
True Language-Level SQL Debugging

Torsten Grust Fabian Kliebhan Jan Rittinger Tom Schreiber
WSI, Universität Tübingen

Tübingen, Germany〈firstname.lastname〉@uni-tuebingen.de

ABSTRACT
We demonstrate Habitat, a declarative observational de-
bugger for SQL. Habitat facilitates true language-level (not:
plan-level) debugging of, probably flawed, SQL queries that
yield unexpected results. Users may mark arbitrary SQL
subexpressions—ranging from literals, over fragments of pred-
icates, to entire subquery blocks—to observe whether these
evaluate as expected.

From the marked SQL text, Habitat’s algebraic compiler
derives a new query whose result represents the values of the
desired observations. These observations are generated by
the target SQL database host itself. Prior data extraction or
extra debugging middleware is not required.

Habitat merges multiple observations into a single (nested)
tabular display, letting a user explore the relationship of
various observations. Filter predicates furthermore ease the
interpretation of large results.

Categories and Subject Descriptors
H.2.3 [Database Management]: Query languages; D.2.5 [Software
Engineering]: Debugging aids

Keywords
SQL, query debugger, observational debugging

1. DEBUGGING FLAWED SQL QUERIES
We built the observational SQL debugger Habitat [6] that

helps users to identify errors, or “bugs”, buried in queries.
With Habitat, we pursue language-level debugging of logical
flaws—that lead SQL queries to yield unexpected results or
even runtime errors—and do not consider query engine or
performance debugging.
Habitat enables users to mark arbitrary suspect (or in-

teresting) SQL subexpressions of a buggy query. Given such
markings, Habitat crafts new SQL queries that let the target
RDBMS compute the value of the suspect subexpressions.
Users observe and correlate these values, then narrow or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

fs ::= SELECT sc AS id,. .,sc AS id
FROM tbl,. .,tbl

WHERE p]
GROUP BY col,. .,col

HAVING p]]
ORDER BY sc,. .,sc]

fullselects
table access

[row filter
[grouping
[group filter

[ordering

sc ::= col | 〈SQL literal〉 scalars
| sc + sc | sc * sc | · · · | id(sc) application
| CASE WHEN p THEN sc ELSE sc END conditional
| COUNT(*) | COUNT(sc) | MAX(sc) | · · · aggregates
| (fs) scalar subquery

p ::= p AND p | p OR p | NOT p | (p) predicates
| sc cmp sc comparison
| sc [NOT] IN (fs) membership
| EXISTS(fs) emptiness
| sc cmp ALL (fs) | sc cmp ANY (fs) quantification

tbl ::= id(id,. .,id) [AS id] tables
| (fs) AS id table subquery

cmp ::= < | <= | = | >= | > | <> comparison ops.

col ::= id[.id] column references

id ::= 〈SQL identifier〉 identifiers

Figure 1: SQL fragment considered in this demonstration.
Any SQL subexpression derivable from the non-terminals fs,
sc, p, or tbl may be observed by the Habitat debugger.

widen their markings to hunt down the bug in an iterative,
interactive process.
Habitat uses a context-free grammar for SQL to auto-

matically extend arbitrary user-marked query text fragments
to minimal syntactically complete subexpressions. Figure 1
shows the grammar that accepts the SQL dialect considered
in this demonstration. Whereas non-terminal fs, defining a
SQL fullselect [8, § 7.11], is the start symbol of this grammar,
any subexpression that is derivable from the non-terminals
fs, sc, p, or tbl is considered observable by the debugger.
Non-terminal sc, for example, derives any scalar SQL ex-
pression, ranging from parenthesized nested fullselects to
individual column references or literals.

Observing Queries in their Natural Habitat. Habitat com-
piles a marking into a new SQL query based on the compila-
tion rules described in [6] and submits this query to the target
database host to collect observations based on the original
instance data. The debugger does not depend on prior data
extraction, extra middleware or specific software hooks: only
an API for SQL query execution—here: JDBC—is required.
Habitat’s approach allows to debug expressions in their
original (remote) execution environment where the observing
queries will find the exact set of built-in and user-defined
functions specific to the target database host.

