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ABSTRACT
Skyline queries have gained a lot of attention for multi-
criteria analysis in large-scale datasets. While existing sky-
line algorithms have focused mostly on exploiting data dom-
inance to achieve efficiency, we propose that data incom-
parability should be treated as another key factor in opti-
mizing skyline computation. Specifically, to optimize both
factors, we first identify common modules shared by exist-
ing non-index skyline algorithms, and then analyze them to
develop a cost model to guide a balanced pivot point selec-
tion. Based on the cost model, we lastly implement our
balanced pivot selection in two algorithms, BSkyTree-S and
BSkyTree-P, treating both dominance and incomparability
as key factors. Our experimental results demonstrate that
proposed algorithms outperform state-of-the-art skyline al-
gorithms up to two orders of magnitude.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing

General Terms
Algorithms, Experimentation, Performance

Keywords
skyline, dominance, incomparability, pivot selection

1. INTRODUCTION
Skyline queries have gained a lot of attention for multi-

criteria decision making in large-scale datasets. Skyline query
formulation is well suited for capturing intuitive user prefer-
ences using dominance– if a point p is better than another
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Figure 1: A toy dataset in two dimensional space

point q in at least one dimension and not worse than q in
all other dimensions, it is said that p dominates q. Given a
multi-dimensional dataset, the skyline query thus returns a
subset of “interesting” points that are not dominated by any
other points.

To illustrate skyline queries, we describe an example using
an SQL-style expression, i.e., SKYLINE OF [4, 5].

Example 1 (Skyline queries) Consider a hotel retrieval
system using a database called Hotel(hno, name, price, dis-
tance, city). To find cheap hotels close to the lake on ‘Lau-
sanne’, a user could formulate a skyline query as follows:

SELECT * FROM Hotel
WHERE city = ‘Lausanne’
SKYLINE OF price MIN, distance MIN; (Q1)

We present how existing algorithms typically compute
skyline with a toy dataset as shown in Figure 1. As indicated
by the MIN keyword in the query, the user prefers hotels
with lower price and distance values. We can thus remove
the hotels that have a higher price and distance compared
to other hotels. For instance, given a “pivot” point b in Fig-
ure 1(a), six points in its “dominance region” (the shadowed
rectangle) can be pruned out. The pruning then continues
until the dataset converges to a subset of “not dominated”
points {b, e, i, l}.

Existing algorithms, though they vary on how to choose
and exploit pivot points, share a key structure as shown in
Figure 2. Specifically, existing algorithms can be catego-
rized into the following two categories: (1) sorting-based al-
gorithms that focus on optimizing the pivot point ordering to
prune more dominated points early on and (2) partitioning-
based algorithms that focus on dividing an entire region into
several subregions to enable “region-level” optimization.
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Figure 2: A generalized framework for skyline query
processing

The primary goal of sorting-based algorithms [6, 7, 8, 1]
is to optimize pivot ordering so that a “desirable pivot” that
prunes out most of the non-skyline points early on is ac-
cessed first. Specifically, to enable this ordering, existing al-
gorithms attempt to access the pivot points that maximize
dominance regions first.

Meanwhile, that of partitioning-based algorithms [9, 14,
11, 16] is to group points into subregions that share a value
proximity. For instance, if spatial indices like an R-tree exist
a priori, points are naturally aggregated into a minimum-
bounding rectangle (MBR) as a subregion. With this ag-
gregation, the points in an MBR can be pruned at once,
by only using single dominance comparison [9, 14]. Re-
cently, non-index partitioning algorithms [11, 16] also make
use of region-level access to reduce “dominance tests” by us-
ing object-based region partitioning.

Based on this overview, existing algorithms can be sum-
marized into the taxonomy shown in Table 1, from which
we make the following two key observations:

Incomparability is critical to achieve scalability. While
existing skyline algorithms have focused mostly on reducing
point-wise dominance tests, incomparability, i.e., two points
p and q do not dominate each other, is another key fac-
tor in optimizing skyline computation. Especially, in high-
dimensional space, most point pairs become incomparable.
To illustrate this, Figure 3 depicts the number of point
pairs with dominance and incomparability. The dataset was
synthetically generated with 200,000 uniformly distributed
points with independent attributes, and was used as a syn-
thetic dataset. The numbers in parentheses indicate the
average number of skyline points. It is clear that, in low
dimensionality, almost all of the point pairs have dominance
relations. In contrast, for a dimensionality higher than 13,
incomparable pairs start to dominate. The graph empir-
ically demonstrates that, to enable skyline query process-
ing scalable over dimensionality, considering both the dom-
inance and incomparability is crucial.

Balancing dominance and incomparability is non-trivial.
To optimize both dominance and incomparability, the pivot
point selection should be carefully designed for a balanced
optimization of these two factors. Existing work mostly op-
timized for dominance by choosing a pivot point that max-
imized the dominance region as depicted in Figure 1(a).
In clear contrast, an alternative extreme is to solely opti-
mize for incomparability, by picking a pivot point e that
“evenly”partitions the entire region as shown in Figure 1(b),
in order to maximize incomparable subregions (marked by
shaded rectangles). With this alternative pivot selection,
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Figure 3: The effect of incomparability

even though the dominance region is reduced, we can still
bypass nine dominance tests on point pairs across the two
incomparable regions, {a, b, c} and {i, k, l}, as they are guar-
anteed to be incomparable. However, it is non-trivial to find
a cost-optimal strategy between these two extremes.

This paper thus aims to find the cost-optimal strategy for
a systematic pivot point selection, considering both domi-
nance and incomparability in “non-index” skyline computa-
tion without pre-computed structures, e.g., B-tree or R-tree.
To achieve this goal, we first identify common modules, pivot
point selection and pruning, in existing skyline algorithms,
and then derive a cost model of an optimal implementa-
tion Opt for pruning. This cost model guides our balancing
act to pick a cost-optimal pivot point, by considering both
dominance and incomparability as key optimization factors.
We implement BSkyTree-S and BSkyTree-P, using our sys-
tematic pivot point selection. Our evaluation demonstrates
that these two proposed algorithms outperform state-of-the-
art algorithms up to two orders of magnitude.

To summarize, we believe that this paper makes the fol-
lowing contributions:

• We develop a conceptual lattice structure illuminating
region-level dominance and incomparability relations.

• We build an optimal pruning skeleton Opt of non-index
skyline algorithms by using the lattice structure, and
analyze a cost model of Opt.

• We design a systematic pivot point selection driven by
the cost model, which optimizes both dominance and
incomparability as key optimization factors.

