
A Query Optimization Assistant for XPath
Haris Georgiadis

AUEB

harisgeo@aueb.gr

Minas Charalambidis
AUEB

minchar86@gmail.com

Vasilis Vassalos
AUEB

vassalos@aueb.gr

ABSTRACT
We demonstrate a generic and extensible cost-based optimization
and execution system for XPath queries, named GeCOEX, using a
comprehensive suite of query analyzing and administrative tools,
named QuOAX. GeCOEX supports many different physical
operator implementations and XML storage engines and is
agnostic to the underlying physical data model. Its optimizer is
the first generic cost-based optimizer for XPath queries that
always picks the cheapest estimated plan, among a very large
number of possible plans, for a wide range of XPath queries and
different datasets in a very small fraction of the time required for
efficient execution. The QuOAX suite provides administration
tools that allow the user to add new – or deactivate already
deployed – physical operator implementations, physical operator
cost models and rewriting rules and also to make use of different
XML storage and XML statistics estimators. QuOAX also
provides query plan analysis and visualization tools that allow
users to visualize the physical plan chosen by the optimizer or all
possible generated physical plans for a given query and to execute
any of those plans. QuOAX helps users to i) easily test new XPath
processing techniques, comparing them directly with existing
ones and identifying the situations to which they show promise,
ii) improve the effectiveness of the optimizer and iii) find out the
appropriate access methods or indices that are beneficial for a
specific workload.

Categories and Subject Descriptors: H.2.1
[Information Systems]: Physical Design: Access methods, H.2.3
[Information Systems]: Systems: Query processing, D.2.9

General Terms: Performance, Experimentation

Keywords: XPath, XML, Cost-based Optimization,
Algebraic rewritings, Cost Models

1. INTRODUCTION AND MOTIVATION
There has been a lot of research in the area of XML query
processing [1][2][4][3][6][5][7]. Many of the proposed techniques
have proven to be very good for specific query and data set
characteristics but are often intertwined with the existence of
specific auxiliary data structures [3][7] and XML encodings
[3][6]. These characteristics, together with the coarse granularity
of many of these techniques, make it hard to take full advantage
of their benefits for more complex querying tasks or with
arbitrary databases: in such scenarios, it is either not immediately

clear which technique would perform best, and we need a
framework for predictive comparison and evaluation of each
technique, or it would be best to combine techniques. In other
words, what is needed is a query optimization and execution
system for XPath, together with powerful administrator or power
user tools to control and visualize the process.

We will demonstrate a powerful Generic and Extensible Cost-
based Optimization and Execution system for XPath (GeCOEX),
complete with a suite of graphical tools (Query Optimization
Assistant for XPath - QuOAX) that both allow an inside look into
the workings of the optimizer and query executor and allow an
administrator or power user to easily tune and extend the entire
system. The system architecture is shown in Figure 1 and is
discussed in the next section.

The GeCOEX system is based on the framework presented in [8]
and [9]. GeCOEX uses a logical XPath algebra and a set of
rewriting rules that together can algebraically capture many
XPath processing strategies. The core of the optimizer is a cost-
based plan selection algorithm for XPath queries, named PSA.
The optimizer is independent from the underlying physical data
model and storage system and the available logical operator
implementations, depending only on the implementation of a set
of APIs. We implemented and will demonstrate different
implementations of these APIs, including access methods and
statistics estimators as well as a large pool of physical operator
implementations. Some of the implementations correspond to
well-known XPath processing techniques and algorithms from the
literature while others are novel, presented and evaluated in [9].

The cost-based optimizer of GeCOEX always picks the cheapest
estimated plan, among a very large number of possible plans, for a
wide range of XPath queries and different datasets in a very small
fraction of the time required for efficient execution. Experimental
evaluation of the effectiveness of the overall GeCOEX system has
shown that the execution time of the chosen plan is within 12% of
the optimal execution time in all but one of the queries in the tested
workloads [8].

