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ABSTRACT
Mobile applications, such as those on WebOS, increasingly 
depend on continuous analytics results of real-time events, for 
monitoring oil & gas production, watching traffic status and 
detecting accident, etc, which has given rise to the need of 
providing Continuous analytics as a Service (CaaaS). While 
representing a paradigm shift in cloud computing, CaaaS poses 
several challenges in scalability, latency, time-window semantics, 
transaction control and result-set staging.
A data stream is infinite thus can only be analyzed in granules.  
We propose a continuous query model over both static relations 
and dynamic streaming data, which allows a long-standing SQL 
query instance to run cycle by cycle, each cycle for a chunk of 
data from the data stream, using a cut-and-rewind mechanism. 
We further support the cycle-based transaction model with cycle-
based isolation and visibility, for delivering analytics results to 
the clients continuously while the query is running. To have the 
continuously generated analytics results staged efficiently, we 
developed the table-ring and label switching mechanism 
characterized by staging data through metadata manipulation 
without physical data moving and copying. To scale-out analytics 
computation, we support both parallel database based and 
network distributed Map-Reduce based infrastructure with 
multiple cooperating engines. 
We have built the proposed infrastructure by extending the 
PostgreSQL engine. We tested the throughput and latency of this 
service based on a well-known stream processing benchmark; the 
results show that the proposed approach is highly competitive. 
Our experiments indicate that the database technology can be 
extended and applied to real-time continuous analytics service 
provisioning.

Categories and Subject Descriptors
H2.4 [Query Processing]

General Terms
Management, Performance, Design, Experimentation. 

Keywords
Continuous query, Stream analytics, Cloud service. 

1. INTRODUCTION
Internet applications increasingly depend on the analytics results 
of real-time events, such as the traffic status summarized from the 
location and speed of many individual cars. New technologies 
like HTML5, which does local caching, could help mobile 
application to get past the internet access speed barrier in using 
the real-time information service.   In the age of planetary 
computing, it is expected that people are always interconnected 
and rely on such continuous event analytics results for their work 
and life. This has given rise to the need of providing Continuous 
analytics as a Service (CaaaS).   

CaaaS is a cloud computing model for enabling convenient, on-
demand network access to a shared pool of event analytics results. 
Today, there are already some good examples of mobile cloud 
computing applications including mobile Gmail, Google Maps, 
location service and some navigation applications. This trend will 
continue. However, to the best of our knowledge, treating 
continuous analytics as a cloud service has not yet been addressed 
properly.  

1.1  The Problem 
CaaaS presents opportunities as well as challenges. The 
conventional data warehouse approach of store-first-analyze-later 
does not fit in CaaaS; instead, continuous analytics should be 
applied before the data are warehoused. The current generation of 
Data Stream Management Systems (DSMS) is not appropriate for 
CaaaS since they are in general built separately from the data 
warehouse and query engine, incurring significant overhead in 
data access and data movement, and is unable to take advantage 
of the functionalities already offered by the existing DBMS [2-
5,13]. In general, to provide CaaaS, the following hard problems 
must be solved.  

• Integrating continuous stream analytics with queries over 
stored data. 

• Analyzing stream data chunk by chunk while maintaining the 
continuity of application context as required by sliding-
window oriented operations. 

• Supporting efficient data staging with respect to continuous, 
unbounded analytics results.  

• Scaling out continuous data analytics with parallel and 
distributed infrastructure.

1.2  The Solution 
Our support of CaaaS is characterized by the following. 
• We define a unified query model over both stored relations and 

dynamic streaming data, and develop techniques to extend 
query engines to support the unified model. We introduce the 
cut-and-rewind query execution mechanism to allow a SQL 
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query to be executed cycle by cycle, each cycle for a chunk of 
data in the data stream, without shutting the query instance 
down between chunks, such that the application state can be 
continuously maintained across execution cycles to support 
state-dependent operations such as sliding-window operations. 
Correspondingly, we support the cycle-based transaction 
model, characterized by the cycle-based isolation and 
visibility, for making the analytics results visible to the clients 
of cloud service continuously while the query for generating 
these results is running.

• In order to support fast access to the analytics results we 
develop the “table-ring” mechanism which allows the infinite 
analytics results to be kept in a list of small-sized tables based 
on time sequence, and staged through “switching labels” 
without actual data copying and moving. As a result, these 
analytics results are easily manageable and downloadable to 
the mobile devices running WebOS and HTML 5. 

