following.

The R-Tree [14] is one of the first multidimensional indexing
structures. It is well suited for lower dimensions, but its per-
formance rapidly degrades for higher dimensionalities due to
the curse of dimensionality; therefore, dimensionality reduc-
tion techniques like PCA [17] or cut-off reduction are used to
reduce the dimensionality of indexed objects. Since dimen-
sionality reduction induces information loss, false positives
are produced that need to be rejected. This can be achieved
by a filter-and-refine-framework (also called multistep query
processing), e.g. GEMINI [10] or KNOP [28]. The draw-
backs of global dimensionality reduction techniques were
discussed in Section 1. Several indexing structures for high
dimensional feature spaces that are mostly based on the R-
Tree were proposed. The R*-Tree [5] introduces new split
and reinsertion strategies. The X-Tree [6] enhances the R*-
Tree by introducing overlap-minimizing splits and the con-
cept of supernodes; if no overlap-minimizing split is possible,
supernodes of double size are generated, eventually degen-
erating to a sequential scan. The A-Tree [27] uses quantiza-
tion to increase the fan-out of tree nodes. The TV-Tree [20]
is based on a PCA-transformed feature space: Minimum
bounding regions are restricted to a subset of active dimen-
sions in this space. Active dimensions are the first few di-
mensions allowing for discrimination between subtrees. It
has, however, the same drawbacks as the other global di-
mensionality reduction techniques. Distance based indexing
is another type of transformation based indexing and is re-
alized by iDistance [16, 33]: Data points are transformed
into single dimensional values w.r.t. their similarity to spe-

cific reference points. These values are indexed by a B+-
tree and the search is performed by one-dimensional range
queries in these tree. All of the described index structures
are optimized for secondary storage, i.e. they have node size
constraints. None of these index structures accounts for lo-
cal correlations in the data. An approach that makes use of
local correlations is LDR [8]. It uses subspace clustering to
create a single clustering of the whole dataset. These clus-
ters represent local correlations. Dimensionality reduction

is performed individually on the clusters and an index is
built for each of the reduced representations. LDR has sev-
eral drawbacks: it applies subspace clustering only to the
root of the constructed tree, while the subtrees are built
the conventional way (one index for every subtree). These
indices are still prone to the curse of dimensionality. An-
other local-correlation based approach is MMDR [29]. In
difference to LDR, a single one-dimensional index is used.
In both LDR and MMDR, there is no hierarchical nesting
of subspace clusters, i.e. there is no multi-representation of
objects according to different dimensions and there is no
handling of local correlations in the used indices.

Subspace clustering. Recent research in subspace cluster-
ing has introduced several models and algorithms. A sum-
mary can be found in [19, 25] and differences between the
models are analyzed in [22, 24]. Subspace clustering aims
at detecting groups of similar objects and a set of relevant
dimension for each of these object groups. A general classi-
fication of the models can be done by considering the pos-
sible overlap of clusters. Partitioning approaches [2, 26, 32]
force the clusters to represent disjoint object sets while in
non-partitioning approaches [4, 18, 23] objects can belong
to several clusters.

Besides the huge amount of algorithms that keep the original
dimensions, some algorithms [3] transform the data space
on detected correlations. Initial work has also be done in
detecting hierarchies of subspace clusters [1]. However, the
complexity of the approaches avoids efficient application.

3. SUBSPACE BASED INDEXING
In this section, we present SUSHI: A means for SUbSpace
based High-dimensional Indexing. In Section 3.1 we moti-
vate and define the node structure of the tree. The construc-
tion of SUSHI based on subspace clustering is presented in
Section 3.2; we consider the static case for a given database
and the insertion and deletion of objects for dynamic usage.
Section 3.3 presents the query processing strategy.

3.1 Tree structure
The general idea of our index structure is to represent each
object in multiple ways, such that different information can
be used for pruning. To enable efficient query processing
we partition the data in a hierarchical structure, allowing us
to prune whole subtrees if they are not important for the
current query. Each subtree represents a subset of objects
annotated with its local reductions avoiding the information
loss attended by global reduction approaches. To determine
these local reductions we use subspace clustering methods,
since in high dimensional data we cannot find meaningful
partitions with traditional approaches due to the curse of
dimensionality [7].

