
Suggestion of Promising Result Types
for XML Keyword Search

Jianxin Li, Chengfei Liu and Rui Zhou
Swinburne University of Technology

Melbourne, Australia
{jianxinli, cliu, rzhou}@swin.edu.au

Wei Wang
University of New South Wales

Sydney, Australia
weiw@cse.unsw.edu.au

ABSTRACT
Although keyword query enables inexperienced users to eas-
ily search XML database with no specific knowledge of com-
plex structured query languages or XML data schemas, the
ambiguity of keyword query may result in generating a great
number of results that may be classified into different types.
For users, each result type implies a possible search inten-
tion. To improve the performance of keyword query, it is de-
sirable to efficiently work out the most relevant result type
from the data to be retrieved.

Several recent research works have focused on this inter-
esting problem by using data schema information or pure
IR-style statical information. However, this problem is still
open due to some requirements. (1) The data to be retrieved
may not contain schema information; (2) Relevant result
types should be efficiently computed before keyword query
evaluation; (3) The correlation between a result type and
a keyword query should be measured by analyzing the dis-
tribution of relevant values and structures within the data.
As we know, none of existing work satisfies the above three
requirements together. To address the problem, we propose
an estimation-based approach to compute the promising re-
sult types for a keyword query, which can help a user quickly
narrow down to her specific information need. To speed up
the computation, we designed new algorithms based on the
indexes to be built. Finally, we present a set of experimental
results that evaluate the proposed algorithms and show the
potential of this work.

Keywords
XML keyword query, result type suggestion

1. INTRODUCTION
XML has evolved to be the standard for data represen-

tation and exchange on the Internet. Due to the structural
flexibility and heterogeneity of XML data, it is difficult for
a user to issue a structured query to express her search re-
quest. As such, keyword search has emerged as a popular

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00

paradigm for information retrieval over XML data [8, 6, 13,
21, 14, 19, 12]. One of the significant merits of XML key-
word search is its simplicity — users do not need to learn a
complex query language (i.e., XQuery or XPath), or know
the structure of the underlying data. However, this kind of
simple query format may not be precise and can potentially
return a large number of results that may be classified into
different types, i.e., the label paths of results, among them
only a few types are interesting to the users.

To address this problem, one possible way is to first com-
pute the query results and then rank them. Two different
ranking functions [4, 6] can be applied in this approach.
From the ranked list of results, the type of the highest ranked
result is usually selected as the promising result type for the
query. Obviously, utilizing one specific result for deciding
result type may not be a robust method. We believe that
measuring the correlation between a result type and the is-
sued keyword query should rely on the analysis of the whole
set of relevant information, rather than one piece of it.

Example 1. Consider a keyword query “interest art” is-
sued on the sample data in Figure 1. Most likely, it is in-
tended to find students who are interested in art; hence the
result type should be “root/students/student”.

Ranking methods proposed in [4, 6] will recommend result
type as “root/books/book/title” instead. This is because
that the two keywords appear in the same book title “dra-
matic art & interest”, which leads to the highest ranking
score for this specific result. The problem with this rec-
ommendation method is that it is solely dependent on the
quality of one query result.

Another method [14] infers the return node type by an-
alyzing keyword match patterns. Keywords are classified
into two categories: those that specify search predicates and
those that specify return nodes. Identification of a return
node relies on node categories: entity node, attribute node
and connection node. For instance, given a node, if it corre-
sponds to a *-node in the DTD, then the node is an entity
node; if it does not correspond to a *-node and only has one
child node which is a value, then the node is an attribute
node; otherwise, the node is a connection node. A problem
with this approach is that it cannot handle well the case
where a node’s tagname belongs to any of the three cate-
gories at the same time.

Example 2. Since the query keyword“interest”appears in
both element names and values, [14] will determine the term
“interest” as a match of element names, rather than a value.
The suggested result type is hence “root/students/student”.

561

root

books

title

book

students

year titleyear

student

born interest

student

born interest

book book book book
book

year title
"1980" "1980"

"d
ra

m
at

ic
 a

rt

 &
 i

n
te

re
st

"

"d
ec

or
at

iv
e

 s

tr
e

et
 a

rt
"

"a
dv

er
ti

si
n

g
 a

rt
"

...

"1
98

0"

"1
98

0"

"1
98

0"

"dramatic art" "street art"
date name yearyeartitle title

"v
is

ua
l a

rt

af
te

r
19

80
"

Figure 1: Portion of data tree for a sample of students’ reading interests XML database

Another recent proposal relevant to identifying the result
type is XReal [3]. It utilizes the statistics of underlying XML
data, which summarizes the relationships between element
nodes and all tokens in the leaf nodes. Since neither the
relationships among the element nodes nor the relationships
among values are considered, the precision of this approach
may be sub-optimal.

Example 3. Consider another keyword query “1980 art”
issued on the sample data in Figure 1. The intension is most
likely to find students who are interested in “art” and were
born in “1980”. Hence, “root/students/student” should be
suggested as the result type. XReal will suggest“root/books”
instead. This is mainly because their statistic information
only considers the relationship between the result type and
each independent keyword, not the combination of the query
keywords.

In this paper, we propose a new approach to effectively
and efficiently identify the result type for keyword search
on XML data. Our key idea is to consider all the keyword
query answers corresponding to different result types. This
avoids the limitations of the previous approaches. In order
to save the computation time, we also develop a suggestion
method based on a new summarization technique, which
takes into consideration both the value and structural dis-
tributions of keywords. In addition, our proposed approach
does not require a schema of the XML data. We also employ
an enhanced ranking function to predict the most relevant
result type.

Our contributions in this paper can be summarized as
follows:

• We propose a new method of predicting the result type
for XML keyword queries. Our method employs a
ranking formula that takes into consideration the cor-
relation between a result type and the query keywords
based on several types of statistic information.

• We develop a new data structure to estimate accu-
rately the size of keyword query results; the data struc-
ture captures both the structural and the value distri-
butions in the data concisely.

• We implement the proposed techniques in a keyword
search engine prototype called XBridge. Extensive
experiments have been conducted demonstrating su-
perior effectiveness, efficiency and scalability of our
method against previous methods.

The rest of the paper is organized as follows. Section 2
provides some definitions and introduces the XSKetch index
that will be used in this work. Section 3 formally defines
the problem of finding promising result types for a keyword
query and illustrates the main idea of our approach. We de-
sign a general ranking function in Section 4 and propose a
set of algorithms that can efficiently work out the promising
result types in Section 5. Section 6 presents our experimen-
tal evaluation. Section 7 reviews the previous work on XML
keyword search. Section 8 concludes the paper.

2. PRELIMINARY
In this section, we first introduce some necessary defini-

tions and then the basics of the XSketch method [18].

Definition 1. [XML Data Tree] An XML data tree is
defined as Tt = (Vt, Et, r) where Vt is a finite set of nodes,
representing elements and attributes of the data tree Tt; Et

is set of directed edges where each edge e(v1,v2) represents
the parent-child relationship between the two nodes v1, v2

∈ V ; r is the root node of the tree Tt.

We assume that all values appear in the leaf nodes. Given
an edge e = (v1, v2), we define P (v2) = v1 and v2 ∈ Ch(v1).

Definition 2. [Keyword Query] A keyword query is a
set of different terms, denoted by Q = {k1, k2, . . ., kn}.

