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ABSTRACT 

When selecting alternatives from large amounts of data, trade-offs 

play a vital role in everyday decision making. In databases this is 

primarily reflected by the top-k retrieval paradigm. But recently it 

has been convincingly argued that it is almost impossible for users 

to provide meaningful scoring functions for top-k retrieval, subse-

quently leading to the adoption of the skyline paradigm. Here 

users just specify the relevant attributes in a query and all subop-

timal alternatives are filtered following the Pareto semantics. Up 

to now the intuitive concept of compensation, however, cannot be 

used in skyline queries, which also contributes to the often unma-

nageably large result set sizes. In this paper we discuss an innova-

tive and efficient method for computing skylines allowing the use 

of qualitative trade-offs. Such trade-offs compare examples from 

the database on a focused subset of attributes. Thus, users can 

provide information on how much they are willing to sacrifice to 

gain an improvement in some other attribute(s). Our contribution 

is the design of the first skyline algorithm allowing for qualitative 

compensation across attributes. Moreover, we also provide an 

novel trade-off representation structure to speed up retrieval. 

Indeed our experiments show efficient performance allowing for 

focused skyline sets in practical applications. Moreover, we show 

that the necessary amount of object comparisons can be sped up 

by an order of magnitude using our indexing techniques. 

Categories and Subject Descriptors 

H.3.3 [Information Systems]: Information Search and Retrieval.  

General Terms 

Algorithms, Human Factors 

Keywords 

Skyline Queries, Preferences, Trade-off Management. 

1. INTRODUCTION 
Recently skyline queries have successfully implemented the con-

cept of Pareto optimality for filtering suboptimal database items. 

Any query result item can be safely ignored, if there exists some 

item that simply shows better values with respect to all query 

attributes: we say the ignored item is „dominated’. This is indeed a 

very intuitive concept. If for example two car dealers in the 

neighborhood offer exactly the same model (with same warran-

ties, etc.) at different prices, why should one want to consider the 

more expensive car? Furthermore, user preferences for skyline 

queries only have to be specified within each attribute (cheaper 

price, stronger engine, favorite color), which makes the paradigm 

intuitive to use. And while in most works on skyline queries only 

numerical domains and preferences are considered [3][11][15], 

skylining can even be extended to respect categorical preference 

(e.g. on colors) modeled as partial orders [12][4]. 

The focus on individual attribute domains and the complete fair-

ness of the Pareto paradigm are major advantages of skyline 

queries. However, this also induces some shortcomings. Skylines 

completely lack the ability to relate attribute domains to each 

other and thus disallow compensation, weighting or ranking be-

tween domains. This often results in large amounts of incompara-

ble objects and generally causes skylines results to be rather large, 

especially in the case of anti-correlated attributes. It has been 

shown that already for only 5 to 10 attributes, skylines can easily 

contain 30% or more of the entire database instance [2][3][7][8] 

and thus tend to be unmanageable.  

In order to decrease skyline sizes, there have recently been several 

approaches to rank skyline items according to some structural 

characteristics like counting how many other items does each 

skyline item dominate [4][5], or in how many subspace skylines 

each skyline item is present [17], etc. For the latter approaches, a 

large number of subspace skylines have to be computed, often 

employing „sky-cube‟-like algorithms [17][16]. However, it is not 

quite clear whether those structural properties are really related to 

the usefulness of items and will be helpful for the user. In contrast 

to merely structural approaches, a more user-centered focusing of 

the skyline set can be archived by incorporating feedback infor-

mation provided by the user, thus introducing an additional layer 

of personalization. Most prominent among these approaches are 

techniques allowing users to interactively modify and extend their 

preferences in a cooperative fashion like [6] or [13]. In particular, 

users might consider some attributes to be more important than 

others. For example, [13] allows users to provide a total order for 

attributes; the evaluation then focuses on prioritized subspaces. 

The alternative approach to query personalization is Top-K Re-

trieval [10] paying particular attention to weightings of attributes. 

For each item high values in some attribute(s) may compensate 

for shortcomings with respect to other attributes following some 

scoring function (also called a utility function). Unfortunately, this 

compensation feature is not very intuitive to use. For instance, the 

semantics of an expression like “0.4*price + 0.8*color + 0.2* 

performance” is not intuitively understandable by most users. 

However, none of the mentioned approaches are able to support 

simple and natural trade-offs or compromises, which real world 

sales persons use every day. Consider, for example, three cars: let 
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item 𝐴 be a „blue metallic‟ car for $18000 and item 𝐵 be a „blue‟ 

car for $17000, accompanied by a preference favoring cheaper 

cars and metallic colors. Looking at the ranking on attribute level, 

both cars are incomparable with respect to the Pareto order: one 

car is cheaper, the other has the preferred color. In this scenario, a 

natural question of a car dealer would be, whether the customer is 

willing to compromise on those attributes, i.e. if he/she is willing 

to pay an additional $1000 for the metallic paint job (we call such 

compromises trade-offs). If the answer is yes, then item A is the 

better choice and would dominate item 𝐵 with respect to a trade-

off enhanced Pareto order. Still, if some item 𝐶 like a „blue‟ car 

for $15000 exists, 𝐴 and 𝐶 would remain incomparable as the 

premium for the metallic color on that car 𝐶 is larger than the said 

$1000 the user is willing to pay. From the viewpoint of order 

theory, the logical implications and problems of trade-off en-

hanced Pareto orders were already discussed in detail in our pre-

vious work [1]. Moreover, in [14] we presented a simple criterion 

for checking whether a set of trade-offs and attribute preferences 

are consistent and non-conflicting.  

However, actually computing a trade-off enhanced skyline effi-

ciently from this order has still been impossible. This is because in 

contrast to Pareto orders, the trade-off enhanced order loses the 

characteristic of seperability [9] regarding the individual 

attributes. However, exactly this characteristic allows for building 

efficient skyline algorithms. In particular, when checking any two 

objects 𝐴 and 𝐵 for domination a skyline algorithms does not 

have to materialize the separable Pareto order. But any two items 

can be simply checked for domination componentwise: If attribute 

values of item A are better or equal regarding each attribute than 

item 𝐵‟s (with „strictly better‟ in at least one), then A dominates B 

and 𝐵 can be pruned from the skyline. Moreover, if two items 

only differ with respect to a single attribute the test for domination 

is even simpler due to the ceteris-paribus („all-else-being-equal‟) 

semantics, see e.g., [9]. 

In contrast to preferences, trade-offs always span over several 

attributes. For instance our example of a metallic paint job for 

$1000 tightly links the price attribute to the color. Now a compo-

nentwise comparison can still sort out all Pareto-dominated items, 

but as soon as the price of two items differs by at most $1000, a 

domination regarding the color attribute might be compensated 

for. This has to be checked individually (and thus inefficiently) 

for all trade-off pair. While for a single trade-off this test is still 

relatively inexpensive, introducing multiple trade-offs („Would 

you pay more for a stronger engine?‟) will inevitably lead to a 

complex order where attributes are intrinsically linked. But simply 

materializing the trade-off enhanced Pareto order is not possible 

for efficient domination checks. Therefore, until now no algorithm 

for computing skylines enhanced by trade-offs is known. 

In this paper we present the first skyline algorithm able to inte-

grate the intuitive concept of trade-offs into database retrieval. 

Our algorithm always correctly computes the complete trade-off 

skyline and thus offers effective means for personalization. The 

contribution of this paper is that these characteristics can be ob-

tained by materializing only a simple and non-redundant auxiliary 

trade-off representation structure. This contribution is twofold: on 

one hand, more information about the user can be consistently 

integrated into the retrieval process and thus be used to personal-

ize the result set. On the other hand, the result sets are reduced 

without any arbitrary assumptions like „an item is better, if it 

dominates more other items‟[4][5] or „good items appear in more 

subspace skylines‟ [17].  

Our paper is structured as follows: we introduce basic theoretical 

concepts in section 2, starting with a formal definition of trade-

offs and corresponding trade-off skylines. We identify the object 

domination check as the crucial operation when adding trade-offs 

to the skyline paradigm. In section 3, we introduce our novel 

algorithm for efficiently computing the trade-off enhanced sky-

line. The main innovation is our data structure for computing the 

object domination check. The skyline algorithm and the corres-

ponding representation structure is extensively evaluated in sec-

tion 4. We show the effectiveness of the skyline reduction gained 

by trade-offs on real world data sets, and our algorithm‟s efficient 

run times suitable for real-life applications. We conclude our work 

in section 4.3 with a short summary and outlook. 

2. BASIC CONCEPTS 
A complete order theoretical framework for preference structures 

is given in [1]. To be self-contained we will briefly reiterate the 

basic definitions and notation as they will be needed later.  

2.1 Pareto Skylines 
Assume a database relation 𝑅 ⊆ 𝐷1 × …× 𝐷𝑛  on 𝑛 attributes.  

 A preference 𝑃𝑖  on an attribute 𝐴𝑖  with domain 𝐷𝑖  is a 

strict partial order over 𝐷𝑖 . If some attribute value 

𝑎 ∈ 𝐷𝑖  is preferred over another value 𝑏 ∈ 𝐷𝑖 , then 
 𝑎, 𝑏 ∈ 𝑃𝑖 . This is written as 𝑎 >𝑖  𝑏 (reads as “𝑎 do-

minates 𝑏 wrt. to 𝑃𝑖”). 

 Analogously, an equivalence 𝑄𝑖  is an equivalence rela-

tion on 𝐷𝑖  compatible with 𝑃𝑖 . If two attribute values 

𝑎, 𝑏 ∈ 𝐷𝑖  are equivalent, i.e.  𝑎, 𝑏 ∈ 𝑄𝑖 , we write 

𝑎 ≈𝑖 𝑏.  