• We scale-out CaaaS by having multiple engines cooperating 
based on the common data chunking criterion, on both parallel 
database and network distributed Map-Reduce infrastructures.   

Our CaaaS architecture for delivering real-time event analytics 
results involves multiple cloud components communicating with 
each other over APIs; it unifies the capabilities of stream 
processing and query processing in its specific way. Mobile 
applications can use the continuous analytics results generated by 
pre-defined continuous queries, or create specific continuous 
queries on the event streams. In this sense, our work actually 
covers SaaS (Software as a Service) as well as PaaS (Platform as 
a Service). There exist a number of common issues for managing 
connection, security, privacy, etc, which are not discussed in this 
report.

The rest of this paper is organized as follows: Section 2 deals with 
the convergence of stream analysis and query processing, the 
cycle based query model and transaction model, as well as the 
staging mechanism for efficiently handling continuous and 
infinite stream analytics results. Section 3 describes two kinds of 
parallel infrastructures for CaaaS. Section 4 discusses related 
work and concludes the paper.

2. CYCLE-BASED CONTINUOUS 
STREAM ANALYTICS

We view a pipelined query engine essentially as a streaming 
engine. We advocate the use of an extended SQL model that 
unifies queries over both streaming and stored relational data, and 
an extended query engine for integrating stream processing and 
DBMS.   

To illustrate the extended model and mechanisms, we will use a 
traffic system hypothesized in the Linear-Road (LR) benchmark 
[15] throughout this section. In the LR benchmark, vehicles are 
equipped with GPSs and emit signals to report their positions and 
speeds every 30 seconds. Each reading constitutes an event with 
attributes vid (vehicle ID), time (seconds), speed (mph), xway
(express way), seg (segment of the express way), dir (direction), 
etc. The benchmark requires computing the traffic statistics for 
each highway segment. Based on these per-minute per-segment 
statistics, the application  computes the tolls to be charged to a 
vehicle entering a segment any time during the next minute, and  
notifies the toll in real time (notification is to be sent to a vehicle 

within 5 seconds upon entering the segment). The application also 
includes accident detection.   

2.1 Stream Analytics as Continuous Query
We will first use a simplified traffic system example to illustrate 
our unified query over stored and stream data, where the total 
amount of toll charged for each highway segment per minute are 
computed, given a segment toll table and events that report 
vehicles’ entering a segment.  

� C (vid,sid,ts), contains the event that a car (vid) enters a 
tolled segment (sid) with a timestamp in second (ts),

� T (sid, charge) contains the highway segment info where 
charge is the toll per car for segment sid.

We express the example first as a query over static relations only, 
and then as a hybrid query that includes a stream source. The 
graphical representation of the two queries is shown in Fig. 1.

Figure 1. Querying static table vs. querying data stream 
chunk by chunk  

For the first query Q1 (shown on the left of Fig. 1), the inputs are 
two stored relations, C and T. However, if the table C above is not 
a stored relation, but replaced by a real-time stream source, while 
T remains a stored relation, then the above application becomes a 
streaming application.  The above static SQL query is adapted to 
a streaming query simply by defining SC as a stream (instead of a 
table) with the same schema as C and changing the reference to C
as follows (shown on the right of Fig. 1): 

Q2:
SELECT sid, floor(ts/60) AS minute, SUM(charge) 
FROM T, STREAM (SC, cycle-spec) 
WHERE SC.sid = T.sid
GROUP BY sid, minute 

In the above query, we replace the disk-resided database table by 
a special kind of table function STREAM(), called Stream Source 
Function (SSF), that listens or reads data/events sequence. 
Further, STREAM(SC, cycle-spec) specifies that the stream source 
SC is to be “cut” into an unbounded sequence of chunks SCC0,
SCC1, …, where all tuples in SCCi occur before any tuple in SCCi+1
in the stream. The “cut point” is specified in the cycle-spec.  Let 
Q1 above be denoted as a query function over table C, i.e., Q1(C).  
The execution semantics of Q2 is defined as executing Q1(SCCi)
in sequence for all SCCi’s in the stream source SC.

In general, given a query Q over a set of relation tables T1,..,Tn
and an infinite stream of relation tuples S with a criterion �� for 
cutting S into an unbounded sequence of chunks, e.g. by every 1-
minute time window,  <S0, S1, …, Si, …> where Si denotes the i-th
“chunk” of the stream according to the chunking-criterion �. Si
can be interpreted as a relation. The semantics of applying the 
query Q to the unbounded stream S plus the bounded relations 
T1,..,Tn lies in 
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Q (S, T1,..,Tn) � < Q (S0, T1,..,Tn), … Q (Si, T1,..,Tn), ... >
which continuously generates an unbounded sequence of query 
results, one on each chunk of the stream data.  