562

SELECT ps
¯
partkey,ps

¯
suppkey

FROM Partsuppp
WHERE ps

¯
availqty <=

(SELECT COUNT(*)
FROM Lineitem

WHERE ps
¯
partkey = l

¯
partkey

AND ps
¯
suppkey = l

¯
suppkey)

(a) Original correct variant (Query 1).

SELECT ps
¯
partkey,ps

¯
suppkey

FROM Partsupp,
(SELECT l

¯
partkey,l

¯
suppkey,

COUNT(*) AS cnt
FROM Lineitem

GROUP BY l
¯
partkey,l

¯
suppkey)

WHERE ps
¯
partkey = l

¯
partkey AND ps

¯
suppkey = l

¯
suppkey

AND ps
¯
availqty <= cnt

(b) Uncorrelated yet buggy variant (Query 2).

Partsupp
ps

¯
partkey ps

¯
suppkey ps

¯
availqty

1 10 0
2 20 1
2 30 4

Lineitem
l
¯
orderkey l

¯
linenumber l

¯
partkey l

¯
suppkey

2 1 2 20
2 2 2 30
3 1 2 20

(c) Excerpt of a sample TPC-H database instance. This subset of tables and
columns/rows suffices to illustrate the diverging behavior of Queries 1 and 2.

ps
¯
partkey ps

¯
suppkey

1 10
2 20

(d) Result of Query 1.

ps
¯
partkey ps

¯
suppkey

2 20

(e) Result of Query 2.

Figure 2: Two variants of the “out of supplies” SQL query (see (a) and (b)). Results in (d) and (e) differ when evaluated against
the TPC-H instance of (c).

True Language-Level SQL Debugging. Contemporary SQL
debuggers for RDBMSs implement a stateful paradigm that
helps to monitor the execution of SQL stored procedures
or scripts: variable updates and procedure call stacks are
watched as the script advances line by line [4,9]. The invo-
cation of a SQL query from within a script, however, makes
for a monolithic action that cannot be traced or inspected.
Instead, Habitat operates at the level of individual (sus-
pect) SQL query subexpressions, promoting debugging at a
considerably finer granularity.

Other debugging approaches typically expose the query en-
gine’s internal plan representation [1–3]. They are, however,
of limited or no use in fixing logical flaws as the shape of a
plan in most cases is largely disconnected from its surface
syntax which is mostly due to complex query optimization
logic. An apriori understanding of how user-facing query
constructs emerge in algebraic plans is necessary to interpret
such observations. In contrast, Habitat makes use of the
observational debugging paradigm on the level of user-facing
SQL syntax and semantics: users mark fragments of their
own SQL text and observe row variable bindings as well as
expression values side by side with their dependencies in
tabular form.

2. OBSERVING SQL SUBEXPRESSIONS
Consider a user’s query (Query 1 of Figure 2a) which com-

putes those parts for which we are out of supply: the available
quantity (column ps

¯
availqty) can not, or only barely, meet

the current demand (read off table Lineitem). For the sample
TPC-H instance of Figure 2c, the two parts represented by
the rows with 〈ps

¯
partkey, ps

¯
suppkey〉 ∈ {〈1, 10〉 , 〈2, 20〉} are

identified to be scarce (see Figure 2d).
Query 1 works flawlessly but exhibits disappointing per-

formance for large database instances1, which we attribute
to the correlated aggregation carried out by the subquery.
To remedy the issue, we rewrite Query 1, trading correlation
for grouping [5], and obtain Query 2 of Figure 2b. While
performance improves significantly, we find the rewritten

1Again, this is not what we consider a bug in the context of
the present discussion.

query to not perfectly imitate the original: unexpectedly,
part 〈1, 10〉 is not considered to be out of supply by Query 2
(see Figure 2e). This is a bug whose cause we try to hunt
down using Habitat.

Debug Session. We start the session with the aim to reinforce
our understanding of why the rows 〈1, 10〉 and 〈2, 20〉 have,
correctly, been returned by Query 1. To do so, Marking 1

is placed to observe whether the COUNT(*) aggregation com-
putes the demand of parts as expected (Figure 3a). We
further mark the <= predicate that embodies the “out of
supply” condition (Marking 2): whenever this observation
yields true, Query 1 has identified a scarce part.

