
A Theoretical Study of ‘Snapshot Isolation’

Ragnar Normann
Department of Informatics

University of Oslo
ragnarn@ifi.uio.no

Lene T. Østby
Department of Informatics

University of Oslo
lene.t.ostby@accenture.com

ABSTRACT
Snapshot Isolation is a popular and efficient protocol for con-
currency control. In this paper we discuss Snapshot Isolation
in view of the classical theory for transaction processing. In
addition to summarizing previous research we prove that
the set SI of histories that may be generated by Snapshot
Isolation is incomparable to final state, view and conflict
serializability, that SI is monotone, and that schedules gen-
erated by Snapshot Isolation are strict and thus have good
properties with respect to recoverability.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Concurrency,
Transaction processing

General Terms
Theory

Keywords
Snapshot Isolation, concurrency, transaction, serializability,
monotonicity, recoverability

1. INTRODUCTION AND MOTIVATION
Snapshot Isolation is a multiversion protocol for concur-
rency control that is quite popular and heavily used. To
our knowledge the first commercial available implementation
was in Borland’s multiversion concurrency control database
InterBase 4 released in 1994. Later, among others, Oracle,
PostgreSQL and Microsoft SQL Server have implemented
versions of it [5] (but not IBM’s DB2). Snapshot Isolation
is attractive because it offers an isolation level that both
avoids most concurrency phenomena and anomalies and still
allows a much higher degree of concurrency than strict 2-
phase locking (the traditional conservative protocol for con-
currency control).

The first presentation of Snapshot Isolation in the litterature
was made by Berenson & al. in [2]. They discussed Snapshot

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2010, March 22–25, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-947-3/10/0003 ...$10.00

Isolation in relation to concurrency phenomena and isolation
levels. A later paper by Fekete & al. [5] focuses on identi-
fying cases where Snapshot Isolation will not comply with
the isolation level serializable, and how to avoid these (e.g.
at the application level). Papers discussing other aspects of
Snapshot Isolation are, at best, rare.

In this paper we relate Snapshot Isolation to the well-known
theory of serializability and recoverability. Most of our re-
sults were first presented in the master thesis [13] of the
second author.

The organization of the rest of the paper is as follows: Some
useful background material is given in section 2 before the
Snapshot Isolation protocol is presented in section 3. Sec-
tions 4 and 5 summarize the previous research relating Snap-
shot Isolation to concurrency phenomena and anomalies and
to the SQL isolation levels, Sections 6 through 8 discuss
Snapshot Isolation and serializability, monotonicity and re-
coverability. Some final remarks are given in section 9.

2. NOTATION AND THEORETICAL

FRAMEWORK
We have chosen to use a terminology and notation very close
to the one used by Weikum & Vossen in their book [11].

Definition 1. A transaction ti is a finite set of operations
opi with a strict (linear) order <i. Each operation in opi is
either a read operation, denoted ri(x), where x is the data
item read by ti, or a write operation, denoted wi(y), where
y is the data item written by ti.

The semantics of <i is ordering in time, i.e., if p and q are
two operations in opi with p <i q then p is executed prior to
q. The operations are atomic, i.e., when an operation in opi

is executed, this execution is finished before the next opera-
tion in opi can be executed. The execution of an operation
is called a step. Thus the execution of a transaction is a
finite sequence of steps.

Definition 2. ([11, definition 3.1]) Let T = {t1, . . . , tn} be
a (finite) set of transactions, where each ti ∈ T has the form
ti = (opi, <i), with opi denoting the set of operations in ti

and <i denoting their order, 1 ≤ i ≤ n.

