
Experience in Continuous analytics as a Service (CaaaS)
Qiming Chen

HP Labs
Palo Alto, CA, USA

1(650)857-4013
qiming.chen@hp.com

Meichun Hsu
HP Labs

Palo Alto, CA, USA
1(650)857-2219

meichun.hsu@hp.com

Hans Zeller
HP SW NED

Cupertino, CA, USA
1(408)447-6350

hans.zeller@hp.com

ABSTRACT
Mobile applications, such as those on WebOS, increasingly
depend on continuous analytics results of real-time events, for
monitoring oil & gas production, watching traffic status and
detecting accident, etc, which has given rise to the need of
providing Continuous analytics as a Service (CaaaS). While
representing a paradigm shift in cloud computing, CaaaS poses
several challenges in scalability, latency, time-window semantics,
transaction control and result-set staging.
A data stream is infinite thus can only be analyzed in granules.
We propose a continuous query model over both static relations
and dynamic streaming data, which allows a long-standing SQL
query instance to run cycle by cycle, each cycle for a chunk of
data from the data stream, using a cut-and-rewind mechanism.
We further support the cycle-based transaction model with cycle-
based isolation and visibility, for delivering analytics results to
the clients continuously while the query is running. To have the
continuously generated analytics results staged efficiently, we
developed the table-ring and label switching mechanism
characterized by staging data through metadata manipulation
without physical data moving and copying. To scale-out analytics
computation, we support both parallel database based and
network distributed Map-Reduce based infrastructure with
multiple cooperating engines.
We have built the proposed infrastructure by extending the
PostgreSQL engine. We tested the throughput and latency of this
service based on a well-known stream processing benchmark; the
results show that the proposed approach is highly competitive.
Our experiments indicate that the database technology can be
extended and applied to real-time continuous analytics service
provisioning.

Categories and Subject Descriptors
H2.4 [Query Processing]

General Terms
Management, Performance, Design, Experimentation.

Keywords
Continuous query, Stream analytics, Cloud service.

1. INTRODUCTION
Internet applications increasingly depend on the analytics results
of real-time events, such as the traffic status summarized from the
location and speed of many individual cars. New technologies
like HTML5, which does local caching, could help mobile
application to get past the internet access speed barrier in using
the real-time information service. In the age of planetary
computing, it is expected that people are always interconnected
and rely on such continuous event analytics results for their work
and life. This has given rise to the need of providing Continuous
analytics as a Service (CaaaS).

CaaaS is a cloud computing model for enabling convenient, on-
demand network access to a shared pool of event analytics results.
Today, there are already some good examples of mobile cloud
computing applications including mobile Gmail, Google Maps,
location service and some navigation applications. This trend will
continue. However, to the best of our knowledge, treating
continuous analytics as a cloud service has not yet been addressed
properly.

1.1 The Problem
CaaaS presents opportunities as well as challenges. The
conventional data warehouse approach of store-first-analyze-later
does not fit in CaaaS; instead, continuous analytics should be
applied before the data are warehoused. The current generation of
Data Stream Management Systems (DSMS) is not appropriate for
CaaaS since they are in general built separately from the data
warehouse and query engine, incurring significant overhead in
data access and data movement, and is unable to take advantage
of the functionalities already offered by the existing DBMS [2-
5,13]. In general, to provide CaaaS, the following hard problems
must be solved.

• Integrating continuous stream analytics with queries over
stored data.

• Analyzing stream data chunk by chunk while maintaining the
continuity of application context as required by sliding-
window oriented operations.

• Supporting efficient data staging with respect to continuous,
unbounded analytics results.

• Scaling out continuous data analytics with parallel and
distributed infrastructure.

1.2 The Solution
Our support of CaaaS is characterized by the following.
• We define a unified query model over both stored relations and

dynamic streaming data, and develop techniques to extend
query engines to support the unified model. We introduce the
cut-and-rewind query execution mechanism to allow a SQL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EDBT’2011, March 22-24, 2011 --- Uppsala, Sweden
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 …$10.00.

509

query to be executed cycle by cycle, each cycle for a chunk of
data in the data stream, without shutting the query instance
down between chunks, such that the application state can be
continuously maintained across execution cycles to support
state-dependent operations such as sliding-window operations.
Correspondingly, we support the cycle-based transaction
model, characterized by the cycle-based isolation and
visibility, for making the analytics results visible to the clients
of cloud service continuously while the query for generating
these results is running.