 Finally, if an attribute value 𝑎 ∈ 𝐷𝑖  is either preferred 

over or equivalent to another value 𝑏 ∈ 𝐷𝑖 , we write 

𝑎 ≳𝑖 𝑏.  

As an example, assume some transitive preferences for buying a 

car considering the attributes price, color, horsepower, and air 

conditioning as illustrated in Figure 1:  

 

 

To compute the skyline, the attribute preferences can be aggre-

gated with respect to the Pareto semantics (so called Pareto aggre-

gation) resulting in the full product order 𝑃. This order can then 

be used to test whether an object 𝑜1 from the database dominates 

any other object 𝑜2 (which is the case if 𝑜1 shows better or at least 

equal performance regarding all attributes than 𝑜2):  

Definition 1: full product order 𝑷 

For 𝑃 ⊆ (𝐷1 × …× 𝐷𝑛) × (𝐷1 × …× 𝐷𝑛) and for any 𝑜1, 𝑜2 ∈
(𝐷1 × …× 𝐷𝑛),  𝑜1, 𝑜2 ∈ 𝑃 denoted by 𝑜1 >𝑃 𝑜2 is defined by 

∀ 𝑖 ∈  1, … , 𝑛 :  o1,i ≳𝑖 o2,i   ∧   ∃ 𝑖 ∈ {1, …𝑛}: o1,i >𝑖 o2,i .        

The skyline of 𝑅 is then defined as all non-dominated objects of 

the database 𝑅 with respect to the full product order: 

 

Figure 1. Some preferences within the domain of cars 
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Definition 2: Pareto skyline 

𝑆𝑘𝑦 ≔  𝑜2 ∈ 𝑅   ¬∃ 𝑜1 ∶ 𝑜1 >𝑃 𝑜2}     (see e.g., [11]).           

Note that product orders quickly grow very large with increasing 

number of attributes and domain cardinalities. However, for Pare-

to skyline computation it is not really necessary to materialize the 

full product order. For testing whether 𝑜1 >𝑃  𝑜2 holds, it is only 

necessary to compare the objects componentwise using the indi-

vidual attribute preferences. The ability to perform the dominance 

check with respect to the product order by separately testing each 

component is called separability and is heavily exploited by all 

existing skyline algorithms, see e.g. [2][3][11][15].  

2.2 Trade-Off Skylines 
Trade-offs can be considered as a user decision between two 

sample objects focusing on a subset of the available attributes. For 

example, considering the domain of cars, a user could focus on 

the attributes color and price. A trade-off then describes in a 

qualitative fashion how much a user is willing to sacrifice in some 

dimension(s) to gain better performance in some other dimen-

sion(s) on the basis of a practical example. A possible trade-off 𝑡1 

could be: “I would prefer a car for $18000 with a metallic blue 

paint job over a car for $16000 with a plain blue paint job.” We 

write 𝑡1: =   $18000, 𝑏𝑙𝑢𝑒 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐  ⊳   $16000, 𝑏𝑙𝑢𝑒  . 

More formally, a trade-off 𝑡 is always defined over a set of 

attributes given by respective indexes denoted as 𝜇 ⊆  1, … , 𝑛  
(see Figure 2 for the example trade-off 𝑡 defined over attributes 

𝐴2, 𝐴3, and 𝐴4). To further simplify notation, let 𝐷𝜇 ∶=  ⨉
𝑖∈𝜇

𝐷𝑖  and 

𝜇 ≔  1,… , 𝑛 ∖ 𝜇. Then, a trade-off is a relationship between two 

tuples 𝑥, 𝑦 ∈  𝐷𝜇  denoted as 𝑡 ∶= (𝑥 ⊳ 𝑦). Obviously the two 

components of a trade-off 𝑥 and 𝑦 have to be in incomparable, i.e. 

no domination relationship 𝑥 ≥𝑃 𝑦, nor 𝑥 ≥𝑃 𝑦 exists between 

them. Each trade-off is defined on an individual attribute set 𝜇, i.e. 

some 𝑡1 may be defined on 𝜇1 and 𝑡2 on 𝜇2.  

 

Trade-offs usually induce new domination relationships between 

database items augmenting the full product order and thus also the 

final skyline. In particular, given the above sample trade-off all 

cars for $18000 with a blue metallic paint job (or even better 

features price- and color-wise) will dominate all cars for $16000 

with a plain blue paint job (or even less preferred features) under 

the ceteris paribus semantics. For example, after introducing 𝑡1, 

the car ($17000, 𝑏𝑙𝑢𝑒 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐, 100 ℎ𝑝, 𝑎/𝑐) would now domi-

nate a (previously incomparable) car with the characteristics 

($16000,𝑤ℎ𝑖𝑡𝑒, 100 ℎ𝑝, 𝑛𝑜 𝑎/𝑐). 

Assuming a set of trade-offs 𝑇, the resulting skyline analogously 

to Pareto skylines consists of all non-dominated objects of 𝑅 with 

respect to the new domination relationships induced by all the 

given trade-offs. It is denoted with  >𝑇  in the following (reads as 

“dominates with respect to the trade-offs in 𝑇”, see the following 

subsection for a formalization):  

Definition 3: trade-off skyline 

𝑆𝑘𝑦 ≔  𝑜2 ∈ 𝑅   ¬∃ 𝑜1 ∶ 𝑜1 >T 𝑜2}                                  

This new criterion respects all trade-offs in 𝑇, but of course has to 

also respect all original Pareto preferences, too. Additionally, it 

has to also mind all interactions between trade-offs and Pareto 

preferences, which are given by the transitive closure of all prefe-

rences and trade-offs. However, this new order and the resulting 

check criterion are not separable anymore, i.e. the information 

provided by the trade-offs and their interactions cannot be mapped 

back to the attribute preferences without losing information (and 

thus, simple, attribute based comparisons are not sufficient any-

more). 

2.2.1 Trade-Off Dominance Relationships 
Analogously to >𝑃 , we can define >𝑇 using the notion of domina-

tion relationships by providing an adequate comparison criterion. 

Definition 4: trade-off domination relationships 

The strict pre-order >𝐓 is defined as the smallest preorder con-

taining the full product order induced by the Pareto semantics, 

enhanced by all additional domination relationships induced by 

individual trade-offs or arbitrary combinations of trade-offs in 𝑻 

(completed using the ceteris paribus semantics).                     

In the following we will show inductively how to construct >𝐓.  

For a set 𝑇 ≔ {𝑡1: = (𝑥1 ⊳ 𝑦2)} containing only a single trade-off 

the construction is straightforward: given two objects 𝑜1  and 𝑜2, 

𝑜1 may either dominate 𝑜2 according to the original Pareto seman-

tics or by actually applying the trade-off using both ceteris paribus 

and Pareto semantics. The trade-off can only be applied, if for all 

attributes the trade-off is defined on: 𝑜1 dominates the attribute 

values of the first trade-off component 𝑥1 and the attribute values 

of the second component 𝑦1 dominate 𝑜2. Moreover, it is easy to 

see that a single trade-off can only be applied once [14]. Formally: 

Proposition 1: constructing 𝒐𝟏 >𝐓 𝒐𝟐 with  𝑻 = 𝟏 

For any 𝑜1, 𝑜2 ∈ 𝐷{1,…,𝑛} and a single trade-off 𝑥1 ⊳ 𝑦2:  

𝑜1 >T  𝑜2 holds, if  

       𝑜1 >𝑃  𝑜2 ∨  
∀𝑖 ∈ 𝜇 ∶   𝑜1,𝑖 ≳𝑖  𝑥1,𝑖 ∧  𝑦1,𝑖 ≳𝑖 𝑜2,𝑖 

∧ ∀𝑖 ∈ 𝜇 : 𝑜1,𝑖 ≳𝑖 𝑜2,𝑖
         

Figure 3 visualizes this concept (assuming 4-attribute objects and 

a 2-attribute trade-off with 𝜇 =  {1, 2}). Please note that all com-

parisons needed are component-wise analogous to the case of 

Pareto skylines and thus are efficient to perform.  

For multiple trade-offs, >T  is more difficult to construct. Let the 

set 𝑇 contain two trade-offs 𝑇: = {𝑡1 ≔  𝑥1 ⊳ 𝑦1 , 𝑡2 ≔ (𝑥2 ⊳
𝑦2)}. Now, 𝑜1 dominates 𝑜2 in either of the following cases:  

 

Figure 2. Trade-off t on  𝝁 ∶=  {𝟐, 𝟑, 𝟒} 
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1. By applying simple Pareto semantics, i.e. 𝑜1 >𝑃  𝑜2 

2. By applying trade-off 𝑡1 using ceteris paribus semantics, 

i.e. for attributes in 𝜇1:  𝑜1 ≳𝑃  𝑥1 ∧  𝑦1 ≳𝑃 𝑜2  and 

for all other attributes  𝑜1 ≳𝑃 𝑜2    (cf. proposition 1) 

3. By applying trade-off 𝑡2 using ceteris paribus semantics, 

i.e. for attributes in 𝜇2:  𝑜1 ≳𝑃  𝑥2 ∧  𝑦2 ≳𝑃 𝑜2  and 

for all other attributes  𝑜1 ≳𝑃 𝑜2    (cf. proposition 1) 

4. By applying both trade-offs 𝑡1 and 𝑡2. In this case, both 

trade-offs need to be applied consecutively in order to 

establish a domination relationship between 𝑜1 and 𝑜2, 

i.e. they form a trade-off sequence (consecutive trade-

off application will be denoted with ∘ in the following). 