QuOAX allows the user to easily deploy and/or parameterize the
components of GeCOEX. The user can visualize query plans
(either the one suggested by the optimizer or the set of all possible
generated plans) for a given query in a comprehensive way. A
query plan is represented as a tree that shows the user the logical
operators composing the plan and their cardinality estimations,
the specific physical operators for each one of them along with
their cost estimations and, finally, the total cost and cardinality
estimations for the entire physical plan. The user can choose to
execute one or many physical plans and see the execution time for
each one of them, or “edit” a plan, replacing an operator
implementation with a different one from the pool of available
operators.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EDBT 2011, March 22-24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00..

550

The capabilities of the QuOAX suite can help the user test
existing or new XML processing or storage/encoding techniques
and strategies, since it is easy to:
 compare the performance of different XPath processing

techniques (represented by different physical operator
implementations) over different XML storage systems

 evaluate the impact of implementing a different XML access
method (possibly based on new auxiliary structures and
indices or on more efficient algorithms), as a result of
extending the underlying XML storage system or deploying a
completely different one.

 estimate the impact of rewriting rules (by altering or
extending the pool of available rewriting rules)

The user can also use the QuOAX suite in order to increase the
quality and the effectiveness of the GeCOEX optimizer. In
particular, the user can use a query workload and measure the
effectiveness of the optimizer by comparing the execution times
of the query plans selected by the optimizer with those of the
actual best plans (after executing all plans that can be generated
from each query, a functionality provided automatically by
QuOAX). This way the user can decide whether modifications on
specific components improve the effectiveness of the optimizer
and, as a result, the efficiency of the entire system. These
components are: XML statistics estimators, cost models of the
deployed physical operator implementations and cost models of
the primitive access method implementations for a specific XML
storage engine (as shown in Figure 1).
Finally, the user can use QuOAX in order to decide whether the
creation of a specific index (for example a value or path index)
would be beneficial for a given query, without having to actually
create the index. The user can define indexes and see whether the
optimizer makes a different choice and, if so, what is the
estimated cost reduction.

2. ARCHITECTURE
GeCOEX system consists of three basic components: the Query
Parser, the Physical Plan Selector or Executor and the Physical
Plan Executor, as illustrated in Figure 1. Independence from the
XML Storage System implementation is achieved via the XPA
API. An input XPath expression is parsed by the query parser,
which generates a logical plan as its algebraic representation in
XPAlgebra [8], our navigation-based XPath algebra.

Using this initial logical plan, the Physical Plan Selector generates
the best physical plan using an efficient plan selection algorithm
called PSA [8], or the Physical Plan Generator generates all
possible physical plans (based on a naïve algorithm called
GAPH). Both PSA and GAPH make use of the available
Rewriting Rules for logical transformations, access all needed
statistics from the Database Statistics interface of the XPA and
retrieve the costs of physical operators from their Descriptors.

The Query Execution Subsystem can support multiple XPath
processing and XML storage methods. In order to use a different
XML Storage System, one only has to provide the
implementation of an XPA driver. This is due to the fact that
Physical Operators do not have direct access to the underlying
XML Storage System. Instead, they make use of a series of
primitive access methods (abrv. PAMs), available through the
Primitive Access Methods interface of the XPA API. The cost
model provided by a physical operator Descriptor relies on the
cost models of any PAM calls made by the respective operator.

These are available to the Descriptor through the above
mentioned XPA API, which stands as an abstraction layer
between the XPA Driver used and the rest of the system. Using a
new Storage System requires implementing the PAMs and
defining their cost models in an XPA driver.

Figure 1 System Architecture

XPalgebra and Rewriting Rules: XPAlgebra is our generic
sequence-based logical algebra for a large subset of XPath that
includes forward and backward axes and non-positional
predicates involving conjunctive boolean expressions that don’t
involve comparisons between paths. XPAlgebra follows XPath
2.0 semantics. XPalgebra operators return either a sequence of
nodes (sequence operators) or a boolean value (boolean
operators). We can think of sequence operators as capturing
navigation steps of the main navigation of an XPath expression.
Boolean operators capture predicate clauses. An XPAlgebra
expression can be represented graphically as a tree read bottom-
up. Sequence operators are linked with simple lines, lines crossed
by arrows show attached boolean operators to filter or to other
boolean operators. There is a straightforward algorithm for
translating an XPath expression to its algebraic correspondence in
XPalgebra which can be considered as a logical query plan. More
information about XPalgebra can be found in [8].