Observations as Functions of Free Row Variables. Habitat
allows arbitrary query fragments to be marked for observa-
tion (see Section 1). In general, markings will contain and
depend on free row variables—variables whose binding sites
(FROM clauses) are not contained in the marking itself (e.g.,
row variable v0 is free in Marking 1 of Figure 3a).

For any marked subexpression e, Habitat consistently
understands e as a function of its free row variables. Under
this regime, Marking 1 defines a function f1 with

f1 (v0) = (SELECT COUNT(*)

FROM Lineitem AS v1
WHERE v0.ps

¯
partkey = v1.l

¯
partkey

AND v0.ps
¯
suppkey = v1.l

¯
suppkey) ,

mapping rows v0 (of table Partsupp) to tables with associated
Lineitem rows. Generally, an observation for subexpression e
reflects the set-oriented semantics of SQL and contains

• the values of e evaluated under the set of all bindings of
its free row variables, and [output]

• the row values bound to these free variables (projected
onto the columns actually referenced in e), [input]

i.e., a tabulation of the function defined by expression e. In
programming language jargon, we obtain a tabular repre-
sentation of the closures that capture the free variables and
results of all evaluations of e.

As row variable v0 is free in Marking 1 , this defines func-
tion f1 (v0), mapping a part v0 to a scalar of SQL type

563

2

1

SELECT v0.ps
¯
partkey,v0.ps

¯
suppkey

FROM Partsuppp AS v0
WHERE v0.ps

¯
availqty <=

(SELECT COUNT(*)
FROM Lineitem AS v1

WHERE v0.ps
¯
partkey = v1.l

¯
partkey

AND v0.ps
¯
suppkey = v1.l

¯
suppkey)

(a) Markings placed to observe the evaluation of
the “out of supply” (<=) predicate in Query 1.

3

4 5
SELECT v0.ps

¯
partkey, v0.ps

¯
suppkey

FROM Partsupp AS v0,
(SELECT v2.l

¯
partkey,v2.l

¯
suppkey,

COUNT(*) AS cnt
FROM Lineitem AS v2

GROUP BY v2.l
¯
partkey,v2.l

¯
suppkey) AS v1

WHERE v0.ps
¯
partkey = v1.l

¯
partkey AND v0.ps

¯
suppkey = v1.l

¯
suppkey

AND v0.ps
¯
availqty <= v1.cnt

(b) A first set of subexpressions marked in Query 2.

Figure 3: Possible markings that help track down the missing row bug.

1 2

v0.ps
¯
partkey v0.ps

¯
suppkey v0.ps

¯
availqty COUNT(*) · <= ·

1 10 0 0 true
2 20 1 2 true
2 30 4 1 false

Figure 4: Observations made for Markings 1 and 2 . The
leading three columns show the projection of free row vari-
able v0 onto the columns actually referenced in the markings.

3 4 5

v0.ps
¯
availqty v1.cnt · <= · v0.ps

¯
partkey v0.ps

¯
suppkey

0 2 true
0 1 true
1 2 true 2 20
1 1 true
4 2 false
4 1 false

Figure 5: Observations made for Markings 3 to 5 .

INTEGER. Similarly, Marking 2 defines a Boolean func-
tion f2 (v0) on parts v0. Figure 4 shows the tabulation for
both markings: the columns labeled 1 and 2 indicate the
output; the projected columns v0.ps

¯
partkey, v0.ps

¯
suppkey,

and v0.ps
¯
availqty mark the input.

Linking Multiple Observations. Markings 1 and 2 depend
on the same free row variable v0 (equivalently: functions f1

and f2 share the row parameter v0) and thus Habitat merges
the results of the associated observing queries into a single
tabular display (Figure 4). More generally, Habitat merges
observations whenever their associated sets of free row vari-
ables are contained in another (here, we have {v0} ⊆ {v0}).
Merging related observations in this way greatly helps to
understand the interplay of individual subexpressions in a
larger query.