We consider the AND-semantics for the query, i.e., a query
result must contain at least one occurrence of each term
ki ∈ Q. For example, Figure 1 represents an XML data tree
about student and book information. Q = {1980, art} is a
keyword query that is issued by users.

To precisely estimate a keyword query over XML data
with a great size, we build upon the ideas of XSketch [18,
17], which is designed to estimate the selectivity of XML
twigs.

Definition 3. [XSketch] An expanded graph synopsis G(Tt)
= (V , E) for an XML data tree T is an edge-labeled directed
graph, where V is a set of distinct tag names that occur in
Vt; each node in v ∈ V corresponds to a subset of data nodes
in Vt (termed the extent of v, or extent(v)) that have the
same label (denoted by label(v)); the label for each edge (u,
v) ∈ E is defined as: (1) label(u, v) = {B}, if v is B-stable
w.r.t. u; (2) label(u, v) = {F}, if u is F-stable w.r.t. v; (3)
label(u, v) = {F, B}, if both (1) and (2) hold; (4) label(u,
v) = {}, otherwise.

562

root

books (1)

title (5)

book (6)

students (1)

year (5)

student (2)

born(2) interest (2)

F/B F/B

BBF/BF/B

F/BF/B

name (1) date (1)

B
B

Figure 2: Example of expanded graph synopsis

For example, Figure 2 displays the expanded graph synop-
sis of the XML data tree in Figure 1. In XSketch, count(v)
records the number of elements that map to v in the XML
data, i.e., the size of v’s extent. For instance, count(student)
= 2 and count(book) = 6 in Figure 2. It also captures the
localized backward - and forward -stability conditions across
synopsis nodes of an XML data tree. A node u is B(ackward)-
stable (F(orward)-stable) with respect to a parent (resp.,
child) node v in the synopsis, iff all data elements in ex-
tent(u) have at least one parent (resp., child) element in
extent(v). For instance, every student element has two child
elements born and interest. At the same time, both born and
interest elements can reach up to their parent student ele-
ments. So the parent-child edge between student and born
(or interest) is marked as F/B. Intuitively, B-stability guar-
antees that all elements in u descend from v and, therefore,
count(u) is an exact estimate for the expression v/u ; simi-
larly, F-stability ensures that all elements in u reach at least
one element in v and, therefore, count(u) is an exact esti-
mate for u[v] where v is taken as a predicate of u.

To improve the precision of estimation, XSketch captures
two kinds of statistical information: structural and value
distribution information. Since the work [17] focuses on the
discussion of the relationship between the precision of the
estimation and the space budget of building the index XS-
ketch, it only summarizes part of the distribution informa-
tion so that the space budget can be met. To choose the
significant information, it relies on many assumptions. For
instance, some values, not all values, on different paths are
selected and then the correlations among the selected val-
ues are considered. Readers are referred to [18, 17] for more
details.

3. OVERVIEW OF OUR WORK
Since it is common for XML data to contain nodes with

the same element name in different contexts, we use label
paths to denote node types. A label path is a sequence of
element names that appear in the path from the root to the
node in question.

Definition 4. [Result Types] Given a keyword query Q

= {k1, k2, . . ., kn} and an XML data tree T = (Vt, Et,
r), result types of Q over T is a list of distinct label paths
that start from the root node r and stop at connected nodes.
Each connected node or its descendant nodes should contain
at least one instance of the given terms {k1, k2, . . ., kn}.

Consider Example 3 again. There are two result types for
the keyword query “1980 art”: “root/students/student” and
“root/books/book”.

Given a set of result types and a scoring function, we de-
fine the promising result type as the one that has the maxi-

:)student(H :)book(H

bornc interestc studentCS studenth

1 1 2 100%

yearc titlec bookCS bookh

1 1 6 4/6

datec titlec bookh

1 1 6 1/6

yearc namec
bookh

1 1 6 1/6

…�

…�

bookCS

bookCS

Figure 3: Example of structural distribution

mum score.
For example, “root/students/student” is the promising re-

sult type according to our proposed ranking function (See
Equation (3) in Section 4).

The conceptual evaluation process to determine the promis-
ing result type from a set of candidates is as follows: we
first compute all query results individually and classify them
based on their types. Then each type aggregates the local
score of each individual result in the same group together
where the score is computed by a proposed ranking func-
tion. Finally, the type with the highest score is chosen as
the promising result type. Obviously, it is time-consuming
when the size of the data to be searched is large. There-
fore, we would like to propose an efficient approach that can
achieve the similar target (i.e., locating the promising result
type) with much lower cost (i.e., by estimating the score of
each type).

In this paper, we concentrate on the precision of the es-
timation without considering the usage of space. This is
because we find that building an XSketch-like index only re-
quires a small percentage of space compared to the data [18].
Therefore, we can refine the index to the point where all
edges in G belong to one of the three types: {F, B, F/B}
(See Definition 3). More specifically, we keep splitting the
corresponding node sets for the edges that cannot satisfy
the stable conditions until one type of stabilities is achieved.
In addition, we utilize a tree-style synopsis T , rather than
a graph-style synopsis G, to maintain the precise structural
and value distribution information, which can reduce more
estimation errors. In the rest of the paper, we use T to
represent the tree synopsis of the XML data.

Definition 5. [Structural Distribution] Consider an in-
ternal element node u ∈ Vt and its child nodes {vi} ⊂ Vt,
the structural distribution H(u) of u consists of a set of (1)
distinct distribution types (Cv1 , Cv2 ,. . . , CSu), where Cvi

is
the count of the child nodes in u, which have the same tag
name with vi, and CSu is the count of the sibling nodes of
u, which have the same tag name with u; and (2) its cor-
responding distribution rate hu, which is the percentage of
extent(u), which contains the same set of child nodes and
holds the same distribution type.

For example, Figure 3 displays the structural distribution
of the internal element nodes student and book of the XML
data tree in Figure 1. Consider first the student element
node, it has one born and one interest child node, i.e., Cborn

= 1 and Cinterest = 1. And it has a sibling node with the

563

:)born(F

interestCS

'1980'E

1 1/2

yearCS

1 3/5

titleCS
1 4/5

1 1/5

:)interest(F

bornCS

interestCS

'1980'f

1 100%

'art'E

1 100%

art''f

'dramatic'E
'art'E art'',dramatic''f

…�

:)year(F

'1980'E

'art'E

'1980'f

art''f

art'',dramatic''f

:)title(F

…�

titleCS'dramatic'E
'art'E

11

1

1 1 1 1

1

Figure 4: Example of value distribution

same tagname student under the parent node students, i.e.,
CSstudent = 2. As such, its distribution type is (1, 1, 2).
Because both student element nodes have the same distri-
bution type, the distribution rate hstudent is 100%. For the
book element node, it has six sibling nodes with book as their
tag names, i.e., CSbook = 6. For the first book element node,
it contains one year node and one name node, hence its dis-
tribution type is (1, 1, 6) and its rate is 1/6 because no other
book contain the same set of child nodes and satisfy the same
distribution type. Similarly, we can work out the type and
rate for the last book element node as (1, 1, 6) and 1/6. For
the rest four book nodes, all of them contain the same set of
child nodes and hold the same distribution type, hence the
rate of the new type is 4/6. All these information can be
precomputed and cached for estimating the result size of a
keyword query.

After we summarize the structural distribution informa-
tion H , we start to extract the value distribution based on
H from the XML data.

