
Processing XPath queries with forward and downward
axes over XML streams

Makoto Onizuka
NTT Cyber Space Laboratories, NTT Corporation

1-1 Hikari-no-oka, Yokosuka, Japan
onizuka.makoto@lab.ntt.co.jp

ABSTRACT
We propose an XPath processing algorithm that efficiently evalu-
ates XPath queries in XP {↓,→,∗,[]} over XML streams. An XPath
query is expressed with axes, which are binary relations between
nodes in XML streams: ’↓’ identifies the child/descendant axes
and ’→’ indicates the following/following-sibling axes. The pro-
posed algorithm evaluates XPath queries within one XML parsing
pass and outputs the fragments found in XML streams as the query
results. The difficulty of XP {↓,→,∗,[]} evaluation lies in estab-
lishing dynamic scope control for the following/following-sibling
axes. The algorithm uses double-layered non-deterministic finite
automata (NFA) to resolve this issue. First layer NFA is com-
piled from XPath queries and is able to evaluate sub-queries in
XP {↓,→,∗}. Second layer NFA handles predicate parts. It is dy-
namically maintained during XML parsing: a state is constructed
from a pair of the corresponding state in the first layer automaton
and the currently parsed node in the XML stream. Layered NFA
achieves O(|D||Q|) time complexity by introducing a state shar-
ing technique, which avoids the exponential growth in the state size
of Layered NFA by eliminating redundant transitions. We validate
the efficiency of the algorithm through empirical experiments and
show that Layered NFA is up to four times faster, and twice as fast
on average, than existing algorithms.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query processing

General Terms
Algorithms, Languages, Performance

Keywords
XML stream, XPath, Automata

1. INTRODUCTION
While databases process volatile queries over persistent data, the
emerging technology of stream processing aims to handle persis-
tent queries against incoming volatile data streams. Of particular
interest, XML streams are expressed in a platform-neutral format,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

so they are suitable for data archiving or publication on the web.
Typical application areas of XML streams are scientific data (as-
tronomical data, protein sequence data), control streams (sensor
stream, air traffic, ATM monitoring), and data archiving for analy-
sis (click streams on the Internet, personal log, linguistic TreeBank
database).

Several query evaluation algorithms for XPath queries over XML
streams have been proposed for the above application areas, es-
pecially full-fledged query evaluation1 aims to output stream ele-
ments selected by a query. Our goal is the efficient full-fledged
evaluation of XP {↓,→,∗,[]} which denotes the XPath fragment that
includes downward axes (child, descendant) and forward axes (fol-
lowing, following-sibling), wildcard node-test, and optional pred-
icates. The XML stream processing algorithms proposed in [15]
have O(|D||Q|) time complexity, and they use a multi-stack frame-
work for XP {↓,∗,[]} evaluation, where |D| is the XML stream size
and |Q| is the query size. XSQ [26] is based on hierarchical NFA
augmented with buffers for XP {↓, []} evaluation. TwigM [8] effi-
ciently evaluates XP {↓,∗,[]} queries by employing twigStack [4].
XAOS [3] evaluates XP {↓,↑,∗,[]} queries by converting ’↑’ (par-
ent/ancestor) axes into downward constraints so they can be han-
dled in stream processing. xmltk [16] uses a DFA-based algorithm
for XP {↓,∗}.

SPEX [24] is a state of the art algorithm for evaluating XPath que-
ries in XP {↓,→,∗,[]}; as already noted, other existing algorithms
only support strict subclasses of XP {↓,→,∗,[]}. SPEX uses a net-
work of independent transducers, each of which is compiled from
a step in a query. A transducer accepts as input XML streams and
outputs the XML streams annotated with marks on selected nodes.
SPEX requires every transducer to react to SAX events in XML
streams. A key problem of SPEX is its inefficient predicate evalu-
ation. SPEX independently evaluates each predicate and the trunk
part of the query, and then merges the intermediate results pro-
duced by single evaluations. Thus, the intermediate results output
from the transducers tend to be so large that overall performance is
degraded. Consider the query /dblp/article[year>1990]
[Category=’Algorithm’]/title. SPEX evaluates each
predicate [year>1990], [Category=’Algorithm’], and
trunk part title independently, and merges their results. Effi-
cient predicate evaluation is crucial since many practical applica-
tions make extensive use of complex predicates.

For XPath queries in XP {↓,→,∗,[]}, we propose Layered NFA, an
XPath processing algorithm that efficiently evaluates queries in

1In contrast, filtering is the function of outputting a bit indicating
whether a query selects any nodes from the stream.

27

O(|D||Q|) time. In contrast to SPEX, which processes SAX events
in XML streams at every step (one step at a time) in a query, Lay-
ered NFA evaluates the whole query at every SAX event within one
XML parsing pass (one SAX event at a time). The advantages of
Layered NFA are 1) it generates smaller intermediate results than
SPEX because the whole query is evaluated at every SAX event,
and 2) it makes non-deterministic transitions for each incoming
SAX event, fewer actions than required by the transducer network
of SPEX.

The SAX-event-at-a-time approach is not new, since it was adopted
in earlier algorithms [3, 15, 8, 26, 16] for XP {↓,∗,[]} queries. Here
we have a question: can we simply extend those algorithms so as
to support forward axes over XML streams? The answer is no.
The problem raised by XP {↓,→,∗,[]} evaluation lies in establishing
dynamic scope control for queries using the following/following-
sibling axes. Intuitively, a step scope covers all nodes that can sat-
isfy the axis of the step being evaluated at the current node parsed
in the XML stream. The scope of the child/descendant axes is static
and symmetric with regard to the start and end points of the scope,
however this doesn’t hold for the following/following-sibling axes.

//inproceedings[section[title=’Overview’]/following::section]

Figure 1: XPath query example

1:<dblp>
2: <inproceedings mdate="2008-06-09">
3: ...
4: <title>Layered NFA</title>
5: <year>2008</year>
6: <section>
7: <title>Introduction</title>
8: ...
9: </section>

10: <section>
11: <title>Overview</title>
12:
13: </section>
14: <section>
15: <title>Algorithm</title>
16:
17: </section>
18: ...
19: </inproceedings>
20: <article mdate="2002-01-23">
21: ...
22:</dblp>

Figure 2: XML stream example

To illustrate the requirement of dynamic scope control, consider
the XML stream in Fig.2 and the XPath query in Fig.1, which
will be used as a running example hereafter. The query is in-
tended to select inproceedings with overview section and follow-
ing sections. The scope of step title (with implicit child axis)
within the inner predicate starts after the opening tags of its con-
text nodes section (lines 6,10,14 in Fig.2) and ends before the
corresponding closing tags (lines 9,13,17). In contrast, the scope of
following::section starts after the same opening tags but its
end point depends on the predicate results of the step that matches a
context node. In this example, section is the step that matches a
context node of following::section and it has the predicate
[title=’Overview’]. When it is satisfied after receiving the

SAX event characters(Overview) (line 11), the scope, starting
from the second section node, reaches the end of the stream.
Otherwise, the scope ends before the closing tags of the context
nodes section (lines 9, 17). This observation reveals that dy-
namic scope control is required for processing forward axes.

We can consider several approaches in designing efficient XPath
processing algorithms over XML streams. We first considered the
use of a fully dynamic data structure based on a data-driven query
rewrite scheme against SAX events. The idea is that queries on the
current node are converted into equivalent queries on the follow-
ing nodes and this is repeated until the end of the stream2. This
approach is concise and gives a fundamental background of evalu-
ating XPath queries in XP {↓,→,∗,[]}, however its time complexity
is high and preliminary experiments showed that it was indeed ex-
pensive. On the other hand, full compiler-based approaches are
likely to suffer from exponential space complexity. As an exam-
ple of this case, XSQ [26] requires 2|Q|−1 NFAs, since states are
generated from all possible combinations of predicate results.