Figure 2 (a) illustrates the graphical representation of the
XPAlgebra expression that corresponds to the XPath query
‘/s/r/*/it[mb/m/to]//k’ which is read bottom-up. The forward path
(fp) operator fp/s/r/*/it takes as input the root singleton and returns
all ‘it’ elements under ‘/s/r/*/it’. The filter operator f corresponds
to the predicate of the XPath query. It keeps only those ‘it’
elements for which there is at least one ‘to’ descendant under
relative path ‘/mb/m/to’ (thus, the boolean forward path operator
Ъfp/mb/m/to must return true), whose text node equals ‘x’ (thus, the
boolean value filter operator Ъvftext()=’x’ also must return true).

To algebraically capture the large variety of plans, GeCOEX
adopts a rewriting-based approach. We have defined a
comprehensive set of rewritings that can produce, for each XPath
query, a large set of logical plans capturing virtually all the
important processing strategies for XPath at the logical level [8].
The plan illustrated in Figure 2 (b) derives from the one in Figure
2(a) by sequentially applying a series of rewriting rules.
According to that plan (b), we can first evaluate all ‘k’ elements
under ‘/s/r/*/it//k’ (forward path operator fp/s/r/*/it//k) and then filter
them (filter operator f) keeping only those that have at least an ‘it’

551

ancestor (boolean ancestor operator Ъait) which, in turn, has at
least one ‘to’ descendant under relative path ‘/mb/m/to’ (boolean
forward parth Ъfp/mb/m/to) with a text node equaling ‘x’ (boolean
value filter operator Ъvftext()=’x’).

(a) (b)

Figure 2. Logical Plans

Physical Operators: The GeCOEX system can capture a large
variety of existing XPath query processing techniques. A total of
42 physical operators have been implemented, divided roughly
into four ‘families’, each based on a proposed XPath processing
technique: Sort-Merge-based [8] (inspired by the Sort-Merge join
algorithm), Staircase Join [1], Lookups [8] (inspired by PPF-
based XPath processing [3]), and PathStack [2]. The performance
advantages of the Lookups and Sort-Merge-based families of
operators compared to existing techniques have been
experimentally evaluated in [9]. We will demonstrate use of all
physical operators in query plans and their efficiency differences.

XPA drivers/XML Storage Systems: The GeCOEX system can
work with any storage engine that implements the XPA API. We
have developed five different versions of such a native XML
storage system. In all versions, XML elements are stored in B-
Tree structures. B-Trees indexes can be built on specific text or
attribute nodes (value-indices). The implementation of
DBStatistics uses the (stored) cardinalities of root-to-node paths
(RTN-path) and statistics regarding attribute and text node values.
The implemented storage systems differ in the labelling scheme
used, in the inclusion or not of a root-to-node path index and in
whether they keep a separate B-Tree per tag name [8].

The Query Oprimization Assistant (QuOAX): Figure 1 shows
the two basic components of QuOAX, the Administration tools
and the Query Analyzer and Executor. The user interacts with the
former in order to configure GeCOEX by deploying an XPA
driver corresponding to a specific XML storage system, by
deploying or deactivating Physical Operators (and their
Descriptors) or by altering the set of available rewriting rules. The
user interacts with the Query Analyzer and Executor in order to
feed the system with one or more XPath queries and see, either
the best physical plans (as selected by the Physical Plan Selector)
or all possible physical plans (as generated by the Physical Plan
Generator), thanks to the Plan Visualizer. The user can chose one
or more of these plans for execution. Together with the result,
information such as execution times and cardinalities as well as
cost and cardinality estimations is returned.