Definition 6. [Value Distribution] Given a leaf node
v ∈ Vt and its corresponding size |extent(v)| in the tree
synopsis T , the value distribution F (v) of v consists of a set
of (1) distinct distribution types (Etoken1 , Etoken2 , . . ., CSv)
where Etokeni

is 1 (or true) if the informative token tokeni

exists in the leaf node v and CSv is the count of the sibling
nodes of v where the sibling nodes have the same tag name
with the node v; and (2) its corresponding distribution rate
f is the percentage of extent(v), which contains the same
set of distinguished informative tokens and holds the same
distribution type.

For example, Figure 4 displays the value distribution of
the leaf nodes born, interest, year and title of the XML data
tree in Figure 1. Consider the born element nodes: both of
them in extent(born) contain the token ‘1980’, i.e., E′1980′

= 1; and neither of them has sibling nodes, i.e., CSborn =
1. In addition, we also know that the size of extent(born) is
2. As such, the value distribution type of F (born) is (1, 1)
and its total rate is f′1980′ = 100%. Similarly, we can work
out the value distributions of interest-art, year-1980 and
title-art, respectively. Note that the size of extent(year) (or
extent(title)) is 5 and three of them contain the token ‘1980’
(or ‘art’). Furthermore, we can extend the value distribution
to multiple tokens. For a leaf node interest and two tokens
{‘dramatic’, ‘art’}, we find that only the first interest el-
ement node contains the two tokens together. Therefore,

its type should be (E′dramatic′ , E′art′ , CSinterest)=(1, 1, 1)
where CSinterest is 1 because there is no sibling node that
is labeled as interest. As one out of two interest element
nodes has both ‘dramatic’ and ‘art’ tokens, its total rate
is f′dramatic′,′art′=1/2. All these information can be pre-
computed and cached for estimating the size of a keyword
query.

root

books

title

book

students

year

student

born interest
"1980" "art" "1980" "art"

shared path 1
shared path 2

predicate 1 predicate 2

root

books

title

book

"1980""art"

shared path 3

predicate 3

root

Figure 5: Example of generated query templates

3.1 Our Main Idea
The idea of our approach is as follows. Given a keyword

query, we first determine the corresponding distinct paths
w.r.t. each term in the query, and generate the query tem-
plates in which the given terms are kept. Then, we can ob-
tain all result types where each type is a distinct label path
from the root node to the lowest connected node on its query
template. Here, the connected node has the similar seman-
tics to the concept of LCA (Lowest Common Ancestor) for
keyword queries over XML data. After that, we estimate
the query templates over the expanded tree synopsis with
the help of distribution information, and compute the score
for each result type by calling a ranking function. Finally,
the result type with the highest score will be suggested as
the promising result type to the query.

Now let’s briefly introduce the procedure of our approach
by taking Example 3 as an example. For the given keyword
query “1980 art”, we can generate two query templates by
merging their distinct label paths, as shown in Figure 5.

Firstly, we estimate the shared paths over the tree syn-
opsis in Figure 2 using the forward- and backward-stability
information. The size of “root/students/student” is 2 while
the size of “root/books/book” is 6. After that, we begin to
invoke the estimation of the corresponding predicates of the
two shared paths. For the predicate of the first shared label
path, i.e., predicate 1, we have 2 · hstudent · cborn · cinterest ·
f′1980′ · f′art′ = 2 · 1 · 1 · 1 · 1 · 1 = 2. For the predicate
of the second shared label path, i.e., predicate 2, we have
6·hbook·cyear ·ctitle·f′1980′ ·f′art′ = 6· 4

6
·1·1· 3

5
· 4
5

= 1.92. Since
the total score of “root/students/student” is larger than that
of “root/books/book”, the former will be recommended as
the promising result type to the users. From this example,
we can see that our approach utilizes the combination of
the relevant nodes to measure the correlations between each
result type and the given keyword query.

4. SCORING FUNCTION
In this section, we develop our scoring functions for result

type suggestion for XML keyword queries.

4.1 Scoring a Return Type Candidate

564

Consider a keyword query Q = {k1, k2, . . . , kn}. It might
corresponds to different interpretations. For example, con-
sider the query “1980 art” in Figure 1, two possible interpre-
tations (also called query templates):

1. /root/students/student[born ∼“1980”][interest ∼“art”],
and

2. /root/books[book/year ∼ “1980”][book/title ∼ “art”].

where ∼ is a shorthand for testing if the term is contained in
a node. The return types of the above two interpretations are
/root/students/student and /root/books, respectively. Gen-
erally, a return type corresponds several query templates.
For example, the query template /root/books[book/title ∼
“1980”][book/title ∼ “art”] also contributes to the latter re-
turn type.

Given any interpretion of a keyword query Q, consider one
of its result R = {N, n1, n2, . . . , nn}. where each ni is a leaf
node and contains the term ki, and node N is the lowest
common ancestor (LCA) of n1, . . . , nn.

We consider the following scoring functions to compute
the score of R.

Ranking Function 1: This type of ranking function only
considers the term information, e.g., the TF-IDF method or
its variations. The standard TF-IDF is from the information
retrieval field and considers both term frequency (i.e., how
many times a term appears in a document) and inverse term
frequency (i.e. inverse of how many documents contain the
term). In order to apply it to the typical XML database
scenarios, we make the following adaptation: (1) we assume
term frequency tf is always equal to 1 as in [7], and (2) we
use inverse element frequency, which is defined as the total
number of element in the XML data tree over the number
of elements that contains the token in the subtree rooted at
the element in question. Finally, we can obtain the weight
of each node ni as

weight(ni) = log2(1 + tf) · log2 ief = log2 ief

where tf = 1 and the final score of R as

Score1(R, Q) =
n∑

i=1

weight(ni) (1)

Let’s consider Example 3 where the query is {1980 art}
over the XML data tree in Figure 1. Based on the for-
mula, for the first “student” element in Figure 1 we have
weight1980 = log2(27/13) = 0.947 and weightart = log2(27/15)
= 0.847. The score of the first “student” w.r.t the query
{1980 art} is therefore 0.947 + 0.847 = 1.794.

The obvious problem with this scroing function is that it
overlooks the structure of the result.

Ranking Function 2: The second ranking function con-
siders both terms and structures of the result.

Score2(R, Q) =
n∑

i=1

weight(ni)

dist(N, ni)
(2)

where Distance(N, ni) is the length of the path from N to
ni in the XML data tree.

The intuition is that terms appear far from the root of
the result subtree should be penalized. This function usu-
ally works well to measure the relevance of a result at the

element level. However, as it penalizes each term weight
weight(ki) independently using Distance(N, ni), it may fa-
vor the terms with short distance values. For instance, con-
sider a keyword query Q = {k1, k2} and one of its results
R = {N , n1, n2} in Figure 6(a). The score of R can be
calculated: Score2(R, Q) = 5

10
+ 1

2
= 1. In this case, n1 is

more interesting than n2 as the weight of k1 is much larger
than that of k2, yet they have the same contribution to the
final score. Therefore, we should reduce the penalty of the
term, which are brought by its corresponding long distance.

Another problem with this ranking function is that it
cannot differentiate a tightly-coupled result from a loosely-
coupled one. An example is given in Figure 6(b). According
to Equation (2), two given query templates will have the
same score. Obviously, the template on the right side should
be better than the one on the left side.

...