To overcome this problem, we introduce Layered NFA, an efficient
XPath processing algorithm that balances the performance advan-
tage of the compiler-based approach against the overhead of space
complexity. Layered NFA uses a hybrid structure: a first layer NFA
that is compiled from an XPath query and a second layer NFA that
is dynamically maintained during XML parsing, see Fig.4 for an
overview. The first layer NFA evaluates sub-queries in XP {↓,→,∗}

and the second layer NFA handles predicate parts. A state in the
second layer NFA plays three roles. 1) a state is constructed from
the corresponding state in the first layer NFA and represents which
steps have been matched the received SAX events, 2) a state is also
annotated with a node that matches with a step with predicates or
the target step to be answered for the query. A node matched with
a step with predicates records which predicates have been satisfied,
whereas a node matched with the target step is buffered as a candi-
date node, and 3) a state keeps the scope status for dynamic scope
control.

1.1 Contributions
Contributions are summarized as follows:

• We introduce Layered NFA, an efficient XML stream pro-
cessing algorithm for queries in XP {↓,→,∗,[]}. The algo-
rithm evaluates XPath queries within one XML parsing pass
and outputs the matched fragments in the XML stream. Lay-
ered NFA uses double-layered NFA. First layer NFA is com-
piled from XPath queries and is able to evaluate sub-queries
in XP {↓,→,∗}. Second layer NFA is used for predicate pro-
cessing including dynamic scope control.

• Layered NFA holds time complexity to O(|D||Q|) by us-
ing a state sharing technique, which avoids the exponential
growth in the state size of Layered NFA by eliminating re-
dundant transitions to the states that are constructed from the
same state in the first layer NFA.

• Layered NFA prunes states in the second layer NFA for more
efficient processing. When a predicate becomes satisfied, the
related states can be removed because of the existential se-
mantics of XPath predicates.

2In contrast, existing query rewrite schemes [14, 23, 27] are based
on the query-driven approach for XML databases. For more detail
see Section 6.

28

• We consider the problem of query rewrite for XML stream
processing. In this query rewrite scheme, queries on the cur-
rent node are converted into equivalent queries on the follow-
ing nodes and this is repeated until the end of the stream.

• We describe experiments on various types of XPath queries
over two real XML streams: Protein and TreeBank. The re-
sults show that Layered NFA is up to four times faster, and
twice as fast on average, than SPEX, and is comparable to
XSQ for XP {↓, []} queries.

The rest of this paper is as follows. Section 2 presents the XML
data and query models. The query rewrite scheme for XML stream
processing is introduced in Section 3. Layered NFA is introduced
and analyzed in Section 4. Section 5 reports the results of experi-
ments. Section 6 addresses related work and Section 7 concludes
this paper.

2. DATA AND QUERY MODELS
XML Data model We model XML data as ordered trees with nodes
named from an infinite alphabet Σ. The symbols in Σ represent the
element names, attribute names, and text/attribute values that can
occur in XML data. XML data is parsed in depth first order to
output a sequence of SAX events; startDocument, endDocument,
startElement(tag), endElement(tag), and characters(value) where
tag is the name of the current element node being parsed, and value
is the text value of the current text node. The sequence of SAX
events is input to XPath algorithms for query evaluation.

XPath query XP {↓,→,∗,[]} consists of expressions given by the
following grammar:

Q ::= /step (/step)∗

step ::= axis :: node−test ([predicate])∗

axis ::= self | child | descendant | following |
following−sibling

node−test ::= name | ∗ | text()
predicate ::= Q | Q opr literal | func(Q, literal)

func ::= starts−with | contains
opr ::= > | >= | = | < | <= |! =

An XPath query is a sequence of steps, each of which consists of
axis (binary relation on nodes in XML streams), node-test (wild-
card ’*’ or node name), and optional predicates (boolean formula
over paths). We restrict the grammar by preventing disjunctive
predicates, because we can extend both the query rewrite scheme
and Layered NFA easily to support them. / and // are abbreviated
forms of /child and /descendant, respectively. trunk part
denotes the query obtained by removing predicates from an orig-
inal query and trunk step denotes a step in the trunk part. target
denotes the last step in the trunk part. We don’t treat the attribute
axis explicitly since it can be handled in a way similar to that used
for the child axis.

An overview of XPath query evaluation for XML streams is as fol-
lows. Let r be the root node of an XML stream, and Q be a query in
the form of /step1/.../stepi/.../step|Q|. We use step evaluation
function evalstepi(nodes) that outputs a set of nodes, each satis-
fying the axis, node-test, and optional predicates of stepi for some
node in nodes, namely context nodes. The XPath evaluation starts
from evalstep1({r}) by treating r as the context node of step1.

Then, during XML parsing, the result nodes of evalstepi(X) for
the context nodes X are used as the context nodes of the next step
stepi+1. For the target step step|Q|, evalstep|Q|(X) outputs the
target nodes of the query. However, some steps may contain pred-
icates whose results are determined after receiving the SAX events
of the target nodes. This observation demands that we may buffer
the target nodes3 until we determine the predicate results. More-
over, as we saw in Section 1, the scope of the following/following-
sibling axes dynamically changes.

Formally, we first define node effectiveness, and then introduce
step/path scope. We define trunk(stepi) as the trunk step of stepi,
and preds(stepi) as a set of all top level predicates of stepi

4. For
context node x, we also define trunkEval(t, x) that outputs a set
of nodes each satisfying trunk step t, and prEval(p, x) that returns
the result of predicate p.

Definition 2.1 (node effectiveness) Let Q be an XPath query in
the same form described above and x be a context node of stepi

in Q. n ∈ trunkEval(trunk(stepi), x) is effective if:
for i=|Q|, ∀p ∈ preds(stepi). prEval(p, n)=true, and
for i<|Q|, ∀p ∈ preds(stepi). prEval(p, n)=true and ∃n′ ∈

trunkEval(trunk(stepi+1), n) is effective.

Notice that, the effectiveness of node n for stepi is determined by
the predicate results of stepi and the effectiveness of the nodes in
trunkEval(trunk(stepi+1), n), thus it is determined by propa-
gating predicate results in a bottom up manner during stream pro-
cessing. We also note that prEval(p, n)=true requires n to be ef-
fective for the query specified in predicate p5.

The node effectiveness may be terminated by predicate failure as
follows. In the following, we use the notation predsUp(Q) to indi-
cate the set of all top predicates of the step in which Q is used in a
top predicate. For simplicity, we also use stepi(X) to indicate

[

n∈X

trunkEval(trunk(stepi), n)

.

Definition 2.2 (effectiveness termination) Let Q be an XPath qu-
ery in the same form described above, x be a context node of stepi

in Q, and some n ∈ trunkEval(trunk(stepi), x) be an effective
node. The effectiveness of n is terminated if:
for i>1, ∃p ∈ preds(stepi−1). prEval(p,x)=false, and
for i=1, ∃p ∈ predsUp(Q). prEval(p,x)=false.

Accordingly, the effectiveness of all effective nodes∈ stepi+1({n})
∪ stepi+2(stepi+1({n}))∪...∪ step|Q|(...stepi+1({n})...) is ter-
minated.

As an example, we return to the running example in Fig.1 and Fig.2.
Let x be inproceedings node in the XML stream, which is a
context node of step1 in Q = section[title=’Overview’]
/following::section, and n be the second section node
in the XML stream. When we receive characters(Overview) event
in line 11, n, which is in trunkEval(trunk(step1), x), becomes
effective, because the only predicate [title =’Overview’] in
preds(step1) becomes satisfied and a node in trunkEval(trunk

3We call buffered target nodes candidate nodes.
4preds(stepi) does not include nested predicates.
5This discussion does not hold if we extend the grammar to permit
negation.