Unlike existing indexing approaches we recursively apply
subspace clustering on smaller subsets of the database, real-
izing multi-representations for each object. We identify the
local correlations in the whole database but also on more
fine-grained views of the data. In Figure 1, for example,
the subspace cluster C1 in the dimensions 1 and 2 can fur-
ther be refined by the clusters C1a and C1b. We can identify
these locally nested patterns with subspace clustering on the
object set of C1.
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Formally, a subspace cluster is a set of objects together with
a set of locally relevant dimensions. The objects show high
correlations and thus compactness within the relevant di-
mensions while in the irrelevant ones we cannot identify a
good grouping for this set of objects. For different groups
of objects different relevant dimensions are possible, thus we
are not constrained to a global reduction of the data. A sub-
space clustering is a list of subspace clusters together with a
list of outliers. The handling of outliers is important because
not every object shows a good correlation to other objects.
If we prohibited outliers, the clustering quality would get
worse and hence we could assume that also our index shows
poor performance. In Figure 2 the blue circles form a sub-
space cluster with the relevant dimensions 1 and 2 while
the red squares depict a good grouping in the dimensions 3
and 4. We cannot identify clusters in the full-dimensional
space. The green triangle is an outlier, because it shows no
similarity to other objects in any of the subspaces.
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Figure 2: Example of a subspace clustering

Definition 1. Subspace Cluster and Clustering
Given a set of dimensions Dim and a database DB ⊆ R|Dim|,
a subspace cluster C is defined by C = (O,S) with objects
O ⊆ DB and relevant dimensions S ⊆ Dim.
A subspace clustering Clus is defined by

Clus = (C1, . . . , Ck, Out)

with subspace clusters Ci = (Oi, Si) (i = 1, . . . , k) and out-

lier list Out = DB −
⋃k

i=1Oi.

We call Clus a subspace clustering for the database DB
because each object o ∈ DB is either in a cluster or in
the outlier list. In our approach we use subspace clustering
methods which partition the data in each step, i.e. the sets
Oi are pairwise disjoint. This is reasonable for construct-
ing an index structure, because otherwise we would include
a single object in multiple nodes (on different paths in the
tree) leading to a hindered pruning of this object. Apart
from that, our index structure is independent from the un-
derlying clustering algorithm. New developments in the re-
search area of subspace clustering can directly be applied to
our index. In Section 3.2 we describe the used algorithms.

Index structures are based on the idea of pruning parts of
the search space. In our index structure, each node is deter-
mined by a subspace clustering containing several clusters.
To enable pruning of all the objects within a cluster we have
to aggregate a cluster C = (O,S) to some compact informa-
tion, i.e. a minimum bounding region: we use the idea of

enclosing rectangles in the relevant dimensions of the sub-
space cluster, i.e. each cluster is represented by lower and
upper bounds in its subspace.

Definition 2. Subspace Enclosing Rectangle (SER)
Given a subspace cluster C = (O,S). The SER R is a list of
lower and upper bound values for the relevant dimensions
of the cluster, i.e. R = ([i1, low1, up1], . . . , [id, lowd, upd])
with {i1, . . . , id} = S and lowj = mino∈O{o|ij}, upj =
maxo∈O{o|ij}.
Where o|k is the restriction of o to the dimensions k.

The irrelevant dimensions of a subspace cluster provide no or
little information about the clustered objects. Hence we do
not store this information, leading to a local dimensionality
reduction, and thus we reduce the computation effort dur-
ing query processing. In our study we focus on this simple
representation to analyze the effect of hierarchically nested
subspace clusters and not to figure out the best cluster ap-
proximation. Other approximations can easily be included
in our index, as elliptical representations or transformation
based approaches. However, in Section 3.3 we discuss why
these methods are no good choice.

In SUSHI we distinguish between inner nodes and leaf nodes.
The root node represents the whole database DB.

Definition 3. Nodes of SUSHI
An inner node N representing the objects O fulfills:

• N is determined by a subspace clustering
Clus = (C1, . . . , Ck, Out) for the set O.

• For each cluster Ci = (Oi, Si) the node N contains a
SER Ri.

• For each SER Ri the node N contains a pointer to its
child node representing the subset Oi.

• N stores a list of objects (or pointers) corresponding
to Out.

A leaf node N representing the objects O fulfills:

• N stores a list of objects (or pointers) corresponding
to O.

In the leaf nodes full-dimensional objects o ∈ DB are stored,
and each inner node can also contain a list of full-dimensional
objects corresponding to the outliers obtained by one clus-
tering step performed on the respective subset of objects.
Thus we are able to identify local outliers, i.e. outliers that
emerge only by regarding a subset of objects. The potential
to store objects also in inner nodes yields compact represen-
tations of the remaining clusters. Otherwise one has to add
these outliers to the enclosing rectangles which then grow
disproportionately large.

Each subspace cluster within an inner node but also across
several layers of the tree can have a different set of relevant
dimensions. We do not cut off some dimensions globally, and
we do not represent all objects in the same way; thus we do
not perform the well-known filter-and-refine query process-
ing [10] that is normally based on a single filter step. But
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each object is represented in different ways starting from the
root down to its full-dimensional object description. Each
object has its individual multi-representation enabling us to
prune objects along one path of our tree based on their vari-
ous representations. Thus our index structure has inherently
realized the filter-and-refine approach.

