
Composing Local-As-View Mappings:
Closure and Applications

Patricia C. Arocena
University of Toronto

prg@cs.toronto.edu

Ariel Fuxman
Microsoft Research

arielf@microsoft.com

Renée J. Miller
University of Toronto

miller@cs.toronto.edu

ABSTRACT

Schema mapping composition is a fundamental operation in
schema management and data exchange. The mapping com-
position problem has been extensively studied for a number
of mapping languages, most notably source-to-target tuple-
generating dependencies (s-t tgds). An important class of s-t
tgds are local-as-view (LAV) tgds. This class of mappings is
prevalent in practical data integration and exchange systems,
and recent work by ten Cate and Kolaitis shows that such
mappings possess desirable structural properties.

It is known that s-t tgds are not closed under composition.
That is, given two mappings expressed with s-t tgds, their
composition may not be definable by any set of s-t tgds (and,
in general, may not be expressible in first-order logic). De-
spite their importance and extensive use in data integration
and exchange systems, the closure properties of LAV com-
position remained open to date. The most important contri-
bution of this paper is to show that LAV tgds are closed under
composition, and provide an algorithm to directly compute
the composition.

An important application of our composition result is that
it helps to understand if given a LAV mapping Mst from
schema S to schema T , and a LAV mapping Mts from
schema T back to S, the composition of Mst and Mts is
able to recover the information in any instance of S. Arenas
et al. formalized this notion and showed that general s-t tgds
mappings always have a recovery. Hence, a LAV mapping
always has a recovery. However, the problem of testing
whether a given Mts is a recovery of Mst is known to be
undecidable for general s-t tgds. In contrast, in this paper we
show the tractability of the problem for LAV mappings, and
give a polynomial-time algorithm to solve it.

Categories and Subject Descriptors.
H.2.5 [Heterogeneous Databases]: Data Translation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2010, March 22–25, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-947-3/10/0003 ...$10.00

1. Introduction

A schema mapping is a specification that describes how
data in one schema (a source schema) may be transformed
into data in a second schema (a target schema). In many data
integration and data exchange applications, such as schema
evolution and peer data sharing systems, we may want to be
able to compose two schema mappings. Given a mapping
M12 = (S1,S2, Σ12) from schema S1 to schema S2, and a
second mapping M23 = (S2,S3, Σ23) from schema S2 to
schema S3, we may want to produce a composed mapping
M13 = (S1,S3,Σ13) directly from S1 to S3 (where S3

does not use any symbols from S2). In our work, we adopt
the semantics for composition given by Fagin, Kolaitis, Popa
and Tan [9]. Specifically, if a mapping is viewed as a binary
relation over the instances of the source and target schemas,
then for M13 to be the composition of M12 and M23 it
must be the case that the following holds: for every pair of
instances I and K, 〈I,K〉 |= Σ13 iff there exists some J
such that 〈I, J〉 |= Σ12 and 〈J,K〉 |= Σ23.

A fundamental problem in mapping composition is under-
standing when a mapping specification language is closed
under composition. One of the most important languages
for schema mappings is that of source-to-target (s-t) tuple
generating dependencies (tgds). An important class of s-t
tgds are local-as-view (LAV) tgds. This class of mappings is
prevalent in practical data integration and exchange systems,
and recent work by ten Cate and Kolaitis [20] shows that it
possesses desirable structural properties.

It is known that s-t tgds are not closed under composi-
tion [9]. That is, given two mappings expressed with s-t
tgds, their composition may not be definable by any set of
s-t tgds (and, in general, may not be expressible in first-
order logic). Two languages that are known to be closed
under composition are full s-t tgds, a restrictive subclass of
s-t tgds containing no existentials, and second-order tgds,
a generalization of s-t tgds which permits function symbols
and equalities [9]. Little is known about the closure prop-
erties of classes of schema mappings in between these two
extremes. Despite their importance and extensive use in data
integration and exchange systems, the closure properties of
LAV mapping composition remained open to date. The most
important contribution of this paper is to show that LAV tgds
are closed under composition, and provide an algorithm to
compute the composition.

209

While our results imply that LAV mapping composition
can always be expressed using LAV tgds, previous composi-
tion algorithms [9, 18] may produce mappings with second-
order tgds when given LAV mappings as input. This is shown
in the following example.

Example 1.1. Consider the following LAV schema map-
pingsM12 = (S,T,Σ12) andM23 = (T,R, Σ23), where
Σ12 and Σ23 are as follows:

Σ12 : { ∀x1∀x2 S(x1, x2) → ∃z T (x1, z) }
Σ23 : { ∀y1∀y2 T (y1, y2) → ∃w R(y2, w) }
If we run Fagin et al.’s composition algorithm [9] with

the above input s-t tgds, we obtain the following second-
order tgd as a result:

Σ13 : { ∃f∃g (∀x1∀x2 S(x1, x2)
→ R(f(x1, x2), g(x1, f(x1, x2))) }

In general, it is not obvious if the second-order tgds
produced by this composition algorithm are equivalent
to any s-t tgd (a point illustrated very well by Nash,
Bernstein and Melnik [18] whose work we will consider
in more detail in the next section). We consider this
problem for LAV tgds and show, in this paper, that the
composition of LAV mappings can always be expressed
as a set of LAV tgds. In this particular example, the
LAV formula produced by our composition algorithm is
the following:

Σ′13 : { ∀x1∀x2 S(x1, x2) → ∃z1∃z2 R(z1, z2) }
As it has been pointed out by recent work of ten Cate and

Kolaitis [20], LAV is a more desirable mapping language,
in many ways, than second-order tgds. In particular, LAV
mappings have properties that second-order mappings lack,
namely closure under target homomorphisms and closure
under union.

Definition 1.2. [Closure under Target Homomor-
phisms] [20] Let M = (S,T, Σst) be a schema map-
ping from the source S to the target T. We say M is
closed under target homomorphisms if for all 〈I, J〉 ∈
M and for all homomorphisms h : J → J ′, we have
〈I, J ′〉 ∈ M.

Definition 1.3. [Closure under Union] [20] Let M =
(S,T, Σst) be a schema mapping from the source S to
the target T. We sayM is closed under union if 〈∅, ∅〉 ∈
M and for all 〈I, J〉 ∈ M and 〈I ′, J ′〉 ∈ M (not neces-
sarily disjoint), we have 〈I ∪ I ′, J ∪ J ′〉 ∈ M.