29

S(x, ””) = {x}
S(x, self :: n/p) = if match(x,n) then S(x,p) else {}

S(x, child :: n/p) = S(first−child(x), self :: n/p | following−sibling :: n/p)

S(x, descendant :: n/p) = S(first−child(x), self :: n/p | descendant :: n/p |
descendant−following−sibling :: n/p)

S(x, following−sibling :: n/p) = S(first−sibling(x), self :: n/p | following−sibling :: n/p)

S(x, following :: n/p) = S(first−following(x), self :: n/p | descendant :: n/p | following :: n/p)

S(x,descendant−following−sibling :: n/p) = S(first−sibling(x), self :: n/p |
descendant :: n/p | descendant−following−sibling :: n/p)

S(x,p1 | p2) = S(x,p1) ∪ S(x,p2)

S(x, [p1]...[pn]/p) = if S(x, p1) �= {} and ... and S(x, pn) �= {} then S(x,p) else {}

Figure 3: Query Rewrite for XP {↓,→,∗,[]}

(step2), n) is effective. In addition, the effectiveness of node n will
not be terminated, since the only predicate [section[title=’
Overview’]/following::section] ∈ predsUp(Q) is sat-
isfied by the third section node in the XML stream.

Next, we define the step scope according to axis semantics as fol-
lows. Intuitively, the step scope for a context node is the period
during XML parsing when the context node may become effective.

Definition 2.3 (step scope) Let Q be an XPath query in the same
form described above, x be a context node of stepi, parent(x) be
the parent node of x, and scope(stepi, x) be stepi’s scope for
x denoted by {start, end}. scope(stepi, x) is {startElement(x),
endElement(x)}, if stepi’s axis is child/descendant or x is not effec-
tive. If x is effective, scope(stepi, x) is {startElement(x), endEle-
ment(parent(x))} for the following-sibling axis, and {startElement
(x), end of stream} for the following axis.

In the running example, let n be the second section again. When
we receive characters(Overview) event, n becomes effective, so
scope(following::section, n) = {startElement(n), end of
stream}.

Finally, the path scope is defined as follows.

Definition 2.4 (path scope) Let Q be an XPath query in the same
form described above, and x be a context node of step1 in Q. The
start point of Q’s path scope for x is that of scope(step1, x). The
end point of Q’s path scope for x is the end of the stream if some
stepi in Q contains the following axis and x is effective, otherwise
it is the end point of scope(step1, x).

3. QUERY REWRITE
We introduce a query rewrite scheme for queries in XP {↓,→,∗,[]}

to give a fundamental background of query evaluation. We use
S(x,Q) to denote a query evaluation function where x is a context
node in the XML stream and Q is a query in XP {↓,→,∗,[]}. The
query rewrite scheme in Fig.3 rewrites queries on the current node
into queries on the following nodes; therefore, query rewrite can be
continuously performed on a sequence of SAX events. A query is
rewritten as follows. We start from S(r,Q) where r is the root node
of the XML stream. First, we rewrite Q and assign the rewritten
queries to the following nodes. Then, during XML parsing, for
a startElement event, we collect the rewritten queries assigned to
current node x from the preceding nodes and apply continuously

the query rewrite scheme to those queries. Finally, we complete
the evaluation at the end of the stream and obtain the target nodes.

In the query rewrite scheme in Fig.3, we write first-child(x), first-
sibling(x), first-following(x) for the first child node of x, the first
sibling node of x, and the first following node of x, respectively.
We introduce an additional axis, descendant-following-sibling(x)
that specifies the descendant nodes of the following sibling nodes
of x. Due to space limitations, we only comment on the query
rewrite scheme for the following axis. If the following axis is to be
evaluated on context node x, the title element in line 7 in Fig.2,
it is rewritten to a union of self, descendant, and following axes on
first-following(x), which is the section element in line 10.

A query with predicates is handled as depicted in the last line in
Fig.3. Intuitively, if all predicates p1,...,pn match some nodes, the
result of trunk part p becomes the result of the query. However, this
query rewrite is different from others: the condition can be evalu-
ated at following nodes of x. In contrast, the condition of the query
rewrite in the second line can be evaluated at the current context
node, x. Here we face an issue of predicate processing: until when
do we have to keep on checking if a predicate is satisfied? The path
scope helps determine when predicate fails. As an example, if the
end point of a predicate path scope is that of its first step and the
axis of the step is child, we can determine the predicate result at the
endElement event of the context node of the step.

Despite the conciseness of the query rewrite scheme, there are two
problems in this approach. First, its time complexity is high, be-
cause the number of intermediate queries divided by | linearly in-
creases with query size. Moreover preliminary experiments showed
that the cost of the query rewrite scheme was too expensive even for
queries without predicates. Second, it is not obvious how to imple-
ment scope control, especially for queries with predicates. These
problems motivated the concept of Layered NFA. Against the first
problem, Layered NFA uses a hybrid structure: a first layer NFA
that is compiled from an XPath query and a second layer NFA that
is dynamically maintained during XML parsing. To deal with the
second problem, Layered NFA dynamically controls the step/path
scope at the second layer NFA.

4. LAYERED NFA
Layered NFA consists of four data structures: the query tree, two
NFAs, and the context node tree. An example is shown in Fig.4, and
is described in the following sections. A given query is parsed to
form a query tree, and then compiled into an NFA in the first layer.
The first layer NFA is able to evaluate sub-queries in XP {↓,→,∗},

30

S(*) epsilon

S(s)

(b) First layer NFA

(c) Second layer NFA (d) Context node tree

t1

np1 np2

S(i)
epsilon T

S

S(*)

NP
epsilon

P

E(*)

P
=‘Overview’

S(t)

E(*)

S(*)

S(s)

epsilon
C(*)

S

T

NP

P

//inproceedings

section

(a) Query tree

P

tilte=‘Overview’ following::section

S(i)
$2 $3 $5 $6

S(s)

$9

E(*) $7

$8

epsilon

$4

S(*)

$10

S(*)

$11

S(s)

Edge
S = startElement
E = endElement
C = characters

epsilon

$0

$1

$12

S(*)

Node
S = start
T = target
NP = non-leaf predicate
P = leaf predicate

epsilon
Query

parse compile

XML
stream

parse

S(s)

Figure 4: Layered NFA of the XPath query in Fig.1 : (Only the first letter of the element names is used in SAX events. The snapshot
shown is that after receiving startElement of the 3rd section in Fig.2)

and it is used by the second layer NFA. The second layer NFA
handles predicate parts. It is dynamically maintained during XML
parsing: a state refers to both the corresponding state in the first
layer NFA and a matched node in the XML stream. A referred state
in the first layer NFA is used for XP {↓,→,∗} processing and the
matched node is used as the context node for predicate processing
or is buffered as a candidate node. The context node tree of a query
is a tree of nodes that are matched with steps with predicates or the
target step in the query. The tree is maintained while the second
layer NFA is being processed.

4.1 Query tree
In the query tree, an edge represents a sub-query in XP {↓,→,∗}

and a node represents a branch connecting the sub-queries of pred-
icate/trunk parts: a node is labeled with its incoming edge type,
which may be either target (T), non-leaf predicate (NP), or leaf
predicate (P). The root node is labeled with start (S).

Fig.4 (a) shows the query tree for the query in Fig.1. The query is
decomposed into sub-queries, //inproceedings, section,
title=’Overview’, and following::section to form
the tree.

4.2 First layer NFA
The first layer NFA is compiled from queries by the NFA encoding
rules in Fig.5. The label s indicates the initial state and t indicates
the terminal state. S(a), E(a), C(*) are abbreviations of startEle-
ment(a), endElement(a), and characters(*), respectively, where a
is node name and * is wildcard.

• The self axis is encoded by an epsilon transition.

• We follow a popular method for converting /a, //a into the
NFA [9, 16], see (a), (b) in Fig.5.

• following-sibling::a is defined to select the following sibling
nodes of the context node; they are tagged as ’a’. It is en-
coded into the NFA in Fig.5 (c). First, we move up to the

(b) //a

s t

(a) /a

s t
S(a) S(a)

(c) /following-sibling::a

s

t
S(a)

E(*)

(d) /following::a

s

t

E(*)
S(*)

S(a)

E(*)

S = startElement
E = endElement
C = characters

S(*)

(f) p[p1]…[pn-1]/pn

epsilon

epsilon

..

..

..

p

p1

pn

(e) p condition

t
condition

..

p

C(*)

..