• We implement two instances of Opt, BSkyTree-S and
BSkyTree-P, by leveraging our proposed pivot point
selection.

• We evaluate our proposed algorithms by comparing
them with state-of-the-art algorithms for both real-life
and extensive synthetic datasets.

The rest of this paper is organized as follows. Section 2
reviews existing skyline algorithms, and Section 3 presents
preliminaries on skyline query processing. Section 4 intro-
duces a lattice structure for mapping points into subregions,
and presents a common skeleton Opt for pruning and its
cost analysis. Section 5 designs a systematic pivot selection
guided by the cost model of Opt. Section 6 then proposes two
instances of Opt by implementing our pivot selection. Sec-
tion 7 reports on experimental results for both real-life and
synthetic datasets. Finally, Section 8 concludes our work.
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2. RELATED WORK
Skyline queries have been first studied as maximal vectors

[10, 2, 3] in the context of theoretical analysis. Later, pio-
neered by [4], many skyline algorithms have been proposed
in the database community. Although skyline queries are ex-
tensively used in various settings, i.e., distributed, dynamic,
and probabilistic data, we focus only on existing work for
exact skyline computation in static data in centralized en-
vironments. Specifically, this can be categorized into two
categories, sorting- and partitioning-based algorithms.

2.1 Sorting-based Algorithms
Sorting-based algorithms aim to optimize pivot ordering

to prune out non-skyline points early on. An early block-
nested-loop algorithm [4] could also be viewed as a sorting-
based algorithm accessing points in stored order. Chomicki
et al. [6, 7] proposed SFS sorting points in decreasing order
of the size of dominance regions, using a monotone scoring
function. Later, Godfrey et al. [8] developed LESS as a
combination of both BNL and SFS, which accesses points in
stored order (as in BNL) but keeping skyline candidates in
sorted order of dominance regions (as in SFS) to reduce the
dominance tests for non-skyline points. Recently, Bartolini
et al. [1] enhanced SFS by using minC function to achieve
early termination in distributed data scenarios. More re-
cently, Park et al. [15] proposed SSkyline that dynamically
changes pivot points in stored order if dominated.

Drawbacks: These algorithms focus solely on optimiz-
ing data dominance, and neglect data incomparability factor
in skyline query computation. Recall that, the number of
incomparable pairs dominate in high-dimensional space, as
depicted in Figure 3.

2.2 Partitioning-based Algorithms
Partitioning-based algorithms aim to group points into

subregions that share commonality to carry out region-based
dominance tests. An early algorithm, D&C [4] simply di-
vided the problem into multiple sub-problems, and merged
the local skyline points into global skyline. To use a more ef-
ficient region-level access, namely NN [9] and BBS [14] built
upon pre-constructed spatial indices like the R-tree. Re-
cently, Lee et al. [12] proposed ZSearch using ZB-tree as a
new variant of B-tree, and Morse et al. [13] proposed LS
using a static lattice structure for the special case of low-
cardinality datasets.

In contrast, we handle non-index skyline algorithms which
partition at the run time. Specifically, Zhang et al. [16] and
Lee et al. [11] proposed partitioning-based algorithms with-
out pre-computed indices. These algorithms outperformed
sorting-based algorithms, by considering both dominance
and incomparability.

Drawbacks: While existing partitioning-based algorithms
explored the potential of optimizing for incomparability, they
did not fully address its potential by using heuristic pivot
selections, i.e., dominance-based [11] and random [16] pivot
selection, as we will empirically validate in Section 7.

2.3 Our Work
In this paper, we first identify common modules for sorting-

and partitioning-based non-index algorithms, and then use
them to analyze a cost model. Specifically, we use the
model to balance both dominance and incomparability in
pivot point selection. This systematic pivot point selection

Sorting-based Partitioning-based
Dominance BNL [4], SFS [6, 7], D&C [4], NN [9],

LESS [8], SaLSa [1], BBS [14], LS [13],
SSkyline [15] ZSearch [12]

Incomparability OSPS [16],
SkyTree [11]

Table 1: Taxonomy of existing skyline algorithms

enables us to enhance all the algorithms in the taxonomy
shown in Table 1, by exploring untapped room for further
optimization.

3. PRELIMINARIES
We first introduce some basic notations to formally present

skyline queries. Let D be a finite d-dimensional space, i.e.,
{d1, . . ., dd}, where each dimension has a domain of non-
negative real number R+, denoted as dom(di) → R+. Let S
be a set of finite n points that is a subset of dom(D), i.e.,
S ⊆ dom(D). A point p in S is represented as (p1, . . . , pd)
in which ∀i ∈ [1, d] : pi ∈ dom(di). For simplicity, dom(di)
has normalized values of [0,1].

Based on these notations, we formally define dominance,
incomparability, and skyline respectively. These definitions
are consistent with existing skyline work. Throughout this
paper, we consistently use min operator for skyline compu-
tation.

Definition 1 (Dominance) Given p, q ∈ S, p dominates q
on D, denoted as p ≺D q, if and only if ∀ i ∈ [1, d] : pi ≤ qi

and ∃ j ∈ [1, d] : pj < qj .

Definition 2 (Incomparability) Given p, q ∈ S, p and q
are incomparable on D, denoted as p ∼D q if and only if p
⊀D q and q ⊀D p.

Definition 3 (Skyline) A point p is a skyline point on D
if and only if any other point q (6= p) does not dominate p on
D. Given dataset S on D, skyline is a set of skyline points
such that SKYD(S) = {p ∈ S|@q ∈ S : q ≺D p}.

The skyline computation depends heavily on point-wise
dominance tests. Given S, a naive skyline algorithm might
perform exhaustive pair-wise dominance tests on n(n−1)/2
pairs and incur quadratic costs. In other words, each point
would be compared by up to n − 1 other points. Ideally,
an efficient algorithm would reduce the comparisons of non-
skyline points down closely to 1, by scheduling dominance
tests in such a way that a non-skyline point is only compared
with a skyline point dominating the non-skyline point.

To make progress towards the goal, we extend point-level
notions to “region-level” notions. Suppose that a hyper-
rectangle region R on D is represented as [u1, v1) × . . . ×
[ud, vd) in which a virtual best point and a virtual worst
point are denoted as Rb = (u1, . . . , ud) and Rw = (v1, . . . , vd)
respectively. For this regional unit, we formally present the
notions of dominance and incomparability, as done in [12].

Definition 4 (Region-level dominance) Given two re-
gions R and R′ on D, R dominates R′ if Rw ≺D R′b.