The former is a structural property shared by all mappings
given in terms of s-t tgds, but not by all second-order tgds.
The latter is a property that only LAV mappings possess; not
even full mappings are closed under union. From a more
practical point of view, the problem of answering queries
using views which has important applications in data in-
tegration, has been extensively studied in the literature for
LAV mappings [1] and efficient rewritings are known for
LAV [19]. Our results imply that these results can also be
applied to the composition of any number of LAV mappings.

A number of notions of mapping inverse have been pro-
posed in the literature [4, 7, 10, 11], including schema re-
covery and maximum recovery [4]. Arenas, Pérez, and
Riveros showed that general s-t tgds mappings always have a
recovery. Hence, this also holds for LAV mappings. To com-
plete the picture on this property, it is necessary to address
the following question: given mappings Mst and Mts, is
Mts a recovery of Mst? The problem is known to be un-
decidable for general s-t tgds. In contrast, in this paper we
show that the problem is tractable for LAV mappings, and
give a polynomial-time algorithm to solve it.

Contributions. The main contributions of this work are
the following:

• We show that the composition of LAV mappings is not
only first-order, but can always be expressed as a set of
LAV tgds. This adds to a number of properties recently
studied for LAV mappings [20].

• We present a novel composition algorithm for compos-
ing LAV schema mappings. In contrast to algorithms
for composing s-t tgds or more general mappings [9,
18, 5], our proposed algorithm avoids skolemization
and the subsequent problem of de-skolemization (the
elimination of Skolem functions). The algorithm di-
rectly produces a finite set of LAV tgds as output.

• We address the following question: given two LAV
mappings Mst and Mts, is Mts a recovery of Mst?
We show that the problem is tractable and give a poly-
nomial-time algorithm to solve it. This is in contrast
to the case of general s-t tgds, where the problem is
undecidable.

The rest of the paper is organized as follows. In the next
section, we review related work. In Section 3, we introduce
the notation and terminology used in the paper. In Section 4,
we present the algorithm to compose LAV schema mappings.
In Section 5, we present our results on recovery checking
for LAV mappings. Finally, in Section 6, we give some
concluding remarks and directions for future work.

2. Related Work

Mapping composition is one of the fundamental opera-
tions in model management [6]. In this work, we use the
semantics for mapping composition that was introduced by
Fagin et al. [9], which is independent of the class of queries
used. Other semantics have also been proposed. Madhavan
and Halevy [16] defined the composition operator relative to
a class of queries. Yu and Popa [21] introduced a semantics
especially tailored for mapping adaptation, where the notion
of equivalence in the composition problem formulation is
defined in terms of universal solutions [8].

Despite the importance of LAV mappings in data integra-
tion systems [15], there were to date no algorithms guaran-
teed to always produce an s-t tgd from the composition of
LAV tgds. Our results are the first to show that LAV tgds are

210

actually closed under mapping composition. It is known that
s-t tgds are not closed under composition [9]. Furthermore,
Nash et al. showed that checking the closure properties for
given first-order mappings is in general undecidable [18].

Fagin et al.’s composition algorithm [9] takes as input a
set of second-order tgds, and produces another second-order
tgd that expresses the composition. In general, transform-
ing an existential second-order formula into an equivalent
first-order formula may not be possible. The second order
tgds may contain Skolem function symbols, and the process
of removing these symbols has been studied in the logic
literature under the names of reverse skolemization, un-
skolemization and de-skolemization [13]. Even for two
LAV mappings, the Fagin et al. [9] composition algorithm
may produce a mapping expression that uses second-order
constructs (and is not expressed as a LAV or even an s-t tgd).

Recently Nash et al. [18] introduced the first de-skolem-
ization algorithm specifically tailored to work on mapping
composition settings. The algorithm is sound but not com-
plete, and the authors show how to check in polynomial time
whether it will succeed for a given input. Notably, the al-
gorithm is not guaranteed to succeed even for second-order
tgds produced by composing LAV mappings. In particular,
the algorithm fails to de-skolemize the second-order tgd Σ13

in Example 1.1 due to the presence of nested Skolem terms.

Bernstein, Green, Melnik and Nash [5] presented an ef-
ficient algorithm for composing schema mappings that is
based on view unfolding. The algorithm relies on the notion
of normalization of the dependencies used in the mappings.
A normalized dependency is a dependency that has exactly
one relation symbol on either the left or the right-hand side of
the implication. The output of Bernstein et al.’s algorithm is
not guaranteed to replace all the relation symbols of the mid-
dle schema of the composition setting. That is, in some cases,
the algorithm returns a formula that contains some relation
symbols from that middle schema and it is thus not strictly a
composition formula in the sense of Fagin et al. [9]. Further-
more, the algorithm relies on Nash et al.’s de-skolemization
algorithm to remove Skolem terms introduced in the normal-
ization step. In contrast, the algorithm that we present in this
paper always removes all symbols from the middle schema
and it avoids the problem of de-skolemization.

Likewise for mappings given in terms of s-t tgds, verifying
whether a given pair of source and target instances satisfies
a LAV tgd can be done in polynomial time for all fixed map-
pings and instances [8]. This is in contrast to second-order
tgds where this problem is NP-complete [9]. In practice, this
means that in the case of second-order tgds, if a source and
a target act in an autonomous way (making updates inde-
pendently), then an expensive check may have to be done to
verify whether their updated instances satisfy a mapping.

Another fundamental operation used in model manage-
ment is the inverse operator [6]. The precise semantics of
the inverse of a schema mapping is based on the idea that a
mapping composed with its inverse yields the identity map-
ping [7]. This definition of inverse proved to be quite strict
and as a result, several relaxations have been studied [10, 4,

11, 3]. Of these, we will consider the notion of mapping
recovery, for which it is known that all LAV mappings have
a recovery [4]. Arenas et al. showed that the problem of
deciding whether a mapping is a recovery of another one is
undecidable for s-t tgds [4]. In the case of mappings given by
full s-t tgds, the complexity of recovery checking is coNP-
complete. In contrast, in this paper we show that this problem
is tractable for LAV mappings, and give a polynomial-time
algorithm to solve it.

Fagin et al. also studied extensions of invertibility to cope
with the presence of nulls [11]. These extensions apply
to mappings that are closed under target homomorphisms,
which provide another motivation for understanding when
the composition of s-t tgds can be expressed as a set of s-t
tgds or LAV tgds.