In Figure 3 the tree structure is outlined. The root node is
determined by three subspace clusters of different sizes. Ad-
jacent to each cluster the relevant dimensions are visualized
by green squares, e.g. the first subspace cluster is located in
the subspace {2, 5}. The objects are reduced to this local
dimension set. Each cluster is represented by a subspace
enclosing rectangle that is stored in the node. Besides the
SERs the root node stores a list of outliers; in this example
with three objects. Each cluster can either split up in fur-
ther clusters, e.g. cluster one of the root, or a leaf node is
appended as for cluster two. Subspace clusters in different
levels of the tree can represent different sets of dimensions,
realizing our multi-representation of objects.

Our index is a main memory structure, hence we are not re-
stricted by block sizes. In main memory, the time to access
a child node is negligible compared to secondary storage.
This gives us the possibility to construct unbalanced trees
and hence some objects or regions can be represented more
detailed. A couple of objects have many different represen-
tations while others have only few.
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Figure 3: Tree structure of SUSHI

3.2 Tree construction
For index construction, we distinguish two cases: First, the
static construction, where we build the index for a database
provided in whole. Second, the dynamic construction where
we cope with insertion and deletion of objects.

3.2.1 Static construction
Usually an initial set of data is available to construct our
index via bulk-loading. To achieve the multi-representation
of objects we need a subspace clustering for each inner node
of the tree. A simple approach is to calculate only one clus-
tering for the root node and recursively repeat this proce-
dure for each subset to construct further nodes. However,
this procedure can lead to instabilities during the index con-
struction. Since there exist several clusterings for a single
dataset – each clustering with different quality for grouping
the objects – it is unlikely to get a good result with a single
run of a clustering algorithm. Furthermore many algorithms
are non-deterministic and they inherently construct differ-
ent clusterings. Thus, in a worst case we get high variations

for the index construction and thus the query performance
could deviate to a high degree. To improve the stability
and quality of our index we calculate multiple clustering per
node and we select the one with highest pruning potential.

Since in our hierarchical structure the child nodes depend
directly on the upper level clustering, we use the following
approach to construct the index. We start with the root
for which multiple clusterings are calculated. Consequently,
we get a set of partly constructed models/index structures.
We select the best model from this set and we try to com-
plete it. Therefore we select one cluster from the root node
and we cluster this subset of objects again several times.
Based on our first partly constructed model we get a new
set of extended but still not complete index structures. The
best index is selected and the approach is repeated until the
complete index is obtained. Summarized: At each point in
time we extend our index structure with one inner node.
This inner node is determined based on a set of candidate
inner nodes, i.e. subspace clusterings, and in each step the
clustering with highest pruning potential is selected.

Pruning potential of clusterings. To determine this best
clustering we use an approach inspired by the train-and-test
method used in other data mining applications. On the one
hand, one can use train-and-test to evaluate the quality of
an approach. On the other hand, train-and-test is used to
construct better models itself, e.g. for decision trees [21].
The general idea is to build a set of models based on the
training set and choose the best one w.r.t. the test set. In
the literature several measures to judge the quality of clus-
terings, e.g. the compactness, are presented [15]. However,
in our approach the clustering with the highest quality need
not to be equivalent to the best node for the tree. In our ap-
proach, we seek for the clustering resulting in the best query
performance for our index, i.e. the clustering with highest
pruning potential. Motivated by this we measure exactly
those costs that are important during the utilization of the
index: the distance calculations (to enclosing rectangles and
points) needed to determine e.g. a nearest neighbor. Since
we start our index construction at the root node, each partly
constructed index is a valid index structure w.r.t. Def. 3.
Thus, we can temporarily append a new inner node and
check how many distance calculations are performed to find
the nearest neighbors of the test sets objects. Then the sub-
space clustering determining the best inner node based on
this objective function is selected.

Selecting the right test set is important while evaluating our
objective function. In an ideal case the data distribution
of the test set follows the distribution of possible query ob-
jects. Since this distribution is unknown we assume that the
database itself reflects this distribution. Hence our test set is
randomly and uniformly sampled from the whole database
DB. Although we optimize our tree locally (’what is the
best new node for one subtree’), we should not use a sample
of the current subtree as the test set. In this case the test set
would not be representative and the subtree is not optimized
w.r.t. the performance of the whole tree. To avoid overfit-
ting and enhance the generalization we change the test set
periodically.