In this case, several options may be possible: 𝑡1 ∘ 𝑡2, 

and 𝑡2 ∘ 𝑡1, but also  𝑡1 ∘ 𝑡2 ∘ 𝑡1 and (𝑡2 ∘ 𝑡1) ∘ 𝑡1 

(Please note that no longer sequences exist for two con-

sistent trade-offs, see [14] for more details). 

In general, a trade-off sequence 𝑡1 ∘  𝑡2 is possible, if for all 

attributes appearing in both trade-offs, the second tuple of the first 

trade-off 𝑦1 component-wise dominates or equals the first tuple of 

the second trade-off  𝑥2  with respect to the attribute preferences, 

i.e. ∀𝑖 ∈ (𝜇1 ∩ 𝜇2) ∶  𝑦1,𝑖 ≳𝑖  𝑥2,𝑖 . Formally, the concept of 

domination via trade-off sequences can be expressed as follows: 

Proposition 2: constructing 𝒐𝟏 >𝐓 𝒐𝟐 with  𝑻 = 𝟐: 

Given 𝑡1 =  𝑥1 ⊳ 𝑦1  with 𝜇1 and 𝑡2 =  𝑥2 ⊳ 𝑦2  with 𝜇2. To 

show how the domination relationships are constructed, we will 

exemplify the forth case from above; the remaining cases are 

constructed analogously. Assume 𝑡1 and 𝑡2 can be applied in 

sequence 𝑡1 ∘ 𝑡2, i.e. ∀𝑖 ∈  𝜇1 ∩ 𝜇2 :  𝑦1,𝑖 ≳𝑖  𝑥2,𝑖 . Then, for 

any  𝑜1, 𝑜2 ∈ 𝐷 1,…,𝑛  a domination relationship 𝑜1 >T 𝑜2 via a 

sequence 𝑡1 ∘ 𝑡2 holds, if 

 ∀𝑖 ∈ 𝜇1:  𝑜1,𝑖 ≳𝑖 𝑥1,𝑖 

∧ ∀𝑖 ∈  𝜇1 ∩ 𝜇2 :  𝑦1,𝑖 ≳𝑖  𝑥2,𝑖 

∧ ∀𝑖 ∈  𝜇2 ∖ 𝜇1 :  𝑜1,𝑖 ≳𝑖 𝑥2,𝑖 

∧ ∀𝑖 ∈ 𝜇2:  𝑦2,𝑖 ≳𝑖 𝑜2,𝑖 

∧ ∀𝑖 ∈  𝜇1 ∖ 𝜇2 :  𝑦1,𝑖 ≳𝑖 𝑜2,𝑖 

∧ ∀𝑖 ∈  𝜇1 ∪ 𝜇2           :  𝑜1,𝑖 ≳𝑖 𝑜2,𝑖       

Of course as stated above, also all other possible sequences of 

trade-offs can be used to establish a domination relationship be-

tween 𝑜1 and 𝑜2.                                                                          

Refer to Figure 4 for an illustration of the trade-off sequence 

𝑡1 ∘ 𝑡2.  

Thus, to fully capture the semantics of 𝑜1 >T 𝑜2 for two trade-

offs, all four previously mentioned cases need to be considered, 

i.e. testing for Pareto dominance of 𝑜1 and 𝑜2, dominance by 

considering any single one trade-off, and finally considering all 

sequences possible with both two trade-offs. 

Obviously, the complexity for expressing 𝑜1 >T 𝑜2 thus can 

exponentially increase with the number of trade-offs. For 𝑚 trade-

offs, 𝑜1 >𝑇 𝑜2 holds in any of the following cases 

 If 𝑜1 dominates 𝑜2 by plain Pareto semantics 

 If 𝑜1 dominates 𝑜2 by any single trade-off 

 If 𝑜1 dominates 𝑜2 by any possible trade-off sequence 

which can be formed using two trade-offs 

 … 

 If 𝑜1 dominates 𝑜2 by any possible trade-off sequence 

which can be formed using m trade-offs 

 

2.2.2 Merging Trade-Off Tuples 
For building an efficient algorithm and ease notation for the theo-

rem and proof in 2.2.3, we now introduce the concept of merging 

tuples (denoted by ↶). The idea is to merge two tuples with differ-

ing  𝜇-attribute sets and subsequently work on the resulting trade-

off. The merging operation is not commutative as a „dominant‟ 

tuple is merged with values of a „weaker‟ tuple. The merged tuple 

will have all attribute values where the dominant tuple is defined 

and all those attributes not defined by the dominant tuple will be 

completed with the weaker tuple‟s values. See Figure 5 for illu-

stration. 

 

Definition 4: The Merge Operator  ↶ :  

Let 𝜇x , 𝜇z ⊆ {1,… , 𝑛}. For 𝑥 ∈  𝐷𝜇𝑥  and 𝑧 ∈ 𝐷𝜇𝑧 , the tuple  𝑥 ↶

𝑧  is defined component-wise as:  

  (𝑥 ↶ 𝑧) ≔ 𝑢 𝑤𝑖𝑡ℎ  𝑢𝑖 =  
𝑥𝑖 :  𝑖 ∈ 𝜇x

𝑧𝑖 :  𝑖 ∈ (𝜇z ∖ 𝜇𝑥)
                                 

The merge operator is particularly helpful for simplifying the 

attribute-based notation of object domination criterions, because it 

allows performing the case-differentiation implicitly appearing in 

the criterions (when two or more trade-offs are involved).  

Using the new merge notation, now the condition for object do-

mination via one single trade-off (Proposition 1) may be simpli-

fied by merging the non-affected parts of the objects under scruti-

ny directly into the trade-off conditions (and the separate consid-

eration of attributes in 𝜇 and 𝜇  is not necessary anymore): 

 
Figure 5. Merged Tuple (𝒙 ↶ 𝒛) 
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Figure 4. 𝒐𝟏 >𝑻 𝒐𝟐 with two trade-offs 𝒕𝟏 ∘ 𝒕𝟐 
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Proposition 1 (cont.): constructing 𝒐𝟏 >𝐓 𝒐𝟐 with the merge 

operator for  𝑻 = 𝟏 

          𝑜1 >T  𝑜2 ⇔  𝑜1 >𝑃  𝑜2  

                                ∨   𝑜1 ≳𝑃  𝑥1 ↶ 𝑜1 ∧  𝑦1 ↶ o1 ≳𝑃 𝑜2          

An example using our trade-off 𝑡1 introduced above: 𝑡1 =

  $18000, 𝑏𝑙𝑢𝑒 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐  ⊳   $16000, 𝑏𝑙𝑢𝑒   is given in Fig-

ure 6. Assume that 𝑜1 dominates 𝑥1 with respect to all attributes in 

𝜇1. The trade-off components can now be merged on attributes in 

𝜇1    with the values of 𝑜1. Now the (artificially) created interme-

diate objects containing the trade-off values are in a proper domi-

nation relationship (𝑥1 ↶ 𝑜1 >T 𝑦1 ↶ o1) according to the trade-

off plus the ceteris paribus semantics (i.e. values in the non-

affected parts are equal). If now 𝑜2 is dominated by 𝑦1 ↶ o1, it is 

also dominated by 𝑜1 via the trade-off 𝑡1. Note, that only simple 

and separable domination checks -as already used in traditional 

skyline algorithms- are needed.  

 

Of course also the previous condition for 𝑡1 ∘ 𝑡2 in Proposition 2 

may be rewritten using tuple merging. Here we can see the benefit 

of the merge operator: the need for case differentiation on differ-

ent subsets combination of 𝜇1 and 𝜇2 is completely removed. 

Proposition 2 (cont.): constructing 𝒐𝟏 >𝐓 𝒐𝟐 with the merge-

operator for  𝑻 = 𝟐 

𝑜1 >T 𝑜2 ⇐  𝑜1 ≳𝑃  𝑥1 ↶ 𝑜1  
                                              ∧  𝑦1 ↶ o1 ≳𝑃 𝑥2 ↶ 𝑦1 ↶ 𝑜1  
                                              ∧ (𝑦2 ↶ 𝑦1 ↶ 𝑜1 ≳𝑃 𝑜2)               

To also understanding this concept, consider again our example 

for two trade-offs 𝑡1 and 𝑡2 as follows:  

𝑡1 =   $18000, 𝑏𝑙𝑢𝑒 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐  ⊳   $16000, 𝑏𝑙𝑢𝑒     

𝑡2 =   𝑏𝑙𝑢𝑒, 𝑎/𝑐  ⊳    𝑏𝑙𝑢𝑒 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐, 𝑛𝑜 𝑎/𝑐   

These trade-offs can be applied in sequence as either as 𝑡1 ∘ 𝑡2 or 

𝑡2 ∘ 𝑡1. The common attribute is 𝑐𝑜𝑙𝑜𝑟, and in case of 𝑡1 ∘ 𝑡2 the 

value 𝑏𝑙𝑢𝑒 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐 allows for establishing the sequence. After 

applying both trade-offs in sequence, as illustrated in Figure 7 the 

car ($18000, 𝑏𝑙𝑢𝑒 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐, 80 ℎ𝑝, 𝑎/𝑐) dominates the second 

car ($16000, 𝑏𝑙𝑢𝑒 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐, 80 ℎ𝑝, 𝑛𝑜 𝑎/𝑐) via 𝑡1 ∘ 𝑡2. 