3. Preliminaries

A schema is a non-empty finite set R = (R1, . . . , Rk) of
relation symbols where each Ri has a fixed arity. We define
the notion of instance I over a schema R in the normal way
for relational schemas, that is, as the union of relation in-
stances over Ri, where Ri ∈ R. Unless otherwise noted, we
assume that all values in an instance come from a set of con-
stant values. Let S = (S1, . . . , Sn) and T = (T1, . . . , Tm)
be two disjoint schemas. Unless otherwise stated, we follow
the convention of referring to S as the source schema and
to T as the target schema. The notation (S,T) denotes the
schema (S1, . . . , Sn, T1, . . . , Tm). When necessary, we dis-
tinguish between instances over S and instances over T by
adding the prefix source and target , respectively.

We use the standard notion of satisfaction of a formula in
first-order logic. If K is an instance and ϕ is a formula, we
write K |= ϕ to denote that K satisfies ϕ. The same notion
is applied over a set of formulas Σ.

A schema mapping is a tripleM = (S,T, Σst), where S
and T are schemas with no relation symbols in common and
Σst is a set of logical formulas over (S,T) [9]. An instance
of M is an instance 〈I, J〉 over (S,T) that satisfies every
formula in Σst. We use the notation Inst(M) to denote the
set of all instances 〈I, J〉 of M. If 〈I, J〉 ∈ Inst(M), then
we call J a solution of I under M.

A source-to-target tuple-generating dependency (s-t tgd)
is a formula of the form ∀z,x(φ(z,x) → ∃yψ(x,y)), where
z, x, and y are disjoint vectors of variables; φ(z,x) is a con-
junction of atomic formulas over the source schema S; and
ψ(x,y) is a conjunction of atomic formulas over the target
schema T. We require that all variables of z ∪ x are used in
φ and all variables of x ∪ y are used in ψ. A full source-
to-target tuple-generating dependency (full s-t tgd) is an
s-t tgd of the form ∀z,x(φ(z,x) → ψ(x)), where φ(z,x) is
a conjunction of atomic formulas over the source schema S,
and ψ(x) is a conjunction of atomic formulas over the target
schema T.

A second-order tuple-generating dependency (second-
order tgd) is an existential second-order formula of the form

211

∃f((∀x1(φ1 → ψ1)) ∧ · · · ∧ (∀xn(φn → ψn))) where (1)
each member of f is a function symbol; (2) each φi is a
conjunction of (a) atomic formulas over the source schema S
and (b) equalities of the form t = t′ where t and t′ are terms
based on xi and f; (3) each ψi is a conjunction of atomic
formulas over the target schema T; and (4) each variable in
xi appears in some atom of φi.

Given a schema mapping M and a source instance I over
S, the problem of finding a solution J over the target schema
T is known as the data exchange problem. For any mapping
M, there may be many solutions for a given source instance
I . Let R be a schema, and J and J ′ two instances over
R. A function h is a homomorphism from J to J ′ if (1)
h(c) = c for every constant c, and (2) for every relation
symbol of R in R, and every tuple R(a1, . . . , ak) ∈ J ,
we have that R(h(a1), . . . , h(ak)) ∈ J ′.1 Given M and a
source instance I , a universal solution of I under M is a
solution U of I under M such that for every solution J of I
underM, there exists a homomorphism h : U → J with the
property that h(v) = v for every source value occurring in I .
If Σ consists of s-t tgds, then chasing I with Σ produces a
universal solution U of I underM. Target values introduced
at any time during a chase step that do not appear in the
source instance (i.e., that are not constants from the source
instance) are called instance labeled nulls (or instance nulls,
for short) [8]. Thus, values in a target instance come from
the union of a set of constant values and a set of (disjoint)
instance labeled nulls.

Next, we recall the concept of mapping composition [9].
Given two schema mappings M12 = (S1,S2, Σ12) and
M23 = (S2,S3, Σ23), the composition M12 ◦ M23 is a
schema mapping M13 = (S1,S3, Σ13) such that for every
instance I over S1 and every instance K over S3, we have
〈I,K〉 |= Σ13 if and only if there is an instance J over S2

such that 〈I, J〉 |= Σ12 and 〈J,K〉 |= Σ23. When mappings
are understood from the context, we shall often use Σ12◦Σ23

to denote the composition formula of M12 ◦M23.

A tableau over a schema R is an instance of R where
a tuple of the tableau may contain values drawn from the
set of constants or from a (disjoint) set of variables [2]. An
embedding of a tableau D into instance I is a valuation υ
for the variables occurring in D such that υ(D) ⊆ I . In our
work, we will use the notion of tableau as an embodiment
of the information captured by a formula over R [17]. Oth-
ers have described how to create a tableau for a given query
[2]. Here we show how to do this for a formula of the form
∀x∃yφ(x,y). A formula tableau is constructed by creat-
ing a tableau tuple for each single atomic relational formula
appearing in φ(x,y). For each universally quantified vari-
able, we create a tableau universal variable in the tableau,
and for each existential variable in the formula, we create a
tableau existential variable. We shall often refer to tableau
existential variables as tableau existential nulls, or simply,
tableau nulls. Thus an embedding of a formula tableau tuple

1For notational convenience we say that the homomorphism
is from J to J ′, but as a function the homomorphism is
from the variables and constants of J to the variables and
constants of J ′.

into an instance tuple maps (a) tableau universal variables to
constants values in the instance tuple, and (b) tableau exis-
tential variables to either constant values or instance labeled
nulls in the instance. We use lowercase letters (e.g. x and y)
and upper case letters (e.g. Z, U , V and W), possibly with
subscripts, to indicate tableau universal variables and tableau
existential variables, respectively.

4. Composing LAV Mappings

In this section, we present the main result of the paper:
an algorithm that given two LAV mappings, produces a LAV
mapping that expresses their composition. We first define the
the notion of LAV tgds and mappings. Second, we present
the intuition behind our algorithm. Finally, we present the
algorithm and its correctness proof.

4.1 Local-As-View Mappings

LAV mappings were initially introduced by Levy, Rajara-
man, and Ordille [15] to overcome some limitations in the
use of traditional views for data integration. The idea of a
LAV mapping is that each relation symbol of the source (the
local schema in the terminology of the day [14]) is defined
with respect to the target schema (the global schema).