Definition 5 (Region-level incomparability) Given
two regions R and R′ on D, they are incomparable if Rb ⊀D
R′w and R′b ⊀D Rw.
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For brevity of representation, we replace notations ≺D,
⊀D, ∼D, and SKYD(S) with ≺, ⊀, ∼, and SKY(S) if it is
clear from the context.

We now explain how this region-level extension can be
used to reducing dominance tests.

First, region-level dominance is used for reducing dom-
inance tests of non-skyline points. If R dominates R′, a
point p in R dominates all points in R′ after only one dom-
inance test. This property intuitively inspires the idea of
index-based algorithms [9, 14] by pruning a group of points
in R′, i.e., an MBR, by a single dominance test between p
and R′b. Similar intuitions are used in non-index algorithms
[6, 7, 8, 1] to access pivot point maximizing dominance re-
gions first. These points would be effective in pruning out
points in its dominance region early on.

Second, region-level incomparability is used to avoid dom-
inance tests between incomparable points (not necessarily
skyline points). Suppose that two regions R and R′ are
incomparable. In this case, the two points corresponding
to each region are also incomparable, i.e., if R ∼ R′, then
∀p ∈ R, ∀q ∈ R′ : p ∼ q. We can thus save computation
cost by bypassing dominance tests for point pairs between
incomparable regions. This property inspires the idea of
partitioning-based algorithms [16, 11], using heuristic pivot
selection for incomparability. Recall that, optimizing for
incomparability becomes more and more critical in high-
dimensional space, where most point pairs become incom-
parable.

4. A COST MODEL OF SKYLINE ALGO-
RITHMS

This section first introduces a conceptual structure illu-
minating the dominance and incomparability relations be-
tween partitioned subregions. Based on this structure, we
then develop a cost model for non-index skyline algorithms,
by measuring the number of dominance tests that affects the
overall performance of skyline computation.

4.1 A Lattice Mapping Points into Regions
Given a pivot point pV , the entire region can be divided

into disjoint 2d subregions. For instance, Figure 1(b) de-
scribes four subregions partitioned by a point e. Every
point in S is thus contained in a subregion, e.g., {}, {a, b, c},
{i, k, l} and {d, e, f, g, h, j}. Formally, let R denote a set of
subregions on D, i.e., R = {R0, . . . R2d−1}, based on which
we represent region-level relations.

More specifically, to simplify region-level relations, we in-
troduce a d-dimensional vector B that corresponds to R. Let
B denote a set of all d-dimensional vectors i.e., B = {B0, . . .,
B2d−1}, where each vector is mapped into a subregion such
that ∀Bi ∈ B : Bi → Ri. Let B.di denote a value on di of
vector B, where a value di on B corresponds to the ith most
significant bit. Formally, given a pivot point pV and a point
q in Ri, B.di is represented as a binary value:

B.di ←
{

0, if qi < pV
i ;

1, otherwise.

We then explain how to infer region-level relations from
binary vectors presenting subregions. For instance, when d
= 3, pV divides the entire region into eight subregions, i.e.,
B = {B0 = 000, B1 = 001, . . ., B7 = 111}. If B.di is 0,
the range of possible point values is [0, pV

i ). Otherwise, the

000

010001 100

101011 110

111

000(0)

010(2)001(1) 100(4)

101(5)011(3) 110(6)

111(7)

(a) A binary lattice (b) An encoded binary lattice

Figure 4: A lattice for mapping points into regions
when d = 3

range is [pV
i , 1]. Thus, vectors B0 and B1 describe subre-

gions [0, pV
1 )× [0, pV

2 )× [0, pV
3 ) and [0, pV

1 )× [0, pV
2 )× [pV

3 , 1]
respectively. The binary vectors are thus suited for present-
ing subregions concisely.

Using binary vectors, region-level relations can be for-
mally represented as the following three cases:

Definition 6 (Dominance in B) Given two vectors B and
B′, B dominates B′ on D, denoted as B ≺ B′, if and only
if ∀i ∈ [1, d] : B.di < B′.di, i.e., ∀i ∈ [1, d] : B.di = 0 and
B′.di = 1.

Definition 7 (Partial dominance in B) Given two vec-
tors B and B′, B partially dominates B′ on D, denoted as
B ≺Par B′, if and only if ∀i ∈ [1, d] : B.di ≤ B′.di and
∃j ∈ [1, d] : B.dj = B′.dj .

Definition 8 (Incomparability in B) Given two vectors
B and B′, B is incomparable with B′ on D, denoted as
B ∼ B′, if and only if ∃i ∈ [1, d] : B.di < B′.di and ∃j ∈
[1, d] : B′.dj < B.dj .

The relations between binary vectors can thus be orga-
nized as a partially ordered set, represented as a lattice.
To illustrate this, Figure 4 describes a binary lattice and
its binary encoding when d = 3. In this lattice, adjacent
node pairs connected by an arrow represent partial domi-
nance relations. By the transitivity, node pairs reachable by
a path of multiple paths also have partial dominance rela-
tions. Among these partially dominated pairs, (B0, B2d−1)
shows a dominance relation according to Definition 6. All
of the remaining non-reachable pairs have incomparability
relations.

More specifically, for all relations such that ∀i, j ∈ [0, 2d−
1] : (Bi, Bj) ∈ B × B, we explain how region-level relations
are related to point-wise dominance tests. For the sake of
representation, let Si denote a subset of points in Ri mapped
into corresponding vector Bi.

• Dominance: For dominance pair (B0, B2d−1), if a
point p in S0 exists, any point q in S2d−1 can be imme-
diately pruned out after a point-wise dominance test
on (p, q).

• Partial dominance: The relation can be classified
into two subcases: (1) a self-pair (Bi, Bi) and (2)
(Bi, Bj) with an arrow from Bi to Bj . Guided by these
region-level relations, we then perform point-wise dom-
inance tests to effectively identify point-level relations.
First, for self-pairs Bi and Bi, we perform dominance
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Sorting-based(S)

S.Sort(). // Optional.

p
V ← S.SelectPivot().

S ← Prune(pV , S).

while(1)

if (S.Last() = true) then

Break.
end if

end while

Partitioning-based(S)

p
V ← S.SelectPivot().

S ← Prune(pV , S).

Partioning-based(Si).

for ∀ Si ∈ S

end for

if (S.Size() > 1)

end if

// Recursive call.