2.2 Cycle-based Continuous Query Model
For supporting the above semantics, we adopt User Defined 
Functions (UDFs) to code the stream analysis not directly 
expressible by SQL operators and functions, on which we had 
extensive studies [7-9]. We allow a UDF to be provided with a 
data buffer in its function closure, for caching stream processing 
state (synopsis), and in this way to support consecutive or sliding 
window based computation. 
We developed the cut-and-rewind query execution mechanism, 
namely, cut a query execution based on the cycle specification 
and then rewind the state of the query without shutting it down, 
for processing the next chunk of stream data in the next cycle.  

Cut is originated in the SSF at the bottom of the query tree. Upon 
detection of end-of-cycle condition, the SSF signals end-of-cycle
to the query engine resulting in the termination of the current 
query execution cycle.  

Upon termination of an execution cycle, the query engine does 
not shut down the query instance but rewinds it for processing the 
next chunk of stream data. Rewinding a query is a top-down 
process along the query plan instance tree, with specific treatment 
on each node type. In general, the intermediate results of the 
standard SQL operators (associated with the current chunk of 
data) are discarded but the application context kept in UDFs (e.g. 
for handling sliding windows) is retained. The SSF is specifically 
registered or named with a prefix (e.g. “STREAM”) to instruct the 
query engine to use the cut-and-rewind mechanism. Since the 
query instance remains alive across cycles, data for sliding-
window oriented, history sensitive operations can be kept 
continuously. Bringing these two capabilities together is the key 
in our approach.

2.3 Query Cycle based Transaction Model
Lacking formal transaction semantics is a problem of the current 
generation of stream processing systems, as they typically make 
application specific, informal guarantees of correctness. 

Conventionally a query is placed in a transaction boundary; the 
query result and the possible update effect are made visible only 
after the commitment of the transaction (although weaker 
transaction semantics do exist). Since the query for processing 
unbounded stream data may never end, the conventional notion of 
transaction boundary is hard to apply.  

In order to allow the result of a long-running stream query to be 
incrementally accessible, we introduce the cycle-based 
transaction model coupled with the cut-and-rewind query model, 
which we call continuous querying with continuous persisting.
Under this model a stream query is “committed” one cycle at a 
time in a sequence of “micro-transactions”. The transaction 
boundaries are consistent with the query cycles, thus 
synchronized with the chunk-wise stream processing. The per-
cycle stream processing results are made visible as soon as the 
cycle ends.  

For example, in Q2 above, the query result, which is the total 
charge per highway segment, is made visible every cycle; if the 
cycle specification is per minute, then the total charge per 
segment is made visible per minute, and it can also be persisted at 
the minute boundary.  

2.4 Staging Results without Data Copy/Move
With the cloud service, the analytics results are accessed by many 
clients through PCs or smart phones. These results are read-only 
time series data, stored in the read-sharable tables incrementally 
visible to users as they become available.  Since the analytics 
results are derived from unbounded stream of events, they are 
themselves unbounded and thus must be staged step by step along 
with their production. Very often, only the latest data is “most 
wanted”. For scaling up CaaaS, efficient data staging is the key. 

Data staging is a common task of data warehouse management. 
The general approach is stepwise archival of the older data, 
which, however, incurs data moving and copying overhead. While 
this approach is acceptable for handling slowly-updated data in 
data warehousing, it is not efficient for supporting real-time 
stream analytics. 

To avoid the data moving and copying overhead in data staging, 
we have developed a specific mechanism characterized by staging
through metadata manipulation without real data movement. As 
shown in Fig 2, we provide a list of tables for keeping the stream 
analytics results generated in a given number of query execution 
cycles (e.g. generated in 60 per-minute cycles, i.e. one hour). 
These tables are arranged as a “table-ring” and used in a round-
robin fashion. For example, to keep the results for the latest 8 
hours of notifications, 9 tables say T1, T2, …, T9, are allocated in 
a buffer-pool, such that at a time, T1 stores the results of the 
current hour, say h, T2 stores the results of the hour h-1, …, T8
stores the results of the hour h-8, the data in T9 are beyond the 8-
hour range thus being archived asynchronously during the current 
hour. When the hour changes, the archiving of T9 has presumably 
finished and T9 is reassigned for storing the results of the new, 
current hour.