Of course we still have to show that the merging does not in any 

form alter our dominance checks as originally defined. For brevity 

we give the proof only for the more complex Proposition 2:  

Proof for Proposition 2 (cont.): the component-wise domin-

ance check is equivalent to a dominance check using merging 

Transform each of the three clauses using the merge operator ↶
 given in Proposition 2 (cont.) into component-wise comparisons 

in order to create the comparison terms used in the original Propo-

sition 2. All light-gray printed terms are trivially true and can be 

ignored. The six resulting component-based comparisons terms 

are exactly those given by the original Proposition 2. 

1)  𝑜1 ≳𝑃  𝑥1 ↶ 𝑜1   

≡  ∀𝑖 ∈ 𝜇1:  𝑜1,𝑖 ≳𝑖 𝑥1,𝑖 ∧ ∀𝑖 ∈ 𝜇1   :  𝑜1,𝑖 ≳𝑖 𝑜1,𝑖    

≡ ∀𝑖 ∈ 𝜇1:  𝑜1,𝑖 ≳𝑖 𝑥1,𝑖    

2)  𝑦1 ↶ o1 ≳𝑃 𝑥2 ↶ 𝑦1 ↶ 𝑜1  

≡

 

 
 

∀𝑖 ∈  𝜇1 ∖ 𝜇2 :  𝑦1,𝑖 ≳𝑖 𝑦1,𝑖 

∧ ∀𝑖 ∈  𝜇1 ∩ 𝜇2 :  𝑦1,𝑖 ≳𝑖  𝑥2,𝑖 

∧ ∀𝑖 ∈  𝜇2 ∖ 𝜇1 :  𝑜1,𝑖 ≳𝑖  𝑥2,𝑖 

∧ ∀𝑖 ∈  𝜇1 ∪ 𝜇2           :  𝑜1,𝑖 ≳𝑖  𝑜1,𝑖  

 
 

 

≡  
∀𝑖 ∈  𝜇1 ∩ 𝜇2 :  𝑦1,𝑖 ≳𝑖  𝑥2,𝑖 

∧ ∀𝑖 ∈  𝜇2 ∖ 𝜇1 :  𝑜1,𝑖 ≳𝑖  𝑥2,𝑖 
    

3) (𝑦2 ↶ 𝑦1 ↶ 𝑜1 ≳𝑃 𝑜2) 

≡  

∀𝑖 ∈  𝜇1 ∖ 𝜇2 :  𝑦1,𝑖 ≳𝑖 𝑜2,𝑖 

∧ ∀𝑖 ∈ 𝜇2:  𝑦2,𝑖 ≳𝑖 𝑜2,𝑖 

∧ ∀𝑖 ∈  𝜇1 ∪ 𝜇2           :  𝑜1,𝑖 ≳𝑖 𝑜2,𝑖 

                     ■ 

 

 

2.2.3 Integrating Trade-Off Chains into Single 

Trade-offs 
When examining the previous example more closely, it can be 

observed that the comparisons between components of 𝑡1 and 𝑡2 

are independent of 𝑜1 and 𝑜2, i.e. the fact whether two trade-offs 

can be applied in sequence or not and which effects they have on 

object comparisons can be pre-computed independently of the 

database content. More generally, any valid trade-off sequence 

can be understood and handled as a single trade-off by checking 

for applicability and then combining the respective components. 

For example, trade-off sequence 𝑡1 ∘ 𝑡2 acts like a single trade-off 

𝑡1∘2 ≔ (($18000, 𝑏𝑙𝑢𝑒 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐, 𝑎/𝑐) ⊳ 
($16000, 𝑏𝑙𝑢𝑒 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐, 𝑛𝑜 𝑎/𝑐)), i.e. instead of testing 

𝑜1 >𝑇 𝑜2 with respect to the sequence 𝑡1 ∘ 𝑡2, also 𝑜1 >𝑇 𝑜2 with 

respect to the integrated trade-off 𝑡1∘2 could be tested.  

This new trade-off 𝑡1∘2 is defined as following: 

 

 

Figure 7. 𝒐𝟏 >𝑻 𝒐𝟐 with two trade-offs 𝒕𝟏 ∘ 𝒕𝟐 
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Figure 6: 𝒐𝟏 >𝐓 𝒐𝟐 with trade-off 

   $𝟏𝟖𝟎𝟎𝟎, 𝒃𝒍𝒖𝒆 𝒎𝒆𝒕𝒂𝒍𝒍𝒊𝒄  ⊳   $𝟏𝟔𝟎𝟎𝟎, 𝒃𝒍𝒖𝒆   
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Definition 5: trade-off integration 

Assume that 𝑡1 ≔ (𝑥1 ⊳ y1) on 𝜇1, and 𝑡2 ≔ (𝑥2 ⊳ y2) on 𝜇2, 

and 𝑡1 and 𝑡2 can be applied in sequence, i.e. . ∀𝑖 ∈  𝜇1 ∩

𝜇2 :  𝑦1,𝑖 ≳𝑖  𝑥2,𝑖 . Then a new trade-off 𝑡1∘2 can be defined 

which is equivalent with respect to object domination to the trade-

off sequence 𝑡1 ∘ 𝑡2. This integrated trade-off is given by:  

             If  ∀𝑖 ∈  𝜇1 ∩ 𝜇2  holds  𝑦1,𝑖 ≳𝑖  𝑥2,𝑖  then 

          𝑡1∘2 ≔ ( 𝑥1 ↶ 𝑥2 ⊳  y2 ↶ 𝑦1 )                        

Theorem 1: Integrating trade-off sequences into a single 

trade-off does not affect subsequent skyline computation. 

Proof (sketch): First consider the integration of two trade-offs: 

assume 𝑡1∘2 as a single trade-off 𝑡3 and use the domination crite-

rion for a single trade-off as given by Proposition 1. This can be 

transformed to be equivalent to the component-wise domination 

criterion for two trade-offs as given by Proposition 2: 

𝑜1 >T 𝑜2 with respect to 𝑡3 ≔ 𝑡1∘2 is given by Proposition 1 

(cont.) as:  𝑜1 >T  𝑜2 ≡   𝑜1 ≳𝑃  𝑥3 ↶ 𝑜1 ∧  𝑦3 ↶ o1 ≳𝑃 𝑜2   

Replace 𝑥3 and 𝑦3 with their definition as given by Definition 5 

≡   𝑜1 ≳𝑃  (𝑥1 ↶ 𝑥2) ↶ 𝑜1 ∧  (y2 ↶ 𝑦1) ↶ o1 ≳𝑃 𝑜2   
Transform both clauses to component-wise comparisons: 

 𝑜1 ≳𝑃  (𝑥1 ↶ 𝑥2) ↶ 𝑜1 ≡  

∀𝑖 ∈ 𝜇1:  𝑜1,𝑖 ≳𝑖 𝑥1,𝑖  

∧ ∀𝑖 ∈  𝜇2 ∖ 𝜇1 :  𝑜1,𝑖 ≳𝑖  𝑥2,𝑖 

∧ ∀𝑖 ∈ 𝜇1   :  𝑜1,𝑖 ≳𝑖 𝑜1,𝑖 

  

 (y2 ↶ 𝑦1) ↶ o1 ≳𝑃 𝑜2 ≡  

∀𝑖 ∈  𝜇1 ∖ 𝜇2 :  𝑦1,𝑖 ≳𝑖 𝑜2,𝑖 

∧ ∀𝑖 ∈ 𝜇2:  𝑦2,𝑖 ≳𝑖 𝑜2,𝑖 

∧ ∀𝑖 ∈  𝜇1 ∪ 𝜇2           :  𝑜1,𝑖 ≳𝑖 𝑜2,𝑖 

  

Additionally, ∀𝑖 ∈  𝜇1 ∩ 𝜇2 :  𝑦1,𝑖 ≳𝑖  𝑥2,𝑖  holds, since we as-

sumed the existence of the trade-off chain to form 𝑡1∘2. Thus, all 

six terms (and no additional ones) of the original Proposition 2 

have been derived. The theorem then follows by induction over 

the numbers of trade-offs in the sequence.                                 ■ 

3. THE TRADE-OFF SKYLINE 
In this section, we present the baseline algorithm for computing a 

trade-off skyline and introduce a basic tree-shaped representation 

structure for materializing trade-off chains.  

3.1 A Basic Trade-Off Skyline Algorithm 
Obviously a trade-off skyline is a subset of the original Pareto 

skyline (as the definition of 𝑜1 >𝑇 𝑜2 includes 𝑜1 >𝑃 𝑜2). Thus, a 

basic algorithm may first compute the Pareto skyline (by any one 

of the many popular algorithms) and then filter all additional 

objects which are dominated by another object via any trade-off 

sequence. Please note that this second domination check is much 

more expensive than the simple check for Pareto domination, thus 

interleaving Pareto and trade-off dominance checks generally 

leads to inferior performance. Checking the domination between 

objects with respect to trade-off sequences can be summarized as: 

 Generate all integrated trade-offs representing all possi-

ble trade-off sequences 

  𝑜1 >𝑇 𝑜2 holds, if applying any of the integrated trade-

offs leads to an domination relationship 

When using the nested loop approach (as introduced by [11]), this 

results in the following basic algorithm:  

 

Algorithm 1: Basic Trade-Off Skyline Computation: 

Parameters:  

 Database relation 𝑅 on 𝑛 attributes 𝐴1, … , 𝐴𝑛  

 Attribute preferences 𝑃1, … , 𝑃n  

 Set of trade-offs 𝑇 

Algorithm: 

1. Compute Pareto skyline 𝑠𝑘𝑦 with given database 𝑅 and prefe-

rences 𝑃1, … , 𝑃n  
2. Generate the set off all possible integrated trade-offs 𝑇′ 
3. For all 𝑜1 ∈ 𝑠𝑘𝑦: 

3.1. For all 𝑜2 ∈ 𝑠𝑘𝑦 ∧ 𝑜2 ≠ 𝑜1: 
3.1.1. If 𝑜1 >𝑇 𝑜2 (tested using Algorithm 2) 

3.1.1.1. Remove 𝑜2 from 𝑠𝑘𝑦 
 

Algorithm 2: Basic Object Domination Test >𝑻 

Parameters:  

 Database objects 𝑜1 and 𝑜2 

 All possible integrated trade-offs 𝑇′ 

Returns: 𝑡𝑟𝑢𝑒 if 𝑜1 >𝑇 𝑜2, 𝑓𝑎𝑙𝑠𝑒 otherwise 

Algorithm: 

1. For all trade-offs 𝑡𝑖 ≔ (𝑥 ⊳ 𝑦) ∈ 𝑇′ 

1.1. If   𝑜1 ≳𝑃  𝑥 ↶ 𝑜1 ∧  𝑦 ↶ o1 ≳𝑃 𝑜2   return 𝑡𝑟𝑢𝑒  

  (i.e.: 𝑜1 dominates 𝑜2 via 𝑡𝑖 , see Proposition 1 (cont.)) 