(a) Sorting-based scheme (b) Partitioning-based scheme

Figure 5: Skeletons of non-index skyline algorithms

tests in Si itself. Second, for Bi and Bj with par-
tial dominance relations, since points in Si are likely
to dominate those in Sj , we perform dominance tests
between Si and Sj . Recall that, we take the transi-
tivity into account to find all of the partial dominance
relations– If an arrow exists from Bi to Bj and an ar-
row from Bj to Bk, then Bi also partially dominates
Bk. We thus perform dominance tests for partial dom-
inance pairs (Bi, Bk).

• Incomparability: For all the remaining pairs, Bi and
Bj are incomparable, which suggests that point sets
Si and Sj in corresponding regions Ri and Rj are also
incomparable, i.e., if Bi ∼ Bj , then ∀p ∈ Si, q ∈ Sj :
p ∼ q. We can thus bypass point-wise dominance tests
between Si and Sj .

4.2 Algorithm Skeletons and Cost Model
This section presents a cost model for dominance tests in

non-index skyline algorithms. To achieve this goal, we ab-
stract common skeletons of a class of non-index algorithmsA
from which common modules can be identified. Recall that,
non-index skyline algorithms do not require pre-constructed
indexes. Figure 5 depicts common skeletons of sorting-based
algorithms such as BNL, SFS, SaLSa, and SSkyline, and
partitioning-based algorithms such as OSPS and SkyTree,
respectively. In these skeletons, two key common modules,
SelectPivot() and Prune(), are identified.

We first model the cost of Prune() for these skeletons.
Specifically, given a pivot point pV , we can abstract Prune()
as an optimal implementation Opt. To illustrate this, Algo-
rithm 1 describes the pseudo code for Opt, based on which
we measure the cost of Opt as the number of point-wise dom-
inance tests. Since dominance tests monopolize the overall
computation time (as argued in [12, 16]), our model can thus
closely reflect the overall cost.

We then prove that Opt only requires minimal dominance
tests to find correct skyline results, by showing that the cost
of Opt is no higher than that of any arbitrary algorithm
A ∈ A. Suppose that the same pivot is used. Given an
algorithm A and a dataset S, let denote the cost model
as Cost(A,S). We formally state the optimality of Opt as
follows:

Theorem 1 (Optimality of Opt) Given a set of any non-
index algorithms A, Algorithm Opt incurs the minimal cost,
i.e., ∀A ∈ A : Cost(Opt,S) ≤ Cost(A, S).

Proof. We prove this by contradiction. In other words,
if A skips any dominance test performed by Opt, it may no

Algorithm 1 Opt(pV , S)

1: S ← MapPointToRegion(pV , S).
2: // Remove all points in S2d−1 dominated by pV .

3: S ← S − Dominance(pV , S2d−1).

4: B ← {B0, . . . , B2d−2}.
5: for ∀(Bi, Bj) ∈ B × B do
6: // Check partial dominance, and remove dominated points.
7: if Bi ≺Par Bj and Si 6= {} then
8: S ← S − Dominance(Si, Sj).
9: else if Bi ∼ Bj then
10: Continue. // Skip dominance tests between Si and Sj .
11: end if
12: end for
13: return S

longer guarantee that A finds correct skyline results. Specif-
ically, we shows the dominance tests of Opt for the following
three region-level relations described in the lattice.

• Dominance (lines 2-3): When performing domi-
nance tests between a point q ∈ S2d−1 and a pivot

point pV , Opt only requires one dominance test for
each point. For S2d−1, the cost of Opt thus equals to
|S2d−1|. To contradict, assume that an algorithm A
exists with less dominance tests. For a skipped domi-
nance test, A can include q ∈ S2d−1 as final skyline if

q is only the point dominated by pV . As a result, A
causes incorrect results, which incurs a contradiction.

• Partial dominance (lines 6-8): Opt needs to check
dominance tests between p and q if Si and Sj have
a partial dominance relation. To contradict, assume
that A can skip dominance tests between p and q. In
this case, A can contain q as final skyline if q is the
only point dominated by p. As a result, the result of
A is incorrect, which incurs a contradiction.

• Incomparability (lines 9-10): Given two regions
Ri and Rj , Opt bypasses all the point-wise dominance
tests corresponding to Si and Sj . In this case, A can
save as many equal dominance tests as Opt.

To sum up, an algorithm A performing less point-wise
dominance tests cannot guarantee to find correct skyline re-
sults. In other words, a non-index algorithm has to perform
at least as many dominance tests as Opt.

To analyze Opt, we now adopt the general assumption
used in prior analysis [6, 7, 8] for data distributions. Suppose
that points are uniformly and independently distributed in
d-dimensional space, i.e., uniform independence (UI). This
UI condition has been widely adopted in prior work to esti-
mate the number of points in Ri.

Based on this assumption, we analyze two important fac-
tors, dominance and incomparability, in Opt. We measure
the power of dominance and incomparability to select a
good pivot point. Specifically, a good pivot point maxi-
mally prunes out non-skyline points by dominance, while by-
passing unnecessary dominance tests on incomparable point
pairs. Let denote the number of dominated points by ND,
and number of incomparable pairs by NI . For the sake of
presentation, let [Bi ∼ Bj ] denote a boolean condition, i.e.,
1 if Bi and Bj are incomparable; 0, otherwise. Given a pivot
point pV and a dataset S, ND and NI in Opt are formally
stated as follows:
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Theorem 2 (The power of a pivot point pV in Opt)
Given a pivot point pV and a dataset S under UI condition,
we represent the number of dominated points and incompa-
rable point pairs as ND(pV ,S) = |S2d−1| and NI(p

V ,S) =∑2d−1
i=0

∑2d−2
j=i+1 |Si||Sj |[Bi ∼ Bj ] respectively.

Proof. First, suppose that a point q is mapped into
B2d−1. In this case, q is dominated by a pivot point pV . For
S2d−1, we can represent the number of dominated points

ND(pV ,S) as |S2d−1|. Second, for q in Si, the number of

incomparable pairs is
∑2d−2

j=0 |Sj |[Bi ∼ Bj ]. By the sym-
metric property of the incomparability, we only consider Bj

such that i < j. Considering every Si, we can represent

NI(p
V ,S) as

∑2d−1
i=0

∑2d−2
j=i+1 |Si||Sj |[Bi ∼ Bj ].

According to Theorem 2, the cost function is thus in-
versely proportional to the sum of ND and NI as follows:

Cost(pV ,S) ∝ 1

ND(pV ,S) + NI(pV ,S)
.