1n
2n

N

5)(1 =kweight

1)(2 =kweight

11 contains kn

22 contains kn
10

2

(a) Heavy Penalty

1n 2n

N

3n
1n 2n 3n

N

(b) Insensitive to the
Structure

Figure 6: Problems with Ranking Function 2

Ranking Function 3: Motivated by the above analyses,
we propose a new ranking function that embraces the prin-
ciples of the above two functions, i.e., it is proportional to
the total weights of the terms as Function 1 does; At the
same time, it also takes into account the effects of struc-
tures of XML. More specifically, it overcomes the two issues
identified from Ranking Function 2.

Score3(R,Q) =

{∑n

i=1 weight(ki), if d̃ist(N, ni) = 0∑
n

i=1 weight(ki)

(
∑

n

i=1 d̃ist(N,ni)−θ)γ
, Otherwise.

(3)
where θ is the total times of the edges that are repeated
on the path from N to each ni in the XML data tree; γ is
a parameter to balance the impact of the structure to the

score (its default value is 2); and d̃ist is defined as

d̃ist(N, ni) =

{
dist(N, ni), dist(N, ni) ≤ avg-depth

avg-depth + (dist(N, ni) − avg-depth) · η, else

where avg-depth is the average depth of the XML data tree;
and η ∈ [0, 1] is a tunable parameter.

Example 4. Consider the three XML documents in Fig-
ure 7 and a keyword query Q = {k1, k2}. There are three
query templates and they correspond to different return
types. Denote any of the query results for the three query
templates as r1, r2, and r3, respectively, and assume the
weights for both keywords are 1 and γ = 2, we calculate the

565

r

b

e f

b

e f
k1 k1k2 k2

x

(a) Document d1

r

y
b

e f

b

e f
k1 k1 k2 k2

e
k1

f
k2

(b) Document d2

r

z
b

e f

b

e f
k1 k1k2 k2

e
k1

e
k1

(c) Document d3

r

x

b

e f
k1 k2

(d) A1

r

y
b

e

b

f
k1 k2

(e) A2

r

z

b

e f
k1 k2

(f) A3

Figure 7: Three Query Templates for the Query over
Three Documents where Their Corresponding Re-
turn Types are Indicated in Dotted Boxes.

scores of the individual results as:

Score3(r1, Q) =
1 + 1

(1 + 1)γ
=

1

2

Score3(r2, Q) =
1 + 1

(2 + 2)γ
=

1

8

Score3(r3, Q) = Score3(r1, Q)

In the rest of the paper, we will use the Equation (3) as
our scoring function.

4.2 Aggregating Scores
We know that using only one (or a few) query results to

predict the promising result type may not be a good idea, as
illustrated in Section 1. Instead, we would like to aggregate
the score of all query results in each return type to determine
the promising result type. This involves summing up scores
of all results of all query templates associated with each
return type.

However, a technical issue is that different return types
usually correspond to very different numbers of results, hence
this method will be inevitably biased towards return types
with many query results. Therefore, it is desirable to con-
sider at most top-K results for each return type when per-
forming the score aggregation. We suggest that a reasonable
way to determine K is to set it to the average number of re-
sults per return type. Consider m result type candidates
RTCi (1 ≤ i ≤ m) exist in the data to be retrieved and
each type candidate RTCi has c(RTCi) query results.1 The
average return type query result is

avg-results =
1

m

m∑
i=1

c(RTCi)

Note that if the number of query results of a return type is
less than avg-results, we will use all its results to aggregate
the scores.

1Note that in case a return type has several associated query
templates, the numbers of results of all associated query
templates need to be summed up.

Example 5. Continuing the three return types in Figure 7,
they have 2, 9, and 4 query results in the corresponding
documents, respectively. Therefore, avg-results is 2+4+9

3
=

5. Given that each return type in this example has only one
query templates and the fact that all results in the same
query templates have the same score, we can calculate the
score for each result types as:

Score(r/x/b) =
1

2
· 2 = 1

Score(r/y) =
1

8
· 5 = 0.625

Score(r/z/b) =
1

2
· 4 = 2

Finally, the top-scoring return type, r/z/b, will be chosen as
the promising return type.

5. ALGORITHMS OF FINDING
PROMISING RESULT TYPES

In this section, we first introduce a general keyword search
algorithm that uses the actual keyword search results to
work out the promising result types. Then we propose a
more efficient algorithm that utilizes the offline summarized
statistics to predict the promising result types.

5.1 Inverted Node List based Algorithm (INL)
The basic idea of INL is to first retrieve all relevant node

lists w.r.t. a keyword query, and then merge the node lists
from the shortest one, i.e., the node with the lowest doc-
ument frequencies will be processed first. To increase the
efficiency, we deploy the Dewey number scheme to encode
the nodes before-hand, as it enables us to efficiently com-
pute the lowest common ancestor node given a set of nodes
identified by their Dewey codes. During the computation,
we record the shared paths as the result type candidates.
For each type candidate, we maintain a data structure (See
Table 1) where we take the individual result score as a key
and the number of this kind of results are added together
as a value. Furthermore, the table is always sorted by the
individual result score in a descending order. At the same
time, we also record the total number of query results and
the number of distinct result types, which are later used
to compute the threshold avg-results. After we process all
the node lists, we calculate the score for each return type
candidate by using its data structure and the threshold avg-
results. The type candidates with the highest scores will be
selected as the promising result types.

Table 1: Data structure for a type candidate RTCi

Individual Score #Results

3.0 20
2.5 18
1.5 10
.
..

.

..

This approach obviously will incur substantial amount of
computation as it needs to access and merge all the occur-
rences of keywords. The complexity of INL is O(

∏n

i=1 |Li|)
A more detailed discussion is provided in Section 6.

566

5.2 Statistic Distribution Information-based Al-
gorithm (SDI)

In this section, we first show the procedures of building
structural and value distribution indexes. Then we generate
a set of query templates for a keyword query. Finally, an
efficient algorithm is proposed to estimate the constructed
query templates based on the pre-built distribution indexes.

5.2.1 Building Structural Distribution

Algorithm 1 Building structural distribution index

input: An XML data tree Tt

output: An expanded tree synopsis T with the distribution rate
H(v) of each synopsis node v ∈ V

1: initiate an empty tree synopsis T ′ and an empty set H();
2: rt ← the root node of Tt;
3: Q.enqueue(rt)
4: while Q is not empty do

5: v ← Q.dequeue()
6: Chv ← v.children();
7: for all node vc ∈ Chv do

8: if T ′ contains edge (v, vc) at the current level then

9: IncreaseCount(v, vc);
10: else

11: AddNewEdge(v, vc, T ′);
12: end if

13: Q.enqueue(vc)
14: end for

15: end while

16: T ← MarkFBStability(T ′, Tt);
17: GenerateDistribution(T, Tt);
18: return (T, H);

In this section, we introduce the procedure of summarizing
the structural information of an XML data tree; this helps
to improve the precision of the estimation as it considers
the correlations among the outgoing edges of the tree nodes.
It consists of three main steps: generating the intermedi-
ate tree synopsis T ′ from an XML data tree; marking the
synopsis nodes of T ′ with Forward- and Backward -stability
conditions; and making the statistics about the distribution
of outgoing edges across the synopsis nodes of the XML data
tree.