In Algorithm 1 the overall construction of nodes is described.
To generate the root node we use the whole database DB as
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Algorithm 1 Node construction algorithm

1: input: set of objects O;

2: IF(|O| < minSize)
3: constructLeafNode(); // based on O;
4: return;

5: Test = chooseTestSet();
6: // initial clustering
7: bestClust = performClusteringOn(O);
8: bestQuality = evaluateClust(bestClust, Test);
9: stableCount = 0;

10: WHILE(stableCount < stableSteps)
11: currClus = performClusteringOn(O);
12: currQuality = evaluateClust(currClust, Test);
13: IF(currQuality > bestQuality)
14: bestClust = currClust;
15: bestQuality = currQuality;
16: stableCount = 0;
17: ELSE
18: stableCount+ = 1;

19: constructInnerNode(); // based on bestClust;
20: FOREACH(Ci = (Oi, Si) of bestClust)
21: run node construction for Oi

input. During the hierarchical partitioning of the data the
subsets of objects get smaller. If the number of objects for a
node is below a certain threshold we create a leaf node (lines
2-4). The train-and-test method starts with the lines 5-8.
We choose the test set, perform a subspace clustering on
the objects of O and evaluate the quality of this subspace
clustering w.r.t. the test set. In the lines 10-18 we try to
enhance the clustering quality. Based on the best evaluated
clustering we construct the inner node (line 19). At last,
we call the node construction method recursively for each
cluster (line 21) to realize the hierarchical structure.

Subspace clustering algorithms. As mentioned, our index
is able to utilize arbitrary subspace clustering algorithms. In
a recent evaluation study of subspace clustering [24] the al-
gorithms PROCLUS [2] and MINECLUS [32] perform best.
Both methods show low runtimes and hence are suitable for
our index construction. Furthermore, they do not generate
arbitrarily widespread clusters but compact approximations,
which are meaningful for our index, are ensured. PROCLUS
extends the k-means idea to subspace clustering and as-
signs points to its nearest representative. MINECLUS uses
(subspace) rectangles of a certain width to identify dense
regions, these boxes approximate the clusters. It must be
pointed out that even if the input parameters are fixed, we
can use PROCLUS for our train-and-test method. The non-
deterministic algorithm generates varying clusterings. How-
ever, MINECLUS as a deterministic algorithm is not appli-
cable but we still can generate one clustering per node. We
analyze this difference in the experiments.

3.2.2 Dynamic construction
In the next section we describe the dynamic construction of
the index, i.e. we consider the insertion of new objects and
the deletion of existent objects.

Insertion. The insertion method makes use of an already
existent SUSHI index. First, we identify the leaf node whose

enclosing rectangle (which is one layer above the leaf) shows
the smallest minDist w.r.t. the object we want to insert.
The objects in this leaf node are good candidates for clus-
tering with the new object. To assess if this leaf node is truly
a good candidate for insertion we check whether the volume
of the enclosing rectangle does not increase too much. If
it highly increases, we recursively go one layer up in the
tree and test the corresponding rectangle. Instead of a leaf
node we now analyze inner nodes, thus the object would be
inserted in the outlier list. Evidently, all enclosing rectan-
gles including the novel object must be updated to retain a
correct approximation of the clusters. With a second step
we ensure that our index adapts to new data distributions.
Therefore, we include a reclustering step in our insertion
method. We monitor the number of objects represented by
a node and if this number increases too high, we rearrange
the subtree with the methods presented in Section 3.2.1.

Deletion. To delete an object we have to identify the path
from the root to one leaf or inner node where the object is
stored. Remember that the object could be an outlier and
hence is stored in an inner node. The object is removed from
the identified node and all enclosing rectangles up to the
root are possibly downsized. In the construction phase (cf.
Algorithm 1) we do not split up a cluster if the number of
objects is below a certain threshold. Thus for the deletion,
we have to identify the cluster on the highest level of the
currently considered path with too few objects. Its complete
subtree is removed and substituted by a leaf node. This
procedure prevents that long paths with very small clusters
are maintained, leading to large processing times.

3.3 Query processing
We focus on the k-Nearest-Neighbor processing with Eu-
clidean Distance in SUSHI but other types can be easily inte-
grated. In Section 3.1 we approximate the subspace clusters
by subspace enclosing rectangles (SERs). To ensure com-
pleteness of our index, i.e. no false dismissals are allowed,
we have to define a mindist which has to be a lower bound
for all objects within the underlying subtree: The distance
from the query object q to the aggregated information is
smaller than the distance to each object in the subtree.