1. A history for T is a pair s = (op(s),<s) such that:

44

(a) op(s) ⊆
Sn

i=1
opi ∪

Sn
i=1

{ai, ci} and
Sn

i=1
opi ⊆

op(s), i.e., s consists of the union of operations
from the given transactions plus some (terminat-
ing) operations, each of which may either be a ci

(commit) or an ai (abort);

(b) (∀i, 1 ≤ i ≤ n)ci ∈ op(s) ⇔ ai /∈ op(s), i.e., for
each transaction, there is either a commit or an
abort in s, but not both;

(c)
Sn

i=1
<i⊆<s, i.e., all transaction orders are con-

tained in the partial order given by s;

(d) (∀i, 1 ≤ i ≤ n)(∀p ∈ opi)p <s ai or p <s ci, i.e.,
the commit or abort operation always appears as
the last step of a transaction;

(e) each pair of operations p, q ∈ op(s) from distinct
transactions that accsess the same data item and
have at least one write operation among them is
ordered in s in such a way that either p <s q or
q <s p.

The transactions participating in a history s is denoted
trans(s), i.e., trans(s) = T .

2. A schedule is a prefix of a history.

In plain language, definition 2 states that a history h for T
is a partial order of all steps in the transactions in T such
that

• the internal order of each transaction’s steps is pre-
served in h

• each transaction in T is terminated by either a commit
or an abort in h

• all read-write or write-write conflicts between different
transactions in T are ordered in h

When working with histories it is convenient to introduce
two (fictious) transactions: one initializing transaction t0
that writes the initial state of the database (and commits)
before the execution of the history is started, and one final
(read-only) transaction t∞ that reads the whole database
after the execution of the history is finished.

As mentioned in the introduction, Snapshot Isolation is a
multiversion protocol. We therefore need the following two
definitions:

Definition 3. ([11, definition 5.1]) Let s be a history with
initializing transaction t0 and final transaction t∞. A version
function for s is a function h, which associates whith each
read step of s a previous write step on the same data item,
and which is the identity on write steps.

Definition 4. ([11, definition 5.2]) Let T = {t1, . . . , tn} be
a (finite) set of transactions.

1. A multiversion history for T is pair m = (op(m),<m),
where <m is an order on op(m) and

(a) op(m) = h(
Sn

i=1
op(ti)) for some version func-

tion h

(b) for all t ∈ T and all operations p, q ∈ op(t) the
following holds:

p <t q ⇒ h(p) <m h(q)

(c) if h(rj(x)) = wi(xi), i 6= j, and cj is in m, then ci

is in m and ci <m cj .

2. A multiversion schedule is a prefix of a multiversion
history.

Finally, to be able to compare isolation levels we need the
following definition from Berenson & al. [2]:

Definition 5. An isolation level L1 is weaker than an isola-
tion level L2 (or L2 is stronger than L1), denoted L1 ≪ L2, if
all non-serializable histories that obey the citeria of level L2

also satisfy level L1, and there is at least one non-serializable
history that can occur at level L1 but not at level L2. Two
isolation levels are incompareable, denoted L1 ≫≪ L2, when
each isolation level allows a non-serializable history that is
disallowed by the other.

Note that this definition only takes the non-serializable his-
tories into account. It is irrelevant which serializable histo-
ries that may be disallowed.

3. THE SNAPSHOT ISOLATION

PROTOCOL
Definition 6. The Snapshot Isolation Protocol produces

multiversion schedules by enforcing the following two rules:

1. When a transaction t reads a data item x, t reads
the newest version of x written by a transaction that
committed before t started.

2. The write sets of two concurrent transactions must be
disjoint.

The set of histories that may be produced by the Snapshot
Isolation protocol is denoted SI.

Rule 1 states that the version function maps each read action
ri(x) to the most recent committed write action wj(x) at the
time ti started.

Rule 2 states that if t1 and t2 are two transactions where t1
starts before t2, and t1 commits after t2 has started, t1 and
t2 are not permitted to write the same data item.

There are several methods to enforce rule 2. One is to com-
pare write sets at commit. Oracle has implemented a more
efficient algorithm which in Fekete et al. [6] is called ‘first
updater wins’. This algorithm works as follows:

Assume two transactions t1 and t2 are concurrent, t1 writes
x, and t2 also wants to write x. Then t2 cannot write x
before t1 has released its lock on x. Then there are three
possibilities:

45

• If t2 is queued to write x and t1 commits, t2 is imme-
diately aborted.