5. A COST-BASED PIVOT SELECTION
This section designs a systematic pivot point selection.

Desirably, an ideal pivot point maximizes the power of dom-
inance and incomparability discussed in Theorem 2. At each
iteration, how do we select a pivot point pV maximize both
ND(pV ,S) and NI(p

V ,S)? Formally, the pivot point selec-
tion is presented as the optimization of selecting a point p
that maximizes both ND and NI :

pV = argmin
p∈SCost(p,S).

= argmax
p∈SND(p,S) + NI(p,S).

A naive solution to this cost-based optimization would be
to compute the function for every point, which would involve
performing dominance tests across all pairs of 2d − 1 sub-
regions. This naive solution thus incurs a prohibitive cost
of O(4d). As a result, estimating the exact function scores
defeats the whole purpose of optimizing the pivot point se-
lection.

To solve this problem, we propose a two-phase approx-
imation approach, i.e., pruning-then-optimization. In the
pruning phase, we first reduce the search space into a sub-
set of points with high ND. In the optimization phase, we
then pick a pivot point pV from the subset identified as the
first phase to maximize NI . The property naturally sug-
gests to find a pivot point pV that balances both ND and
NI consistently.

More specifically, each phase works as follows:

1. Pruning phase: To maximize ND, we consider only
skyline points as pivot candidates, since ND of a sky-
line point is always larger than that of a non-skyline
point it dominates.

2. Optimization phase: To maximize NI , we find a
skyline point that maximizes the number of incompa-
rable pairs. This optimization can select a pivot point
pV that balances both ND and NI .

We now discuss how to find a pivot point pV maximizing
NI in skyline points.

Lemma 1 Given incomparable two regions R and R′, there
exists at least one two-dimensional subspace {di, dj} such
that R ∼{di,dj} R′.

y

projx(y)θ

x

p

dist(p,x)

Figure 6: The projection of vector y onto vector x

Proof. By Definition 8, if R ∼ R′, then ∃di ∈ D : B.di <
B′.di and ∃dj ∈ D : B′.dj < B.dj .

Lemma 2 Given S in two-dimensional space {di, dj} under
UI condition, a pivot point pV = (pV

i , pV
j ) maximally by-

passes dominance tests for incomparability, if pV has equal
values such that pV

i = pV
j .

Proof. A pivot point pV divides S into four subregion,
where R1 and R2 are incomparable. We can quantity the
dominance tests bypassed by incomparability as |S1| × |S2|.
Under UI condition, |S1| and |S2| are proportional to the
size of subregions R1 and R2 such that pV

i × (1 − pV
j ) and

(1 − pV
i ) × pV

j respectively. In this case, when pV has the

equal values such that pV
i = pV

j , pV maximizes dominance
tests for incomparability.

Based on Lemmas 1 and 2, we formally present a desirable
pivot point pV under UI condition.

Theorem 3 (Maximization of incomparability) Given
S under UI condition, pV maximally bypasses dominance
tests for incomparability, if pivot point pV = (pV

1 , . . . pV
d )

has equal values such that pV
1 = . . . = pV

d ,

Proof. By Lemma 1, we first project d-dimensional space
into incomparable two-dimensional subspace D = {di, dj}
such that D ⊆ D. By Lemma 2, we then select a pivot
point pV such that pV

i = pV
j to maximize dominance tests

for incomparability. By extending into all possible incompa-
rable two-dimensional subspaces, pV such that p1 = . . . = pd

maximizes dominance tests on d-dimensional space.

According to Theorem 3, the incomparability is maxi-
mized when pV lies on a diagonal line. That is, we select a
pivot point pV as a point p with the the smallest “coordi-
nate spread” from the diagonal. Specifically, to quantify how
close a point p is to the diagonal line, we thus compute the
distance dist(p,x) between a point p and a diagonal vector x
= (x1, . . . , xd) such that xi = . . . = xd, using the projection
vector depicted in Figure 6.

dist(p,x) =
√
||p||2 − ||projx(y)||2 (1)

Let projx(y) denote the projection of a vector y onto a vec-
tor x. The projection vector projx(y) is calculated as fol-
lows:

projx(y) = ||y|| · cosθ =
(x · y
x · x

)
x. (2)

As p = (p1, . . . , pd) and x has equal values, projection vector
projx(y) is represented as:

projx(y) =
xi(p1 + . . . + pd)

d · x2
i

· x, (3)
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Algorithm 2 SelectPivotPoint(S)

Input: A dataset S = {p1, . . ., pn}
Output: A pivot point pV

1: head ← 1, cur ← 2, tail ← n. // Initialize variables.
2: mindist ← dist(S[head]).
3: while cur ≤ tail do
4: if S[head] ≺ S[cur] then
5: S.Remove(cur). // Remove a dominated point.
6: tail ← tail− 1.
7: else if S[cur] ≺ S[head]. then
8: S[head] ← S[cur]. // Change a head point.
9: S.Remove(cur).
10: tail ← tail− 1, cur ← head + 1.
11: mindist ← dist(S[head]).
12: else
13: // Compare mindist with curdist of S[cur].
14: curdist ← dist(S[cur]).
15: if curdist < mindist then
16: if ∀q ∈ S[2, cur − 1] : q ⊀ S[cur] then
17: Swap S[cur] and S[head].
18: curdist ← mindist.
19: end if
20: end if
21: cur ← cur + 1.
22: end if
23: end while
24: S ← S[1, tail]. // Update S as the remaining points.
25: pV ← S[head].
26: return pV

According to Equation 3, the distance of projx(y) is calcu-
lated as:

||projx(y)|| =
√

(p1 + . . . + pd)2

d
. (4)

Since ||p|| is
√

p2
1 + . . . + p2

d, Equation 1 is represented as
follows:

dist(p,x) =

√
(p2

1 + . . . + p2
d)− (p1 + . . . + pd)2

d
.

=

√
(p1 − p2)2 + . . . + (pd−1 − pd)2

d
.

(5)

In this case, the numerator of the second equation requires
us to subtract all (pi, pj) combinations, which incurs an
quadratic computation cost, i.e.,

(
d
2

)
.

As the exact computation requires expensive quadratic
computation, we consider its upper bound as an alternative
for more efficient distance computation. Observe that, in
Equation 5, |pi − pj | (i 6= j) is no less than pmax − pmin

where pmax = argmaxi∈[1,d]pi and pmin = argmini∈[1,d]pi.
We can thus derive the upper bound of dist(p,x):

dist(p,x) ≤
√

(pmax − pmin)2 × (
d
2

)

d
.

≤ dist(p)×
√

d− 1

2
,

(6)

where dist(p) = pmax − pmin. Since
√

d−1
2

is a constant

regardless of points, we solely consider dist(p) instead of
dist(p,x).