• In order to support fast access to the analytics results we
develop the “table-ring” mechanism which allows the infinite
analytics results to be kept in a list of small-sized tables based
on time sequence, and staged through “switching labels”
without actual data copying and moving. As a result, these
analytics results are easily manageable and downloadable to
the mobile devices running WebOS and HTML 5.

• We scale-out CaaaS by having multiple engines cooperating
based on the common data chunking criterion, on both parallel
database and network distributed Map-Reduce infrastructures.

Our CaaaS architecture for delivering real-time event analytics
results involves multiple cloud components communicating with
each other over APIs; it unifies the capabilities of stream
processing and query processing in its specific way. Mobile
applications can use the continuous analytics results generated by
pre-defined continuous queries, or create specific continuous
queries on the event streams. In this sense, our work actually
covers SaaS (Software as a Service) as well as PaaS (Platform as
a Service). There exist a number of common issues for managing
connection, security, privacy, etc, which are not discussed in this
report.

The rest of this paper is organized as follows: Section 2 deals with
the convergence of stream analysis and query processing, the
cycle based query model and transaction model, as well as the
staging mechanism for efficiently handling continuous and
infinite stream analytics results. Section 3 describes two kinds of
parallel infrastructures for CaaaS. Section 4 discusses related
work and concludes the paper.

2. CYCLE-BASED CONTINUOUS
STREAM ANALYTICS

We view a pipelined query engine essentially as a streaming
engine. We advocate the use of an extended SQL model that
unifies queries over both streaming and stored relational data, and
an extended query engine for integrating stream processing and
DBMS.

To illustrate the extended model and mechanisms, we will use a
traffic system hypothesized in the Linear-Road (LR) benchmark
[15] throughout this section. In the LR benchmark, vehicles are
equipped with GPSs and emit signals to report their positions and
speeds every 30 seconds. Each reading constitutes an event with
attributes vid (vehicle ID), time (seconds), speed (mph), xway
(express way), seg (segment of the express way), dir (direction),
etc. The benchmark requires computing the traffic statistics for
each highway segment. Based on these per-minute per-segment
statistics, the application computes the tolls to be charged to a
vehicle entering a segment any time during the next minute, and
notifies the toll in real time (notification is to be sent to a vehicle

within 5 seconds upon entering the segment). The application also
includes accident detection.

2.1 Stream Analytics as Continuous Query
We will first use a simplified traffic system example to illustrate
our unified query over stored and stream data, where the total
amount of toll charged for each highway segment per minute are
computed, given a segment toll table and events that report
vehicles’ entering a segment.

� C (vid,sid,ts), contains the event that a car (vid) enters a
tolled segment (sid) with a timestamp in second (ts),

� T (sid, charge) contains the highway segment info where
charge is the toll per car for segment sid.

We express the example first as a query over static relations only,
and then as a hybrid query that includes a stream source. The
graphical representation of the two queries is shown in Fig. 1.

Figure 1. Querying static table vs. querying data stream
chunk by chunk

For the first query Q1 (shown on the left of Fig. 1), the inputs are
two stored relations, C and T. However, if the table C above is not
a stored relation, but replaced by a real-time stream source, while
T remains a stored relation, then the above application becomes a
streaming application. The above static SQL query is adapted to
a streaming query simply by defining SC as a stream (instead of a
table) with the same schema as C and changing the reference to C
as follows (shown on the right of Fig. 1):

Q2:
SELECT sid, floor(ts/60) AS minute, SUM(charge)
FROM T, STREAM (SC, cycle-spec)
WHERE SC.sid = T.sid
GROUP BY sid, minute

In the above query, we replace the disk-resided database table by
a special kind of table function STREAM(), called Stream Source
Function (SSF), that listens or reads data/events sequence.
Further, STREAM(SC, cycle-spec) specifies that the stream source
SC is to be “cut” into an unbounded sequence of chunks SCC0,
SCC1, …, where all tuples in SCCi occur before any tuple in SCCi+1
in the stream. The “cut point” is specified in the cycle-spec. Let
Q1 above be denoted as a query function over table C, i.e., Q1(C).
The execution semantics of Q2 is defined as executing Q1(SCCi)
in sequence for all SCCi’s in the stream source SC.