The following is the definition of LAV tgds that we use in
this paper.

Definition 4.1. [LAV tgd] A LAV source-to-target tu-
ple generating dependency (LAV tgd) is an s-t tgd of
the form

∀z∀x S(z,x) → ∃y ψT (x,y)
where S(z,x) is an atomic relational formula over a
source S; z, x and y are mutually disjoint vectors of
variables; and ψT (x,y) is a conjunction of atomic for-
mulas over a target schema T. Every variable in z and
x appears exactly once in S(z,x).

The definition simply states that a LAV tgd is a source-to-
target tgd such that (1) it has exactly one literal on the left-
hand side; and (2) every variable of S(z,x) must be distinct.
This latter condition is a common underlying assumption in
LAV systems such as the Information Manifold [15], where
the goal is to explain a relation symbol of the source using
a formula on the target (global) schema. Thus, the source
relation symbol is denoted with one literal that has a (distinct)
variable for each attribute of the source relation (and hence,
in SQL terminology, there are no selection conditions on the
source relation). Interestingly, some theoretical studies have
allowed repeated variables in the left-hand side of a LAV
tgd [8, 20].

Our definition of LAV is slightly more general than the
one given by Lenzerini [14]. Lenzerini’s definition of sound
LAV views restricts z to be empty; in other words, all source
variables must appear in the target formula [14]. We relax
this last condition as is common in practical cases of data
exchange.

212

We now define a LAV mapping as a source, a target, and a
set of LAV tgds.

Definition 4.2. [LAV Schema Mapping] A LAV
schema mapping is a mapping M = (S,T, Σ), where
S and T are schemas with no relation symbols in com-
mon and Σ is a finite set of LAV tgds over (S,T).

We will show shortly that LAV mappings are closed under
composition. The two conditions defining LAV mappings are
tight, in the sense that minimal relaxations of their conditions
lead to mappings that are not closed under composition. We
can show the tightness of the class by resorting to existing
examples from the literature whose composition has been
shown to be inexpressible using (first-order) s-t tgds.

Example 4.3. For the relaxation of condition (1), con-
sider the following two mappings in which there are no
repeated variables on the left-hand side of the dependen-
cies, but one of the dependencies has two literals on the
left-hand side.

Σ12 : { ∀x (A(x) → ∃y F (x, y)),
∀u (B(u) → ∃v G(u, v)) }

Σ23 : { ∀x∀u∀y∀v (F (x, y) ∧G(u, v)
→ T (x, y, u, v)) }

Composing Σ12 with Σ23 gives the following second-
order result:

φ : {∃f∃g (∀x∀u
A(x) ∧B(u) → T (x, f(x), u, g(u)))}

A first guess for re-writing φ as an equivalent s-t tgd
might involve replacing Skolem functions f and g with
existentially quantified variables y and v, respectively,
as shown below:

φ′ : ∀x∀u (A(x) ∧B(u) → ∃y∃v T (x, y, u, v))

However, φ′ does not correctly capture the composi-
tion result since it introduces unwanted relationships:
both existential variables y and v depend on both uni-
versally quantified variables x and u, instead of having
y depend only on x and v depend on only u, as origi-
nally captured by the second-order result φ. In fact, it
has been shown (see [18] Section 6, page 34) that the
composition of the above mappings cannot be expressed
using s-t tgds. However, they can be expressed using the
following equivalent set of first-order sentences θ:

∀x A(x) → ∃y∀u (B(u) → T (x, y, u, v))
∀u B(u) → ∃v∀x (A(x) → T (x, y, u, v))

Example 4.4. For the relaxation of condition (2), con-
sider the following mappings where all dependencies have
exactly one literal on the left-hand side, but one of the
dependencies has repeated variables.

Σ12 : {∀e(Emp(e) → ∃mMgr1(e,m))}

Σ23 : {∀e∀m(Mgr1(e,m) → Mgr(e,m)),
∀e(Mgr1(e, e) → SelfMgr(e))}

Tableau D

S
——–
x1 x2

Tableau E∗

T1

——–
x1 Y

T2

——–
Y x2

Tableau F ∗

R
——–
x1 W
x2 V
x1 U
Y U

Figure 1: Illustration of tableaux

Fagin et al. showed that the composition of these map-
pings is a second-order tgd with equalities (see [9], Sec-
tion 5, page 1013 and pages 1016/17), that cannot be
equivalently defined by any set of s-t tgds.

Σ13 : {∃f(∀e(Emp(e) → Mgr(e, f(e)))
∧∀e(Emp(e) ∧ e = f(e) → SelfMgr(e)))}

4.2 Intuition of the Algorithm

We now present a simple example that illustrates the in-
tuition behind our algorithm for composing LAV mappings.
Consider the schemas S, T and R, and the schema map-
pings M12 = (S,T,Σ12) and M23 = (T,R, Σ23) where
Σ12 contains a single LAV dependency α, and Σ23 contains
three LAV dependencies β1, β2, and β3.

α : ∀x1∀x2 (S(x1, x2) → ∃y T1(x1, y) ∧ T2(y, x2))

β1 : ∀ t1∀ t2 (T1(t1, t2) → ∃w R(t1, w))
β2 : ∀ t3∀ t4 (T2(t3, t4) → ∃v R(t4, v))
β3 : ∀ t5∀ t6 (T1(t5, t6) → ∃u R(t5, u) ∧R(t6, u))

Our algorithm constructs tableaux from the formulas, and
relies on chasing these tableaux with the dependencies of
Σ12 and Σ23. The goal is to create a composition result that
effectively removes terms from the middle schema (that is,
in this example it means removing references to relational
symbols T1 and T2 in T).

We consider each dependency of Σ12 in turn. In our ex-
ample, there is only one such dependency α. We take the
left-hand-side of α and create a formula tableau D con-
taining the single tuple S(x1, x2) as illustrated in Figure 1,
where universally quantified variables x1 and x2 are defined
as tableau universal variables in the tableau. We interpret
tableau D as defining a representative source instance over
schema S.

We now chase tableau D by applying α, and create a
tableau E∗. In this step, the chase creates two new tableau
tuples T1(x1, Y) and T2(Y, x2), where the existential vari-
able y in α is assigned a fresh tableau existential variable Y
(as shown in Figure 1).