To sum up, we would exploit dist(p) presenting the up-
per bound of dist(p,x), only requiring O(d) computation, to
select a desirable pivot point pV .

While our approach is two-phase in principle, its imple-
mentation does not necessarily have to follow two phases.
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Figure 7: Balanced pivot point selection in two di-
mensional space

Instead, we can interleave the two phases into an efficient
one-phase algorithm. Specifically, we perform point-wise
dominance tests while maintaining (1) a skyline point with
(2) the shortest upper bound distance.

Algorithm 2 describes the pseudo code of our proposed
one-phase implementation for pivot point selection. To cap-
ture a updated pivot point, we maintain a head point as a
pivot point pV . Specifically, when the head point does not
dominate the currently accessed point in stored order, we
check whether the distance of the current point is shorter
than that of the head point.

More specifically, we classify the relations between head
point pV and current point q into three cases:

1. pV ≺ q (lines 4-6): As the pruning phase, q is removed
without calculating dist(q).

2. q ≺ pV (lines 7-11): As the pruning phase, pV is re-
placed with q, and dist(pV ) is updated.

3. pV ∼ q (lines 12-22): As the optimization phase, we
first compute dist(q). If dist(q) is smaller than dist(pV ),
we check whether q is not dominated by the previously
accessed points. If this is true, we swap pV with q,
and dist(pV ) is updated. Note, while performing dom-
inance tests between q and previous accessed points,
we can remove additionally dominated points.

To illustrate our pivot point selection, Figure 7 depicts
an example with 12 points on two dimensional space. (The
shadowed rectangles present the dominance regions of cur-
rent pivot points.) Suppose that data points are accessed
in alphabetical order. For each step, Table 2 presents the
actions of the pivot point selection. Note, when pV ≺ q,
the computation of dist(q) is skipped, represented as “-” in
Table 2. First, since b ≺ a, pV is replaced with b (Step 1).
Next, b is compared with c and d, where b ≺ c and b ≺ d
(Steps 2-3). When b is compared with e, two points are
swapped, since dist(e) < dist(b). (Step 4). By comparing
e with other points, we remove dominated points {f, g, h, j}
in order (Steps 5-9). Point e is finally selected as pV , since
dist(e) is the shortest distance (Steps 10-11). Maintaining
pV as a skyline point with the shortest distance, we simul-
taneously remove dominance points, where Sremains five
points {e, b, i, k, l}. As a result, we have to only consider the
remaining points to identify final skyline points.
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Step pV dist(pV ) q dist(q) Relation

1 a(2,8) 6 b(2,5) 3 b ≺ a
2 b(2,5) 3 c(3,9) - b ≺ c
3 b(2,5) 3 d(4,6) - b ≺ d
4 b(2,5) 3 e(4,4) 0 b ∼ e
5 e(4,4) 0 f (5,7) - e ≺ f
6 e(4,4) 0 g(6,4) - e ≺ g
7 e(4,4) 0 h(7,6) - e ≺ h
8 e(4,4) 0 i(7,2) 5 e ∼ i
9 e(4,4) 0 j (8,8) - e ≺ j
10 e(4,4) 0 k(8,3) 5 e ∼ k
11 e(4,4) 0 l(9,1) 8 e ∼ l

Table 2: Actions of pivot point selection in Figure 7

Algorithm 3 BSkyTree-S(S)

Input: A dataset S = {p1, . . ., pn}
Output: A set of skyline points SKY(D)
1: pV ← SelectPivotPoint(S). // Perform Algorithm 2.
2: S← MapPointToRegion(pV , S). // Region-level mapping
3: S← S − S2d−1. // Remove dominated points in S2d−1.

4: head ← 2, tail ← |S|. // Initialize variables.
5: while head < tail do
6: cur ← head + 1.
7: while cur ≤ tail do
8: if S[head].B ≺Par S[cur].B or vice verse then
9: if S[head] ≺ S[cur] then
10: S.Remove(cur). // Remove a dominated point.
11: tail ← tail− 1.
12: else if S[cur] ≺ S[head] then
13: S[head] ← S[cur]. // Change a head point.
14: S.Remove(cur).
15: tail ← tail− 1, cur ← head + 1.
16: else
17: cur ← cur + 1. // Point-level incomparability
18: end if
19: else
20: cur ← cur + 1. // Region-level incomparability
21: end if
22: end while
23: if head < tail then
24: head ← head + 1.
25: end if
26: end while
27: SKY(D) ← S[1, tail].
28: return SKY(D)

6. INSTANTIATIONS OF Opt

This section proposes two instantiations of Opt, BSkyTree-S
and BSkyTree-P, using our balanced pivot point selection.
Specifically, these instantiations can be viewed as enhanced
versions for each scheme: the sorting- and partitioning-based
algorithms, as we describe below.

• BSkyTree-S: This scheme accesses points in stored or-
der after the pivot point selection. This instantia-
tion can improve existing sorting-based algorithms, by
(1) bypassing dominance tests between incomparable
subregions and (2) dynamically changing dominated
points.

• BSkyTree-P: This scheme adopts a divide-and-conquer
strategy by recursively partitioning the entire data into
2d subsets. This instantiation can improve existing
partitioning-based algorithms, by adopting the pivot
point selection considering both dominance and incom-
parability.
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Figure 8: Recursive partitioning in two dimensional
space

6.1 Algorithm BSkyTree-S

Algorithm 3 depicts the pseudo code of BSkyTree-S. In
lines 1-3, we select a pivot point pV using Algorithm 2. Ac-
cordingly, each point is then mapped to partitioned sub-
regions, and dominated points in S2d−1 are pruned out.
In lines 5-28, we sequentially access points in stored order
updated by the pivot point selection, and perform point-
wise dominance tests, i.e., by comparing a fixed head point
with all of the other points. Note, in line 8, we check
the region-level relations unlike the existing sorting-based
algorithms–if no region-level partial dominance relations ex-
ist, the point-wise dominance tests can be bypassed, imply-
ing region-level incomparability. This enables us to signifi-
cantly save computation costs, compared to existing sorting-
based algorithms [6, 7, 1, 15].

We now illustrate BSkyTree-S using an example dataset
in Figure 8. Recall that, after pivot point e is determined
by leveraging Algorithm 2, the remaining points in S are
{e, b, i, k, l}. Since e has already been determined as a sky-
line point, we only need to check the remaining four points.
Table 3 describes the actions of BSkyTree-S. (Let S[head].B
and S[cur].B denote binary vectors of a head point and a
current point respectively.) For point b, we can skip the
dominance tests for other points, since 01 ∼ 10 (Steps 1-
3). For the other points, the point-wise dominance tests are
performed (Steps 4-6). As a result, final skyline points are
{e, b, i, l}.