Generating tree synopsis The basic idea here is sim-
ilar to the breadth-first search (BFS) over a tree that be-
gins at the root node and explores all its neighboring nodes.
Then for each of these nodes, it explores their unexplored
neighboring nodes until all nodes in an XML tree are ex-
plored. During the tree traversal, the structure of the data
tree is abstracted by using AddNewEdge(v, vc, T

′) and the
extent information for each synopsis node is obtained by
using IncreaseCount(v, vc). Once the traversal is completed,
the intermediate tree synopsis T ′ of the XML data tree Tt is
built fully. The detailed procedure is provided from Lines 1-
Line 15 in Algorithm 1. After that, we need to mark the
stability for each edge over the tree synopsis by using the
function MarkFBStability() and then call GenerateDistribu-

tion() to produce the structural distribution types and their
rates.

Marking edges with MarkFBStability() To capture the
localized Forward- and Backward -stability conditions across
the synopsis nodes of an XML data tree, it is required to
traverse the intermediate tree synopsis T ′ and check the sta-
bility of each synopsis edge(v1, v2). For the edge, we first re-

Algorithm 2 Function GenerateDistribution(T , Tt)

input: The expanded tree synopsis T and the XML tree Tt

output: The expanded tree synopsis T with the structural dis-
tribution information H

1: for all internal synopsis node v ∈ V do

2: Initialize H(v, h) = 0, ∀(v, h)
3: for all instance vt ∈ extent(v) do

4: sibSize← |GetSiblingByTagname(vt)|;
5: h← SummarizeChildDist(vt);
6: h.append(sibSize);

7: H(v, h)← H(v, h) + 1
|extent(v)|

;

8: end for

9: end for

10: return the structural distribution information H;

trieve the corresponding groups, extent(v1) and extent(v2),
of nodes that are labeled as v1 and v2, respectively. Then
we need to compare the two sets of nodes, which leads to
three cases. Case 1: edge (v1, v2) satisfies F-Stability be-
cause every instance node of v1 in extent(v1) has at least
one child instance node of v2 in extent(v2), which means
that we can walk from v1 to v2 in a forward step. Simi-
larly, Case 2 means that we can walk from v2 to v1 in a
backward step. If neither conditions holds, it is required
to call a special operation Split(extent(v2)) that partitions
the group nodes extent(v2) into some Maximal subgroups.
All the subgroup nodes should keep the Forward- and Back-
ward -stability with the nodes extent(v1). Here, the word
Maximal means that given any two subgroups extent1(v2)
and extent2(v2), if we move a node from extent1(v2) (or
extent2(v2)) to extent2(v2) (or extent1(v2)), the resulting
group nodes extent2(v2) (or extent1(v2)) and the nodes ex-
tent(v1) do not satisfy either Forward- or Backward -stability.

Summarizing edges’ distribution: To summarize the
outgoing edges’ distribution for an internal node v, it is re-
quired to find out its child nodes Ch(v), its sibling nodes
that have the same tagname with v, and the size |extent(v)|
of its extent, respectively. And then we summarize the count
Cvi

from the child nodes vi ∈ Ch(v) and the count CSv from
its sibling nodes, which is used to generate a distribution
type. Hence, the rate of this distribution could be increased
by 1/|extent(v)|. The detailed procedure is illustrated in
Algorithm 2 where Function GetSiblingByTagname() is used
to calculate the number of the sibling nodes that share the
same tag name with the given internal node and Function
SummarizeChildDist() is used to compute the number of the
child nodes with different tag names.

5.2.2 Building Value Distribution Index
In this section, we introduce the procedure of deriving

the value distribution for each synopsis node v at the leaf
level of expanded tree synopsis T . Each instance node vt ∈
extent(v) may contain a single token, e.g., “year”or multiple
tokens, e.g., “title” (See Figure 1). If we build an index to
record all possible combinations of the terms in the whole
document, the index would be too large to be practical.

Nevertheless, recent studies [2, 9] suggest that the typical
keyword query length is within two to four tokens and that
the possibility of longer queries decreases greatly with the
query length. In addition, we also find that for a keyword
query, the possibility of all its tokens that are located at one
specific instance node is typically low. That is to say, even if
a keyword query contains more than four tokens, only a few

567

Algorithm 3 Building the value distribution index

input: An XML tree Tt and its expanded tree synopsis T
output: the distribution rate F (v) where l = r/.../v is a path of
T and v is a leaf-level synopsis node

1: for all leaf synopsis node v ∈ V do

2: Initialize F (v, l) = 0, ∀(v, l)
3: for all vt ∈ extent(v) do

4: sibSize← |vt.parent.getChildNodesByTagname(vt)|;
5: tokens← FilterGetTerms(vt);
6: L ← GenCombination(tokens, sibSize);
7: for all token combinations l ∈ L do

8: F (v, l)← F (v, l) + 1
|extent(v)|

9: end for
10: end for

11: end for

12: return the value distribution information F ;

of them belong to the same leaf node. Therefore, for each
instance leaf node vt, we build four kinds of combinations: 1-
Com, 2-Com, 3-Com, 4-Com, where 1-Com represents each
single token in the vt’s value content; i-Com represents all
combinations that have i tokens (2 ≤ i ≤ 4).

As shown in Algorithm 3, for each leaf synopsis node v ∈
V , we can obtain a subgroup of instance nodes extent(v) ⊂
Vt and derive the value distribution by processing each in-
stance node vt ∈ extent(v). Firstly, we extract informative
tokens from the value content of vt by calling the function
FilterGetTerms(vt) where the content is split into tokens and
non-informative tokens are filtered out by a stop-word list
that can be edited or imported by the DB designer. Then,
we calculate the count of vt’s sibling nodes that have the
same tag name with vt. Finally, the function GenCombina-

tion() is invoked to generate all subset of size no larger than
four from tokens in elements.

For each combination l, we append the count of vt’s sibling
nodes that have the same tag name with vt to the end of
the combination `. Once a new combination ` is generated,
we insert it into the value distribution set F (v) if ` exists
beforehand or update the rate of F (v, `).

5.2.3 Finding Result Type Candidates
To predict the promising result type, we have to find all

result type candidates first. Typically metadata is far less
than the data itself. Therefore, the number of distinct label
paths is far less than that of the path instances. Given a
keyword query Q = {k1, k2, . . . , kn}, we can quickly locate
the distinct label paths for each ki and then work out the
result type candidates by applying a “tight”merge operation
to these paths. By a “tight” join, we mean that for any two
paths, they are connected with the longest common prefix.