In general, given a query Q over a set of relation tables T1,..,Tn
and an infinite stream of relation tuples S with a criterion �� for
cutting S into an unbounded sequence of chunks, e.g. by every 1-
minute time window, <S0, S1, …, Si, …> where Si denotes the i-th
“chunk” of the stream according to the chunking-criterion �. Si
can be interpreted as a relation. The semantics of applying the
query Q to the unbounded stream S plus the bounded relations
T1,..,Tn lies in

T.sid = C.sid

Query result
Sum (charge),
groupby sid, minute

T C

Q1

SC

T.sid = SC.sid

Query result
Sum (charge),
groupby sid, minute

T
“chunk 0”

“cut”
“cut”

“chunk 1”

Q2

SUM-GB

JOIN

SUM-GB

JOIN

510

Q (S, T1,..,Tn) � < Q (S0, T1,..,Tn), … Q (Si, T1,..,Tn), ... >
which continuously generates an unbounded sequence of query
results, one on each chunk of the stream data.

2.2 Cycle-based Continuous Query Model
For supporting the above semantics, we adopt User Defined
Functions (UDFs) to code the stream analysis not directly
expressible by SQL operators and functions, on which we had
extensive studies [7-9]. We allow a UDF to be provided with a
data buffer in its function closure, for caching stream processing
state (synopsis), and in this way to support consecutive or sliding
window based computation.
We developed the cut-and-rewind query execution mechanism,
namely, cut a query execution based on the cycle specification
and then rewind the state of the query without shutting it down,
for processing the next chunk of stream data in the next cycle.

Cut is originated in the SSF at the bottom of the query tree. Upon
detection of end-of-cycle condition, the SSF signals end-of-cycle
to the query engine resulting in the termination of the current
query execution cycle.

Upon termination of an execution cycle, the query engine does
not shut down the query instance but rewinds it for processing the
next chunk of stream data. Rewinding a query is a top-down
process along the query plan instance tree, with specific treatment
on each node type. In general, the intermediate results of the
standard SQL operators (associated with the current chunk of
data) are discarded but the application context kept in UDFs (e.g.
for handling sliding windows) is retained. The SSF is specifically
registered or named with a prefix (e.g. “STREAM”) to instruct the
query engine to use the cut-and-rewind mechanism. Since the
query instance remains alive across cycles, data for sliding-
window oriented, history sensitive operations can be kept
continuously. Bringing these two capabilities together is the key
in our approach.

2.3 Query Cycle based Transaction Model
Lacking formal transaction semantics is a problem of the current
generation of stream processing systems, as they typically make
application specific, informal guarantees of correctness.

Conventionally a query is placed in a transaction boundary; the
query result and the possible update effect are made visible only
after the commitment of the transaction (although weaker
transaction semantics do exist). Since the query for processing
unbounded stream data may never end, the conventional notion of
transaction boundary is hard to apply.

In order to allow the result of a long-running stream query to be
incrementally accessible, we introduce the cycle-based
transaction model coupled with the cut-and-rewind query model,
which we call continuous querying with continuous persisting.
Under this model a stream query is “committed” one cycle at a
time in a sequence of “micro-transactions”. The transaction
boundaries are consistent with the query cycles, thus
synchronized with the chunk-wise stream processing. The per-
cycle stream processing results are made visible as soon as the
cycle ends.

For example, in Q2 above, the query result, which is the total
charge per highway segment, is made visible every cycle; if the
cycle specification is per minute, then the total charge per
segment is made visible per minute, and it can also be persisted at
the minute boundary.

2.4 Staging Results without Data Copy/Move
With the cloud service, the analytics results are accessed by many
clients through PCs or smart phones. These results are read-only
time series data, stored in the read-sharable tables incrementally
visible to users as they become available. Since the analytics
results are derived from unbounded stream of events, they are
themselves unbounded and thus must be staged step by step along
with their production. Very often, only the latest data is “most
wanted”. For scaling up CaaaS, efficient data staging is the key.

Data staging is a common task of data warehouse management.
The general approach is stepwise archival of the older data,
which, however, incurs data moving and copying overhead. While
this approach is acceptable for handling slowly-updated data in
data warehousing, it is not efficient for supporting real-time
stream analytics.