Definition 4. Minimum distance to SERs
The mindist between query q ∈ R|Dim| and the subspace
enclosing rectangle R = ([i1, low1, up1], . . . , [id, lowd, upd])
is defined as:

mindist(q,R) =

√√√√√√ d∑
j=1


(lowj − q|ij )2 if q|ij < lowj

(upj − q|ij )2 if q|ij > upj

0 else

Algorithm 2 gives an overview of the query processing. Start-
ing with the root node, a priority queue stores the currently
active nodes. At each point in time we refine the node with
the smallest mindist (line 7). As mentioned before, in each
node we are able to store full-dimensional objects. These
objects are either outliers or objects from leaf nodes (lines
9 or 10) for which we perform a linear scan to update the
temporary nearest neighbors (lines 11-15). Additionally, if
the current node is an inner node we add its child nodes
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Algorithm 2 kNN queries in SUSHI

1: input: query q, result set size k

2: queue = List of (dist, node) is ascending order by dist ;
3: queue.insert(0.0, root);
4: resultArray = [(∞, null), . . . , (∞, null)]; // k times
5: distmax = ∞;

6: WHILE(queue 6= ∅ and queue.nextDist ≤ distmax)

7: n = queue.pollF irst;
8: // scan objects of leaf or possible outliers
9: IF(n is leaf node) toScan = n.O;

10: ELSE toScan = n.Out;
11: FOREACH(o in toScan)
12: IF(dist(q, o) ≤ distmax)
13: resultArray[k] = (dist(q, o), o);
14: resultArray.sort;
15: distmax = resultArray[k].dist;

16: IF(n is inner node)
17: FOREACH(SER R in n)
18: IF(mindist(q,R) ≤ distmax)
19: queue.insert(mindist(q,R), R.child);

20: return resultArray;

to the queue (lines 16-19). The sorting is based on their
mindist values. It is important to scan the outliers before
analyzing the child nodes. Thereby the value of distmax can
be lowered (line 15) and further subtrees can be pruned.

In Sec. 3.1 we mentioned the use of transformation based ap-
proaches for cluster approximation. Thus, the mindist cal-
culation is also based on this transformation. However, due
to our multi-representations we would use different transfor-
mations for each node/cluster and hence the query object
has also to be transformed several times (necessary for line
18) resulting in inefficient processing. Therefore we focus on
the method of subspace enclosing rectangles.

4. EXPERIMENTS
This section is structured as follows: Section 4.1 describes
the setup. Section 4.2 studies the different construction
strategies and parameters. Finally, Section 4.3 compares
SUSHI to several competing approaches.

4.1 Experimental setup
We compare our SUSHI with index structures from different
paradigms. The R∗-tree [5] is used as a competitor for full
space indexing. Global dimensionality reduction approaches
are realized by using the R∗-tree with PCA reduction or with
Cut-Off reduction: for the first we use PCA and remove the
dimensions with the lowest information content, for the sec-
ond we simply remove the last dimensions. As an approach
exploiting local correlations we implement the LDR index
[8]. Distance-based indexing w.r.t. reference points is real-
ized by the iDistance method [16]. Additionally, the sequen-
tial scan is used as a baseline competitor. Since SUSHI is
designed for main memory and not for secondary storage,
node/page accesses are irrelevant. Instead, as an implemen-
tation invariant performance measure, we use the number
of distance calculations to the bounding regions and to the
data objects/outliers (with equal weight) for all approaches.

We evaluate the performance on several real world and syn-
thetic data sets. We use color histograms in the extended
HSL color space (ext. by dimensions for gray values) as fea-
tures obtained from a data set that combines well-known
image databases (Corel, Pixelio, Aloi, Hemera). We use the
UCI pendigits data [11] and extend it to a 48-dimensional
variant by interpolation of the available polylines. Moreover,
a 15-dimensional data set reflecting oceanographic charac-
teristics as temperature and salinity of the oceans is used1.
For synthetic data, we follow the method in [13, 18] to gener-
ate density-based clusters in arbitrary subspaces. The gen-
erator takes into account that subspace clusters can be hier-
archically nested (cf. Fig. 1) by allowing a varying subspace
cluster hierarchy depth. Unless stated otherwise, we gener-
ate data with 10,000 objects, 64 dimensions, 16 clusters in
a hierarchy of depth 4, and 5 percent noise (outliers w.r.t.
clustered objects) per level of the hierarchy.

For repeatability and comparison we specify the default pa-
rameter settings used in our experiments. We measure the
number of distance calculations to obtain the 5 nearest neigh-
bors averaged over 100 queries following the data distribu-
tion. We set minSize (cf. Alg. 1) and the number of
clusters for PROCLUS to 20. The test set contains 50 ob-
jects and stableSteps = 5. For the LDR approach, we use
Minsize = 10 and FracOutliers = 0.1 as in the original
publication [8]. According to [16], we set the number of ref-
erence points in iDistance to 64 and they are determined
by k-means. The node size for the R∗-tree methods is set
to 4kb. All dimensionality related parameters (average di-
mensionality of cluster in PROCLUS; number of retained
dimensions in the PCA and Cut-Off approach; maximal di-
mensionality of clusters in LDR) were optimized for each
data set such that the best query performance is obtained.