Figure 2. Table-ring approach for staging analytics results 
through metadata manipulation without data copy/move 

The hourly based timestamp of these tables are maintained either 
in the data dictionary or a specifically provided system table. In 
the above data staging, only the “label” of a table is switched for 
representing the time boundary (i.e. the hour) of its content, 
without moving/copying the content to another table or file thus 
avoiding the read/write overhead. 

Further, a stable SQL interface is provided for both the client-side 
users and the server-side queries. Assuming the table holding the 
summarized traffic status in the current hour is named 
“current_road_condition”, this name remains the same at all the 
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times but points to different physical tables from time to time. 
This may be accomplished by associating the table holding the 
latest results to “current_road_condition” through metadata 
lookup.

We have extended the query engine to support the above table 
ring for the client-side query. The continuous query uses the  
INSERT-INTO clause to capture the query results at each cycle. 
(See Section 2.5 for an example).The “into-relation” is closed 
prior to a cycle-based transaction commits and it re-opens after 
the transaction for the next cycle starts. Between the 
complete_transaction() call and the reopen_into_relation() call,
the number of execution cycles is checked, and if the specified 
staging time boundary is reached, the switching of “into-
relations”, i.e. the query destinations, takes place, where the 
above data dictionary or specific system table is looked up, and 
the “next” table ID is obtained and passed to the 
reopen_into_relation(). Thereafter another into-relation will act as 
the query destination.  

Overall, the cycle-based query execution, transaction commitment 
and multi-cycle based data staging are illustrated in Fig. 3. 

Figure 3. Cycle-based query execution, transaction, staging 

2.5 Experimental Results with Linear Road 
We implemented the Linear-Road (LR) benchmark [15] using the 
above model to test the CaaaS scalability and performance. Our 
stream query is listed below; its graphical representation is shown 
in Fig. 4.

  INSERT INTO toll_table SELECT minute, xway, dir, seg,     
  toll_comp(c.no_accident, c.cars_volume) FROM (
    SELECT minute, xway, dir, seg, cars_volume,  5_minutes_moving_avg(xway,  
    dir, seg, minute, avg_speed) as mv_avg,   no_accident FROM (
        SELECT floor(time/60)::integer AS minute, xway, dir, seg, AVG(speed) AS  
        avg_speed, COUNT(distinct Vid)-1) AS cars_volume, MIN(no_accident) AS  
        no_accident FROM (
            SELECT xway, dir, seg, time, speed, vid,  
            accident_affected (vid,speed,xway,dir,seg,pos) AS no_accident 
            FROM STREAM_CYCLE_lr_data(60, 180) ) s 

GROUP BY minute, xway, dir, seg ) r
    ) c
  WHERE c.mv_avg > 0 AND c.mv_avg < 40; 

With the above query, the streaming tuples are read by the SSF, 
STREAM_CYCLE_lr_data(w, cycles), from the LR data source 
file with timestamps, where parameter “w” is the time-window 
size in seconds; “cycles” is the number of cycles the query is 
supposed to run (setting cycle to 0 means running the query 
indefinitely). For example, STREAM_CYCLE_lr_data(60, 180)
delivers the position reports one-by-one until it detects the end of 
a cycle (60 seconds), and performs a “cut”, then onto the next 
cycle, for a total of 180 cycles (for 3 hours). We leveraged the 

minimum, average and count-distinct aggregate-groupby 
operators built in the SQL engine, and provided the moving 
average function, 5_minutes_moving_avg(), and the accident 
detection function, accident_affected() as UDFs. The generated 
tolls are inserted into one of the segment toll tables based on the 
staging mechanism described earlier.  