To avoid the data moving and copying overhead in data staging,
we have developed a specific mechanism characterized by staging
through metadata manipulation without real data movement. As
shown in Fig 2, we provide a list of tables for keeping the stream
analytics results generated in a given number of query execution
cycles (e.g. generated in 60 per-minute cycles, i.e. one hour).
These tables are arranged as a “table-ring” and used in a round-
robin fashion. For example, to keep the results for the latest 8
hours of notifications, 9 tables say T1, T2, …, T9, are allocated in
a buffer-pool, such that at a time, T1 stores the results of the
current hour, say h, T2 stores the results of the hour h-1, …, T8
stores the results of the hour h-8, the data in T9 are beyond the 8-
hour range thus being archived asynchronously during the current
hour. When the hour changes, the archiving of T9 has presumably
finished and T9 is reassigned for storing the results of the new,
current hour.

Figure 2. Table-ring approach for staging analytics results
through metadata manipulation without data copy/move

The hourly based timestamp of these tables are maintained either
in the data dictionary or a specifically provided system table. In
the above data staging, only the “label” of a table is switched for
representing the time boundary (i.e. the hour) of its content,
without moving/copying the content to another table or file thus
avoiding the read/write overhead.

Further, a stable SQL interface is provided for both the client-side
users and the server-side queries. Assuming the table holding the
summarized traffic status in the current hour is named
“current_road_condition”, this name remains the same at all the

T1

hour h
T2T3T9 T8

loading

archiving

T1

hour h+1
T2T3T9 T8

loading

archiving

511

times but points to different physical tables from time to time.
This may be accomplished by associating the table holding the
latest results to “current_road_condition” through metadata
lookup.

We have extended the query engine to support the above table
ring for the client-side query. The continuous query uses the
INSERT-INTO clause to capture the query results at each cycle.
(See Section 2.5 for an example).The “into-relation” is closed
prior to a cycle-based transaction commits and it re-opens after
the transaction for the next cycle starts. Between the
complete_transaction() call and the reopen_into_relation() call,
the number of execution cycles is checked, and if the specified
staging time boundary is reached, the switching of “into-
relations”, i.e. the query destinations, takes place, where the
above data dictionary or specific system table is looked up, and
the “next” table ID is obtained and passed to the
reopen_into_relation(). Thereafter another into-relation will act as
the query destination.

Overall, the cycle-based query execution, transaction commitment
and multi-cycle based data staging are illustrated in Fig. 3.

Figure 3. Cycle-based query execution, transaction, staging

2.5 Experimental Results with Linear Road
We implemented the Linear-Road (LR) benchmark [15] using the
above model to test the CaaaS scalability and performance. Our
stream query is listed below; its graphical representation is shown
in Fig. 4.

 INSERT INTO toll_table SELECT minute, xway, dir, seg,
 toll_comp(c.no_accident, c.cars_volume) FROM (
 SELECT minute, xway, dir, seg, cars_volume, 5_minutes_moving_avg(xway,
 dir, seg, minute, avg_speed) as mv_avg, no_accident FROM (
 SELECT floor(time/60)::integer AS minute, xway, dir, seg, AVG(speed) AS
 avg_speed, COUNT(distinct Vid)-1) AS cars_volume, MIN(no_accident) AS
 no_accident FROM (
 SELECT xway, dir, seg, time, speed, vid,
 accident_affected (vid,speed,xway,dir,seg,pos) AS no_accident
 FROM STREAM_CYCLE_lr_data(60, 180)) s

GROUP BY minute, xway, dir, seg) r
) c
 WHERE c.mv_avg > 0 AND c.mv_avg < 40;

With the above query, the streaming tuples are read by the SSF,
STREAM_CYCLE_lr_data(w, cycles), from the LR data source
file with timestamps, where parameter “w” is the time-window
size in seconds; “cycles” is the number of cycles the query is
supposed to run (setting cycle to 0 means running the query
indefinitely). For example, STREAM_CYCLE_lr_data(60, 180)
delivers the position reports one-by-one until it detects the end of
a cycle (60 seconds), and performs a “cut”, then onto the next
cycle, for a total of 180 cycles (for 3 hours). We leveraged the

minimum, average and count-distinct aggregate-groupby
operators built in the SQL engine, and provided the moving
average function, 5_minutes_moving_avg(), and the accident
detection function, accident_affected() as UDFs. The generated
tolls are inserted into one of the segment toll tables based on the
staging mechanism described earlier.