• If t1 commits before t2 tries to write x, t2 is aborted
when it tries to perform the write.

• If t1 drops its lock because it aborts, t2 is allowed to
write x.

Finally, here is the rule for when old versions are superfluous:

• A version xi of a data item x may be deleted if, and
only if, there is a newer version xk of x, and all active
transactions were started after tk was committed.

4. CONCURRENCY PHENOMENA AND

ANOMALIES
We base our discussion mainly on Berenson & al. [2], and
throughout this section we make heavy use of their defini-
tions and examples. In [2] they distinguish between con-
currency phenomena (denoted by P) – which may result in
errors – and concurrency anomalies (denoted by A) – which
always result in errors. We follow their nomenclature in the
list below:

P0 – Dirty Write

Example: w1(x)w2(x) (c1 or a1)

P1 – Dirty Read

Example: w1(x)r2(x) (c1 or a1)

P2 – Fuzzy or Non-Repeatable Read

Example: r1(x)w2(x) (c1 or a1)

P3 – Phantom

Example: r1(P)w2(y in P) (c1 or a1)
The P in the example stands for ’Predicate’ and is
typically the result set of a SQL WHERE-clause. So if
t1 reads the data items that satisfy P (e.g. to evaluate
some aggregate function on them) whereupon t2 writes
a new data item satisfying P before t1 commits, t1 will
commit with an incorrect answer.

A stricter interpretation of P3 will transform it into an
anomaly:

A3 – Phantom

Example: r1(P)w2(insert y to P)c2r1(P)c1

Here t1 executes a query satisfying the predicate P
twice, finding that the result has changed.

P4 – Lost Update

Example: r1(x)w2(x)w1(x)c1

A5A – Read Skew

Example: r1(x)w2(x)w2(y)c2r1(y) (c1 or a1)

A5B – Write Skew

Example: r1(x)r2(y)w1(y)w2(x) (c1 and c2 in some
order)

A6 – Read-Only Transaction Anomaly

Example: r2(x)w1(y)c1r3(x)r3(y)c3w2(x)c2

Snapshot Isolation was originally trusted to never pre-
sent incorrect data from read-only transactions if no

concurrent update transactions wrote incorrect values.
But in [6] Fekete et al. presented the above example
showing that this is not the case. In the example the
commit order differs from the serial order t1t2t3, and
since t1 and t2 write different data items, Snapshot
Isolation will not detect this Read-Only anomaly.

Theorem 1. (Berenson & al.[2], Fekete & al.[6]) Of the
ten concurrency phenomena and anomalies listed above, only
these three may occur in a schedule produced by Snapshot
Isolation:

P3: Phantom
A5B: Write skew
A6: Read-only transaction anomaly

5. SQL ISOLATION LEVELS
Isolation levels were introduced in the SQL-92 standard [1],
[9, section 14.3]. This standard defines four levels of isola-
tion which SQL-servers should support (the levels are ranked
from the strongest to the weakest):

Serializable. A history generated at isolation level Serial-
izable shall prohibit all concurrency phenomena and
anomalies, in fact it shall produce the same result as
some serial execution of the transactions in the history.

Repeatable Read. All phenomena and anomalies but phan-
toms are prohibited.

Read Committed. All phenomena and anomalies except
dirty writes and reads may occur.

Read Uncommitted. Only dirty writes are prohibited.

Theorem 2. (Berenson & al.[2])
ReadCommitted ≪ SI ≪ Serializable while
SI ≫≪ RepeatableRead

6. SERIALIZABILITY
Chapter 3 in the book [11] of Weikum and Vossen is a good
source for the theory of serialization. We use their definitions
and refer to their book for a more comprehensive treatment
of this subject.