Figure 5: NFA encoding rules

parent node of the context node by E(*) transition, and then
select nodes tagged as ’a’ by S(a) transition.

• following::a is defined to select all nodes tagged as ’a’ that
appear after the context node except the descendant nodes.
It is encoded into the NFA in Fig.5 (d). The difference from
the following-sibling::a encoding rule is that two transitions
are added: E(*) is used to locate all ancestor nodes and S(*)
is used to select all of their descendant nodes.

• The condition used in a predicate is encoded into the NFA
in Fig.5 (e). If condition contains operator/function and
literal value, they are stored in the terminal state and checked
after the transition to the state by characters(value) event.

31

Algorithm 1 startElement(tag)
Require: the set of current states currentStateSet, the state stack

stateStack, input SAX event startElement(tag)
Ensure: updated currentStateSet, stateStack, the context node tree
1: hitNodes = {}; nextStateSet = {};
2: for all current ∈ currentStateSet do
3: (state, context) = current;

// current is a state in the 2nd layer NFA
// state is a state in the 1st layer NFA

4: if noOutEdges(state) or noSuccessfulTransition(state) or
isSinkState(current) then

5: sinkDown(current);
6: nextStateSet += current; continue;
7: end if
8: for all nextState ∈ δ(state, startElement(tag)) do
9: if label(state)==(’T’ or ’NP’) then

10: context = new contextNode(tag);
11: addChildInContextTree(context);
12: else if label(state)==(’P’) then
13: setPredicateResult(context);
14: hitNodes += propagate&getHitNode();
15: end if
16: next=(nextState, context);

// nextState is a state in the 1st layer NFA
// next is a state in the 2nd layer NFA

17: nextStateSet += next;
18: end for
19: end for
20: stateStack.push(currentStateSet);
21: currentStateSet = nextStateSet;
22: flush(hitNodes);
23: removeRelatedStatesFrom(hitNodes, currentStateSet);

• When a query contains predicates, p[p1]...[pn-1]/pn,
there needs to be epsilon transitions between the last state of
the NFA obtained from path p and the first states of NFAs
obtained from the predicates p1,...,pn-1 and the trunk
pn. Fig.5 (f) shows this encoding rule.

Fig.4 (b) shows the first layer NFA for the query in Fig.1. The
states are labeled with the same name as the corresponding nodes
in the query tree, start (S), target (T), non-leaf predicate (NP) and
leaf predicate (P).

4.3 Second layer NFA & Context node tree
The transitions in the second layer NFA, which are based on the
first layer NFA, drive the maintenance of the context node tree:
node construction/destruction, predicate result propagation, candi-
date node buffering, and dynamic scope control.

Alg.1 and Alg.2 show the algorithms of startElement and endEle-
ment events, respectively. Layered NFA uses the state stack (stat-
eStack) to maintain the current states (currentStateSet) for startEle-
ment and endElement events throughout the XML stream. It flushes
out the buffered target nodes (hitNodes) to the user when they match
a given query; the effectiveness of their context nodes is determined
not to be terminated. The implementation of characters event is
similar to the combination of startElement and endElement accom-
panied with condition evaluation, so we omit its description. We
will refer to the corresponding parts of Alg.1 and Alg.2 in the fol-
lowing descriptions.

Algorithm 2 endElement(tag)
Require: the set of current states currentStateSet, the state stack

stateStack, input SAX event endElement(tag)
Ensure: updated currentStateSet, stateStack, the context node tree
1: hitNodes = {}; nextStateSet = {};
2: for all current ∈ currentStateSet do
3: (state, context) = current;

// current is a state in the 2nd layer NFA
// state is a state in the 1st layer NFA

4: if isSinkState(current) then
5: sinkUp(current);
6: nextStateSet += current; continue;
7: end if
8: if label(state)==(’T’) then
9: hitNodes += propagate&getHitNode();

10: end if
11: if isEffectivenessTerminate() then
12: remove(context, current);
13: end if
14: for all nextState ∈ δ(state, endElement(tag)) do
15: next=(nextState, context);

// nextState is a state in the 1st layer NFA
// next is a state in the 2nd layer NFA

16: nextStateSet += next;
17: end for
18: end for
19: currentStateSet = stateStack.pop() + nextStateSet;
20: flush(hitNodes);
21: removeRelatedStatesFrom(hitNodes, currentStateSet);

We define below the data structure of state in the second layer NFA
(NFA2).

Definition 4.1 A state in the second layer NFA is a pair (s, n)
where s is the corresponding state in the first layer NFA. If s is
labeled with target (T) or non-leaf predicate (NP), the current node
in the XML stream is set to n. Otherwise, the node of the previous
state that has a transition to this state is set to n.

In the following, we first describe details of state construction and
transition, and then describe the behaviors of target step and predi-
cate processing.

State construction and transition
Let the first layer NFA be (Σ, S, s0, δ) for input alphabet Σ, set of
states S, initial state s0, and state transition function δ. Let n0 and
N be the root and a set of nodes in the XML stream, respectively.
The initial state of NFA2 is defined as (s0, n0). The following
states are dynamically constructed as demanded by SAX events.
Let (si, ni) be a current state of NFA2. For a startElement(tag)
event, state (sj , nj) is constructed and is set as a next state where sj

is in δ(si, startElement(tag)) and nj is set as defined in Def.4.1: If
sj is labeled with target (T) or non-leaf predicate (NP), the current
node of the startElement(tag) event is set to nj . Otherwise, ni is
set to nj . For preparing the next SAX event, the current states are
pushed on the state stack and the next states are set to the current
states. For an endElement(tag) event, state (sj , nj) is constructed
and is set as a next state where sj is in δ(si, endElement(tag)) and
nj is set as defined in Def.4.1. For preparing the next SAX event,
the states are popped from the state stack and added to the next
states.

32

The above procedures for startElement(tag) and endElement(tag)
events are implemented in Alg.1 and Alg.2, respectively. A state is
obtained by δ function (line 8) and then added as a next state (lines
16-17). The current states are pushed on the state stack (line 20). In
addition, sink state operations, sinkDown and sinkUp, are present
(line 5 Alg.1 and line 5 Alg.2). A state is a sink state if and only
if there are no out-going transitions [18]. For efficient sink state
implementation, we mark a state as a sink state with sink depth to
avoid constructing sink states and transitions to those states. Cur-
rent state (s, n) becomes a sink state if s has no out-going transi-
tions or it has no successful transition (lines 4-5 Alg.1). The states
labeled with P in (b) Fig.4 are examples of s without out-going
transitions. When a current state is state $5 in (c) Fig.4 and it re-
ceives SAX events except S(s), $5 becomes a sink state because it
has no successful transition. A state continues as a sink state by
incrementing the sink depth for startElement events.

With regard to endElement(tag) event (Alg.2), there are only wild-
card E(*) transitions in the NFA encoding rule Fig.5 so there is no
need for a transition check to obtain a next state by δ function (line
14). The states popped from the state stack are also added as the
next states (line 19). The sink state operations occupy lines 4-6.
The sinkUp function (line 5) decrements the sink depth for endEle-
ment events.

Context node tree construction The context node tree of a query
is a tree of nodes that are matched with steps with predicates or
with the target step in the query. The tree is maintained while the
second layer NFA is being processed. Assume we have arrived
at state (s, n) by a startElement event where s is a state in the
first layer NFA labeled with T (target) or NP (non-leaf predicate).
We then construct a new node for n, put it as a child of the cur-
rent node in the tree, and set it as the current node for subsequent
processing. A context node tree plays two important roles. 1) a
node matched with a step with predicates (NP) records the results
indicating which predicates have been satisfied, whereas a node
matched with target (T) is buffered as a candidate node, and 2) a
node keeps the status of the path scope of predicate/trunk parts. It
is maintained as described in Def.2.3-2.4 and is initially assigned
to a node as follows: if some step in the path is the following axis,
the status is set to following, otherwise the status is set to the
first step’s axis of the path.