Figure 4. Cycle based continuous query for LR benchmark

The experimental results are measured on HP xw8600 with 2 x
Intel Xeon E54102 2.33 Ghz CPUs and 4 GB RAM, running
Windows XP (x86_32) and PostgreSQL 8.4. The input data are
downloaded from the benchmark’s home page. The “L=1” setting
was chosen for our experiment which means that the benchmark
consists of 1 express-way (with 100 segments in each direction).
Below we present two important experiment results.

Perf of Stream Query and Persist

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000

30
min

60
min

90
min

12
0m

in

15
0m

in

18
0m

inpe
r c

yc
le

 p
ro

ce
ss

 ti
m

e
(m

s)

Query
Direct Insert
Logging Insert

Figure 5. Performance comparison: cycle based continuous
query-only vs continuous query with continuous persisting

From Fig. 5 we can see that persisting the cycle based stream
processing results either by inserting with logging (using
“INSERT INTO” or by direct inserting (using “SELECT INTO”,
both with extended support by the query engine internally), does
not add significant performance overhead compared to querying
only. This is because we completely push stream processing down
to the query engine as efficient heap operations.

Post�Input�Elapsed�Time
in�1�Minute�Time�Windows

0

50

100

150

200

250

1 10 19 28 37 46 55 64 73 82 91 100 109118 127 136145 154 163 172

Minute�Time�Windows

Q
ue
ry
�T
im
e�

(M
ill
is
ec
on
ds
)

post�input�elapsed�time

Figure 6. Query time and PCET for minute time windows

Fig 6 shows that the per-cycle (one minute) results can be made
accessible in around 0.2 second, after the cycle ends; this time
delta, called Post Cycle Elapse Time (PCET), is actually the
maximal response time for retrieving the computation results
(segment toll) generated by the past query cycle. The increase of

create query plan

 open intoR
start Tx

start Tx
re-open intoR

execute plan

close intoR
commit Tx

Next intoaR ID

look up next intoR ID
from data dictionary

rewind plan exec

check intoR boundary

average
speed

Accident
affection

Car
volume

moving
average

SSF

Toll
compute

staging tables

Minute N

Minute N-1

Cut

Rewind

512

the responding time in later time windows is caused by the
increased data volumes provided by the benchmark.
As mentioned above, LR benchmark requires the segment tolls in
each minute to be available within 5 second after that minute, and
most reported results fall in the range from 1 second to 5 seconds.
Our experimental result (0.2 second) indicates that our approach
is highly competitive to any reported one.

3. CYCLE BASED MAP-REDUCE
We rely on the Map-Reduce (MR) computation to scale out
CaaaS. With the original MR model [10], static data are
partitioned “horizontally” over cluster nodes for parallel
computation; while enhancing the computation bandwidth by
divide-and-conquer, it is not defined on unbounded stream data.

We envisage that Cut-and-Rewind (CR) provides a powerful
mechanism for MR to reach stream analytics. We have
investigated the combination of MR and CR on parallel database
platform as well as on network distributed MR infrastructure.

3.1 Cut-Rewind a Parallel Query
We have shown in [8] that a parallel query with UDFs can
naturally express Map-Reduce computation. To explain how to
apply CR to a parallel query engine for stream processing, let us
review the parallel query execution process. A SQL query is
parsed and optimized into a query plan that is a tree of operators.
In parallel execution multiple sub-plan instances, called
fragments, are distributed to the participating query executors and
data processors on multiple server nodes; at each node, the scan
operator at the leaf of the tree gets and materializes a block of
data, to be delivered to the upper layer tuple by tuple. The global
query execution state is kept in the initial site.

To handle streaming data in parallel, the input stream is
partitioned over multiple machine nodes, in the way similar to
hash partitioning static data.

To support Cut-and-Rewind on a parallel database, every
participating query engine is facilitated with the CR capability.
The same cut condition is defined on all the partitioned streams.
Note that if the cycle based continuous querying is “cut” on time
window, the stream should not be partitioned by time, but by
other attributes.

A query execution cycle ends after end-of-cycle is signaled from
all data sources, i.e. all the partitioned streams are “cut”. As the
cut condition is the same across all the partitioned streams, the
cycle-based query executions over all nodes are well
synchronized through data driven.