Definition 7. Let s be a history of n transactions t1, . . . , tn

with initializing transaction t0 and final transaction t∞, and
let D be the set of data items read or written by some tk.
For each x ∈ D we recursively define the Herbrand seman-
tics of each read step rk(x) and each write step wk(x) in s
by

1. Hs(w0(x)) = f0x() where f0x() is a 0-ary function (a
constant – the initial value of x)

2. Hs(rk(x)) = Hs(wp(x)) where tp(p 6= k) is the last
transaction to write x prior to tk reading x

3. Hs(wk(x)) = fkx(Hs(rk(y1)), . . . Hs(rk(ym))) where
rk(y1), . . . , rk(ym) are all read steps performd by tk

prior to wk(x), and fkx is an uninterpreted m-ary func-
tion symbol

46

The Herbrand semantics of the history s is the function H [s]
from D into the universe of Herbrand formulas defined by:

H [s](x) = Hs(r∞(x)), x ∈ D

Definition 8. Two histories s1 and s2 are final state equiv-
alent if they contain the same transactions and H [s1] =
H [s2].

A history is final state serializable if it is final state equiva-
lent to a serial history.

The set of all finite state serializable histories is denoted
FSR.

Definition 9. Two histories s1 and s2 are view equivalent
if they are final state equivalent and Hs1

(p) = Hs2
(p) for all

(read and write) steps p.

A history is view serializable if it is view equivalent to a
serial history.

The set of all view serializable histories is denoted VSR.

Definition 10. The conflict relation of a schedule s, conf(s),
is defined as the set of all pairs (p, q) where p <s q and the
ordering is a consequence of rule (e) in definition 2, i.e., p
and q are operations in two different transactions in s which
are in either a read-write or a write-write conflict.

Two histories s1 and s2 are conflict equivalent if they contain
the same transactions and conf(s1) = conf(s2).

A history is conflict serializable if it is conflict equivalent to
a serial history.

The set of all conflict serializable histories is denoted CSR.

The following result is considered well-known (see e.g. [11,
corollary 3.3]):

Theorem 3. CSR ⊂ VSR ⊂ FSR

Theorem 4. SI is neither included in, nor includes, any
of the serializability classes FSR, VSR or CSR.

Proof. Due to theorem 3 it is sufficient to find two his-
tories h1 and h2 such that h1 ∈ CRS\SI and h2 ∈ SI\FSR.

For h1 we may use the example of a dirty read (P1 in section
4):

h1 = w1(x)w2(x)c1c2

h1 is conflict equivalent to t1t2, and thus in CSR. But since
t1 and t2 are two concurrent transactions that both write x,
h1 is not in SI.

For h2 the example of a write skew (A5B in section 4) will
do:

h2 = r1(x)r2(y)w1(y)w2(x)c1c2

Both reads are of the initial value and the two write sets
are disjoint, so h2 ∈ SI. To prove the theorem it remains to
show that h2 /∈ FSR, i.e. that h2 is not final state equivalent
to any of the two possible serial histories:

s1 = t1t2 = r1(x)w1(y)c1r2(y)w2(x)c2

s2 = t2t1 = r2(y)w2(x)c2r1(x)w1(y)c1

To prove this we calculate the Herbrand semantics:

H [h2](x) = Hh2
(r∞(x)) = Hh2

(w2(x)) = f2x(Hh2
(r2(y)))

= f2x(Hh2
(w0(y))) = f2x(f0y())

H [s1](x) = Hs1
(r∞(x)) = Hs1

(w2(x)) = f2x(Hs1
(r2(y)))

= f2x(Hs1
(w1(y))) = f2x(f1y(Hs1

(r1(x)))

= f2x(f1y(Hs1
(w0(x))) = f2x(f1y(f0x())

H [s2](x) = Hs2
(r∞(x)) = Hs2

(w2(x)) = f2x(Hs2
(r2(y)))

= f2x(Hs2
(w0(y))) = f2x(f0y())