Firstly, we retrieve the distinct label paths for each key-
word by accessing the index Token2Path. Then we check
the number of the given keywords. If the query only con-
tains one term, we take all distinct label paths as the result
type candidates where we directly generate the query tem-
plates by combining each label path and the term together.
And we take the weight of the term as the score of a single
result. If a user’s query contains more than one term and
each of them corresponds to a list of label paths, we need
to consider all combinations of the label paths that come
from the different path lists. This task is divided into two
steps, which is shown in Algorithm 4. In Step 1: Line 12 -
Line 17, we merge the two shortest lists of label paths that

Algorithm 4 Collecting result type candidates & predicates

input: A token-to-path index Token2Path and a keyword query
Q = {k1, k2, . . . , kn}

output: A set of query templates Φ organized as a hash map
from sharedPath to a list of query templates ti, where each ti is
in the form of (score , predicates)

1: Initialize Φ[x] = ∅, ∀x;
2: for all query keyword ki do

3: LPki
← the set of label paths ki appears in the XML data

(via Token2Path index)
4: end for

5: if |Q| = 1 then

6: for all label path p ∈ LPk1
do

7: sp← p; preds← ∅; score← CalcScore(sp, preds)
8: Φ[sp]← Φ[sp] ∪ (score, preds)
9: end for
10: else

11: let q1, q2, . . . , qn be a permutation of k1, k2, . . . , kn such
that LPki

is in increasing order of length;
12: for all label path u ∈ LPk1

do
13: for all label path v ∈ LPk2

do

14: (sp, preds, score)← MergePaths(u, v, q1, q2);
15: Φ[sp]← Φ[sp] ∪ (score, preds)
16: end for

17: end for

18: for j = 3 to n do

19: for all label path p ∈ LPkj
do

20: AddPath(p, qj , Φ);
21: end for

22: end for

23: end if
24: return Φ;

correspond to two of the given keywords where a function
MergePaths(p1, p2, k1, k2) is designed to combine any two
paths p1 ∈ LPk1 and p2 ∈ LPk2 . It starts from the com-
parison of the first node of each path. If the two nodes have
the same label, we then continue to compare the next node.
The comparison is done recursively until we find the nodes
that have different labels or one of the path does not have
the next node. At this point, we denote the part that can
be shared by the two paths as the shared path sp while the
rest of the two paths as the predicates preds that takes the
two keywords k1 and k2. At the same time, the weight of
the predicate is recorded as score. All of the output will
be taken as the intermediate query templates Φ. In Step
2: Line 18 - Line 22, we merge the next shortest list of la-
bel paths into the above intermediate query templates Φ if
the query contains three or more keywords, which is imple-
mented by a function AddPath(p, kj , Φ). In other words,
for each template ti ∈ Φ, we first compare path p and sp of
ti. If p is equal to sp, then we only merge the new keyword
into the predicate preds of ti; If p covers sp, then we need
to do the comparison of the rest of p and preds; Otherwise,
we will generate a new shared path and a new predicate be-
cause p and sp only share partially. In all three conditions,
the weight of the new predicate should be updated and the
new keyword kj should also be inserted into the updated
predicate.

5.2.4 Method SDI
Our SDI algorithm is based on Statistical Distribution

Information stored in the tree synopses introduced in Sec-
tions 5.2.1 and 5.2.2. The key idea is to use the synopsis to
estimate the score for each candidate query templates rather
than actually executing it.

568

Algorithm 5 Computing results with SDI index

input: A set of query templates Φ organized as a hash map
from sharedPath to a list of query templates ti, where each ti is
in the form of (score , predicates)
output: Top-K most promising result types

1: for all shared label path sp ∈ Φ do

2: ti , (sp, score, predicates)← Φ[sp];
3: est← EvaluateSinglePath(sp);
4: v ← the end node of sp;
5: H.enqueue(v);
6: for all predicate pred ∈ predicates do

7: while H is not empty do

8: v ← H.dequeue();
9: if v is a leaf node then
10: `← DistStyle(v.content(), v);
11: est← est · VDRate(F, v, `);
12: else
13: h← DistStyle(Ch(v), v);
14: est← est · SDRate(H, v, h) ·

∏
{Cvc

|vc ∈ Ch(v)};
15: for all vc ∈ Ch(v) do

16: H.enqueue(vc);
17: end for

18: end if

19: end while
20: end for

21: if est 6= 0 then

22: rscore[sp]← rscore[sp] + est · score(ti);
23: else
24: Modify the current query template ti by moving the last

node in its shared path to the predicates;
25: goto Line 2
26: end if

27: end for

28: return the top-K sp in the rscore;

Given a query template that contains a shared label path,
i.e., a result type, and a list of predicates, we first estimate
the path and get the approximate size as the number of the
search results. Then we estimate the corresponding predi-
cates where we take into account the counts Cvi

, CSv and
their distribution rates. By multiplying the maximal num-
ber, the counts, and the rates together, we can obtain the
approximate number of the results that match with one case
in the query template. If the estimate is zero (e.g., the struc-
tural or value distribution synopsis indicates no match for
a particular query template), we consider a variant of the
current query template by moving the connected node up to
its parent node (Line 24).

The detailed procedure is given in Algorithm 5. We con-
sider all result type candidate sp ∈ Φ, and we retrieve the
corresponding query template consisting of a list of predi-
cates predicates and the score of the template score. And
then we estimate the size of the current query template
without considering any of its predicates using the function
EvaluateSinglePath(); the function considers the F- and B-
stability across the nodes of the path. After that, we begin
to estimate the predicates in predicates. Every predicate is
traversed and processed as a small tree and its root node
is the end node of RTC. At the same time, the score of
each predicate is cached as in Table 1. If the explored node
v in the predicate tree is a leaf node, we call the function
VDRate(F , v, `) to compute the value distribution rate of `

in v by using the statistic information in F . If the explored
node v is not a leaf node, i.e., it is an internal node, we
call the function SDRate(H , v, h) to obtain the structural

distribution rate of h in v by using the information in H .
To probe F or H , another function DistStyle() is desirable to
produce the distribution types ` or h from the predicate tree
where the nodes in distribution types are sorted by their tag
names. Using the distribution type and rate, we calculate
the expansion number of the approximate answers by mul-
tiplying the count Cvc

where vc ∈ Ch(v) and Cvc
. Then the

computational value will be cached with the corresponding
score of the specific predicate in Table 1. Similarly, we re-
peatedly process for other query templates and record their
results in Table 1. Finally, we calculate the aggregated score
for each result type candidate and predict the promising ones
where avg-sample can be computed during the estimation.

6. EXPERIMENTS
To verify the effectiveness and efficiency of our proposed

approach , we implemented the XBridge system which in-
cludes the INL and SDI algorithms, and compared it with
XReal [3]. All algorithms were implemented in Java and
run on a 3.0GHz Intel Pentium 4 machine with 1GB RAM
running Windows XP. We do not consider XSeek [14], which
was shown to be outperformed by XReal [3].

6.1 Dataset and Queries

Table 2: Statistics of the Datasets
Dataset #Elements Max Depth Avg Depth

NASA 476,646 8 5.58

UWM 66,729 5 3.95

DBLP 3332,130 6 2.90

To test the applicability of each approach, we choose the
real datasets: Nasa 23MB, UWM 2MB and DBLP 127MB
from Washington XML Data Repository [1]. The criterion
of selection is based on the different depths and sizes of
the datasets. If the depth of a document is small, which
means that the document is too flat, it is easy for a keyword
query to choose the root of the document or the nodes at the
higher level as its promising result types. In this case, the
result types are straightforward. Most of time, the larger
the average depth of a dataset is, the more complex the
structure of the dataset may become. It is highly possible
for this kind of dataset that contains multiple result types
for a keyword query. Therefore, we select three datasets
that have the different maximal depths and average depths,
which is shown in Table 2.

To extensively demonstrate the performance of each method,
we randomly select 6 keyword queries with less than 4 terms
for each dataset, which is shown in Table 3. These queries
are chosen with different frequencies. Furthermore, we put
two noise terms dipersion and Opticaly in the keyword queries
that should generate empty results.

6.2 Quality of Suggestion
To measure the quality of the suggested promising result

types, we evaluate all queries in Table 3 over the correspond-
ing datasets. The suggested promising result types for each
keyword query are shown in Table 4. In addition, if two sug-
gested promising result types hold the ancestor-descendant
relations, we only show the types at the lower level, i.e., the
more specific result types.