To parallelize the LR stream analysis, we hash partition the data
stream by vehicle-id (vid); use the Map function to compute and
pre-aggregate the segment traffic statistics per minute (without
accident detection); use the Reduce function to globally aggregate
the segment statistics, group by express-way, direction and
segment, then calculate per segment moving average speed and
finally the toll. The whole map-reduce implementation of the
application is expressed in a single query running in the per-
minute cycle.

As shown in Fig 7, the LR stream is partitioned “horizontally”
over Map nodes; all partitions are cut on the same one-minute
boundary; the chunk-wise local results are shuffled to the Reduce

nodes for global aggregation. The data partition of Map results is
based on the standard parallel query processing of “group-by”.
The system runs cycle by cycle with Map-Reduce applied to data
streams in each cycle, hence supporting scaled-out query
processing over unbounded data streams.

Figure 7. Parallel DB based streaming Map-Reduce

This design is being integrated into a commercial parallel
database engine where SSF is handled by the storage engine layer
at each node, while the Map function and Reduce function are
handled by query executers.

3.2 Network-Distributed Map-Reduce Scheme
In network distributed MR scheme, query-engine based stream
engines are logically organized in the Map-Reduce style as
illustrated in Fig. 8. The separation of “Map” engines and
“Reduce” engines are logical, since an engine may act as a “Map”
engine, a “Reduce” engine, or both.

Figure 8. Network distributed streaming Map-Reduce

Different from parallel database oriented MR, with the network
distributed MR, a specific application is expressed in terms of two
cycle based continuous queries, say CQmap and CQreduce. The same
CQmap run at all the Map engines, and the same CQreduce at all the
Reduce engines. The streams are partitioned and fed in multiple
CQmap; the resulting streams from CQmap are shuffled to and fused
by multiple CQreduce based on certain grouping criteria specified
in the network replicated hash-tables. Those CQmap and CQreduce
synchronized by the same cut criteria, which determines the
boundaries of input streams as well as the resulting streams.

With the above simplified LR example, the stream data are hash
partitioned by vehicle ID; the stream data corresponding to
express-ways, directions and segments are crossing Map nodes.
� The Map query, CQmap, covers partitioned stream processing,

up to the local aggregation of car-volume, speed-sum, group-
by time and location.

� The results of CQmap are treated as the input streams of the
Reduce query, CQreduce, partitioned by express-way, direction
and segment, based on the network replicated hash tables.

Local agg
traffic stst

SSF

Local agg
traffic stst

SSF

Local agg
traffic stst

SSF

Local agg

SSF

global agg,
mv_avg, toll

SSF SSF

Map

Reduce

Cut

Rewind

global agg,
mv_avg, toll

Cut

Rewind

map
chunks

 SSF SSF SSF SSF

Rewind

Cut

Compute/pre-
aggregate seg
traffic status

reduce

mapmapmap

reduce reduce

Global aggregate seg
traffic status;
Compute moving_avg, toll;
group by exp-way, dir, seg

513

Each CQreduce is also equipped with a SSF for receiving the
Map results.

� CQreduce aggregate segment traffic statistics globally, calculate
the segment moving average speed, and then the segment toll.

Both Map and Reduce queries run in the per-minute cycle.

Note the difference CR/MR schemes for parallel DB based and
network-distributed MR infrastructure. Since the parallel query
engine naturally supports reduce with aggregate-groupby, the MR
is expressed by a single query, in each CR cycle the whole MR
computation is iterated. With the network distributed MR
infrastructure, the Map engines and the Reduce engines run
separate cycle-based continuous queries; they process the stream
data chunk by chunk based on the common window boundary, or
cut criterion, thus cooperate without centralized scheduling. The
parallel DB based MR infrastructure generally over-performs the
network-distributed one due to efficient data transfer from the
Map nodes to the Reduce nodes, but the later is more flexible and
has obvious cost benefits.

4. CONCLUSION AND RELATED WORK
CaaaS represents a paradigm shift and opens a new field in cloud
computing as more and more applications depend on the analytics
results of real-time events. In this work we have addressed several
specific challenges and reported our solutions. Our thesis is that
database technology can be extended and applied to real-time
continuous analytics service provisioning.

We start with unifying dynamic stream processing and static data
management for data intensive analytics. To capture the window
semantics, we have introduced the cycle-based query model and
transaction model which allows SQL queries to run and to commit
cycle by cycle for analyzing unbounded stream data chunk by
chunk, thus making the analysis results visible to the clients of
cloud service timely while the continued query for generating
them is still running. We then proposed the table-ring mechanism
for staging analytics results without physical data copying and
moving, that is especially efficient in coping with continuous
information generation. Finally, we have developed two kinds of
parallel computing infrastructures, one based on parallel database
engine with performance consistent with the study given in [11];
and another based on network distributed Map-Reduce that is
architecturally similar to HadoopDB [1], but with extended
streaming capability.