H [h2](y) = Hh2
(r∞(y)) = Hh2

(w1(y)) = f1y(Hh2
(r1(x)))

= f1y(Hh2
(w0(x))) = f1y(f0x())

H [s1](y) = Hs1
(r∞(y)) = Hs1

(w1(y)) = f1y(Hs1
(r1(x)))

= f1y(Hs1
(w0(x))) = f1y(f0x())

H [s2](y) = Hs2
(r∞(y)) = Hs2

(w1(y)) = f1y(Hs2
(r1(x)))

= f1y(Hs2
(w2(x))) = f1y(f2x(Hs2

(r2(y)))

= f1y(f2x(Hs2
(w0(y))) = f1y(f2x(f0y())

Since H [h2](x) 6= H [s1](x) and H [h2](y) 6= H [s2](y) our
proof is complete.

7. MONOTONICITY
The concept monotone histories was introduced by Yan-
nakakis [12]:

‘The greater the number of transactions that run concur-
rently in the system, the less the chances that a request of a
transaction to read or write some data will be granted im-
mediately. Or in other words, if a request is granted under a
given load, it would also be granted if the load were lighter
(i.e., if some of the other transactions were not present).’

Yannakis called histories adhering to this principle mono-
tone. To give a more formal description of monotonicity
Yannakakis introduced the concept subschedule which Wei-
kum & Vossen [11, end of section 3.7]) call a projection:

Definition 11. Let s be a schedule for a set T of transac-
tions, and let U ⊆ T . The projection of s on U , denoted
ΠU (s), is what we get if we from s remove all operations
performed by all transactions in T \ U .

Schedulers use projections mainly to handle aborts: When-
ever one or more transactions in a schedule abort, the sched-
ule is replaced by the projection of the schedule on its non-
aborted transactions. In fact, the same happens when a
transaction commits: The transaction is added to the his-
tory of all committed transactions and removed from the
schedule by a projection, but projections caused by com-
mits can not create any problems.

47

Definition 12. A class E of histories (legal schedules) is
said to be monotone if the following holds: If s is in E then
all projections of s are in E.

The importance of monotonicity is that a monotone class
is closed under aborts. The following example illustrates
this and shows why it seems almost impossible to make a
scheduler for a class which is not monotone:

Example Let E be the class of schedules a given scheduler
S may produce, i.e. E is the class of legal schedules,
and assume that E is not monotone. Then the follow-
ing may happen:

S makes a schedule s for a set of transactions
T .

A transaction t ∈ T aborts.

ΠT\{t}(s) /∈ E (construe an illegal schedule).

Another problem is that an illegal schedule s may be-
come legal if a new transaction arrives to be interleaved
with s.

We claim that this example proves the importance of mono-
tonicity.

Both Yannakakis [12] and Weikum & Vossen [11] have tac-
itly assumed that their database is not multiversion when
discussing monotonicity. In fact, as far as we can see, no
discussions of monotonicity in multiversion databases exist,
neither in the litterature, nor on the net. Therefore we in-
clude a short discussion of this topic:

The main problem is how to define projections. Consider
the following multiversion history of three transactions t1,
t2 and t3:

s = r1(x0)r1(y0)r2(y0)w2(y2)c2r3(x0)r3(y2)c3w1(x1)c1

An uncritical use of definition 11 to calculate the projection
of s on T = {t1, t3} yields

ΠT (s) = r1(x0)r1(y0)r3(x0)r3(y2)c3w1(x1)c1

Here t3 reads a version of y written by t2 which does not
appear in ΠT (s). In fact, if the projection is performed
because t2 aborts prior to writing y, the version y2 does not
exist when t3 reads y. Thus, in the general case, the version
function (see definition 3) has to be recalculated during the
projection.

A more thorough discussion of this problem is beyond the
scope of this paper, but, as we shall see, our next result is
independent of the outcome of such a discussion.

Theorem 5. The class SI is monotone.