Fig.4 (d) shows a context node tree. t1 is a matched node of
//inproceedings path and is used as a candidate node as well
as a context node of section path. np1,np2 are matched nodes
of section path and used as context nodes for title=’Over-
view’ and following::section paths. In addtion, np1,
np2 record predicate results.

A new node is constructed by the contextNode constructor (line 10
in Alg.1) and it is put into the context node tree by the addChildIn-
ContextTree function (line 11 in Alg.1).

Target step processing Recall that a predicate result may be deter-
mined after receiving the SAX events of the target nodes. To handle
this case, we need to buffer the candidate nodes, and then to prop-
agate those candidate nodes and the predicate results upward in the
context node tree, so that we can check if context nodes of predi-
cates become effective. Assume we have arrived at state (s, n) by a
startElement event where s is a state in the first layer NFA labeled
with T (target). This state indicates that the target step in the query
matches the SAX event, so current node n is buffered. When n be-

comes effective, we propagate the predicate results stored at n and
the buffered candidate node n up to the parent node of n in the con-
text node tree, and repeat this process. If the propagation reaches
the first branching node, that is the effectiveness of n is determined
not to be terminated, the buffered candidate node n is flushed to the
user. On the other hand, n is removed from the context node tree,
when the effectiveness of n is terminated.

For a startElement(tag) event (Alg.1), when a current state is con-
structed from a T-labeled state (state) in the first layer NFA (line
9), we start buffering the current node in the XML stream as a can-
didate node by putting it into the context node tree (lines 10-11).
When some predicate is satisfied by a startElement event, several
nodes may become effective, so the propagate&getHitNode func-
tion propagates predicate results and the candidate nodes up in the
context node tree (lines 12-14). This propagation also occurs in en-
dElement events (lines 8-9 Alg.2). In both cases, if the propagation
reaches the first branching node in the context node tree, the can-
didate nodes are flushed out to the user. (line 22 Alg.1 and line 20
Alg.2).

Predicate processing The predicate processing is similar to the
target step processing. The difference is that, instead of buffer-
ing candidate nodes in the context node tree, the context nodes of
predicates are put into the context node tree and predicate results
are recorded in those nodes. Assume we have arrived at state (s,
n) by a startElement event where s is a P-labeled state. This state
indicates that a predicate is satisfied by the SAX event, so the pred-
icate result is put into n. When n becomes effective, we perform
the same propagation procedure as described in the target step pro-
cessing.

For a startElement(tag) event (Alg.1), when a current state is con-
structed from an NP-labeled state (state) (line 9), we construct a
context node and put it into the context node tree for recording
predicate results (lines 10-11). Else, if a current state is constructed
from a P-labeled state, it indicates that a predicate is satisfied by the
SAX event, so the result is put into the context node and we then
check and propagate the predicate results up in the context node
tree (lines 12-14).

Dynamic scope control During the above propagation, we also
propagate scope status up in the context node tree for the purpose
of implementing the node effectiveness and step/path scope as de-
fined in Section 2. When a node effectiveness is terminated, other
effective nodes that are located by Def.2.2 are removed from the
context node tree and related states are also removed.

The scope status of a node is maintained in the propagate function
(line 14 in Alg.1, line 9 in Alg.2). The isEffectivenessTerminate
function checks node effectiveness. When a node effectiveness is
terminated, related effective nodes and states are removed (lines
11-12 Alg.2).

4.4 Correctness (sketch)
It is obvious that queries in XP {↓,→,∗} are precisely evaluated ac-
cording to the NFA encoding rules in Fig.5. For predicate parts,
the context node tree stores matched nodes of target and non-leaf
predicate steps in the query tree. A branch node in the query tree
is precisely handled, since both predicate results and buffered can-
didate nodes are propagated upward in the context node tree ac-
cording to the node effectiveness and step/path scope. Therefore,
Layered NFA precisely evaluates XPath queries in XP {↓,→,∗,[]}.

33

4.5 Example
We explain how Layered NFA evaluates the query in Fig.1 over
the XML stream in Fig.2. First, the initial state ($0) is constructed
and the XML stream is parsed. State $1 is also constructed and
is transited to by the epsilon transition in the first layer NFA. For
startElement(dblp) in line 1 Fig.2, state $2 is constructed. For
startElement(inproceedings) in line 2, state $3 is constructed
from the T-labeled state in the first layer NFA and the current node
is buffered in the context node tree as t1. State $5 is also con-
structed and is transited to by the epsilon transition.

1st section element When the 1st startElement section in line
6 is emitted, state $6 is constructed from the NP-labeled state in
the first layer NFA and the current node is put under t1 as np0
in the context node tree. Also the scopes of both leaf predicates
(title=’Overview’ and following::section) start. $7
is constructed and is transited to because of the epsilon transition.
When we receive endElement(section) in line 9, we transit from
$7 to $8 by the E(*) transition and also go back to $5 which is
popped from the state stack. Because the scope status of np0 is
child, the scope ends and the inner predicate evaluation is deemed
to have failed. The corresponding context node np0 is removed
from the context node tree and the related states ($6, $7, $8) are
also removed. Fig.6 shows the snapshot.

S(*) epsilon

t1

np0

S(i)
$2 $3 $5 $6

S(s)

E(*) $7

$8

epsilon

$4

S(*)

epsilon

$0

$1

Figure 6: After processing endElement of the 1st section:
dotted state and node indicate removed state and node, respec-
tively

2nd section element The startElement of the 2nd section in line
10 is emitted, the same procedure is performed as done in the 1st
section element; state $6 is constructed and the current node np1
is put under t1. When characters(Overview) in line 11 is emit-
ted, the inner predicate [title=’Overview’] becomes satis-
fied and the result is put in the context node. At this point, the con-
text node of the predicate becomes effective, so the end point of the
scope of the outer predicate [section[title=’Overview’]
/following::section] reaches the end of the stream. When
the endElement of the 2nd section in line 13 is emitted, we tran-
sit from $7 to $8 by the E(*) transition and also go back to $5. The
difference with respect to the 1st endElement(section) is that
the end point of the scope of the outer predicate is at the end of the
stream, so the context node np1 and the related states ($6, $7, $8)
are kept. Fig.7 shows the snapshot.

S(*) epsilon

t1

np1

S(i)
$2 $3 $5 $6

S(s)

E(*) $7

$8

epsilon

$4

S(*)

epsilon

$0

$1

Figure 7: After processing endElement of the 2nd section

3rd section element When the 3rd startElement section (line
14) is emitted, not only is the same procedure performed as done
in the 1st section element ($11 is constructed and the current
node np2 is put under t1), but also $9 is reached from $8. The sec-
ond layer NFA in Fig.4 (c) shows the snapshot; the current states

are $9, $10, $11, $12. The first layer NFA state of $9 is labeled
with P, so the predicate result is put to np1 and then propagated to
t1. At this point, t1, a context node of the outer predicate, also be-
comes effective. Since all predicates are satisfied at t1, the buffered
inproceedings node is flushed to the user.

4.6 Optimization
State sharing A problem of the original Layered NFA is that the
number of states exponentially increases against query size, when
a query contains the descendant/following axes. Our solution is
to introduce the state sharing technique; it enables Layered NFA
to eliminate redundant transitions by grouping the states that are
constructed from the same state in the first layer NFA. Those states
can be grouped together, because they have the same transitions
to the following SAX events. Notice that, since Layered NFA is
based on NFAs, once the descendant/following axes are encoded
into NFAs, the same state sharing technique eliminates redundant
transitions required for both axes.

The state sharing works as follows. During the construction of the
next states (nextStateSet) at SAX events (line 17 in Alg.1, line
16 in Alg.2), we put them in a hashmap grouped by their source
state in the first layer NFA. For each group of states, we choose one
state as active and treat the remaining states as inactive. When the
active state has updates on its candidate nodes, predicate results, or
scope status, those updates are propagated to the inactive states.