We proceed by chasing tableau E∗ with all the dependen-
cies in Σ23 until the chase terminates. In this example, we
create a tableau F∗ (Figure 1). At each chase step, a rule

213

βi of Σ23 is fired if there is a row tuple in E∗ that satisfies
βi’s left-hand-side. Take dependency β1: in this chase step,
the application of β1 generates the tuple R(x1,W) in F∗,
where the tableau universal variable x1 comes from the tuple
T1(x1, Y) in E∗ and, where the existential variable w in β1

is assigned a fresh tableau existential variable W . Observe
that any tableau universal variable appearing now in tableau
F∗ comes originally from tableau D.

Consider dependency β2. The application of β2 to the
tableau tuple T2(Y, x2) generates the row R(x2, V) in F∗,
where existential variable v in β2 is assigned a fresh tableau
existential variable V .

Last, consider dependency β3. The application of β3 gen-
erates two rows R(x1, U) and R(Y, U) in F∗, where both
tableau universal variable x1 and tableau existential variable
Y come from row T1(x1, Y) in E∗ and, where existential
variable u in β3 is assigned a fresh tableau existential vari-
able U . Note that this chase step creates two tuples with
the same tableau existential null (this effectively captures
the role of existentially-quantified variable u representing a
join in the right-hand-side of β3). Again here, observe that
tableau universal variable x1 in tableau F∗ comes originally
from tableau D; furthermore, observe that tableau existential
variable Y was created while chasing tableau D with α.

Now consider taking the two tableaux D and F∗ of Figure
1. We will use these tableaux to create a LAV tgd δ repre-
senting the composition. We take the only tuple of tableau
D (remember this is exactly the case since α is a LAV tgd),
and we use it to create the left-hand side of δ. The part of
δ constructed so far reads as follows: “∀x1∀x2 S(x1, x2)”.
We do so by universally quantifying all variables of D.

Then, we construct the right-hand side of δ. First, we take
tableau F∗, we identify the tableau existential variables, and
we create a quantifier prefix that consists of one existentially-
quantified variable for each tableau existential variable. Note
that in the figure, we have used upper case letters for tableau
existential variables; when we create existential variables for
them, we shall instead use lower case letters. Second, we
create a conjunction of atomic relational formulas, where
each atomic formula corresponds to a tuple in F∗. As result,
we obtain the following formula for the right-hand side of δ:
∃w∃v∃u∃y (R(x1, w) ∧R(x2, v) ∧R(x1, u) ∧R(y, u)).

Putting it all together, the LAV tgd δ that expresses the
composition of Σ12 and Σ23 is the following:

δ : ∀x1∀x2 (S(x1, x2) →
∃w∃v∃u∃y (R(x1, w) ∧R(x2, v) ∧R(x1, u) ∧R(y, u)))

4.3 Algorithm and Correctness Proof

We now present the algorithm to compose LAV schema
mappings, which we call ComposeLAV (M12,M23). Al-
gorithm 1 takes as input two LAV schema mappings M12

and M23. It constructs the output LAV mapping M13 =
(S1,S3, Σ13) by considering each dependency α of Σ12 one
at a time (the loop of Lines 2-13). For each rule α it con-
structs a tableau D from α’s left-hand side (Line 3), and

chases D with Σ12 to obtain E∗ (Line 4). Then, another
tableau F∗ is obtained by chasing E∗ with Σ23 (Line 5). In
Lines 7 to 11, the tableaux D and F∗ are used to create a
LAV tgd that is added to the output of the algorithm. The
algorithm runs in polynomial time.

Algorithm 1 ComposeLAV (M12,M23)
Input: LAV schema mappings M12 = (S1,S2, Σ12)

and M23 = (S2,S3, Σ23)
Output: LAV schema mapping M13 = (S1,S3, Σ13),

which is the composition of M12 and M23

1: Initialize Σ13 to be the empty set
2: for each rule α in Σ12 do
3: Let D be the tableau of the left hand side of α
4: Let E∗ be the result of chasing D with Σ12

5: Let F∗ be the result of chasing E∗ with Σ23

6: if F∗ is not empty then
7: Create a literal R(x) from the (only) tuple in D
8: Create a conjunction of literals ψ(y) from the tuples

in tableau F∗
9: Let w1, . . . , wm be the variables of y that are

tableau existential variables of F∗
10: Let δ be the LAV tgd R(x) → ∃w1 . . . ∃wmψ(y)
11: Add δ to Σ13

12: end if
13: end for
14: Let M13 = (S1,S3,Σ13)
15: return M13

Next, we show the correctness of the composition algo-
rithm. That is, we show that given two schema mappings
specified by LAV tgds, the algorithm returns a set of LAV
tgds that is indeed their composition. The correctness proof
uses properties of the chase procedure with s-t tgds [8] and
homomorphism techniques. Note that if our definition of
LAV were to allow repeated variables, our algorithm would
have to generate equalities as shown in Example 4.4. Be-
cause we assume LAV without repeated variables, we do not
need to do this. This is key to the correctness proof of our
algorithm.

Theorem 4.5. Let M12 = (S1,S2, Σ12) and
M23 = (S2,S3, Σ23), where both Σ12 and Σ23

are sets of LAV tgds. Then, the algorithm
ComposeLAV(M12,M23) returns in polynomial time
a schema mapping M13 = (S1,S3,Σ13) such that Σ13

is also a set of LAV tgds and M13 = M12 ◦M23.

Proof. (Sketch) To show that the schema mappingM13

generated by the algorithm is the composition M12 ◦M23,
we need to show that for every instance I over S1 and for
every instance K over S3, we have that 〈I,K〉 |= Σ13 if and
only if there is an instance J over S2 such that 〈I, J〉 |= Σ12

and 〈J,K〉 |= Σ23.

(⇒) We will illustrate this direction of the proof with the
diagram of Figure 2. Assume that there are instances I and
K of S1 and S3, respectively, such that 〈I, K〉 |= Σ13. We
need to show that there exists an instance J over S2 such that
〈I, J〉 |= Σ12 and 〈J,K〉 |= Σ23.

214

Figure 2: An illustration of Theorem 4.5

We construct J as follows. Let K∗ be the result of chasing
I with Σ13 (Arrow 1 in the figure). Since K∗ is a universal
solution for I in Σ13, and instance K (from our hypothesis)
is a solution for I in Σ13, there must exist a homomorphism
h from K∗ to K. Next, let J∗ be the result of chasing I with
Σ12 (Arrow 2).