We observe the WHERE predicate to yield true two times,
coinciding with Query 1’s result cardinality of two, and
understand that part 〈1, 10〉 is considered “out of supply”
because its availability (0 in column v0.ps

¯
availqty) does not

exceed the current demand (the COUNT(*) aggregate also
yields 0, column 1).

Debug Session (continued). We turn to the rewritten Query 2
and place Marking 3 to check whether its WHERE predicate
mirrors the “out of supply” condition as expected (Figure 3b).
This marking defines a Boolean function f3 (v0, v1), capturing
two free variables. The additional Markings 4 and 5 in the
SELECT clause enable us to observe the resulting parts.

First, we see how the “out of supply” condition is evaluated
against the combination of all bindings for v0 and v1 (Fig-
ure 5). This is a consequence of the nested loop semantics
embodied by SQL FROM clauses that feature two or more row

6

7

SELECT v0.ps
¯
partkey,v0.ps

¯
suppkey

FROM Partsupp AS v0,
(SELECT v2.l

¯
partkey,v2.l

¯
suppkey,

COUNT(*) AS cnt
FROM Lineitem AS v2

GROUP BY v2.l
¯
partkey,v2.l

¯
suppkey) AS v1

WHERE v0.ps
¯
partkey = v1.l

¯
partkey AND v0.ps

¯
suppkey = v1.l

¯
suppkey

AND v0.ps
¯
availqty <= v1.cnt

Figure 6: More suspect subexpressions marked in Query 2.

6

v0.ps
¯
partkey v0.ps

¯
suppkey v1.ps

¯
partkey v1.ps

¯
suppkey · AND ·

1 10 2 20 false
1 10 2 30 false
2 20 2 20 true
2 20 2 30 false
2 30 2 20 false
2 30 2 30 true

Figure 7: Observations made for Marking 6 , focus on the
bindings with 〈v0.ps

¯
partkey, v0.ps

¯
suppkey〉 = 〈1, 10〉.

variables [8, § 7.5]. Multiple bindings qualify (value true in
column 3) but only 〈2, 20〉 makes it into the final result. For
all other bindings, we observe that the two subexpressions
in the SELECT clause are not evaluated at all, indicated by

in columns 4 and 5 . Those bindings—including
the missing bindings with 〈v0.ps

¯
partkey, v0.ps

¯
suppkey〉 =

〈1, 10〉—must fail to satisfy the foreign key join predicate
v0.ps

¯
partkey = v1.l

¯
partkey ∧ v0.ps

¯
suppkey = v1.l

¯
suppkey

in Query 2.
This join predicate thus is the subject of our next Mark-

ing 6 (Figure 6). The associated observation f6 (v0, v1) shows
the evaluation of the predicate against all combinations of
v0, v1 bindings, so we let Habitat focus the display on the
bindings that we miss (Figure 7). As suspected, the row vari-
able bindings in focus find no join partner (false values in the
focus on column 6). The grouping subquery appears to not
generate bindings with 〈v2.l

¯
partkey, v2.l

¯
suppkey〉 = 〈1, 10〉

at all. This is exactly what our final Marking 7 and the
associated observation (Figure 8) indicates.

We have finally uncovered that the rewrite from Query 1
to Query 2 perpetrates the count bug [7]. This notorious
class of bugs—related to the semantics of grouping and
aggregation over empty row sets (GROUP BY yields no row at

7

v2.l
¯
partkey v2.l

¯
suppkey cnt

2 20 2
2 30 1

Figure 8: A closed observation made in Query 2. No row is
produced for part 〈v2.l

¯
partkey, v2.l

¯
suppkey〉 = 〈1, 10〉.

564

Figure 9: Screenshot of Habitat’s mark window (compare
with Figure 3a). Markings are color-coded and can be added
by means of the context menu and keyboard shortcuts.

Figure 10: Screenshot of Habitat’s observe window (com-
pare with Figure 5). Colors link observations and markings.
Pagination and filter predicates ensure intelligible results.

all whereas COUNT(*) returns 0)—went unidentified for years
before its cause and fix were described [5].