Our platform significantly differs from the current generation of
DSMSs which are in general built separately from the database
systems [2-5,13]. As those systems do not have the full SQL
expressive power and DBMS functionalities, incur significant
overhead in data access and movement [7-9,11], and lack the
appropriate transaction support for continuously persisting and
sharing results, they fail to meet the requirements for providing
high-throughput, low-latency CaaaS.

Further, the cycle-based query model allows multiple query
engines to synchronize and cooperate based on the common
window boundaries. Such data-driven cooperation is very
different from the workflow like centralized scheduling used in
other DSMSs [12,16]. This feature allows us to apply MR cycle
by cycle continuously and incrementally for parallel and
distributed continuous analytics, in the way not seen previously.

Metadata manipulation is also used in Oracle’s table partition
management [17]; that, however, is not designed for round-robin
table staging. Our staging mechanism avoids the overhead of
physical data copying and moving thus ensures low-latency data
retrieval without being interrupted by data staging. For mobile
applications such as those running on WebOS with HTML 5
caching capability, keeping analytics results in small sized tables
makes them easily downloadable for batch usage with reduced
internet connections.

5. REFERENCES
[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A.

Silberschatz, A. Rasin “HadoopDB: An Architectural Hybrid
of MapReduce and DBMS Technologies for Analytical
Workloads”, VLDB 2009.

[2] Arasu, A., Babu, S., Widom, J. The CQL Continuous Query
Language: Semantic Foundations and Query Execution.
VLDB Journal, (15)2, June 2006.

[3] Abadi, D., Carney, D., Cetintemel, U., Cherniack, M.,
Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.
Aurora: A New Model and Architecture for Data Stream
Management. In VLDB J (12)2: 120139, August 2003.

[4] D. J. Abadi et al. The Design of the Borealis Stream
Processing Engine. In CIDR, 2005.

[5] Chandrasekaran, S., et. al. TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World. CIDR 2003.

[6] Qiming Chen, Meichun Hsu, “Continuous MapReduce for
In-DB Stream Analytics”, Proc. CoopIS 2010.

[7] Qiming Chen, Meichun Hsu, “Integrate Analytic Streaming
into Query Engine”, Tech Rep HPL-2010-44, 2010.

[8] Qiming Chen, Andy Therber, Meichun Hsu, Hans Zeller, Bin
Zhang, Ren Wu, “Efficiently Support Map-Reduce alike
Computation Models Inside Parallel DBMS”, Proc.
IDEAS’09, 2009.

[9] Qiming Chen, Meichun Hsu, Rui Liu, "Extend UDF
Technology for Integrated Analytics", Proc. DaWaK 2009.

[10] J. Dean., “Experiences with MapReduce, an abstraction for
large-scale computation”, Int Conf on Parallel Architecture
and Compilation Techniques. ACM, 2006.

[11] D.J. DeWitt, E. Paulson, E. Robinson, J. Naughton, J.
Royalty, S. Shankar, A. Krioukov, “Clustera: An Integrated
Computation And Data Management System”, VLDB 2008.

[12] Michael J. Franklin, et al, “Continuous Analytics:
Rethinking Query Processing in a Network-Effect World”,
CIDR 2009.

[13] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S.
Yu, Myung Cheol Doo, “SPADE: The System S Declarative
Stream Processing Engine”, ACM SIGMOD 2008.

[14] HP Neoview enterprise data warehouse,
http://h71028.www7.hp.com/nterprise/w1/en/software/busine
ss-intelligence-neoview.html

[15] N. Jain et al. Design, Implementation, and Evaluation of the
Linear Road Benchmark on the Stream Processing Core.
SIGMOD 2006.

[16] Erietta Liarou et.al. “Exploiting the Power of Relational
Databases for Efficient Stream Processing”, EDBT 2009.

[17] SageLogix, Inc, “Scale to infinity: partitioning in Oracle
Data Warehouses”, http://www.sagelogix.com/idc/groups/
public/documents/sagelogix-whitepaper/sage016100.

514