2. Return 𝑓𝑎𝑙𝑠𝑒 

 

The requirement for the set 𝑇′ is that each integrated trade-off 

(representing some trade-off sequence) for a given set of basic 

trade-offs 𝑇 is contained. While those sequences may only consist 

of |𝑇| different trade-offs, they may have arbitrary length (i.e. the 

same trade-off may appear even multiple times in a sequence) as 

long as each directly adjacent trade-off pair 𝑡𝑗  and 𝑡𝑗+1 in that 

sequence fulfills the sequencing condition ∀𝑖 ∈ (𝜇j ∩ 𝜇j+1) ∶

 𝑦j,𝑖 ≳𝑖  𝑥j+1,𝑖 . Please note that sequences of unlimited length 

can only occur for inconsistent trade-off sets which can be effi-

ciently tested and excluded before skyline computation (see [14] 

for theoretical results on possible sequence patterns, sequence 

finiteness, and the consistency test), thus the length of each trade-

off sequence and the number of sequences are both finite. 

Obviously, simply generating and testing all these integrated 

trade-offs without further optimizations is not very efficient. Thus, 

in the following we introduce a compact representation for per-

forming these tests with the minimal possible efforts.  

3.2 Representing Trade-Off Sequences 
The idea is to incrementally create a tree structure (called trading 

tree (𝑇𝑇𝑟𝑒𝑒) in the following) enumerating all currently possible 

trade-off sequences (represented by integrated trade-offs). In its 

basic version, the tree structure does not provide significant ad-

vantages over a simple list of all integrated trade-offs. However, 

the tree structure will enable our optimizations in section 3.3. 

Each node of the tree denotes a trade-off, which is either a user 

provided trade-off or some integrated trade-off representing a 

trade-off sequence (as described in Definition 5). Initially, the tree 

starts with a single, empty root trade-off 𝑡∅: = (   ⊳    ) with 

empty 𝜇∅: = ∅, i.e. nothing is traded. Then, trade-offs are inserted 

one by one from the set of all user trade-offs 𝑇. To complete the 
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tree, for each existing node we test whether the trade-off sequence 

it represents can be extended with the newly inserted user trade-

off (the root can always be extended, i.e. 𝑡∅ ∘ 𝑡𝑖 = 𝑡𝑖). Also, every 

newly created node needs to be extended with all previously 

inserted trade-offs if possible: 

Algorithm 3: Basic Algorithm for Trading Tree creation: 

Parameters:  

 Attribute preferences 𝑃1, … , 𝑃n  

 Set of trade-offs 𝑇 

Returns: A tree containing all integrated trade-offs possible with 

trade-off set 𝑇 and attribute preferences 𝑃1, … , 𝑃n  

Algorithm: 

1. 𝑇𝑇𝑟𝑒𝑒: = {𝑡∅} 
2. 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑𝑇: = ∅ 
3. For each user trade-off 𝑡𝑖 ≔ (𝑥1 ⊳ 𝑦1) ∈ 𝑇 

3.1. 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑𝑇 ≔ 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑𝑇 ∪ 𝑡𝑖 ;   𝑛𝑒𝑤𝑛𝑜𝑑𝑒𝑠 = ∅; 
3.2. For each existing tree node 𝑡𝑜 ∈ 𝑇𝑇𝑟𝑒𝑒 

3.2.1. Test whether 𝑡𝑜 ∘ 𝑡𝑖  is possible, i.e.: ∀𝑖 ∈ (𝜇1 ∩ 𝜇2) ∶

 𝑦1,𝑖 ≳𝑖  𝑥2,𝑖  

3.2.1.1. Create integrated trade-off 𝑡𝑜∘𝑖  and add to 

𝑇𝑇𝑟𝑒𝑒 by attaching to 𝑡𝑜  
3.2.1.2. Add 𝑡𝑜∘𝑖  to 𝑛𝑒𝑤𝑛𝑜𝑑𝑒𝑠 

3.3. For each newly created node 𝑡𝑛 ∈ 𝑛𝑒𝑤𝑛𝑜𝑑𝑒𝑠  
3.3.1. For each user trade-off 𝑡𝑢 ∈ 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑𝑇 

3.3.1.1. If  𝑡𝑛 ∘ 𝑡𝑢  is possible, i.e.: ∀𝑖 ∈ (𝜇n ∩ 𝜇u ) ∶

 𝑦n,𝑖 ≳𝑖  𝑥u,𝑖  

3.3.1.1.1. Create integrated trade-off 𝑡𝑛∘𝑢  and add to 

𝑇𝑇𝑟𝑒𝑒 by attaching to 𝑡𝑛  
3.3.1.1.2. Add 𝑡𝑛∘𝑢  to 𝑛𝑒𝑤𝑛𝑜𝑑𝑒𝑠 

 

As an example, consider the trade-offs 𝑡1 and 𝑡2 on {price, color} 

and {color, air conditioning} from above: 

𝑡1 =   $18000, 𝑏𝑙𝑢𝑒 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐  ⊳   $16000, 𝑏𝑙𝑢𝑒     

𝑡2 =   𝑏𝑙𝑢𝑒, 𝑎/𝑐  ⊳    𝑏𝑙𝑢𝑒 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐, 𝑛𝑜 𝑎/𝑐   

Let us insert 𝑡1 first and directly attach it to the root (see Figure 

8). The integrated trade-off 𝑡1∘1 is obviously not possible (but 

would directly result in a cyclic inconsistency). 

 

Next, 𝑡2 is inserted and also attached to the root. Now, the node 𝑡1 

has to be tested whether it can be extended, i.e. if a trade-off 

sequence 𝑡1 ∘ 𝑡2 is possible (c.f. Proposition 2). In our case, it is 

possible and thus the node 𝑡1∘2 is created as an integrated trade-

off (see Definition 5). Since the node 𝑡1∘2 is new, we still have to 

test whether this sequence can be extended to either form 𝑡1 ∘ 𝑡2 ∘
𝑡1 or 𝑡1 ∘ 𝑡2 ∘ 𝑡2, but evaluating the conditions only the first case 

is possible. The same procedure is also applied to the newly ap-

pended leaf node 𝑡2. The resulting TTree is shown in figure 9. 

 

 

Now, consider a third trade-off: 

𝑡3 ≔   $15000, 100 𝐻𝑃  ⊳   $14000, 80 𝐻𝑃  . 

This trade-off can, for example, be applied in sequence with 𝑡2, 

allowing the sequence 𝑡2 ∘ 𝑡3. It cannot, however, be integrated 

with 𝑡1 (thus neither 𝑡1 ∘ 𝑡3 nor 𝑡2 ∘ 𝑡1 ∘ 𝑡3 is possible). Consider-

ing all possibilities, this results in the following tree (Figure 10): 

 

It can also be observed that each node within a branch represents 

an integrated trade-off sequence extending the sequences of all its 

ancestors. Still, each integrated trade-off has two distinct compo-

nents: an upper part (called 𝑦 in Figure 2) and a lower part (called 

𝑥 in Figure 2). When comparing the individual components of a 

node to the components of any of its ancestors, it can be observed 

that the complete values of any ancestor‟s upper part are by con-

struction also contained in the upper part component of all its 

descendents (this directly follows from the definition of integrated 

trade-offs (Definition 5) and the merge-operation (Definition 4)). 

Thus, for each trade-off integrated into some existing trade-off, 

the ancestor‟s upper part component is only extended by values 

for previously undefined attributes. As soon as all attributes have 

been defined, the upper part component of all trade-offs in a 

branch becomes stable; integrating additional trade-offs into it, 

has no effects anymore. Thus, it is possible to store just the lower 

part component of trade-offs in the 𝑇𝑇𝑟𝑒𝑒 in order to save memo-

ry, and just link the first component from the respective parent. 

To integrate the trading tree into the basic skyline algorithm, 

Algorithm 3 has to be used in Algorithm 1 for computing all 

trade-off sequences, and the nodes of the tree are treated as the set 

of possible trade-offs.  

3.3 Removing Redundancy from the Tree 
Although the previously described 𝑇𝑇𝑟𝑒𝑒 allows for systematical-

ly generating all possible trade-off relationships, it still tends to 

grow rather large. But taking a closer look, it still contains a lot of 

redundant information severely hampering the performance of 

domination check operations. In the following, we exploit some 

structural properties of the 𝑇𝑇𝑟𝑒𝑒 to remove all redundancies with 

respect to object domination.  