3. MARK AND OBSERVE (DEMO SETUP)
Habitat’s mark and observe implements a debugging

paradigm via a closure-based SQL compiler, permitting users
to think in terms of SQL’s surface syntax (mark) and simple
tabular representations of evaluated expressions (observe).
Habitat’s GUI consequently consists of a mark window

providing a SQL editor panel and an observe window in which
the function tabulations are rendered. Markings and their
associated observations are color-coded (Figures 9 and 10).
Arbitrarily placed selections of SQL text are automatically
turned into meaningful markings (Section 1).

Debugging a query against original instance data can be
vital to hunt down specific data-dependent bugs, but may
yield large observations. To address such cases, Habitat’s
tabular display uses pagination to split up large results and
furthermore lets users formulate filter predicates on the result
columns, thus reducing the size of the observation (see bottom
pane in Figure 10).2

Demonstration Setup. The live demonstration features a DB2
database with tables of varying size giving an impression of
Habitat’s interactivity. A look behind the scenes allows for
a peek at the generated observing queries. We furthermore
prepared three different use cases for Habitat:

2These filters are a variant of the focus displayed in Figure 7.

• Debugging of flawed queries. Various buggy example
queries await to be analyzed and fixed with (or without)
the support of Habitat.
• Understanding complex queries. Getting a clear idea of

what a query does sometimes is not easy at all. With Habi-
tat we provide a convenient means to understand query
fragments, without accidentally modifying the queries’ se-
mantics. Habitat assists to unravel the meaning of various
example queries.
• Teaching SQL. What is the exact meaning of query cor-

relation? Which columns are available after a GROUP BY

clause? Habitat eases the understanding of SQL by sup-
plying hooks to observe the various stages of the query
evaluation.

Summary. Authoring bug-free SQL queries can be tricky
at times and the language clearly deserves a debugging ap-
proach that fits its calculus-style computational model: the
iterated evaluation of expressions under varying row variable
bindings. Habitat implements such a debugging paradigm.
In summary, Habitat can observe
• expressions of all scalar SQL data types, including expres-

sions of type BOOLEAN (Markings 1 to 6),
• (possibly empty) table-valued subexpressions (7),
• expressions that yield runtime errors (e.g., violations of

SQL’s scalar subquery constraints) if evaluated in the
context of the original query,
• closures (1 to 6) as well as closed (or constant) expressions

(7),
• related expressions, merging their observations if the asso-

ciated sets of free variables are contained in one another
(1 , 2 and 3 , 4 , 5),
• expressions that might not be evaluated for specific variable

bindings (4 , 5), and
• expressions that contain free variables originating in sepa-

rate, yet nested, subexpressions.

Acknowledgments. This research is supported by the German
Research Council (DFG) under grant GR 2036/3-1.

4. REFERENCES
[1] H. Bati, L. Giakoumakis, S. Herbert, and A. Suma. A

Genetic Approach for Random Testing of Database
Systems. In Proc. VLDB, 2007.

[2] C. Binnig and D. Kossmann. Reverse Query Processing.
In Proc. ICDE, 2007.

[3] N. Bruno, S. Chauduri, and R. Ramamurthy. Interactive
Plan Hints for Query Optimization. In Proc. SIGMOD,
2009.

[4] The Embarcadero SQL Debugger.
http://www.embarcadero.com/products/debugger.

[5] R.A. Ganski and H.K.T. Wong. Optimization of Nested
SQL Queries Revisited. ACM SIGMOD Record, 16(3),
1987.

[6] T. Grust and J. Rittinger. Observing SQL Queries in
their Natural Habitat. 2010. Submitted.

[7] W. Kim. On Optimizing an SQL-like Nested Query.
ACM Transactions on Database Systems (TODS), 7(3),
1982.

[8] Database Language SQL—Part 2: Foundation
(SQL/Foundation). ANSI/ISO/IEC 9075, 1999.

[9] Transact-SQL Debugger in Microsoft SQL Server 2008.
http://msdn.microsoft.com/en-us/library/

cc645997.aspx.

565