The XML storage systems along with their corresponding XPA
drivers, the entire GeCOEX system and all the physical operators,
are already implemented (in Java). Berkeley DB Java Edition has
been used as B-Tree implementations in the XML storage systems.
The QuOAX is implemented as a Java Swing application.

3. DEMONSTRATION SCENARIO
We will demonstrate the GeCOEX system and QuOAX tools with
a variety of real and synthetic large XML documents (hundreds of
MB to a few GB), using some of the five XML storage systems,
and queries relevant to each document.

At first, we will use the QuOAX Administrative tools to configure
the GeCOEX System. We will deploy GeCOEX in real time on
top of a particular storage system by registering the appropriate
XPA driver. Using a user-friendly window-based wizard we will
continue with deploying all the 42 available physical operators.

Next, we will use the QuOAX query analyzer and executor tool
and analyze and run an XPath query from our workload. We
select first to use the Physical Plan Selector (PSA algorithm) to
find the (estimated as) cheapest physical plan (Figure 3). Demo
users will be able to see details about the chosen plan. The
graphical representation of the plan is top-down starting from
root, as shown in Figure 2. Blue pentagons are used for sequence
operators (performing basic XPath navigation) and yellow arrows
for boolean operators (corresponding to predicate clauses). A user
will be able to execute a plan tree and be informed about the
elapsed time, the number of result nodes as well as cost and
cardinality estimations. The QuOAX query analyzer allows for
easy comparison of different physical operators that implement
the same logical operator. In the demonstration, we will select
two different physical operators for a specific operator of a plan
and we will re-execute the query plan. The plan will be executed
twice, one for each of the selected physical operators, so we will
be able to compare the performance of the specific operators by
comparing the elapsed times.

In the demonstration we will also use the QuOAX administration
tools to declare a specific value index (without actually building
it). Giving the same query to the query analyzer, we will see
whether a new physical plan is selected. If so, we will build the
index and execute the selected plan to see the actual performance
gain.

Figure 3. The estimated as cheapest physical plan

Going back to the beginning of query execution, we will follow
the option of selecting the Physical Plan Generator in order to see
all physical plans, generated by the GAPH algorithm: plans will
appear grouped by the logical plan they belong to. As illustrated
in Figure 5, for each distinct logical plan, a separate top-level tab
is created containing all corresponding physical plans in separate
sub-tabs. For each physical plan, the total cost and cardinality
estimations are shown in the right-text area. From this point
during the demonstration we will choose to execute a specific
physical plan or all physical plans. In the latter case, a spreadsheet
will be printed (and also appear in a separate window) with the
following columns: Plan id, Estimated Cost, Execution time1,
Execution time2, Estimated Cardinality, and Count. The Plan id
is the unique name of its plan. For example plan 26.38 is the 38th
physical plan that derives from the 26th logical plan. The

552

Estimated Cost is the cost estimation of the respective plan.
Execution time1 and Execution time2 are the execution times of
the respective plan in first and second time, respectively. The
Estimated Cardinality and the Count are the cardinality
estimation and actual cardinality (number of nodes actually
returned) for the specific plan, respectively. The spreadsheet is
very useful for evaluating the effectiveness of the PSA algorithm
as well as of our end-to-end cost-based optimization and execution
engine.

The effectiveness of PSA depends on whether it picks the cheapest
estimated plan in the large plan space defined by the rewriting rules
and the physical operators. To evaluate effectiveness we will
compare the cost estimation of the estimated as cheapest plan with
the cost estimate of the PSA-selected plan. In our experimental
evaluation, described thoroughly in [8], for all queries in our query
sets, and all datasets that we used, PSA picked the plan with the
lowest estimated cost.