569

Table 3: Keyword Queries for Each Dataset

Queries NASA UWM DBLP

Q1i {magnitude} {level} {evaluation}

Q2i {photographic} {archeology} {object oriented}

Q3i {photographic magnitude} {Najoom} {Frank Manola}

Q4i {rotation dipersion} {individual supervision} {concepts applications}

Q5i {cape photographic} {building technologies} {multimedia data type}

Q6i {Opticaly proper motion} {approved performance organization} {Frank database 1983}

Table 4: Promising Result Types for Each Query

Dataset Queries INL XReal SDI

NASA Q11 {para, title, definition} {tableHead} {para, title, definition}

Q21 {para, title, definition} {tableHead} {title, para, definition}

Q31 {fields} {tableHead} {para, descriptions}

Q41 {} {} {}

Q51 {fields} {tableHead} {fields, source}

Q61 {} {} {}

UWM Q12 {restrictions, title, comments} {level} {restrictions, title, comments}

Q22 {title} {title} {title}

Q32 {instructor} {section listing} {instructor}

Q42 {root} {title} {root}

Q52 {title} {title} {title}

Q62 {restrictions} {restrictions} {restrictions}

DBLP Q13 {title} {title} {title}

Q23 {title} {title} {title}

Q33 {author} {author} {author}

Q43 {title} {title} {title}

Q53 {title} {title} {title}

Q63 {proceedings} {proceedings} {proceedings}

From the results over NASA in Table 4, we find that XReal
only focuses on one node at the higher level while INL and
SDI can reach to the more detailed nodes. For the keyword
query Q11, the users cannot guess the real meaning from
the result type tableHead suggested by XReal, but they can
easily classify their search intentions from {para, title, defi-
nition} recommended by INL and SDI where para represents
a paragraph of description, title represents a title of journal
and definition represents a definition of a table tableHead.
For the keyword query Q31, INL takes fields as the promising
result type, which is the child node of tableHead that is sug-
gested by XReal. However, SDI recommends two more spe-
cific types para, description that are the descendant nodes
of fields. For another two keyword queries Q41 and Q61, no
suggestions are generated by all approaches because of the
given two noise keywords {dipersion, Optically}. In this pa-
per, we don’t consider the processing of the spelling errors.
From the above results, we find that the users can select a
better and more meaningful result type from a suggestion of
SDI, INL than that of XReal.

From the results over UWM in Table 4, we find that for
the keyword queries Q12, Q32 and Q42, XReal generates dif-
ferent promising result types from the other approaches and
for the other queries, the same suggestions are obtained. For
Q12, XReal works out the tagname level while the other ap-
proaches work out more meaningful search intentions, e.g.,
the title, the restrictions and the comments of a course. For
Q32, INL and SDI can directly suggest Najoom as an instruc-
tor, rather than its ancestor node’s tagname section listing.

For Q42, XReal can get a better result type than INL and
SDI, which illustrates that the precision of our methods be-
comes lower when the statistic information only comes from
a few relevant nodes. This is because five individual nodes
and three supervision nodes are distributed over the differ-
ent title nodes where only one title node contains the two
terms individual and supervision at the same time. In this
case, INL and SDI may suggest a node type at the upper
level as the result type. However, if we delete the term in-
dividual from the specific title node, XReal still predicts the
same result type - title. Obviously, no title node satisfies
the query Q42. Therefore, XReal may suggest wrong result
types because it does not consider the structural correlations
between the given terms.

From the results over DBLP in Table 4, we find that
XReal, INL, and SDI can produce the same suggestions for
the five keyword queries. This is because the structure of
DBLP dataset is flat. Therefore, the given keyword queries
are very easy to be used to locate the corresponding mean-
ingful result types.

From the three sets of experimental results and discus-
sions, we can find that SDI and INL can work well in the
datasets with the complex or simple structures. That is to
say, they can predict the result types with the more detailed
semantics, which can guide users to find their interested in-
formation easily. However, XReal can only work well in the
dataset with the relative simple structure.

6.3 Processing Time

570

To evaluate the efficiency of our algorithms, we measure
the response times that all three approaches are required
to find the top 3 promising result types for the queries in
Table 3. As we can see, SDI can achieve greater efficiency
than both XReal and INL in all conditions. In addition, we
find that in most cases, XReal needs shorter time to process
the corresponding keyword queries than INL.

0

2

4

6

8

10

Q12 Q22 Q32 Q42 Q52 Q62

Keyword Queries of NASA

R
es

p
o

n
se

 T
im

e
(s

)

INL

XReal

SDI

Figure 8: Response Time over NASA Dataset

0

0.2

0.4

0.6

0.8

1

1.2

Q14 Q24 Q34 Q44 Q54 Q64

Keyword Queries of UWM

R
es

p
o

n
se

 T
im

e
(s

)

INL

XReal

SDI

Figure 9: Response Time over UWM Dataset

0

10

20

30

40

Q13 Q23 Q33 Q43 Q53 Q63

Keyword Queries of DBLP

R
es

p
o

n
se

 T
im

e
(s

)

INL

XReal

SDI

Figure 10: Response Time over DBLP Dataset

From Figure 8, we find that SDI can work out the promis-
ing result types in 0.02-1.26 seconds. To do the same tasks,
INL requires 3.5-9 seconds and XReal requires 2.3-3.3 sec-
onds or so. Therefore, SDI can reduce the response time
greatly. In addition, we see that INL needs nearly 9 sec-
onds to process Q32 because both keywords {photographic,
magnitude} have very higher frequencies in NASA, which re-
sults in more computations than that of the other keywords.
Therefore, we can say that INL is easy to be affected by the
size of the dataset. However, XReal and SDI are relatively
stable with regards to the size of the dataset. From Figure 9,
we find that all three methods can determine the promising
result types within 1 second. This is because UWM is a doc-
ument with the small size. But SDI is still much better than
XReal and INL. From Figure 10, we find that SDI can rec-
ommend the promising result types within 1 second. XReal
needs 8-10 seconds to determine their result types. But INL
performs very bad and needs 30 seconds or so to do the same
tasks, which is not acceptable for the users to wait for the
suggestions before they continue to do their keyword search.

From the experimental results and discussions, we can
conclude that SDI is a stable approach to suggest the promis-
ing result types to the users. In addition, SDI can finish the
task of recommendation within short time, which is practi-
cal and acceptable for the users to wait. Although XReal
is also relatively stable, it will need up to 10 seconds some-
times, which is feasible but not acceptable in practice. For
INL, however, the response times is very slow in most cases
and it is affected by the sizes of the datasets, which is infea-
sible to be taken as a recommended approach in practice.

7. RELATED WORK
To make the returned results more meaningful, there are

several approaches proposed in the literature: supervised
result definition, ranking results, and predicting result types.

It is natural in many applications for domain experts or
database administrators to provide guidances to keyword
queries. [8, 11] considered the problem of identifying return
nodes. Both of them require schema information. In addi-
tion, [8] requires a system administrator to split the schema
graph into pieces, called Target Schema Segments (TSS) for
search result presentation. Précis [11] requires users or a
system administrator to specify a weight of each edge in the
schema graph, and then each user needs to specify a degree
constraint and cardinality constraint in the schema to de-
termine the return nodes. [16] is helpful to infer or generate
the guidance automatically. It considered the problem of
differentiating search results for keyword search on struc-
tured data. By defining the differentiability of query results
and quantifying the degree of difference, a limited number
of valid features in a result can be derived, which can be
used to maximally differentiate this result from the others.