In the following steps, we shall construct an instance J over
source S2, and show that 〈I, J〉 |= Σ12 and 〈J,K〉 |= Σ23.
Two pieces of information are fundamental at this point: (1)
homomorphism h : K∗ → K, and (2) the syntactic LAV
restrictions on the input mappings. We shall use both of
them to derive a homomorphism h′ that, when applied to
instance J∗, unveils the desired “middle” instance J .

The intuition behind why we can derive a homomorphism
h′ to construct J is as follows. To be a solution for Σ12,
J must be a homomorphic image of J∗; as such, it should
contain constant values that are already present in J∗, or
constant values which instantiate (some) nulls in J∗. In
the first case, those constant values should be source values
from instance I that were passed to J∗ at some point during
the chase procedure due to some rule α of Σ12. Intuitively,
a subset of those constant values should also be present in
instance K∗. In the second case, constant values instantiating
nulls should come directly from instance K (and, thus from
homomorphism h) if we want to later show that 〈J,K〉 |=
Σ23. Choosing exactly which labeled nulls in J∗ map to
constant values of K is the crux of the proof.

Because we do not know how to relate instances J∗ and
K∗ at this point, the construction of homomorphism h′ ex-
clusively depends on the derivation chain of chase steps 4

and 5 (of Figure 2), and on the embeddings of the tableaux
(generated by the algorithm) into instances I , J∗ and K∗.
As mentioned earlier, an important piece in this analysis is
the fact that the dependencies are LAV. Consider a chase step
with a rule α. Given a tuple t′ in J∗, derived from an appli-
cation of α, we know that since α is in LAV, there is exactly
one instance tuple t′′ in I such that tuple t′ is the result of
chasing tuple t′′ with α (Arrow 3). For each rule α of Σ12:
let D be the tableau of the left-hand-side of α; following the
algorithm, let E∗ be the result of chasing D with Σ12 (arrow
4); let F∗ be the result of chasing E∗ with Σ23 (Arrow 5). By
definition of the chase procedure, there are two homomor-
phisms g1 : D ∪E∗ → I ∪ J∗ and g2 : D ∪ F∗ → I ∪K∗,
such that specific tableau tuples (i.e., s′′, s′f and sf in the
figure) can be transformed into instance tuples (i.e., t′′, t′ and
t, respectively). Note that s′f (respectively sf) is one of the
tuples in E∗ (respectively F∗).

Using homomorphisms h, g1 and g2, we can construct a
homomorphism h′ such that h′(J∗) = J . We define h′ by
analyzing the role played by each tableau variable in E∗.
Careful consideration should be taken when dealing with
tableau existential variables as some of them embody ex-
changed existentials in Σ23. In essence, the homomorphic
instance-level images of those (exchanged) tableau existen-
tial variables (i.e., instance nulls in J∗) are the ones that are
mapped to constant values in K.

After constructing an instance J over S2, we have 〈I, J〉 |=
Σ12 because J∗ is a solution and J is a homomorphic image
of J . The last step involves showing that 〈J,K〉 |= Σ23.
For this, we must show that for any rule β of Σ23, a tuple

215

tj in J satisfying β’s left-hand-side produces one or more
tuples tk1 , tk2 , ..., tkn in instance K (this would mean that K
satisfies β’s right-hand-side). Again here, by reasoning on
the derivation chain of chase steps 1 and 6, using the syntactic
LAV restrictions on the setting and using homomorphisms
h, h′, g1 and g2, we show that there exists a homomorphism
f from D∪F∗ to I ∪K. Using homomorphism f , we know
that tuple tj in J produces a tuple tk in K. That was to be
shown.

(⇐) As for the converse, it is not difficult to show that
if 〈I, K〉 ∈ Inst(M12) ◦ Inst(M23), then 〈I, K〉 |= Σ13.

5. Recovery Checking

We now turn our attention to another important property
of LAV mappings. This property is related to the recovery
of a mapping, which was defined recently by Arenas, Pérez,
and Riveros [4]. Informally, given a schema mapping Mst,
from the source to the target, a recovery operator computes a
reverse schema mapping Mts from the target to the source,
such that for any instance I of S, it recovers all information
in I . This was formalized in [4] as follows.

Definition 5.1. [Schema Recovery] [4] Let Mst =
(S,T, Σst) and Mts = (T,S,Σts) be two schema map-
pings. Then, Mts is a recovery of Mst iff for every
instance I, we have that 〈I, I〉 ∈ Mst ◦Mts.

Arenas, Pérez, and Riveros [4] showed that every mapping
defined as a set of s-t tgds has a recovery (in fact, they
showed this for the stronger notion of maximum recovery).
They also presented the following decision problem: given
mappings M1 and M2, check whether M2 is a recovery of
M1. In the following, we will call this problem recovery
checking. The main result of this section is to show a sharp
contrast in the complexity of this problem for LAV mappings,
as opposed to mappings expressed with general s-t tgds or
even full tgds. In particular, we show that the problem can
be solved in polynomial time for LAV mappings, whereas
it is undecidable for general s-t tgds and coNP-complete for
full tgds [4].

The problem of recovery checking has an important practi-
cal application: checking update preservation in, for exam-
ple, systems where peers may autonomously develop their
own mappings [12]. Consider a scenario where we have ma-
terialized versions of the source and the target. That is, we
have mappingsMst = (S,T, Σst) andMts = (T,S, Σts),
a source instance I , and a target instance J . Now, suppose
that we update instance I to produce another instance I ′. A
natural question is whether it is possible to update J in order
to produce another instance J ′ in such a way that 〈I ′, J ′〉
satisfies the constraints of the mappings. More formally,
we expect that 〈I ′, J ′〉 ∈ Mst and 〈J ′, I ′〉 ∈ Mts. This
means that we must check whether for every I ′, 〈I ′, I ′〉 ∈
Mst ◦Mts, which is precisely the recovery checking prob-
lem. In the following example, we illustrate the application
of the recovery checking problem to update preservation.

Example 5.2. Consider the scenario of an airline com-
pany that maintains a historical database with flight seg-
ments (point of origin and destination), and it has a
Web application where it exposes non-stop and direct
flights. Suppose that there is a mapping stating that ev-
ery flight on the Web application has a corresponding
flight segment on the database with the same airport of
origin; and that all flight segments from the historical
database have in the Web application a corresponding
non-stop flight from the destination to the point of ori-
gin (thus allowing passengers to return to their point of
origin using the same connection).