On measuring the effectiveness of GeCOEX, our end-to-end cost-
based optimization and execution engine (including the robustness
and precision of cost models and statistics estimation algorithms for
access methods and physical operators), we will use the
spreadsheet produced by QuOAX query analyzer and compare the
following a) the average execution time of the plan selected by PSA
b) the average execution time of the best plan c) the average
execution time of the best plan among those corresponding to the
default logical plan, and the execution time of the worst plan. Figure
4 illustrates a graph that summarizes the results of such an
experiment; a total of 16 queries have been used on a 570MB
dataset from the XMark benchmark [10]. In all our experiments, for
the vast majority (over 80%) of queries PSA chooses a plan whose
cost is less than 5% above the cost of the actual best plan [8]. When
the DBStatistics implementation fails to give precise estimates due
to inaccurate statistics (as in Q18), PSA makes less good choices.

Figure 4. Evaluating the effectiveness of GECOEX

In the demonstration we will also be modifying system properties
using the administrative tools to discuss with the audience the
impact of these changes in plan generation.

Figure 5. All physical plans generated by GAPH

Altering the pool of physical operators: We will deactivate a
family of physical operators in order to see how the lack of those
operators affects the optimizer’s plan selection. We will show that
by altering the pool of physical operators may cause the optimizer
to select physical plans of completely different navigational
structure and that PSA correctly generates the best plans. Figure 6
illustrates the results of such an experiment; we executed a typical
XPath query (of the form p1[p2]p3[p4]p5, where p1-p5: forward
paths) first with our default pool of physical operators, and second
after removing the Lookup (LU) family from the pool. PSA
correctly generates the best plans in both cases, which happen to
have completely different navigational structures, shown in Figure 6
as Ldefault-pool and Lwithout-LU, respectively. For both pools of operators,
the GECOEX optimizer selected a plan that is less than 4% above
the cost of the best plan.

Figure 6. Gain from using plan suggested for each pool

We will also demonstrate how a new physical operator should be
implemented and how can be deployed to the system.

Altering the set of rewriting rules: We will use the
administrative tools to deactivate a couple of rewriting rules. We
will then return to the query analyser to see whether the lack of
those rewriting rules will affect optimiser’s decision for a query.

Deploying other XML storage systems: We also plan to show
how one can build an XPA driver for a specific XML storage
system (which methods of the XPA API must be implemented)
and demonstrate how the new driver can be deployed using
QuOAX. We will then deploy a different XPA driver and,
returning to the query analyser, show that the different XML
storage system (thus, different PAM implementations and, in turn,
different cost models for these PAMs) can lead the optimizer to
select completely different physical plans.

REFERENCES
[1] T. Grust, M. van Keulen, J. Teubner: Staircase Join: Teach a

Relational DBMS to Watch its (Axis) Steps. VLDB 2003
[2] N. Bruno , N. Koudas , D. Srivastava, Holistic twig joins, SIGMOD

Conference, 2002
[3] H. Georgiadis, V. Vassalos: Xpath on steroids: exploiting relational

engines for XPath performance. SIGMOD Conference 2007
[4] K. S. Beyer, R. Cochrane, et al: System RX: One Part Relational,

One Part XML. SIGMOD Conference 2005
[5] S. Paparizos, S. Al-Khalifa et al.: TIMBER: A Native System for

Querying XML. SIGMOD Conference 2003.
[6] J. Lu, Tok W. Ling, C. Y. Chan, T. Chen: From Region Encoding To

Extended Dewey: On Efficient Processing of XML Twig Pattern
Matching. VLDB 2005

[7] H. Jiang, H. Lu, W. Wang, B. C. Ooi: XR-Tree: Indexing XML Data
for Efficient Structural Joins. ICDE 2003

[8] H. Georgiadis, M. Charalambides, V. Vassalos: Cost based plan
selection for xpath. SIGMOD Conference 2009

[9] H. Georgiadis, M. Charalambides, V. Vassalos: Efficient physical
operators for cost-based XPath execution. EDBT 2010

[10] A. Schmidt, F. Waas, M.L. Kersten, M.J.Carey, Manolescu, I. and R.
Busse: XMark: A Benchmark for XML Data Management. VLDB
2002

553