For example, considering the sample tree in the previous section, 

it contains both integrated trade-offs 𝑡2∘3 and 𝑡3∘2. However, both 

of these trade-offs are identical, i.e.: 𝑡2∘3 = 𝑡3∘2 ∶= ($15000,
100 𝐻𝑃, 𝑏𝑙𝑢𝑒, 𝑎/𝑐) ⊳ ($14000, 80 𝐻𝑃, 𝑏𝑙𝑢𝑒 𝑚𝑒𝑡., 𝑛𝑜 𝑎/𝑐).1 

Obviously, with respect to testing whether 𝑜1 >𝑇 𝑜2 either one of 

the two integrated trade-offs would do, whereas the other one is 

redundant. Also, any future extension which can be applied to 

                                                                 
1 Please note, that due to the not commutative merging operation 

also the integration of trade-offs is generally not commutative, 

but here the trade-offs are identical because 𝜇2 ∩ 𝜇3 =  ∅.  

 

Figure 10.  Basic TTree for 𝑻 = {𝒕𝟏, 𝒕𝟐, 𝒕𝟑} 
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Figure 9.  Basic TTree for 𝑻: = {𝒕𝟏, 𝒕𝟐} 
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either trade-off, could also be applied to the other one. Thus, it is 

valid to completely remove either node without any loss of the 

𝑇𝑇𝑟𝑒𝑒‟s functionality. 

Actually, the case of two trade-offs being identical is just a special 

case of the more general concept of trade-offs subsuming other 

trade-offs. A trade-off 𝑡1 is said to be subsumed by another trade-

off 𝑡2, written as 𝑡1 ⊆ 𝑡2, if whenever a domination relationship 

𝑜1 >𝑇 𝑜2 established by using any trade-off sequence containing 

𝑡1, holds, there is also a domination relationship using a trade-off 

sequence containing 𝑡2. This can be interpreted as 𝑡2 being „more 

general‟ or „broader‟ than 𝑡1. In particular, 𝑡2 can act as 𝑡1‟s proxy 

without any loss of information with respect to the domination 

between objects. Thus, 𝑡1 can completely be removed from the 

tree, as long as 𝑡2 is still present. Formally, the criterion for sub-

sumption is given by the following: 

Definition 6: subsumption criterion for 𝒕𝟏 ⊆ 𝒕𝟐: 

For two trade-offs 𝑡1 ≔ (𝑥1 ⊳ 𝑦1) and 𝑡2 ≔ (𝑥2 ⊳ 𝑦2),  

𝑡1 ⊆ 𝑡2, iff  𝑥1 ≥𝑃  𝑥2 ↶ 𝑥1  ∧   𝑦2 ↶ 𝑦1 ≥𝑃 𝑦1  ∧ 𝜇2 ⊆ 𝜇1 

For visualization, consider Figure 11: 

 

The correctness of the subsumption criterion is easy to see consi-

dering the above visualization for 𝑡1 ⊆ 𝑡2: Every time 𝑜1 >𝑇 𝑜2 

via 𝑡1 holds, then domination relationship also holds via the less 

restrictive 𝑡2, i.e. ∀𝑖 ∈ 𝜇1: ((𝑜1 ≥𝑖 𝑥1) ∧ (𝑦1 ≥𝑖 𝑜2))  ⟹
 ∀𝑖 ∈ 𝜇2: ((𝑜1 ≥𝑖 𝑥2) ∧ (𝑦2 ≥𝑖 𝑜2)) is true, iff 𝑡1 ⊆ 𝑡2.  

As an example, consider following trade-offs: 

𝑡1 =   $18000, 𝑏𝑙𝑢𝑒 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐  ⊳   $16000, 𝑏𝑙𝑢𝑒    

𝑡4 =   $19000, 𝑏𝑙𝑢𝑒 𝑚𝑒𝑡𝑎𝑙𝑙𝑖𝑐  ⊳   $15000, 𝑏𝑙𝑢𝑒    

Then, 𝑡1 ⊆ 𝑡4 because $18000 ≥𝑝𝑟𝑖𝑐𝑒 $19000 and 

$15000 ≥𝑝𝑟𝑖𝑐𝑒 $19000 holds (again, don‟t be confused here: the 

cheaper a car, the better it is, hence 𝑐ℎ𝑒𝑎𝑝 ≥𝑝𝑟𝑖𝑐𝑒 𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒) 

and the color attributes is identical within both trade-offs. This 

means that 𝑡4 is less restrictive than 𝑡1, or in other words: any 

object dominations that can be established via 𝑡1 could also be 

established via 𝑡4. Unlike in our previous example where two 

trade-offs are identical (i.e. subsuming each other), this is not the 

case here. For example, consider a blue-metallic car 𝑜1 for $18500 

and a blue car 𝑜2 for $15500 with 𝑜1 being more desirable than 𝑜2 

with respect to horsepower and air-condition dimensions. Then, 

𝑜1 >𝑇 𝑜2 via 𝑡4, but not via 𝑡1. (see Figure 12). 

Furthermore, this concept also extends to integrated trade-off 

sequences: any sequence possible with the subsumed trade-off 

𝑡1 is also possible with 𝑡4. To better understand this fact, consider 

an trade-off 𝑡5 such that 𝑡1∘5 is possible, i.e. ∀𝑖 ∈  𝜇1 ∩ 𝜇5  ∶

 𝑦1,𝑖 ≳𝑖  𝑥5,𝑖 . Then also 𝑡4∘5 can be created, as it requires ∀𝑖 ∈

 𝜇4 ∩ 𝜇5  ∶   𝑦4,𝑖 ≳𝑖  𝑥5,𝑖  and this is always true as 𝜇4 ⊆ 𝜇1 and 

∀𝑖 ∈ 𝜇4:  𝑦4,𝑖 ≳𝑖 𝑦1,𝑖  per Definition 6. 

To account also for subsumption, Algorithm 3 needs to be ex-

tended in the following way: for new each node 𝑡𝑛  which is 

created check, whether it is subsumed by or does subsume any 

node already present in the tree. If it is subsumed by an existing 

node, discard 𝑡𝑛  as it does not provide any additional information. 

If 𝑡𝑛  does subsume an already existing node 𝑡𝑜 , discard 𝑡𝑜  and all 

its children (because 𝑡𝑛  will express all domination relationships 

previously handled by 𝑡𝑜). Picking up the example started in the 

previous section in Figure 10, the trade-off 𝑡3∘2 would have never 

been created as it is subsumed by 𝑡2∘3 (Figure 13).  

 

 

 

Figure 14.  TTree for 𝑻 = {𝒕𝟏, 𝒕𝟐, 𝒕𝟑, 𝒕𝟒} with subsumption 
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Figure 13.  TTree for 𝑻 = {𝒕𝟏, 𝒕𝟐, 𝒕𝟑} with subsumption 
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Figure 12.  Subsumption 𝒕𝟏 ⊆ 𝒕𝟒   
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When adding 𝒕𝟒, the algorithm deduces that it subsumes 𝒕𝟏 and 

thus 𝒕𝟏‟s complete subtree is removed, resulting in the tree illu-

strated in Figure 14 (please note that for the sake of clarity, the 

tree was illustrated after 𝒕𝟒 was attached to the root and expanded 

but before it was attached to either 𝒕𝟐 or 𝒕𝟑).  

The supsumption extension of Algorithm 3 can be achieved by 

replacing the code block in step 3.3 with the following: 

Algorithm 4: Extension for Reducing Tree Redundancy 

3.3. For each newly created node 𝑡𝑛 ∈ 𝑛𝑒𝑤𝑛𝑜𝑑𝑒𝑠  
3.3.1. For each existing tree node 𝑡𝑜 ∈ 𝑇𝑇𝑟𝑒𝑒 

3.3.1.1. If  𝑡𝑛 ⊆ 𝑡𝑜  
3.3.1.1.1. Remove 𝑡𝑛  from 𝑛𝑒𝑤𝑛𝑜𝑑𝑒𝑠 and from 

𝑇𝑇𝑟𝑒𝑒 
3.3.1.1.2. Continue with 3.3 

3.3.1.2. If  𝑡𝑜 ⊆ 𝑡𝑛  
3.3.1.2.1. Remove 𝑡𝑜  and all its descendants from 𝑇𝑇 

3.3.2. For each user trade-off 𝑡𝑢 ∈ 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑𝑇 
3.3.2.1. If 𝑡𝑛 ∘ 𝑡𝑢  is possible,  i.e.: ∀𝑖 ∈ (𝜇n ∩ 𝜇u ) ∶

 𝑦n,𝑖 ≳𝑖  𝑥u,𝑖  
3.3.2.1.1. Create integrated trade-off 𝑡𝑛∘𝑢  and add to 

𝑇𝑇 by attaching to 𝑡𝑛  
3.3.2.1.2. Add 𝑡𝑛∘𝑢  to 𝑛𝑒𝑤𝑛𝑜𝑑𝑒𝑠 

3.4 Indexing for Improved Match-Making 
When testing whether 𝑜1 >𝑇 𝑜2 as described previously in Algo-

rithm 2, all possible trade-off sequences are tested one by one to 

check, if any of them establishes a domination relationship be-

tween 𝑜1 and 𝑜2. In the worst case, this means that 𝑎𝑙𝑙 sequences 

are tested, e.g. in the quite usual case that there is no trade-off 

domination between the two objects and both remain in the trade-

off skyline. Obviously this is not very efficient. An approach to 

remedy this problem is to check only those trade-off sequences 

which potentially could establish a domination relationship, while 

ignoring those which definitely cannot do so. A simple heuristic 

for implementing this idea is to first determine all trade-offs in 𝑇 

which potentially may dominate 𝑜2 (independently of 𝑜1), i.e. 