Proof. Let s be a schedule generated by Snapshot Iso-
lation, let p be the projection of s on a subset of the trans-
actions in s, i.e., p is a schedule for the non-aborted trans-
actions in s, and let t be a transaction in p reading a data
item x.

When the Snapshot Isolation scheduler constructed s it sched-
uled t to read the last version xk of x written by a transaction
tk that committed before t started.

Since tk is committed it can not be among the transactions
in s that are not in p. Thus xk is still the last version of x
written by a transaction which committed before t started
even if some of the transactions in s are aborted.

Finally we know that s does not contain any write-write
conflicts. Removing transactions from s cannot create any
new conflicts, so p does not contain any write-write conflicts
either.

Thus both criteria of definition 6 are proved, and we con-
clude that p is in SI. It follows that SI is monotone.

8. RECOVERABILITY
Again, we borrow the terminology of Weikum & Vossen [11]
and cite their definitions:

Definition 13. ([11, definition 11.5]) A schedule s is re-
coverable if the following holds for all transactions ti, tj ∈
trans(s), i 6= j: if ti reads from tj in s and ci ∈ op(s), then
cj <s ci.
Let RC denote the class of all recoverable schedules.

Definition 14. ([11, definition 11.6]) A schedule s avoids
cascading aborts if the following holds for all transactions
ti, tj ∈ trans(s), i 6= j: if ti reads X from tj in s, then
cj <s ri(x).
Let ACA denote the class of all schedules that avoid cascad-
ing aborts.

Definition 15. ([11, definition 11.7]) A schedule s is strict
if the following holds for all transactions ti ∈ trans(s) and
for all pi(x) ∈ op(ti), p ∈ {r, w}: if wj(x) <s pi(x), i 6= j:
then aj <s pi(x) ∨ cj <s pi(x).
Let ST denote the class of all strict schedules.

Definition 16. ([11, definition 11.8]) A schedule s is rig-
orous if it is strict and additionally satisfies the following
condition: for all transactions ti, tj ∈ trans(s), if rj(x) <s

wi(x), i 6= j, then aj <s wi(x) ∨ cj <s wi(x).
Let RG denote the class of all rigorous schedules.

Theorem 6. ([11, theorem 11.2])
RG ⊂ ST ⊂ ACA ⊂ RC

Theorem 7. SI ⊂ ST, SI 6⊆ RG and RG 6⊆ SI

Proof. First, assume that s ∈ SI and that ti, tj ∈ trans(s),
i 6= j, have a conflict wj(x) <s ri(x). Since ti only reads
values that are committed before ti starts, we must have
aj <s ri(x) ∨ cj <s ri(x). Since s does not contain any
write-write conflicts, this shows s to be strict, so SI ⊆ ST.

Next, consider the (Write Skew (A5B in section 4)) history

s1 = r1(x)r1(y)r2(x)r2(y)w1(y)c1w2(x)c2

48

Here all reads are of the initial value and the write sets of
t1 and t2 are disjoint so s1 ∈ SI by definition 6. But since t1
writes y after t2 reads y but before t2 commits, by definition
16 s1 /∈ RG. Hence s1 ∈ SI \ RG which shows SI 6⊆ RG.

To prove the last claim, consider the history

s2 = r1(x)r2(y)w1(x)c1r2(x)c2

s2 contains no write-write conflicts and all reads are of comit-
ted values, so by definition 15 s2 ∈ ST. Neither does s2 con-
tain any read-write conflicts, so by definition 16 s2 ∈ RG.
But since t2 reads a value of x written after t2 executed its
first operation, s2 /∈ SI. Hence s2 ∈ RG \ SI, so RG 6⊆ SI.

Finally, by theorem 6 we have RG \ SI ⊆ ST \ SI. Thus we
have s2 ∈ ST \ SI which prove the inclusion SI ⊆ ST to be
strict.