Another approach is to allow different interpretations of
the query, but strives to rank the more relevant results
higher in the list of query results. XKeyword [8] proposed to
rank the results according to the distance between different
keywords in the document. XRANK [6] extended Google’s
PageRank to XML element level, to rank among the LCA
results, which takes into account result specificity, keyword
proximity and hyperlink awareness together. XSEarch [4]
employed a ranking scheme that considers factors such as
distance, term frequency, and document frequency. [20]
proposed coherency ranking(CR), a domain- and database
design-independent ranking method that is based on an ex-
tension of the concept of mutual information.

Yet another approach is to predict the most probable re-
sult types for the keyword query and return results only
related to this interpretation. XSeek [14] proposed to gen-
erate the return nodes which can be explicitly inferred by
keyword match pattern and the concept of entities in XML
data. It requires to compute the results first and then derive
the types of return nodes from the result set. Besides, this
approach relies on the concept of entity and considers a node
type t in DTD as an entity if t is “*”-annotated in DTD. [3]
adopted the statistics of underlying XML data to identify
the return node types where the statistic information comes
from the number of nodes that contain the given keywords
as either values or tag names in their subtrees and share the
same path.

There are many works on generating meaningful query
results for XML keyword search by inferring the semantics
from various perspectives. [6, 13, 21, 14, 19] proposed to
first retrieve the relevant nodes matching with every single

571

keyword from the data source and then compute LCAs or
SLCAs of the nodes as the results to be returned. XRANK
[6] and Schema-Free XQuery [13] developed stack-based al-
gorithms to compute LCAs as the results. [21] introduced
the Indexed Lookup Eager algorithm when the keywords
appear with significantly different frequencies and the Scan
Eager algorithm when the keywords have similar frequen-
cies. [14, 15] took the similar approaches as [21]. But they
focused on the discussions how to infer RETURN clauses
for keyword queries w.r.t. XML data. [10] discovered that
the filtering mechanism in MaxMatch algorithm in [15] was
not sufficient and it committed the false positive problem
and redundancy problem. To overcome the problems, [10]
proposed a new filtering mechanism based on the concept of
Relaxed Tighest Fragment (RTF) as the basic result type.
[19] designed a MS approach to compute SLCAs for key-
word queries in multiple ways. [12] took the Valuable LCA
(VLCA) as results by avoiding the false positive and false
negative of LCA and SLCA. [22] proposed an efficient al-
gorithm called Indexed Stack to find answers to keyword
queries based on XRank’s semantics to LCA, named Exclu-
sive Lowest Common Ancestor ELCA. Based on the ELCA
semantics, the result of a keyword query is the set of nodes
that contain at least one occurrence of all of the query key-
words either in their labels or in the labels of their descen-
dant nodes, after excluding the occurrences of the keywords
in the subtrees that already contain at least one occurrence
of all the query keywords.

In addition, there are other related works that process key-
word search by integrating keywords into structured queries.
[5] proposed a new query language XML-QL in which the
structure of the query and keywords are separated. But the
users are required to specify partial structures as predicates
in XML-QL language. [13] introduced a method to embed
keywords into XQuery to process keyword search.

Unlike most existing approaches, our method addresses
the problem of automatically predicting promising search
intention for XML keyword queries by considering the value
and structural distributions of the data, rather than relying
on subjective factors (e.g., users’ interactive operations and
assigned weights). Furthermore, it works well in the absence
of database schemas.

8. CONCLUSIONS
In this paper, we have proposed an efficient and effective

method to discover the promising result types for a keyword
query over XML data sources, with the aim to help users
disambiguate possible interpretations of the query. The pro-
posed method is based on a new ranking method taking
into consideration the query results for different interpreta-
tions and selecting one that has the maximum score. An
efficient algorithm based on statistics synopsis build on the
XML data has been developed which achieves high preci-
sions with much faster execution speed. Experimental re-
sults have demonstrated that our proposed approach has
good performance - high precision and low response time,
for keyword queries over several real XML datasets.

9. REFERENCES
[1] Washington XML Data Repository.

http://www.cs.washington.edu/research/xmldatasets/.

[2] A. T. Arampatzis and J. Kamps. A study of query
length. In SIGIR, pages 811–812, 2008.

[3] Z. Bao, T. W. Ling, B. Chen, and J. Lu. Effective xml
keyword search with relevance oriented ranking. In
ICDE, pages 517–528, 2009.

[4] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
XSEarch: A Semantic Search Engine for XML. In
VLDB, pages 45–56, 2003.

[5] D. Florescu, D. Kossmann, and I. Manolescu.
Integrating keyword search into XML query
processing. Computer Networks, 33(1-6):119–135,
2000.

[6] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: Ranked Keyword
Search over XML Documents. In SIGMOD
Conference, pages 16–27, 2003.

[7] M. Hadjieleftheriou, A. Chandel, N. Koudas, and
D. Srivastava. Fast indexes and algorithms for set
similarity selection queries. In ICDE, pages 267–276,
2008.

[8] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword Proximity Search on XML Graphs. In ICDE,
pages 367–378, 2003.

[9] iProspect. iprospect natural seo keyword length study
(nuvember 2004). Technical report, iProspect, 2004.

[10] L. Kong, R. Gilleron, and A. Lemay. Retrieving
meaningful relaxed tightest fragments for xml keyword
search. In EDBT, pages 815–826, 2009.

[11] G. Koutrika, A. Simitsis, and Y. E. Ioannidis. Précis:
The essence of a query answer. In ICDE, pages 69–78,
2006.

[12] G. Li, J. Feng, J. Wang, and L. Zhou. Effective
keyword search for valuable lcas over xml documents.
In CIKM, pages 31–40, 2007.

[13] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free
XQuery. In VLDB, pages 72–83, 2004.

[14] Z. Liu and Y. Chen. Identifying meaningful return
information for xml keyword search. In SIGMOD
Conference, pages 329–340, 2007.

[15] Z. Liu and Y. Chen. Reasoning and identifying
relevant matches for xml keyword search. PVLDB,
1(1):921–932, 2008.

[16] Z. Liu, P. Sun, and Y. Chen. Structured search result
differentiation. PVLDB, 2(1):313–324, 2009.

[17] N. Polyzotis and M. N. Garofalakis. Structure and
value synopses for xml data graphs. In VLDB, pages
466–477, 2002.

[18] N. Polyzotis, M. N. Garofalakis, and Y. E. Ioannidis.
Selectivity estimation for xml twigs. In ICDE, pages
264–275, 2004.

[19] C. Sun, C. Y. Chan, and A. K. Goenka. Multiway
slca-based keyword search in xml data. In WWW,
pages 1043–1052, 2007.

[20] A. Termehchy and M. Winslett. Effective,
design-independent xml keyword search. In CIKM,
pages 107–116, 2009.

[21] Y. Xu and Y. Papakonstantinou. Efficient Keyword
Search for Smallest LCAs in XML Databases. In
SIGMOD Conference, pages 537–538, 2005.

[22] Y. Xu and Y. Papakonstantinou. Efficient lca based
keyword search in xml data. In EDBT, pages 535–546,
2008.

572