4.2 Evaluation of construction strategies
We start by evaluating the different construction strategies
of SUSHI, i.e. the train-and-test method and the applied
clustering algorithms. Furthermore, we study several pa-
rameter settings of our index.

Train-and-Test. First, we analyze how the train-and-test
strategy influences the query performance of the PROCLUS-
based version of SUSHI. Figure 4 compares the efficiency of
PROCLUS-based SUSHI with or without train-and-test for
varying average dimensions per subspace cluster, a parame-
ter of PROCLUS. The number of average distance calcula-
tions for the variant without train-and-test is averaged over
5 constructed indices, while the optimized variant uses just
one index. That is, the results are averaged over 5 · 100
queries or 100 queries, respectively. This procedure was
chosen because the variant without train-and-test is very
unstable, i.e. the nondeterminism of PROCLUS creates very
different indices in each construction phase. Therefore, the
query efficiencies of the different indices vary considerably.
In the figure, this is pointed out by the whiskers showing
high variances in the numbers of distance calculations. The
train-and-test-based method clearly outperforms the other
variant. Considering the best-case situations of the variant
without train-and-test, i.e. the lower ends of the whiskers,
the train-and-test approach, averaged over only one index,

1provided by the Alfred Wegener Institute for Polar and
Marine Research, Bremerhaven, Germany
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dominates over all dimensionalities. Train-and-test signifi-
cantly improves the stability of the clustering and thus the
quality of PROCLUS-based SUSHI. Because of the good
results, PROCLUS-based SUSHI is always combined with
train-and-test in the rest of the experiments.

Mineclus vs. Proclus. Next, we study the differences be-
tween MINECLUS and PROCLUS-based SUSHI. Figure 5
compares the approaches on two datasets. To give a bet-
ter overview, we evaluated two different parameters, i.e. the
database size for the oceanographic dataset and the dimen-
sionality for the histograms. For MINECLUS, most of the
recommended parameter settings from the original publica-
tion [32] were applied: β = 0.25, maxOuterIterations =
100, and numBin = 10. The side length w of a hyper-
cube was automatically determined by a heuristic proposed
in [26] and is based on a sampling set of 2,500 objects.
Because we observed a higher performance with lower val-
ues of α, we fixed it at α = 0.001. In both experiments
PROCLUS-based SUSHI shows a substantially higher per-
formance than MINECLUS-based SUSHI. This is especially
the case for higher dimensionalities of the histogram dataset;
runtimes of PROCLUS-based SUSHI stay relatively con-
stant with increasing dimensionality, while the performance
of MINECLUS-based SUSHI degrades. The experiments
point out that the subspace clusters generated by PROCLUS
are better candidates for SERs than the ones generated by
MINECLUS. For the remaining experiments, PROCLUS-
based SUSHI is the method of choice.

The experiments in Figure 6 show how the different parame-
ters of PROCLUS influence the performance of SUSHI. The
studied parameters are the average dimensionality of sub-
space clusters and the number of clusters to be found.

Average dimensionality. The experiment to the left of Fig-
ure 6 shows that the query performance of SUSHI is highly
influenced by the average dimensionality of the found sub-

space clusters. Most interesting, with higher dimensionali-
ties (≥ 20) query performance rapidly deteriorates; we can
infer that the usage of local correlations in the data can
improve the performance of our index significantly. Accord-
ingly, higher average dimensionalities should not be used as
parameters. Furthermore, very low average dimensionalities
are also no good parameter setting. There is not enough
information in such low-dimensional subspace clusters that
could be used to create an efficient index.

Number of subspace clusters. The experiment to the right of
Figure 6 displays how the query performance is influenced
by the number of clusters to be found. The general tendency
is that with a higher number of clusters the average number
of distance calculations becomes more stable, i.e. the results
for a low number of clusters are very fluctuant and show
no good query performance. As a result, parameterizing
PROCLUS with a low number of clusters should be avoided.
The effect is, however, very dataset dependent. Based on
several experiments with different datasets we made a trade-
off and selected a cluster number of 20.

Influence of dynamic inserts. The experiment depicted in
Figure 7 studies how dynamic inserts influence the query
performance of SUSHI. The x-axis describes to which per-
centage the index is based on dynamic inserts. Before the
dynamic inserts, the rest of the data objects is inserted stati-
cally, a process which is knows as bulk-loading. Accordingly,
the database size is always fixed. The dataset is pendigits
with 10,992 objects. Overall, the results are very stable.
That is, the benefits of bulk-loading the index are negligi-
ble. Only if the whole index is built with bulk-loading (i.e.
100% static), a slight performance increase can be noticed.
The overall good performance can be explained by the insert
strategy based on dynamic reclustering. It adapts to new
data distributions making SUSHI well suited for dynamic
application domains.
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Figure 8: Database scalability on color histograms
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Figure 9: Database scalability on synthetic data

4.3 Comparison with competing approaches
In the following experiments we compare the query perfor-
mance of SUSHI to the ones of other approaches.