State pruning for positive result of predicate For more efficient
predicate processing, Layered NFA prunes states in the second layer
NFA. When a predicate becomes satisfied, the related states can be
removed because of the existential semantics of XPath predicates;
once a predicate is satisfied, the predicate does not need further
processing for the same context node. Again, since Layered NFA
is based on NFAs, the same state pruning technique removes un-
needed states regardless of their source axis types. In the running
example, after receiving the 3rd startElement section, the un-
needed states ($6, $7, $8, $9, $10) are removed in Fig.4, because
the predicate is satisfied.

The removeRelatedStatesFrom function implements the state prun-
ing (line 23 Alg.1, line 21 Alg.2). This function detects states that
refer to a node in hitNodes or their descendant context nodes in
the context node tree, and removes those states from currentState-
Set. In addition, we don’t transit to the states that are encoded from
predicates that are already satisfied.

Global queue The descendant/following axes may produce dupli-
cation of the candidate nodes. Layered NFA uses a global queue
[26] that contains a single copy of buffered candidate nodes to avoid
the duplication. A candidate node stores a range label to allow its
XML fragment to be extracted from the global queue. The pre-
order label is assigned to a candidate node at node construction
time and the post-order label is assigned upon receiving the corre-
sponding endElement event.

4.7 Complexity
Let |D| be the number of nodes in XML stream D, |Q| be the
number of steps in query Q, d be the maximum depth of D, and
B be the maximum number of candidate nodes buffered during the
running time. According to [15], B might reach |D| in the worst
case, which cannot be avoided by any stream processing algorithm.
The global queue enables us to store |D| nodes at most as candidate
nodes.

34

Table 1: XPath queries and sizes (numbers of states) in NFAs
Protein: $P = ProteinEntry, $R = reference, $Y = {1970,1980,1990,1995} hit rate (%) 1st NFA 2nd NFA
Q1 /dummy 0 3 2
Q2 //*[.//*] 24.7 5 22
Q3 /ProteinDatabase//protein/name 1.2 5 9
Q4 /ProteinDatabase/$P/*/*/*/author 26.6 8 8
Q5 //$P/$R/refinfo/xrefs/xref/db 1.3 8 15
Q6 //$P//$R//refinfo//xrefs//xref//db 1.3 8 30
Q7 //organism[source] 1.2 5 9
Q8 //$P[$R]/sequence 1.2 7 12
Q9 //$P//refinfo[volume]//author 23.4 8 20
Q10 //$P/$R/refinfo[year=1988]/title 0.03 10 13
Q11 //$P[.//refinfo[title][citation]]/sequence 1.0 11 18
Q12 //$P/*[created_date =’10-Sep-1999’]/uid 0.02 9 12
Q13 /ProteinDatabase/$P[$R/accinfo/mol-type=’DNA’][$R/refinfo/year>1990] 1.0 14 9
Q14 /ProteinDatabase/$P[$R[accinfo[mol-type=’DNA’]]][$R[refinfo[year>1990]]] 1.0 18 9
Q15 //$P[.//mol-type=’DNA’][.//year>1990] 1.0 9 21
Q16 //$P[$R[accinfo/mol-type=’DNA’]/following-sibling::$R/refinfo/year>$Y] {0.1,0.1,0.1,0.1} 15 {14,14,14,14}
Q17 //$P[$R[accinfo/mol-type=’DNA’]/following::$R/refinfo/year>$Y] {1.0,1.0,1.0,0.8} 15 {20,20,20,20}
TreeBank: hit rate (%) 1st NFA 2nd NFA
Q1 /dummy 0 3 2
Q2 //*[.//*] 40.7 5 84
Q3 //EMPTY[.//S/NP/NNP=’U.S.’] 0.021 9 81
Q4 //EMPTY[.//S/NP[NNP=’U.S.’]/following-sibling::MD[text()=’will’]] 0.001 15 81
Q5 //EMPTY[.//S[NP/NNP=’U.S.’][VP/NP/NNP=’Japan’]] 0.000 15 100
Q6 //EMPTY[.//PP[IN[text()=’in’]/following-sibling::NP/NNP=’U.S.’]] 0.011 15 75
Q7 //EMPTY[.//S/NP/NP[NNP=’U.S.’]/following-sibling::JJ=’economic’] 0 15 81

Space complexity The space complexity of Layered NFA is deter-
mined by the sum of the sizes (i.e. number of states) of two NFAs
and the size of the context node tree.

First, we discuss the sizes of the NFAs. The size of the first layer
NFA for Q is always O(|Q|) according to the NFA encoding rules
in Fig.5. For the second layer NFA, the state sharing technique
eliminates redundant transitions to the states that are constructed
from the same state in the first layer NFA, therefore there can be
|Q| states constructed at most for every startElement event, and
those states are kept in the state stack. When Q is in XP {↓,∗,[]},
the space complexity of the second layer NFA is O(d|Q|), because
there can be d startElement events that are continuously matched
with each downward axis in Q. When Q is in XP {↓,→,∗,[]}, the
space complexity of the second layer NFA is O(|D||Q|), because
there can be |D| startElement events that are continuously matched
with each forward axis in Q.

Second, we discuss the size of the context node tree, which consists
of the context nodes of non-leaf predicates and the buffered candi-
date nodes (B). When Q doesn’t contain predicates, XP {↓,→,∗},
there is only a root node in the context node tree, since there is
no need for constructing context nodes of non-leaf predicates or
buffering candidate nodes. If we permit to include predicates, the
maximum size of the context nodes of non-leaf predicates is d|Q|
when Q is in XP {↓,∗,[]}, and |D||Q| when Q is in XP {↓,→,∗,[]},
which is obtained by the same discussion as the second layer NFA.
Therefore, we obtain the following theorem.

Theorem 4.2 The space complexity of Layered NFA is O(|Q|) for
the first layer NFA, O(d|Q|) for the second layer NFA of XP {↓,∗,[]},
O(|D||Q|) for the second layer NFA of XP {↓,→,∗,[]}, O(d|Q| +
B) for the context node tree of XP {↓,∗,[]}, and O(|D||Q|+B) for

the context node tree of XP {↓,→,∗,[]}.

Time complexity The time complexity of Layered NFA consists
of the cost of second layer NFA operation and the cost of propaga-
tion that occurs within the state sharing technique. The former is
O(|D||Q|), the product of the XML stream size |D| and the max-
imum number of the current states |Q| in the second layer NFA,
since each current state handles every SAX event in D in the worst
case. The worst case of state sharing propagation is that there can
be |Q| inactive states that receive the propagation for every SAX
event in D, resulting in O(|D||Q|) time complexity. Since both
time complexities are O(|D||Q|), the total time complexity of Lay-
ered NFA is also O(|D||Q|).

5. EXPERIMENTS
We validated the efficiency (response time and space) of Layered
NFA in a comparison to related algorithms, SPEX [24]6, XSQ [26],
and xmltk [16].

Our execution environment consisted of a dual Intel(R) Core (TM)
PC (CPU 2.40GHz) with 1.99GB of main memory, running Win-
dows XP. We used Java 1.5.0_06 with default settings and a light-
weight XML parser Crimson for all algorithms except xmltk, which
was implemented in C++, we used g++ compiler version 3.44 (cyg-
win) with the -O2 optimization option. xmltk uses its own non-
validating XML parser.

In these experiments, we customized the implementations to pre-
vent output of the matched XML fragments to avoid the overhead
of system I/O. Some parts of the results were not gathered due to
the limitations of the algorithms or implementation issues as fol-

6We used PHASE2 optimization option.

35

Table 2: XML streams statistics
File Depth Num. of
size elements

(MB) avg max schema data(K)
Protein 706 5.15 7 66 21306
TreeBank 60 7.87 36 250 2438

lows. The SPEX implementation failed to evaluate the following
axis even though its algorithm should be capable to doing so. The
XSQ algorithm evaluates queries in XP {↓, []} with unnested pred-
icates whose paths have at most one step. The xmltk algorithm
evaluates queries limited to XP {↓,∗}.