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑛𝑑 ≔  𝑡 ≔ (𝑥 ⊳ 𝑦) ∈ 𝑇   ∀𝑖 ∈ 𝜇:  𝑦𝑖 ≳𝑖 𝑜2,𝑖}. Then, 

only those integrated trade-offs (i.e. sequences) in the trading tree 

can be selected for subsequent domination checks ending with one 

of these potentially applicable trade-offs. Due to construction of 

the integrated trade-offs, their respective lower part components 

always contain the attribute values of the lower component of the 

last trade-off in the respective sequence, see Definition 5. There-

fore, any integrated trade-off which does not fulfill the 

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑛𝑑-condition (∀𝑖 ∈ 𝜇 ∶  𝑦𝑖 ≳𝑖 𝑜2,𝑖), thus has no chance 

to dominate 𝑜2 (cf. Proposition 1). For selecting all integrated 

trade-offs ending with a potentially applicable trade-off identified 

in 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑛𝑑, a simple index (e.g., hash table) can be used. 

Then, only the selected trade-off sequences will be tested for 

establishing a domination relationship between 𝑜1 and 𝑜2. We will 

refer to this method as 1-way-indexing of the trading tree. 

Moreover, the same argumentation can also be applied for the first 

trade-off in each trade-off sequence: identify all those objects 

which may potentially dominate any (simple or integrated) trade-

off, that means 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑟𝑡 ≔  𝑡 ≔ (𝑥 ⊳ 𝑦) ∈ 𝑇   ∀𝑖 ∈ 𝜇𝑖 ∶
𝑜1,𝑖 >𝑖 𝑥𝑖}. Thus, if out of all sequences ending with any 𝑡𝑖 ∈

 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑛𝑑, only those starting with any 𝑡𝑗 ∈ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑟𝑡 

are selected for dominance testing, no domination information is 

lost. This selection can actually be performed quite efficiently, if 

two indexes are folded into each other (a 2-dimensional index). 

Then, for establishing 𝑜1 >𝑇 𝑜2 only the selected sequences have 

to be tested. We will refer to this approach as 2-way-indexing.  

Assuming that all sequences in the trading tree have been indexed 

by their respective last and first trade-off, Algorithm 5 may be 

used for determining 𝑜1 >𝑇 𝑜2 instead of the basic Algorithm 2.  

Algorithm 5: Object Domination >𝑻 with 2-way-indexing: 

Parameters:  

 Database objects 𝑜1 and 𝑜2 

 All possible integrated trade-offs 𝐼𝑇, i.e. the set of nodes 

of 𝑇𝑇𝑟𝑒𝑒 

 Index 𝐼 on all trade-offs in 𝐼𝑇 by sequence end trade-off 

and sequence start trade-off, i.e. 𝐼(𝑡𝑒𝑛𝑑 , 𝑡𝑠𝑡𝑎𝑟𝑡 ) 

Returns: 𝑡𝑟𝑢𝑒 if 𝑜1 >𝑇 𝑜2, 𝑓𝑎𝑙𝑠𝑒 otherwise 

Algorithm: 

1. 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑟𝑡 ≔  𝑡 ≔ (𝑥 ⊳ 𝑦) ∈ 𝑇   ∀𝑖 ∈ 𝜇: 𝑜1,𝑖 >𝑖 𝑥𝑖} 

2. 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑛𝑑 ≔  𝑡 ≔ (𝑥 ⊳ 𝑦) ∈ 𝑇   ∀𝑖 ∈ 𝜇:  𝑦𝑖 >𝑖 𝑜2,𝑖} 

3. 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑇: = ∅ 
4. For all 𝑡𝑒 ∈ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝐸𝑛𝑑 

4.1. For all 𝑡𝑠 ∈ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑟𝑡 
4.1.1. 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑇 = 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑇 ∪  𝐼(𝑡𝑒 , 𝑡𝑠) 

5. For all  𝑡 ≔ (𝑥 ⊳ 𝑦) ∈ 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑇  

5.1. If   𝑜1 ≳𝑃  𝑥 ↶ 𝑜1 ∧  𝑦 ↶ o1 ≳𝑃 𝑜2   return 𝑡𝑟𝑢𝑒  

  (i.e.: 𝑜1 dominates 𝑜2 via 𝑡, see Proposition ) 

6. Return 𝑓𝑎𝑙𝑠𝑒 

3.5 Correctness of the Pruned Tree 
In this section, we will briefly discuss the correctness of the 

pruned trading tree for improved skyline computation efficiency 

by looking at its completeness and minimality. 

Algorithm 3 will incrementally insert user-provided trade-offs 

into the 𝑇𝑇𝑟𝑒𝑒 structure and test for each individual trade-off 

whether it may prolong any already existing sequence (which will 

result in creating a new node). For any newly created node, it then 

also has to be checked whether any of the already known user 

trade-offs can prolong the sequence. This might create a new node 

which, in turn, is also checked, if it can be prolonged by any user 

trade-off, and so on. As previously discussed, endless sequences 

are not possible, and also the number of sequences is finite. Thus, 

each newly created node is recursively prolonged as far as the 

current set of trade-offs allows and a new trade-off will also ex-

pand recursively any existing node whenever possible (which then 

also are prolonged). Up to this point, the tree is complete (and 

basically enumerating all possibilities). However, when adding 

subsumption constraints, for each newly created node Algorithm 4 

checks whether there is any subsumption relationship between the 

new node and any other existing node. But as we have argued in 

section 3.3, any object domination relationship which was possi-

ble with the subsumed (less general) trade-off is also possible with 

the subsuming (more general) trade-off. Furthermore, this is also 

true for integrated trade-off sequences: as the subsuming trade-off 

is more general, it will form at least all those sequences which 

could also be formed with the subsumed trade-off. Thus, the 

pruned tree still remains complete with respect to the object domi-

nation, if new trade-offs are added. 

Following up on the example that was given in Figure 12, it can 

be shown that the tree resulting after subsumption is indeed re-

dundancy free, i.e. the removal of any additional integrated trade-

off will inevitably result in an incomplete set of domination crite-
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ria (thus, some object domination relationships cannot be discov-

ered anymore). The formal proof by induction over the tree size is 

relatively straightforward to perform, and is omitted for brevity 

reasons.  

4. EXPERIMENTAL EVALUATIONS 
In this section, we first perform a quantitative evaluation of the 

performance of our algorithmic features using synthetic perfor-

mance tests. In particular we show the manageability of our 

𝑇𝑇𝑟𝑒𝑒 data structure and the considerable performance gain by 

our indexing scheme. To investigate the real life use of our trade-

off skylines, we then perform a qualitative analysis on trade-off 

interactions with real-world datasets and show how using only a 

small number of trade-offs can significantly reduce skyline sizes. 

Finally, we show that also the run-times of our trade-off skyline 

algorithm scale well for large datasets. 

All our experiments were executed on a simple notebook comput-

er featuring an Intel Core 2 Duo 2.33 GHz CPU with 4.0 GB 

RAM and Sun Java 6.  

4.1 Trading Tree Size 
For each evaluation on synthetic datasets, we randomly generated 

sets of consistent trade-offs to be integrated. The underlying 

database relation has 6 attributes with domains of about 20 dis-

tinct values each (based on values often occurring in e-commerce 

settings). Trade-offs are chosen randomly on two to four of those 

attributes. As default, up to 10 trade-offs are used per set (which is 

already quite a lot considering that trade-offs have to be elicited 

individually from the user).  

In our first evaluation, 10,000 consistent trade-off sets are gener-

ated and the respective trading trees are constructed without sub-

sumption and with subsumption. We measured the tree sizes (i.e. 

number of tree nodes) and analyzed them according to different 

percentage quantiles (e.g. “2%-quantile = 139” means 2% of all 

trees are smaller than 139 nodes). The measured results can be 

found in Table 1 and Figure 16. Looking at the first few quantiles, 

the advantage of subsumption are not too pronounced. However, 

subsumption really takes off for large-sized trees (which usually 

involves a lot of redundancy). Thus, the average size for trading 

trees with subsumption is just about half of the average size of 

trees without subsumption (46%). This size difference will later 

manifest itself in a significant performance advantage, when the 

𝑇𝑇𝑟𝑒𝑒 structure is used for actual skyline computation.  

Table 1: Percentage quantiles of trading tree sizes with (w.s.) 

and without (wo.s.) subsumption. 

T-Tree 2% 25% Median 75% 98% Mean 

w/o.s. 139 445 1006 2696 49812 6364 

w.s. 126 388 830 2029 27163 2929 

 

4.2 Comparison Speed-Up Using Indexes 
In this experiment, we also used the trade-off sets from the pre-

vious evaluation and tested the pure performance of object domi-

nation tests: “ 𝑜𝑖 >𝑇 𝑜𝑗 ?”. For each trade-off set 10,000 pairs of 

skyline objects (i.e. pairwise Pareto incomparable) were generated 

and checked for dominance with respect to the trade-off set. For 

each object pair, we used the basic algorithm (Algorithm 2), an 

algorithm with 1-way-indexing, and the algorithm for 2-way-

indexing (Algorithm 5), each with trading trees with and without 

subsumption respectively. The measured values, as shown in 

Figure 16 and Table 2, have been normalized to reflect compari-

sons per second, thus larger numbers indicate more efficient 

algorithms. It is clearly visible that for all algorithms using trading 

trees with subsumption are roughly performing 2.5 times as fast as 

those without. Also, the effect of sequence indexing within the 

tree is very strong: Using 1-way-indexing in contrast to the basic 

algorithm results into roughly 8 times increased performance, 

while using 2-way-indexing grants an additional increase by more 

than 6 times, i.e. on average 50 times faster than the baseline. 