Step S[head] S[head].B S[cur] S[cur].B SKY(S)

1 b(2,5) 01 i(7,2) 10 {e}
2 b(2,5) 01 k(8,3) 10 {e}
3 b(2,5) 01 l(9,1) 10 {e, b}
4 i(7,2) 10 k(8,3) 10 {e, b}
5 i(7,2) 10 l(9,1) 10 {e, b, i}
6 l(8,2) 10 - - {e, b, i, l}

Table 3: Actions of BSkyTree-S in Figure 8

6.2 Algorithm BSkyTree-P

Algorithm 4 describes the pseudo code of BSkyTree-P. In
lines 3-10, we determine a pivot point pV using Algorithm 2,
based on which points are mapped to partitioned subregions.
A key difference from BSkyTree-S is that, BSkyTree-P recur-
sively rearranges points into subsets in a divide-and-conquer
manner. Let H denote a list of point subsets mapped to bi-
nary vectors. In lines 11-21, given a subset H[i], we check
a subset H[j] with partial dominance relations. (That is,
H[i] and H[j] are a subset of points mapping to Bi and
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Algorithm 4 BSkyTree-P(S)

Input: A dataset S = {p1, . . ., pn}
Output: A set of skyline points SKY(S)
1: max ← 2d − 2. // Set the size of a lattice.
2: H[1, max] ← {}. // Initialize a list H.
3: pV ← SelectPivotPoint(S). // Perform Algorithm 2.
4: SKY(S).Add(pV ). // pV is a skyline point.
5: for ∀ p ∈ S do
6: i ← MapPointToRegion(pV , p).
7: if i ≤ max then
8: H[i].Add(p). // Add points mapped into B to H[i].
9: end if
10: end for
11: for i ← 1 to max do
12: if H[i].Size() > 0 then
13: for ∀ j ∈ [1, i]: Bj ≺Par Bi do
14: H[i] ← Dominance(H[j], H[i]).
15: end for
16: if H[i].Size() > 0 then
17: T ← BSkyTree(H[i]). // Recursive partitioning.
18: SKY(S).Add(T ).
19: end if
20: end if
21: end for
22: return SKY(S)

Bj respectively.) If this is true, point-wise dominance tests
are performed, and the dominated points in H[i] are elimi-
nated. Otherwise, the dominance tests can be skipped. We
recursively conquer H[i] in the same fashion until all skyline
points are identified.

To illustrate BSkyTree-P, we explain recursive region-level
partitioning of BSkyTree-P as depicted in Figure 8. Given
a pivot point e, the remaining points are divided into two
subgroups H[1] = {b} and H[2] = {i, k, l}. We recursively
partition them into finer subsets until all the selected pivot
points become skyline points. Finally, the skyline points are
{e, b, i, l}.

As we will report on in Section 7, recursive partitioning
of BSkyTree-P (compared to BSkyTree-S) can cause signifi-
cant computation overhead when the partitions are (1) too
many (2) loosely populated. For instance, in high dimen-
sional space, BSkyTree-P can have too many loosely popu-
lated partitions, i.e., 2d >> n, where partitioning overhead
may outweigh its cost benefit.

We thus optimize BSkyTree-P to avoid the two problems.
First, when the partitions are too many, we reduce dimen-

sionality d into sub-dimensionality d′ until 2d′ < n. Sec-
ond, to remove underpopulated partitions, we set cardinal-
ity threshold δ and simply execute BSkyTree-S instead of
partitioning further. (Empirically, we set the threshold δ as
1000, as the performance of BSkyTree-S is better than that
of BSkyTree-P.) We observed that applying the above opti-
mization may increase dominance tests, but save the over-
all response time by reducing the computation overhead for
partitioning.

7. EXPERIMENTS
This section presents the empirical evaluation results for

our proposed algorithms, BSkyTree-S and BSkyTree-P. We
first explain the experimental settings. We then validate the
effect of pivot point selections, and evaluate the scalability
of our proposed algorithms by comparing them with state-
of-the-art skyline algorithms in extensive synthetic datasets
and real-life datasets.

7.1 Experimental Settings
To validate our algorithms, we synthetically generated ex-

tensive synthetic datasets, varying three parameters– distri-
bution, cardinality, and dimensionality. All the attributes
values are positive real numbers in (0, 1). Specifically:

• Distribution: We generated three datasets, i.e., Corre-
lated (COR), Independent (IND), and Anti-correlated
(ANT), following data generation instructions in [4].
(We do not report results for correlated distribution
in this paper, as the findings are consistent with the
results from other distributions.)

• Dimensionality: We varied dimensionality d from 4 to
22. (Default: d = 12)

• Cardinality: We varied cardinality n from 200K to
1,000K. (Default: n = 200K)

Figures 9 and 10 describe the average number of skyline
points in our synthetic datasets. As the number of skyline
points directly affects the performance, we will later revisit
these numbers as references when explaining the experimen-
tal results.

We also evaluate our algorithms with real-life datasets
such as NBA and Household 1. Specifically, these datasets
have 8-dimensional 17,264 points and 6-dimensional 127,931
points respectively.

Using these settings, we compare our algorithms against
the following state-of-the-art skyline algorithms. Note, when
we compare ours with SFS and SaLSa, assume that they can
obtain sorted order for free. We stress that this assump-
tion is impractical and unfavorable to our algorithms. How-
ever, our intention is to show how our algorithms outperform
these algorithms even in such unfavorable settings.

• Sorting-based algorithms:

– Algorithm SFS [6, 7]: We implement SFS that
accesses points in descending order of the size of
dominance regions. To generate this order, SFS
uses the entropy function for sorting, i.e., f(p) =∑d

i=1 ln(pi + 1), which is proportional to the size
of dominance regions.

– Algorithm SaLSa [1]: SaLSa improves SFS by us-
ing minC function mini∈[1,d]pi for early termina-

tion combining the following sum function
∑d

i=1 pi

as a tie-breaker. In particular, we further opti-
mize the implementation of SaLSa, by maintain-
ing skyline points in decreasing order of the dom-
inance regions. This optimization enables to re-
duce dominance tests for non-skyline points by
taking advantage of SFS.

– Algorithm SSkyline [15]: SSkyline is a non-index
skyline algorithm, which performs nested-loop com-
putation as point-wise dominance tests. However,
SSkyline, by moving a dominated point to the end
of data list after each dominance test, guaran-
tees to avoid redundant dominance comparisons
for non-skyline points.