Figure 4. Cycle based continuous query for LR benchmark 

The experimental results are measured on HP xw8600 with 2 x 
Intel Xeon E54102 2.33 Ghz CPUs and 4 GB RAM, running 
Windows XP (x86_32) and PostgreSQL 8.4. The input data are 
downloaded from the benchmark’s home page. The “L=1” setting 
was chosen for our experiment which means that the benchmark 
consists of 1 express-way (with 100 segments in each direction). 
Below we present two important experiment results.
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From Fig. 5 we can see that persisting the cycle based stream 
processing results either by inserting with logging (using 
“INSERT INTO” or by direct inserting (using “SELECT INTO”, 
both with extended support by the query engine internally), does 
not add significant performance overhead compared to querying 
only. This is because we completely push stream processing down 
to the query engine as efficient heap operations.  
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Fig 6 shows that the per-cycle (one minute) results can be made 
accessible in around 0.2 second, after the cycle ends; this time 
delta, called Post Cycle Elapse Time (PCET), is actually the 
maximal response time for retrieving the computation results 
(segment toll) generated by the past query cycle. The increase of 
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the responding time in later time windows is caused by the 
increased data volumes provided by the benchmark. 
As mentioned above, LR benchmark requires the segment tolls in 
each minute to be available within 5 second after that minute, and 
most reported results fall in the range from 1 second to 5 seconds. 
Our experimental result (0.2 second) indicates that our approach 
is highly competitive to any reported one.  

3. CYCLE BASED MAP-REDUCE
We rely on the Map-Reduce (MR) computation to scale out 
CaaaS. With the original MR model [10], static data are 
partitioned “horizontally” over cluster nodes for parallel 
computation; while enhancing the computation bandwidth by 
divide-and-conquer, it is not defined on unbounded stream data. 

We envisage that Cut-and-Rewind (CR) provides a powerful 
mechanism for MR to reach stream analytics. We have 
investigated the combination of MR and CR on parallel database 
platform as well as on network distributed MR infrastructure. 

3.1 Cut-Rewind a Parallel Query  
We have shown in [8] that a parallel query with UDFs can 
naturally express Map-Reduce computation. To explain how to 
apply CR to a parallel query engine for stream processing, let us 
review the parallel query execution process. A SQL query is 
parsed and optimized into a query plan that is a tree of operators. 
In parallel execution multiple sub-plan instances, called 
fragments, are distributed to the participating query executors and 
data processors on multiple server nodes; at each node, the scan 
operator at the leaf of the tree gets and materializes a block of 
data, to be delivered to the upper layer tuple by tuple. The global 
query execution state is kept in the initial site.  

To handle streaming data in parallel, the input stream is 
partitioned over multiple machine nodes, in the way similar to 
hash partitioning static data.

To support Cut-and-Rewind on a parallel database, every 
participating query engine is facilitated with the CR capability. 
The same cut condition is defined on all the partitioned streams. 
Note that if the cycle based continuous querying is “cut” on time 
window, the stream should not be partitioned by time, but by 
other attributes.

A query execution cycle ends after end-of-cycle is signaled from 
all data sources, i.e. all the partitioned streams are “cut”. As the 
cut condition is the same across all the partitioned streams, the 
cycle-based query executions over all nodes are well 
synchronized through data driven. 

To parallelize the LR stream analysis, we hash partition the data 
stream by vehicle-id (vid); use the Map function to compute and 
pre-aggregate the segment traffic statistics per minute (without 
accident detection); use the Reduce function to globally aggregate 
the segment statistics, group by express-way, direction and 
segment, then calculate per segment moving average speed and 
finally the toll. The whole map-reduce implementation of the 
application is expressed in a single query running in the per-
minute cycle. 

As shown in Fig 7, the LR stream is partitioned “horizontally” 
over Map nodes; all partitions are cut on the same one-minute 
boundary; the chunk-wise local results are shuffled to the Reduce 

nodes for global aggregation. The data partition of Map results is 
based on the standard parallel query processing of “group-by”. 
The system runs cycle by cycle with Map-Reduce applied to data 
streams in each cycle, hence supporting scaled-out query 
processing over unbounded data streams. 

Figure 7. Parallel DB based streaming Map-Reduce

This design is being integrated into a commercial parallel 
database engine where SSF is handled by the storage engine layer 
at each node, while the Map function and Reduce function are 
handled by query executers. 

3.2 Network-Distributed Map-Reduce Scheme  
In network distributed MR scheme, query-engine based stream 
engines are logically organized in the Map-Reduce style as 
illustrated in Fig. 8. The separation of “Map” engines and 
“Reduce” engines are logical, since an engine may act as a “Map” 
engine, a “Reduce” engine, or both. 

Figure 8. Network distributed streaming Map-Reduce

Different from parallel database oriented MR, with the network 
distributed MR, a specific application is expressed in terms of two 
cycle based continuous queries, say CQmap and CQreduce. The same 
CQmap run at all the Map engines, and the same CQreduce at all the 
Reduce engines. The streams are partitioned and fed in multiple 
CQmap; the resulting streams from CQmap are shuffled to and fused 
by multiple CQreduce based on certain grouping criteria specified 
in the network replicated hash-tables. Those CQmap and CQreduce
synchronized by the same cut criteria, which determines the 
boundaries of input streams as well as the resulting streams.  