9. CONCLUSIONS AND FUTURE WORK
Our main results are that SI neither includes CSR nor is
included in FSR, that SI is monotone, and that all histories
in SI are strict. In [2] Berenson & al. showed that SI is a
stronger isolation level than read committed. Thus Snap-
shot Isolation guarantees a reasonably strong level of isola-
tion and produces easily recoverable histories. Since SI is
monotone the simplicity of the Snapshot Isolation Protocol
makes it easy to implement an efficient scheduler for SI. So in
spite of the fact that Snapshot Isolation may generate histo-
ries that are not final state serializable, we think it is a wise
decision of the DBMS vendors to offer Snapshot Isolation as
an isolation level.

Note: Snapshot Isolation vs. Serializable
Among others, both Oracle and PostgreSQL use Snapshot
Isolation to implement their isolation level ’Serializable’. Ac-
cording to theorem 2 this is not correct. In fact, this is an
explicit violation of the SQL-99 standard [8]. Of the other
major DBMSes, Microsoft SQL Server offers both Serializ-
able and Snapshot Isolation as isolation levels.

Note: The importance of monotonicity
As shown in the example in section 7 monotonicity is an im-
portant property for schedulers. We therefore find it strange
that this topic is not covered in many (most?) popular text-
books discussing schedulers (among them [3, 4, 7, 10]). An
exception is the book of Weikum & Vossen [11] where they
in section 3.7 prove that neither FSR nor VSR are mono-
tone. In our opinion this is the main reason why both final
state and view equivalence are unfit as serializability crite-
ria. Not being monotone is much more important than the
fact that their schedulers have to be based on NP-complete
algorithms.

Future Work
While the order of steps within a transaction (Definition 1)
is linear the order of steps in a history (Definition 2) is par-

tial as only conflicting steps are ordered. However, the def-
inition of a snapshot requires that we can compare all steps
to all commits. This works fine as long as all transactions
run on the same computer using the same system clock. But
in a distributed system with several autonomous nodes, it
is not obvious how to define a snapshot. This question is
of course closely related to the notion of global time, but
we feel that there are still some open questions related to
’Distributed Snapshot Isolation’.

10. ACKNOWLEDGEMENTS
We want to thank the anonymous referees for their usefull
comments.

11. REFERENCES
[1] American National Standards Institute. ANSI X3.

135-1992 Information Systems – Database Language –
SQL, 1992.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A Critique of ANSI SQL
Isolation Levels. In Proc. of the ACM SIGMOD
International Conference on Management of Data,
pages 1–10, 1995.

[3] T. Connolly and C. Begg. Database Systems. 5th
Edition. Addison Wesley, 2010.

[4] R. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. 5th Edition. Benjamin/Cummings,
2006.

[5] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making Snapshot Isolation Serializable.
ACM Transactions on Database Systems,
30(2):492–528, 2005.

[6] A. Fekete, E. O’Neil, and P. O’Neil. A Read-Only
Transaction Anomaly Under Snapshot Isolation.
SIGMOD Record, 33(3):12–14, September 2004.

[7] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database Systems: The Complete Book. Second
Edition. Prentice-Hall, 2009.

[8] International Organization for Standardization.
ANSI/ISO SQL 99. (ISO/IEC9075-2:1999(E), page
83), 1999.

[9] J. Melton and A. R. Simon. Understanding The New
SQL: A Complete Guide. Morgan Kaufmann, 1993.

[10] A. Silberschatz, H. F. Korth, and S. Sudarshan.
Database System Concepts. 5th Edition. McGraw-Hill,
2005.

[11] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms and the Practice of
Concurrency Control and Recovery. Morgan
Kaufmann, 2002.

[12] M. Yannakakis. Serializability by Locking. Journal of
the ACM, 31(2):227–244, April 1984.

[13] L. T. Østby. En teoretisk studie av ”Snapshot
Isolation”. Master’s thesis, Dept. of Informatics,
University of Oslo, 2008. (In Norwegian).

49