To formalize this, let S be the schema of the Web ap-
plication, and T be the historical database. Let Mst =
(S,T,Σst) and Mts = (T,S,Σts) be two schema map-
pings where Σst and Σts are as follows:

Σst : ∀x∀y F light(x, y) → ∃c Segment(x, c)

Σts : ∀o∀d Segment(o, d) → Flight(d, o)

It follows from the results on recovery checking that
we will present shortly that the recovery condition is
not satisfied for these mappings. That is, there is some
instance I such that 〈I, I〉 6|= Mst ◦ Mts. This im-
plies that there are cases where an update to the Web
application may be impossible to be translated to the
historical database. In particular, consider a histori-
cal database that has information about two flight seg-
ments from Toronto to Munich, and viceversa; and a
Web application has non-stop flights from Toronto to
Munich and from Munich to Toronto. That is, I =
{Flight(Toronto, Munich), F light(Munich, Toronto)},
and J = {Segment(Toronto,Munich),
Segment(Munich, Toronto)}. Now, suppose that we
update the Web application and add a new non-stop
flight from London to Munich. Let I ′ be the updated in-
stance, that is: I ′ = {Flight(Toronto,Munich),
F light(Munich, Toronto), F light(London,Munich)}.
A natural question is: can we modify the historical data-
base J in such a way that it remains consistent with
respect to the updated Web application I ′ and the map-
pings? It is easy to see that 〈I ′, I ′〉 6|= Mst ◦Mts, which
answers the question to the negative.

Consider now what happens if we have a different
mapping which states that each flight segment in the
historical database should have a corresponding flight in
the Web application with the same point of origin. For-
mally, we have the following mappingsM2

st = (S,T, Σ2
st)

and M2
ts = (T,S,Σ2

ts).

Σ2
st : ∀x∀y F light(x, y) → ∃c Segment(x, c)

Σ2
ts : ∀o∀d Segment(o, d) → ∃zF light(o, z)

In this case, we can use our results on recovery check-
ing to show that any update to the Web application can
be translated to the historical database. In particular,
from our results it follows that M2

st and M2
ts satisfy

the recovery condition. In terms of our example, this
means the following. Let I be a Web application, and J
be a historical database. Suppose that we update I and

216

obtain a new instance I ′. Since the recovery checking
condition is satisfied, we have that 〈I ′, I ′〉 |= M2

st◦M2
ts.

This means that we are guaranteed to have some se-
quence of updates to the historical database that pro-
duces an updated database instance J ′ that is consis-
tent with the updated Web application I ′ and the map-
pings.

5.1 Recovery Checking for LAV Mappings

Before presenting the algorithm, let us give some intuition
on how our result on composition can be used to solve the
recovery checking problem for LAV mappings. Consider the
following dependency α of a composition formula Σss:

Σss : ∀x∀y S(x, y) → ∃z S(x, z)

Now, let A and B be the tableaux of the left and right
hand sides of α, respectively. That is, A = {S(x, y)} and
B = {S(x, Z)}. It is easy to see that A is contained in B,
that is, there is a homomorphism from B to A. Since all the
instances of A will be contained in the instances of B, we can
conclude that the mapping satisfies the recovery condition.
Notice that it would have not been possible to make this
argument if the composition was not expressible as tgds,
since we are relying on conjunctive query containment.

The above intuition leads to the following algorithm. First,
given Mst = (S,T, Σst) and Mts = (T,S, Σts), compute
the composition Σss of Σst and Σts. Now, in order to check
whether Mts is a recovery of Mst, it suffices to check that
for each dependency α of Σss, there is a homomorphism
from the right-hand side of α to the left-hand side of α. We
give Algorithm 2 and prove its correctness in Theorem 5.3.

Algorithm 2 CheckRecovery(Mst,Mts)
Input: LAV schema mappings Mst = (S,T, Σst)

and Mts = (T,S, Σts)
Output: True/False accordingly
1: Compute Σss = Σst ◦ Σts

2: for each tgd α : φ(x) → ∃y ψ(x,y) of Σss do
3: if there is no homomorphism from ψ(x,y) to φ(x)

then
4: return false
5: end if
6: end for
7: return true

Theorem 5.3. Given LAV mappings Mst and Mts, the
algorithm CheckRecovery(Mst,Mts) returns true iff
Mts is a recovery of Mst.

Proof. (⇐) Assume that the algorithmCheckRecovery-
(Mst,Mts) returns true. Let α be a dependency of Σss of
the form φ(x) → ∃y.ψ(x,y). Let I be a source instance.
We must show 〈I, I〉 |= Σss. Assume that there is a ho-
momorphism g from φ(x) to I such that φ(g(x)) is in I .
Since CheckRecovery(Mst,Mts) returns true, there is a
homomorphism h from ψ(x,y) to φ(x). Let g′ = g ◦h. We
must prove that ψ(g′(x,y)) is in I . To do so, let R(w) be a

literal of ψ(x,y). Since h is a homomorphism from ψ(x,y)
to φ(x), we have that R(h(w)) is a literal of φ(x). Since g is
a homomorphism from φ(x) to I , we have that R(g(h(w))
is in I . Thus, R(g′(w)) is in I , which was to be shown.

(⇒) Assume that Mts is a schema recovery of Mst.
Assume towards a contradiction that the algorithm Check-
Recovery(Mst,Mts) returns false. Thus, there is some
dependency of Σss of the form φ(x) → ∃y.ψ(x,y) such
that there is no homomorphism from ψ(x,y) to φ(x). Let
I be an instance that consists exclusively of the tableau of
φ(x). Since there is no homomorphism from ψ(x,y) to
φ(x), we conclude that I 6|= ψ(x,y). Thus, 〈I, I〉 6|= Σss;
contradiction.

Two important observations are in order regarding the al-
gorithm. First, it relies on the fact that Σss is a set of tgds
in order to check conjunctive query containment. This is
the case when the input mappings are in LAV, as a result
of our Theorem 4.5 of Section 4. Second, although in gen-
eral conjunctive query containment is NP-complete, it is in
polynomial-time for LAV mappings in particular. This fol-
lows from the following property.

Property 5.4. Let α : φ(x) → ∃y ψ(x,y) be a LAV tgd.
Then, the containment of φ(x) in ψ(x,y) can be checked
in polynomial time.