With the above simplified LR example, the stream data are hash 
partitioned by vehicle ID; the stream data corresponding to 
express-ways, directions and segments are crossing Map nodes.
� The Map query, CQmap, covers partitioned stream processing, 

up to the local aggregation of car-volume, speed-sum, group-
by time and location. 

� The results of CQmap are treated as the input streams of the 
Reduce query, CQreduce, partitioned by express-way, direction 
and segment, based on the network replicated hash tables. 

Local agg 
traffic stst 

SSF

Local agg 
traffic stst 

SSF

Local agg 
traffic stst 

SSF

Local agg

SSF

global agg, 
mv_avg, toll 

SSF SSF

Map

Reduce 

Cut 

Rewind 

global agg, 
mv_avg, toll 

Cut 

Rewind 

map
chunks

  SSF   SSF   SSF   SSF

Rewind

Cut

Compute/pre-
aggregate seg 
traffic status 

reduce

mapmapmap

reduce reduce

Global aggregate seg 
traffic status;
Compute moving_avg, toll;   
group by exp-way, dir, seg 

513



Each CQreduce is also equipped with a SSF for receiving the 
Map results.  

� CQreduce aggregate segment traffic statistics globally, calculate 
the segment moving average speed, and then the segment toll. 

Both Map and Reduce queries run in the per-minute cycle. 

Note the difference CR/MR schemes for parallel DB based and 
network-distributed MR infrastructure. Since the parallel query 
engine naturally supports reduce with aggregate-groupby, the MR 
is expressed by a single query, in each CR cycle the whole MR 
computation is iterated. With the network distributed MR 
infrastructure, the Map engines and the Reduce engines run 
separate cycle-based continuous queries; they process the stream 
data chunk by chunk based on the common window boundary, or 
cut criterion, thus cooperate without centralized scheduling. The 
parallel DB based MR infrastructure generally over-performs the 
network-distributed one due to efficient data transfer from the 
Map nodes to the Reduce nodes, but the later is more flexible and 
has obvious cost benefits.

4. CONCLUSION AND RELATED WORK 
CaaaS represents a paradigm shift and opens a new field in cloud 
computing as more and more applications depend on the analytics 
results of real-time events. In this work we have addressed several 
specific challenges and reported our solutions. Our thesis is that 
database technology can be extended and applied to real-time 
continuous analytics service provisioning. 

We start with unifying dynamic stream processing and static data 
management for data intensive analytics. To capture the window 
semantics, we have introduced the cycle-based query model and 
transaction model which allows SQL queries to run and to commit 
cycle by cycle for analyzing unbounded stream data chunk by 
chunk, thus making the analysis results visible to the clients of 
cloud service timely while the continued query for generating 
them is still running. We then proposed the table-ring mechanism 
for staging analytics results without physical data copying and 
moving, that is especially efficient in coping with continuous 
information generation. Finally, we have developed two kinds of 
parallel computing infrastructures, one based on parallel database 
engine with performance consistent with the study given in [11]; 
and another based on network distributed Map-Reduce that is 
architecturally similar to HadoopDB [1], but with extended 
streaming capability.  

Our platform significantly differs from the current generation of 
DSMSs which are in general built separately from the database 
systems [2-5,13]. As those systems do not have the full SQL 
expressive power and DBMS functionalities, incur significant 
overhead in data access and movement [7-9,11], and lack the 
appropriate transaction support for continuously persisting and 
sharing results, they fail to meet the requirements for providing 
high-throughput, low-latency CaaaS. 

Further, the cycle-based query model allows multiple query 
engines to synchronize and cooperate based on the common 
window boundaries. Such data-driven cooperation is very 
different from the workflow like centralized scheduling used in 
other DSMSs [12,16]. This feature allows us to apply MR cycle 
by cycle continuously and incrementally for parallel and 
distributed continuous analytics, in the way not seen previously.  

Metadata manipulation is also used in Oracle’s table partition 
management [17]; that, however, is not designed for round-robin 
table staging. Our staging mechanism avoids the overhead of 
physical data copying and moving thus ensures low-latency data 
retrieval without being interrupted by data staging. For mobile 
applications such as those running on WebOS with HTML 5 
caching capability, keeping analytics results in small sized tables 
makes them easily downloadable for batch usage with reduced 
internet connections.
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