XML streams: We used two real XML streams available at XML
Data repository7: the PIR-International Protein Sequence Database
(Protein) and the XML-ized TreeBank linguistic database (Tree-
Bank). They have been widely used in experiments on XML stream
algorithms [15, 8, 26, 16]. Protein is an integrated collection of
functionally annotated protein sequences; it is one of the largest
XML streams. TreeBank consists of English sentences tagged with
parts of speech and has deep recursive structures. Their statistics
are summarized in Table 2.

XPath queries: We used various types of XPath queries to char-
acterize the performance features of the XPath evaluation algo-
rithms. For both XML streams, we used Q1 /dummy (no element
match) to validate the base performance of the algorithms, and used
Q2 //*[.//*] to validate in an extreme case with predicates.
For Protein, in addition to the queries used in [8], we added que-
ries with multiple predicates and/or the following/following-sibling
axes. For TreeBank, we used interesting queries for linguistic anal-
ysis with predicates and/or the following-sibling axis: Q3 selects
descriptions whose subject is a specified country U.S.. Q4-Q7 are
obtained by adding various predicates to Q3 as follows. Q4 selects
descriptions on future actions of the country. Q5 selects descrip-
tions whose subject is two countries, U.S. and Japan. Q6 selects
descriptions of something that occurred in the country. Q7 selects
descriptions about the economy of the country. Table 1 shows the
queries, their hit rate, and the sizes of Layered NFA in the first and
second layers.

5.1 Query processing time
Fig.8 and Fig.9 show the performance comparisons of XPath eval-
uation algorithms over Protein and TreeBank XML streams, re-
spectively. According to the results of Q1 /dummy which show
that all algorithms have comparable performance, we conjecture
that we can basically ignore the differences in programming lan-
guages (Java, C++) and XML parsers (Crimson, xmltk parser). Re-
call, only xmltk uses a different programming language and XML
parser.

We found that Layered NFA is up to four times faster, and twice
as fast on average, than SPEX. Our observations on the difference
between Layered NFA and SPEX are as follows. First of all, as
pointed out in Section 1, the performance of SPEX indeed wors-
ens as the number of predicates increases. For the Protein dataset,
except for the queries with large hit rate (Q2, Q4, Q9), Q1, Q3,
Q5, Q6 (no predicates), Q7 (single predicate, no branches in query
trees) are faster than Q8, Q10, Q12 (single predicate, single branch

7http://www.cs.washington.edu/research/xmldatasets/

in query trees), and the latter are faster than Q11, Q13-16 (multi-
ple predicates). For the TreeBank dataset, except for the queries
with large hit rate (Q2), Q1 (no predicates) is faster than Q3 (single
predicate, no branches in query trees), and the latter is faster than
Q4-Q7 (multiple predicates). This is due to SPEX’s design: it inde-
pendently evaluates each predicate and the trunk part of the query,
then merges the intermediate results, yielding predicate processing
overhead. In contrast, the performance of Layered NFA is stable
for all queries regardless of the number of predicates, because it
processes the whole query at SAX events while generating smaller
intermediate results than SPEX.

Second point is forward axes processing. The performance of Lay-
ered NFA for the queries with the following axis (Protein Q17) is
slightly slower than that with the following-sibling axis (Q16). This
result proves the effectiveness of the state sharing technique for fol-
lowing axis processing; it dramatically reduces NFA size. We will
describe the effect on the space reduction in the next section.

Third point is descendant axis processing. SPEX processes the de-
scendant axis as efficiently as the child axis, as we can observe that
the SPEX performance for Protein Q5 is the same as that for Protein
Q6, which is obtained by replacing every child axis in Q5 with the
descendant axis. In addition, although Protein Q13 and Q15 have
different expressions, their query results are the same. Since Q15
has shorter length than Q13, SPEX processes Q15 more efficiently
than Q13. In contrast, Layered NFA processes the descendant axis
slower than the child axis, because the descendant axis requires two
transitions whereas the child axis requires one transition. Actually,
the performances of Layered NFA for Q6 and Q15 with the descen-
dant axis are slower than Q5 and Q13 without the descendant axis,
respectively.

For the case of XSQ in XP {↓,[]} (Q1, Q3, Q5-10), Layered NFA
is comparable to XSQ. This is mainly because they are both NFA-
based algorithms. xmltk is always the fastest in XP {↓,∗} (Q1, Q3-
Q6) especially for queries that contain many descendant axes (Q6).
This is explained by the fact that xmltk is a DFA-based algorithm,
thus it only needs to keep track of a single current state. Layered
NFA and XSQ are both NFA-based algorithms, so they need to
keep track of multiple current states resulting in lower performance.

5.2 Space consumption
The last two columns in Table 1 show the sizes of Layered NFA
in the first and second layers. Since the second layer NFA is dy-
namically constructed and removed, we report the maximum sum-
mations of current and stacked states at any moment during stream
processing. All the results support Theorem 4.2: the size of the
first layer NFA is linear to query size |Q| and the upper bound
of the size of the second layer NFA is O(d|Q|) for XP {↓,∗,[]}

and O(|D||Q|) for XP {↓,→,∗,[]}. We describe details of the sec-
ond layer NFA below. For Q1 /dummy, there is only the initial
state since there is no successful transition. For Protein Q4 in
XP {↓,∗,}, the state size is the same as or smaller than the size
of the first layer NFA. For other queries in XP {↓,→,∗,[]}, there are
more states in TreeBank than in Protein, mainly because the depth
of TreeBank XML stream is 36 while that of Protein XML is 7.
The value parameters ({1970,1980,1990,1995}) in the queries do
not impact NFA size. The size of the second layer NFA is signifi-
cantly improved by the state sharing technique, for example, from
{25,100,700,3937} to {20,20,20,20} against Protein Q17 for value
parameters ({1970,1980,1990,1995}), respectively.

36

N
S

N
SN
S

N
S

N
S

N
S N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

0

200

400

600

800

1000

re
s
p
o
n
s
e
 t
im
e
 (
s
e
c
o
n
d
)

Layered NFA

spex

xsq

xmltk

Figure 8: Response times (Protein XML): NS indicates that the implementation doesn’t support the query.

0

20

40

60

80

100

120

140

160

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

re
s
p
o
n
se
 t
im
e
 (
s
e
c
o
n
d
)

Layered NFA

spex

Figure 9: Response times (TreeBank XML)

0

50

100

150

200

250

300

350

400

1 2 3 4 5

Number of //* in queries

N
u
m
b
e
r
 o
f
s
t
a
t
e
s

with state sharing

without state sharing

Figure 10: Effect of state sharing (TreeBank XML)

Fig.10 also shows the effect of the state sharing technique. We used
the treebank XML stream and queries consisting only of //* with
lengths from 1 to 5. The results show that the size of second layer
NFA is linear to the query size in both cases with/without state shar-
ing. Consider the size of second layer NFA without state sharing.
Theoretically, it is O(d|Q|) for XP {↓,∗}, O(d|Q|) for XP {↓,∗,[]},
and O(|D||Q|) for XP {↓,→,∗,[]}. O(d|Q|) for XP {↓,∗,[]} is ob-
tained, because a step with the descendant axis matches d nodes at
most, those nodes are used as context nodes for its predicates, and
this is repeated |Q| times at most. For XP {↓,→,∗,[]}, a step with
the following axis can match |D| nodes, so O(|D||Q|) becomes
the upper bound size. In contrast, as Theorem 4.2 shows, the state
sharing technique avoids the exponential growth in the state size of
Layered NFA.

Overall, Layered NFA scales well on very large or complicated
XML streams for XPath queries in XP {↓,→,∗,[]}.

6. RELATED WORK
Query rewrite [14, 23, 27] define XPath semantics based on query
rewrite schemes which evaluate one step at a time in a query and
change context nodes. This approach is suitable for XML databases
that randomly access any node in an XML data. However, it is not
suitable for XML stream processing, in which the access to the
XML stream is limited to just sequential order. Query rewrite tech-
niques [25, 13] rewrite queries with reverse axes (parent, ancestor,
preceding, preceding-sibling) into equivalent queries without re-
verse axes. They allow our techniques to be applied to a larger
class of queries.