Proof. Since α is a LAV formula, it has exactly one
literal in its left-hand side. Furthermore, by the definition of
LAV, there are no repeated variables in φ. Let A and B be
the tableaux of the left-hand-side and right-hand-side of α,
respectively. Let R(x) be the only tuple in tableau A. Let
T (w) be one of the tuples in tableau B. If T 6= R, there is
no homomorphism from ψ(x,y) to φ(x). Now, assume that
all the literals in the right-hand side of α are on the relation
symbol R. Let f be a function constructed as follows. For
every literal R(w) in ψ(x,y), let f map the i-th variable of
w to the i-th variable of x. Now, it can be checked in linear
time whether f is a homomorphism from ψ(x,y) to φ(x). It
is easy to see that if f is not a homomorphism from ψ(x,y)
to φ(x), there is no such other homomorphism from ψ(x,y)
to φ(x)

From the above property, Theorem 5.3, and Theorem 4.5,
the class of LAV schema mappings arises as a practical class
where the recovery condition is tractable. This is in sharp
contrast with the general case of mappings given by both s-t
tgds, and also full s-t tgds, as earlier mentioned. Observe
that even though LAV mappings permit incompleteness and
have been shown to be of practical value, their complexity
for the recovery checking problem is even less than for full
tgds.

Corollary 5.5. Let Mst = (S,T,Σst) and
Mts = (T,S, Σts) be two LAV schema mappings. Then,
it can be checked in polynomial time whether Mts is a
recovery of Mst.

217

6. Conclusions

In this paper, we showed that the composition of LAV
mappings is closed under composition, and presented an
algorithm for efficiently computing the composition. An
important application of our composition result is that it helps
to understand if a given LAV mapping Mst from schema S
to schema T , and a LAV mapping Mts from schema T
back to S, the composition of Mst and Mts is able to
recover the information in any instance of S. Arenas et
al. formalized this notion and showed that general s-t tgds
mappings always have a recovery. Hence, a LAV mapping
always has a recovery. However, the problem of testing
whether a given Mts is a recovery of Mst is known to be
undecidable for general s-t tgds. In contrast, in this paper we
show the tractability of the problem for LAV mappings, and
give a polynomial-time algorithm to solve it.

Recovery checking for LAV is less expensive than for full
tgds (where recovery checking is coNP-complete). This is
despite the fact that LAV mappings permit the modeling
of incompleteness and have proven to have much greater
application in practical data integration systems. The key
to this difference may lie in the fact that LAV mappings are
closed under union [20], while full mappings are not. Our
work exploited this property to construct compositions in a
modular way.

There are many directions of future work. Regarding the
closure properties, it would be interesting to find new classes
of mappings that are closed under composition. In terms of
practical applications, notice that the algorithms presented
in this paper are efficient, simple to implement, and rely
only on the schemas and mappings rather than the instances.
We are thus planning to implement our techniques in a data
integration and exchange system.

7. Acknowledgments

We would like to thank Phil Bernstein, Phokion Kolaitis,
Lucian Popa and Wang-Chiew Tan for discussions with us,
and to the anonymous referees for their comments. Arocena
was partially supported by an NSERC Postgraduate Schol-
arship and the NSERC Business Intelligence Network.

8. References

[1] S. Abiteboul and O. M. Duschka. Complexity of
Answering Queries Using Materialized Views. In
PODS, pages 254–263, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] M. Arenas, J. Pérez, J. Reutter, and C. Riveros.
Inverting Schema Mappings: Bridging the Gap
between Theory and Practice. PVLDB 2(1), pages
1018–1029, 2009.

[4] M. Arenas, J. Pérez, and C. Riveros. The Recovery of
a Schema Mapping: Bringing the Exchanged Data
Back. PODS, pages 13–22, 2008.

[5] P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash.
Implementing Mapping Composition. In VLDB,
pages 55–66, 2006.

[6] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. A
Vision for Management of Complex Models.
SIGMOD Record, 29(4):55–63, Dec. 2000.

[7] R. Fagin. Inverting Schema Mappings. ACM Trans.
Database Syst., 32(4):24, 2007.

[8] R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering. Theor.
Computer Science, 336(1):89–124, 2005.

[9] R. Fagin, P. Kolaitis, L. Popa, and W.-C. Tan.
Composing Schema Mappings: Second-Order
Dependencies to the Rescue. ACM Trans. Database
Syst., 30(4):994–1055, 2005.

[10] R. Fagin, P. Kolaitis, L. Popa, and W.-C. Tan.
Quasi-Inverses of Schema Mappings. ACM Trans.
Database Syst., 33(2):1–52, 2008.

[11] R. Fagin, P. Kolaitis, L. Popa, and W.-C. Tan. Reverse
Data Exchange: Coping with Nulls. PODS, pages
23–32, 2009.

[12] A. Fuxman, P. Kolaitis, R. Miller, and W.-C. Tan. Peer
Data Exchange. ACM Trans. Database Syst.,
31(4):1454–1498, 2006.

[13] D. Gabbay, R. Schmidt, and A. Szalas. Second Order
Quantifier Elimination: Foundations,
Computational Aspects and Applications. College
Publications, 2008.

[14] M. Lenzerini. Data Integration: a Theoretical
Perspective. In PODS, pages 233–246, 2002.

[15] A. Levy, A. Rajaraman, and J. Ordille. Querying
Heterogeneous Information Sources Using Source
Descriptions. In VLDB, pages 251–262, 1996.

[16] J. Madhavan and A. Halevy. Composing Mappings
among Data Sources. In VDLB, pages 572–583, 2003.

[17] A. O. Mendelzon. Database States and Their Tableaux.
ACM Trans. Database Syst., 9(2):264–282, 1984.

[18] A. Nash, P. Bernstein, and S. Melnik. Composition of
Mappings Given by Embedded Dependencies. ACM
Trans. Database Syst., 32(1):4, 2007.

[19] R. Pottinger and A. Halevy. MiniCon: A Scalable
Algorithm for Answering Queries using Views.
VLDB J., 10(2-3):182–198, 2001.

[20] B. ten Cate and P. Kolaitis. Structural
Characterizations of Schema-Mapping Languages. In
ICDT, pages 63–72, 2009.

[21] C. Yu and L. Popa. Semantic Adaptation of Schema
Mappings when Schemas Evolve. VDLB, pages
1006–1017, 2005.

218