4.3 Computing Trade-Off Skylines 
To showcase the effect of trade-offs on the skyline size reduction, 

as well as the practical run-times, we actually computed some 

trade-off skylines using two typical real world datasets. Our real 

 

Figure 15.  TTree size without and with subsumption 

 

 

Figure16.  Domination checks per second for all algorithms: 

No Hashing (NH), 1-Way-Indexing (1I), 2-Way-Indexing (2I) 

(all algorithms are shown without and with subsumption (S-)) 

 

Table 2: Object comparison per second 

 Basic 1-Way-Index 2-Way-Index 

T-Tree wo.s. w.s. wo.s. w.s. wo.s. w.s. 

2% 280 1,190 2,090 8,859 14,063 60,335 

25% 439 1,393 3,563 11,521 23,602 73,346 

Median 479 1,448 3,840 12,177 26,217 76,740 

75% 524 1,495 4,207 12,806 30,315 82,719 

98% 2,717 3,755 25,566 46,554 137,874 166,196 

mean 590 1,573 4,987 13,760 32,441 82,189 
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world sets are genuine E-commerce data crawled in August 2009 

and contain 998 notebook offers (http://www.shopping.com) and 

1,350 real estate offers from the German city of Hamburg 

(http://www.immobilienscout24.de), respectively. 

The following evaluations can only be of a qualitative nature as 

trade-offs need to be semantically meaningful within their domain 

in order to be effective. In contrast arbitrarily chosen trade-offs 

(like used for the quantitative measurements) will rarely have 

useful effects on the actual skyline size. As the problem of sug-

gesting and eliciting suitable trade-offs (see e.g. recent work on 

example critiquing) is beyond the scope of this work, we simply 

show that by even using very basic and straightforward heuristics, 

already significant reductions in skyline size are possible.  

The base idea of most trade-off suggestion algorithms is to reduce 

incomparability induced by a high degree of anti-correlation 

between two attributes and their respective correlated attributes. 

Consider our notebook dataset which features the following six 

numerical attributes: CPU speed, ram capacity, hard drive capaci-

ty, screen size, weight, and price. Based on the data, trade-offs can 

be straightforwardly suggested as follows: First, the two attributes 

with the strongest degree of anti-correlation are determined and 

their respective domain values are clustered. The attribute which 

shows clusters with a higher degree of separation and inner cohe-

sion is selected as main attribute. Then the centroid values of the 

larger clusters form the base of one half of the suggested trade-

offs, e.g. for notebooks the main attribute is screen size with 15”, 

14.1”, 13.3”, etc as clusters. These trade-offs‟ components are 

then expanded by the cluster‟s average values of all attributes 

which are correlated or anti-correlated with the main attribute, e.g. 

correlation coefficient ρ≥0.5 or ρ≤-0.5. For notebooks, these 

attributes are main memory, cpu speed, and weight, resulting in 

trade-off parts representing average 15”, 14.1”, and 13.3” with 

respect to the selected attributes, e.g. (15”, 3203 MB, 2082 MHz, 
2.7 kg). Depending on the current scenario, two of these trade-off 

fragments are composed to a trade-off.  

For our notebook dataset of 998 items, the Pareto skyline still 

contains 205 items. Obviously still too many to process manually, 

and –as is the nature of skylines– also far too diverse. Thus, as-

sume for example that a user intends to buy a mobile office laptop 

for writing papers on the road. Then a 15” screen size might be 

optimal for a given user while larger or smaller screens are less 

desirable. This information can be used to generate several trade-

offs, e.g. ((15", cluster avg. values) ⊳  13.3”, cluster avg. val-
ues)), ((15", cluster avg. values) ⊳ (17", cluster avg. values)), 
etc. In order to express a further emphasis on the preferred cluster, 

the average values of the first part of the trade-off are slightly 

shifted in the less desired direction by ¾ of their standard devia-

tion while the second part is improved by ¾ of the respective 

deviation. This result for example in the following trade-off typi-

cal for current mobile office laptops:  15”, 2302 MB, 1980 MHz, 
2.9 kg) ⊳  13.3”, 3909 MB, 2297 MHz, 1.71 kg . Incorporating 

two such trade-offs decreased the skyline size on average already 

by 15% to 176 items (see Figure 17). The resulting trade-off 

skylines also show a higher degree of focus, e.g. if emphasis is 

given on 15” notebooks, sub-par smaller or larger notebooks are 

removed if there is a corresponding good 15” notebook. However, 

in contrast to strict filtering, the Pareto characteristics are still 

maintained, e.g. sub-par 13.3” notebooks are only removed if a 

corresponding good 15” notebook exists; any outstanding 13.3” 

notebook will still remain in the skyline. 

We then did the same for the crawled real estate dataset. Again 

starting with the attribute pair showing the highest degree of anti-

correlation, a trade-off was elicited. In this case the trade-off 

focused on space vs. price and we focused on rather spacey 

apartments and thus the trade-off can be relied on to remove 

average small-sized, but inexpensive apartments. For the real 

estate dataset originally consisting of 1350 items, the initial sky-

line set had still 81 items. When only integrating two trade-offs 

with respect to space and price this on average was already de-

creased by 30% (see Figure 17). 

On this practical data also the computation performance is very 

high. For the notebook dataset the computation of the initial sky-

line took 4 ms using an optimized block-nested loop implementa-

tion, while the trade-off skyline consumed additional 42 ms on 

average. For the real estate data set, the respective values are 3 ms 

and 12 ms. Of course we also wanted to investigate how the run-

time performance of our algorithms scale for larger collections. 

Thus, we used a database of 50.000 items (which is already rather 

extensive for e-shopping portals). For the performance measure-

ment we integrated up to 10 (again randomly chosen) trade-offs in 

a skyline query and calculated the respective results. The runtime 

results are presented in figure 18. All three algorithms (naïve 

baseline, 1-way indexing, and 2-way indexing) have been used 

with subsumption check. We can see that due to the non-indexed 

baseline is entirely out of scope starting at 3 seconds for only 2 

trade-off, and quickly deteriorating (more than 3 minutes for 10 

trade-offs). In contrast, the indexed version perform much better 

and even for 10 trade-off stay in the range of only a few seconds 

(including the time to build the index). Again we can see that the 

2-way indexing clearly outperforms the 1-way indexing. Overall, 

these experiments show the practical applicability of trade-off 

skylines in real world scenarios like e.g., e-shopping.  

 

 

Figure 18.  Runtime for integrating random trade-off into an 

independent dataset with 𝒅 = 𝟔 and 𝒏 = 𝟓𝟎, 𝟎𝟎𝟎  
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Figure 17.  Decrease of skyline size after integrating only two 

trade-offs 
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5. SUMMARY & OUTLOOK 
In this work we extended the well-established skyline paradigm 

with the concept of trade-offs, which allow for compensation 

between individual attribute dimensions in a qualitative fashion. 

Compensating (or trading) between different choices is indeed a 

very natural concept, frequently encountered in every days‟ deci-

sion processes. Trade-offs help to increase the focus and mana-

geability of skylines without any arbitrary assumptions beyond the 

control of the user. However, up until now it was not possible to 

augment the strict Pareto semantics of traditional skylines with the 

compensating semantics of trade-offs. This is mainly caused by 

the fact that trade-offs break the convenient property of seperabili-

ty when performing object domination tests, an integral compo-

nent within any existing skyline algorithm.  

In this paper, we introduced the formal notion of trade-off sky-

lines and designed the first trade-off skyline algorithm. We devel-

oped the object domination test criterion for skyline computation 

with respect to trade-offs. After establishing the formal properties, 

we derived a baseline trade-off algorithm which refines a given 

Pareto skyline with additional trade-off semantics. But in contrast 

to this baseline, our final algorithm does not rely on the exponen-

tial materialization of the full product order. To improve the per-

formance, we showcased a tree data structure 𝑇𝑇𝑟𝑒𝑒 containing 

all necessary trade-off sequences to decide whether two objects 

dominate each other or not. This data structures especially paid 

attention to avoiding the storage of redundant information, thus 

saving storage space and computation time. In fact, it increases 

performance roughly by the factor of one order of magnitude over 

the baseline. Furthermore, we introduced an efficient two index-

ing scheme for the 𝑇𝑇𝑟𝑒𝑒 structure providing an additional per-

formance boost by roughly the factor of 50 over the impractical 

baseline. Finally, a qualitative investigation of the skyline size 

reduction, and runtime measurements confirmed the benefits and 

practical applicability of our approach in real world scenarios like 

e.g., e-shopping.  

After establishing the theoretical foundations for trade-off sky-

lines in this work, our future focus will be twofold: on one hand, 

the psychological aspects of the user interaction with trade-off 

skylines need to be examined, e.g., how should effective trade-

offs be elicited? Can trade-offs be suggested to the user in a se-

mantically meaningful way? Which kinds of interfaces are suita-

ble, which are not? How strongly are skylines focused by consi-

dering trade-offs, how do they affect the manageability of the 

result sets and thus helping the user to satisfy his/her information 

requirements? On the other hand, also technical performance 

improvements of the algorithm remain an issue for future explora-

tion. These will cover further tuning of the algorithms, spanning 

from more efficient generation schemes or compressed storage of 

the sequences, to more efficient indexing allowing for faster 

object domination tests.  
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