Database size. In Figure 8 we evaluate a varying database
size by using subsets of our color histogram database. Our
SUSHI approach requires very few distance calculations and
the slope of the curve is small. All competing methods show
a higher increase w.r.t. the database size. Especially the
LDR method, which is able to use local correlations, shows
worse performance than the PCA based method, which de-
tects only global ones. Please note, that in this experiment
the R∗-tree with and without Cut-Off reduction show the
same poor performance. This is due to the characteristics of
the data set: the dimensions representing gray values have
a high information content.

In Figure 9 we analyze the effects of varying database size on
a synthetic data set. Comparable to the first experiment, we
see that SUSHI clearly outperforms all other approaches. In
this diagram, we skip the sequential scan corresponding to
a diagonal for clarity. The LDR approach cannot cope with
the hierarchy of subspace clusters, it uses subspace clustering
only once. The performance degenerates to the one of the
R∗-tree or is even worse. Furthermore, using classical index
structures after the clustering step within the LDR method
leads to similar problems as for the R∗-tree.

Dimensionality. In Figure 10 we increase the dimensionality
of the data set. For SUSHI and iDistance no increase in the
number of distance calculations is observed, while all the
other approaches have increasing numbers of calculations.
Even for the 96-dimensional data set the efficiency of our
approach is high. The characteristics of LDR and the R∗-
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Figure 10: Varying dimensionalities on synth. data
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Figure 11: Varying degree of noise on synthetic data

tree methods are similar to the previous experiment. The
sequential scan constantly needs 10,000 calculations and is
orders of magnitude slower than our SUSHI.

Noise. Now we analyze the effects of an increasing percent-
age of noise in the data. Noise is present in nearly all data
sets and the index structures should handle this as well.
Figure 11 demonstrates the strength of SUSHI. While its
processing time stays low, some competing approaches even
converge to the sequential scan. Our SUSHI is able to store
outliers, i.e. noise objects, separately in the inner nodes of
the index. Thus, our subspace enclosing rectangles are not
influenced by the outliers and we reach compact representa-
tions of the objects. By contrast, the R∗-tree must include
all outliers and in iDistance the selection of reference points
is sensitive to noise, leading to poor performance of both
paradigms. Again and in contrast to SUSHI, the LDR can-
not identify the cluster hierarchy.

Information content: Depth of subspace cluster hierarchy.
It was shown that high dimensionalities do not necessarily
cause the curse of dimensionality but the information con-
tent in the data itself [9]. We show that our SUSHI handles
this information-rich data better than the other approaches,
because we identify and use more structure from the data
like hierarchically nested clusters. Measuring the informa-
tion content of data can be done multifaceted, e.g. in factor
analysis one uses the eigenvectors of a covariance matrix
to represent factors and the eigenvalues as indicators for
the explained variances by each of these factors [17]. Large
eigenvalues correspond to factors explaining an important
amount of the variability in the data. A data set with low
information content has few large eigenvalues and several
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Figure 13: Performance on synth. data of Fig. 12

small ones, and the data can be represented by only few fac-
tors. By contrast, data with high information content can
result to almost equal eigenvalues. Each factor is important
to explain the data.

Figure 12 visualizes the information content for several data
sets (one curve per data set). Each data set consists of 64
dimensions and hence 64 eigenvalues are calculated. On the
x-axis the number of used eigenvalues/factors to explain the
data are presented. The eigenvalues are sorted in descending
order such that the factors which explain most of the vari-
ances are considered first. The y-axis shows the percentage
of the explained variances w.r.t. the overall variance. For
example, if we use all factors (right side of the diagram) we
can explain the whole data (100%). If we use only two fac-
tors we can explain only a part of the variance, e.g. 20%. A
data set with low information content reaches nearly 100%
with only few factors, while a data set with high information
content tends to be a diagonal in the diagram.

To be concrete, in Figure 12 we generate synthetic data sets
with varying hierarchy depth for nested subspace clusters. If
the hierarchically nesting is only of depth 4 (left curve), the
data contains low information. If we increase the nesting of
subspace cluster, the curves slide to the right and hence we
increase the information content.