XML Stream algorithms We can classify the algorithms of XPath
query processing over XML streams into XML filtering and full-
fledged XPath evaluation.

The problem of XML filtering is to detect matched queries over
XML streams given a large number of queries. Various approaches
[1, 7, 9, 10, 16, 17, 6] have been proposed for this problem. They
focus on how (NFA-based, DFA-based, Bloom filter based) and
what (step, simple path, branch) to share among a large number
of queries in XP {↓,∗,[]}. None of them supports XP {↓,→,∗,[]}.
The algorithms in [24, 3, 15, 8, 26, 16] support full-fledged XPath
evaluations, while the algorithms in [22, 19, 21, 20, 12] are for
XQuery evaluations. The buffering space lower bound was studied
by [2] for XP {↓,∗,[]}.

SPEX [24, 5] has already been described in Section 1. Algorithms
[15, 8, 12] employ a stack-based algorithm [4] for efficient descen-
dant axis processing. One study [15] reported O(|D||Q|) time com-
plexity for XML stream processing using a multi-stack framework
for XP {↓,∗,[]} evaluation. The eager querying algorithm, which
doesn’t delay the actions when a predicate is evaluated as true,
also achieves optimal buffering-space complexity. TwigM [8] ef-
ficiently evaluates XP {↓,∗,[]} queries by employing twigStack [4]
for candidate node representation. For the queries with the descen-
dant axis and predicates, twigStack encodes n2 matched patterns
using a 2n-size data structure. The BEA streaming XQuery engine
[12] gives an overview of the XQuery processor implementation
but doesn’t discuss the details of streaming processing. It com-
bines streaming processing with materialization of common sub-
expressions in XQuery expressions. It also exploits schema infor-
mation to rewrite queries [11] and a stack-based algorithm [4] for
efficient descendant axis processing.

XSQ [26] is based on hierarchical NFA augmented with buffers for
XP {↓, []} evaluations. XSQ compiles a single query into a hier-
archical NFA consisting of 2|Q|−1 NFAs where the states are gen-
erated from all possible combinations of predicate results. At run

37

time, a query is subjected to d|Q| different context nodes. Thus
the space complexity is O(2|Q| × d|Q|) and time complexity is
O(|D| × 2|Q| × d|Q|). A state in XSQ remembers which predi-
cates have been satisfied and has transitions to the states that con-
tain unsatisfied predicates that remain to be evaluated. Instead of
constructing 2|Q|−1 NFAs, Layered NFA dynamically maintains
the second layer NFA, which corresponds to the hierarchical NFA
of XSQ: 1) a context node of the NFA state remembers which predi-
cates have been satisfied, and 2) the state pruning for positive pred-
icate result suppresses transitions to the following states encoded
from predicates that are already satisfied. There are two limita-
tions to XSQ. First, XSQ uses static scope control since it doesn’t
process the following/following-sibling axes. Second, the XSQ al-
gorithm limits queries in XP {↓, []} to unnested predicates whose
paths have at most one step.

xmltk [16] is a collection of fundamental tools for XML stream op-
erations (selection, sort, nest, unnest); it is based on Lazy DFA, an
algorithm for evaluating queries without predicates (XP {↓,∗}). Its
time complexity is O(|D|) because of the deterministic transitions:
there is always a single current state for every SAX event.

7. CONCLUSION
We proposed Layered NFA, an efficient XML stream processing al-
gorithm for queries in XP {↓,→,∗,[]}. Layered NFA evaluates que-
ries within one XML parsing pass and outputs the matched frag-
ments in the XML stream. It uses double-layered NFA: first layer
NFA is compiled from XPath queries and is able to evaluate sub-
queries in XP {↓,→,∗} while second layer NFA handles predicate
parts. Layered NFA achieves O(|D||Q|) time complexity by intro-
ducing the state sharing technique, which avoids the exponential
growth in the state size of Layered NFA by eliminating redundant
transitions. Experiments showed that Layered NFA is up to four
times faster, and twice as fast on average, than SPEX, and is com-
parable to XSQ for XP {↓, []} queries.

Acknowledgment
The author would like to express his gratitude to Dario Colazzo for
his invaluable help in improving the paper presentation, and anony-
mous reviewers for their constructive comments on this paper.

8. REFERENCES
[1] M. Altinel and M. J. Franklin. Efficient filtering of XML

documents for selective dissemination of information. In
Proceedings of VLDB, 2000.

[2] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. Buffering in
query evaluation over XML streams. In Proceedings of
PODS, New York, NY, USA, 2005. ACM.

[3] C. Barton, P. Charles, D. Goyal, M. Raghavachari,
M. Fontoura, and V. Josifovski. Streaming XPath processing
with forward and backward axes. In Proceedings of ICDE,
2003.

[4] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:
optimal XML pattern matching. In Proceedings of SIGMOD,
2002.

[5] F. Bry, F. Coskun, S. Durmaz, T. Furche, D. Olteanu, and
M. Spannagel. The XML stream query processor SPEX. In
Proceedings of ICDE, 2005.

[6] K. S. Candan, W.-P. Hsiung, S. Chen, J. Tatemura, and
D. Agrawal. AFilter: adaptable XML filtering with
prefix-caching suffix-clustering. In Proceedings of VLDB,
2006.

[7] C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi.
Efficient filtering of XML documents with XPath
expressions. In Proceedings of ICDE, 2002.

[8] Y. Chen, S. B. Davidson, and Y. Zheng. An efficient XPath
query processor for XML streams. In Proceedings of ICDE,
2006.

[9] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer.
Path sharing and predicate evaluation for high-performance
XML filtering. ACM Transactions on Database System,
28(4), December 2003.

[10] Y. Diao and M. J. Franklin. Query processing for
high-volume XML message brokering. In Proceedings of
VLDB, 2003.

[11] M. F. Fernandez and D. Suciu. Optimizing regular path
expressions using graph schemas. In Proceedings of ICDE,
1998.

[12] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi,
T. Westmann, J. Carey, and A. Sundararajan. The BEA
streaming XQuery processor. The VLDB Journal, 13(3),
2004.

[13] P. Genevès and K. Rose. Compiling XPath for streaming
access policy. In Proceeedings of DocEng, 2005.

[14] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for
processing XPath queries. ACM Transactions on Database
System, 30(2), 2005.

[15] G. Gou and R. Chirkova. Efficient algorithms for evaluating
XPath over streams. In Proceedings of SIGMOD, 2007.

[16] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML streams with deterministic automata and
stream indexes. ACM Transactions on Database Systems,
29(4), December 2004.

[17] A. Gupta and D. Suciu. Stream processing of XPath queries
with predicates. In Proceedings of SIGMOD, 2003.

[18] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction
to automata theory, languages, and computation (Second
Edition). Addison-Wesley, 2001.

[19] Z. Ives, A. Halevy, and D. Weld. Efficient evaluation of
regular path expressions on streaming XML data. Technical
Report UW-CSE-2000-05-02, 2000.

[20] C. Koch, S. Scherzinger, and M. Schmidt. The GCX system:
Dynamic buffer minimization in streaming XQuery
evaluation. In Proceedings of VLDB, 2007.

[21] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier.
FluXQuery: An optimizing XQuery processor for streaming
XML data. In Proceedings of VLDB, 2004.

[22] B. Ludäscher, P. Mukhopadhyay, and Y. Papakonstantinou. A
transducer-based XML query processor. In Proceedings of
VLDB, 2002.

[23] M. Marx and M. de Rijke. Semantic characterizations of
navigational XPath. SIGMOD Record, 34(2), 2005.

[24] D. Olteanu. SPEX: Streamed and progressive evaluation of
XPath. IEEE Transactions on Knowledge and Data
Engineering, 19(7), 2007.

[25] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath:
Looking forward. In Proceedings of Workshop on XML Data
Management (XMLDM), LNCS. Springer, 2002.

[26] F. Peng and S. S. Chawathe. XSQ: A streaming XPath
engine. ACM Transactions on Database Systems, 30(2),
2005.

[27] P. Wadler. Two semantics for XPath, 1999.

38