In Figure 13 we analyze the query performance of SUSHI
and its competitors on these datasets. Keep in mind that
the dimensionality and the database size is fixed. We only
increase the information content. As expected the perfor-
mance of all methods drops. However, our SUSHI outper-
forms all other approaches because we can identify the hier-
archies in the data and we use this information for pruning.
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Figure 14: Variance vs. used eigenvalues; semi-real
glass data (shifted by i)
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Figure 15: Performance on semi-real data of Fig. 14

All R∗-tree variants degenerate and show even worse perfor-
mance than the sequential scan. The curse of dimensionality
becomes apparent. The LDR methods reveals acceptable re-
sults only for small hierarchy depths but converges fast to
the sequential scan. The method cannot identify meaning-
ful structures and hence nearly all objects are included in
the outlier list which results in a sequential scan behavior.
Similarly, iDistance fails on these complex data sets since
the indexed distances are no longer discriminable and hence
all objects need to be processed.

Information content: Real world data. While in the previ-
ous experiment synthetic data was used, we now use real
world data. Since we cannot directly influence the informa-
tion content of real world data we modify the dataset and we
obtain semi-real data. In the next experiment, our method
for varying information content is the following: Assume a
database DB with d dimensions is given. To increase the
dimensionality by x we replicate the database x + 1 times.
The new database DB′ consists of x+ 1 different instances
DBi. Thereby, each DBi is obtained from the old DB by
shifting all attribute values of the objects i dimensions to
the right, as illustrated in Figure 18. The gray shaded cells
are filled with random values. Please note that the dimen-
sionality and the database size is modified by this procedure.
In our experiments, we use the UCI glass data [11] to create
our semi-real data. We generate different data sets starting
with 10 dimensions (glass10) up to 17 dimensions (glass17).

Just as in Figure 12, Figure 14 shows the explained variance
by the used eigenvalues/factors. Indeed our method yields
an increase in information for the data sets. In Figure 15
the efficiency of the indexing approaches on these data sets
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Figure 17: Performance on semi-real data of Fig. 16

is presented. As in the previous experiment SUSHI yields
the highest performance. Keep in mind that the dimension-
ality and database size increase simultaneously and hence
the sequential scan does so too. Anyhow, the slope of the
curve for SUSHI is very small. An interesting observation
is that with increasing complexity of the data set the PCA
approach performs worse compared to the classical R∗-tree.

In the following experiment we change the information con-
tent by a different method: Instead of incrementally shift-
ing the replicated databases by one dimension, we directly
shift the databases by a factor of d. Thus, each DBi is ob-
tained from the old DB by shifting all attribute values of
the objects d · i dimensions to the right. By this method,
the dimensionality of the obtained semi-real data increases
much faster compared to the previous method. In the ex-
periment we generate data starting with the dimensionality
of the original glass data (100%) up to a factor of 400%.
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Figure 18: Generation of semi-real data
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Figure 19: Varying number of clusters on synthetic
data sets
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Figure 20: Performance for different kNN queries

In Figure 16 the explained variances by the used eigenval-
ues/factor are depicted. As illustrated, this data genera-
tion procedure also increases the information content of the
data. Figure 17 shows the corresponding efficiency of the
indexing approaches on these data sets. Similar to the pre-
vious experiments, SUSHI performs best on data sets with a
high amount of information. All competing approaches show
higher numbers of calculations and most of them quickly
converge to the poor performance of the sequential scan. A
special case is the iDistance, which performs even worse than
the sequential scan.

Number of clusters. In Figure 19 we evaluate the query per-
formance when the number of subspace clusters in the data
is increased, thus yielding an increase in the local correla-
tions of the data since each cluster has its individual relevant
dimensions. Our SUSHI can detect these local correlations
resulting in the highest efficiency. The global dimensionality
reduction PCA exhibits a high number of calculations, even
worse than the classical R∗-tree. With increasing number of
subspace clusters global correlations become negligible and
cannot be used for effective pruning.

Number of nearest neighbors. The performance of the meth-
ods under varying result size for the kNN query is studied
in Figure 20. SUSHI shows a nearly linear behavior while
the other approaches rise faster. The LDR even degenerates
to the poor performance of the sequential scan. Some index
structures keep up with SUSHI for the 1-NN query. How-
ever, the potential of SUSHI becomes apparent for nearest
neighbor queries with larger result size. These queries are
more relevant in practical applications.
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5. CONCLUSIONS
In this work, we introduce SUSHI for indexing high dimen-
sional objects. Our novel model uses subspace clustering
to identify local reductions that achieve higher information
content than global reductions. By a hierarchical nesting of
local reductions we generate a multi-representation of ob-
jects, so that queries have to traverse a cascade of different
filters in the index. Our index construction is optimized
via a train-and-test method that provides compact descrip-
tions for regions in the feature space and we ensure that our
index adapts to new data distributions. Thorough experi-
ments on real and synthetic data demonstrate that SUSHI
enables fast query processing and reliably outperforms ex-
isting approaches.
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