1These datasets were crawled from http://www.nba.com
and http://www.ipums.org respectively.
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• Partitioning-based algorithms: Existing partitioning-
based algorithms [11, 16] can be viewed as instanti-
ations of BSkyTree-S and BSkyTree-P that adopt two
heuristics pivot selection schemes MaxDom and Random
respectively. To compare our proposed pivot selec-
tion with these algorithms, Section 7.2 will report on
a comparison of different pivot selections in extensive
settings.

To validate the performance, we introduce two measures,
response time and the number of dominance tests per point
(DT ). Formally,

DT =
The total number of dominance tests

n
.

All experiments were conducted through Windows XP
with an Intel Core Duo 2.66 GHz CPU and 2GB RAM over
our C++ implementations of these algorithms. Here, to
focus on the CPU-cost, we assume that all the points can
fit in the main memory for all algorithms, though these al-
gorithms can be straightforwardly modified into disk-based
algorithms.

7.2 The Effect of Pivot Selection
We first evaluate the effect of pivot selection for our pro-

posed algorithms BSkyTree-S and BSkyTree-P, by compar-
ing three different pivot selections– MaxDom, Random, and
Balanced. As explained earlier, recall that, these compar-
ison results can be alternatively viewed as comparing our
proposed algorithms with existing partitioning-based algo-
rithms [11, 16] adopting MaxDom and Random respectively.

• MaxDom: This selection heuristic selects a pivot point
as a skyline point maximizing the dominance region
[11]. That is, we select a point minimizing the sum of

the point values such that pV = argmin
p∈S

∑d
i=1 pi.

This selection thus requires a linear scan on the whole
dataset. While this pivot selection guarantees to max-
imize the pruning power for dominance, it does not
provide any guarantee on maximizing incomparability.
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Figure 12: Varying n and pivot point selections in
BSkyTree-S

• Random: This selection heuristic selects a pivot point
as a random skyline point [16]. First, we randomly set

a weight vector w = (w1, . . . wd) such that
∑d

i=1 wi =
1, and then select a point minimizing the following
weight function such that pV = argmin

p∈S
∑d

i=1 wi · pi.
Note, when weight values are are identical, Random is
the same as MaxDom. This heuristic cannot provide
any guarantee on maximizing both dominance and in-
comparability.

• Balanced: This selection selects a pivot point by con-
sidering both dominance and incomparability, using
Algorithm 2.

7.2.1 Evaluation of BSkyTree-S

We first evaluate three pivot point selection schemes im-
plemented on BSkyTree-S over varying d, as depicted in Fig-
ure 11. Observe that the heuristic pivot selections, MaxDom
and Random, incur significantly higher costs than Balanced.
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Figure 13: Varying d and pivot point selections in
BSkyTree-P
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Figure 14: Varying n and pivot point selections in
BSkyTree-P

In particular, this gap tends to increase as d increases, as
the number of skyline points also increases over d as de-
picted in Figure 9. The gap is maximized when d = 12 in
Figure 11(b). In this case, Balanced achieves about 5 times
speedup over Random. However, the gap starts to decrease,
when d > 12. While the increase in number of skyline points
flattens as depicted in Figure 9, the number of subregions 2d

keeps increasing exponentially. Since BSkyTree-S performs
implicit partitioning, this phenomenon helps to fully exploit
the incomparability.

We also compare three pivot point selections over varying
n, as depicted in Figure 12. Balanced consistently outper-
forms other heuristic pivot selections. In particular, while
Balanced shows near-constant performances, other heuristics
incur linear costs, as n increases.

7.2.2 Evaluation of BSkyTree-P

We then compare the pivot point selections implemented
on BSkyTree-P. Figures 13 and 14 depict the comparison
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Figure 15: Varying d

results over varying d and n respectively. Unlike BSkyTree-S
optimizing global pivot ordering, BSkyTree-P recursively par-
titions a region, and divides the pivot selection problem into
the same problem in its subregions. Although this partition-
ing requires additional overhead, the overhead starts to pay
off in high dimensionality, by leveraging region-specific in-
comparability. (We will further explain this trade-off in Sec-
tion 7.3). In particular, observe that Balanced saves up to
10 and 14 speedups over MaxDom and Random, respectively,
when n=1,000K as depicted in Figure 14(b). Note that, we
do not observe a peak in performances around d = 12 in
our previous evaluation as reported in Figure 11(b), since
BSkyTree-P recursively performs explicit partitioning un-
like BSkyTree-S. Meanwhile, we leverage the use of sub-
dimensionality and the execution of BSkyTree-S to optimize
the overhead for partitioning. For every pivot point selec-
tion, the optimizations help to prevent exponential overhead
increases in high dimensional space.

7.3 Scalability
We now compare BSkyTree-S and BSkyTree-P with state-

of-the-art algorithms such as SFS, SaLSa, and SSkyline. Re-
call that, we compared our algorithms only with these sorting-
based algorithms, as our results in Section 7.2 have already
demonstrated the scalability of our algorithm over exist-
ing partition-based algorithms. Similarly to Section 7.2, we
compared BSkyTree-S and BSkyTree-P with these sorting-
based algorithms over varying d and n. Note that, all ex-
perimental results in these settings are reported in log-scaled
graphs, as the performance gaps are of two orders of mag-
nitude.

7.3.1 Dimensionality
We compare BSkyTree-S and BSkyTree-P with existing al-

gorithms over varying d, as depicted in Figure 15. Observe
that existing algorithms are sensitive over d, since they do
not fully exploit incomparability. In clear contrast, our al-
gorithms demonstrate high scalability over d.

We also observe that our two proposed algorithms show
the following complementary strengths over d:

• Low dimensionality (when d < 8): BSkyTree-S, by not
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Figure 16: Varying n

requiring explicit partitioning overhead, demonstrates
a higher performance over BSkyTree-P requiring ex-
plicit recursive partitioning.

• High dimensionality (when d ≥ 8): BSkyTree-P starts
paying off in high-dimensional space, by decreasing
the size of the problem in partitioning (which near-
quadratically affects the performance). For high di-
mensional space, this benefit starts to outweigh the
overhead for partitioning. In particular, BSkyTree-P
demonstrates about 100 times speedup over existing
algorithms when d = 22.

7.3.2 Cardinality
We also report our evaluation results over varying n, as

depicted in Figure 16. In a Similar way to d, our algorithms
significantly outperform existing algorithms over all n, espe-
cially in high cardinality data. For instance, in all cardinal-
ity on the anti-correlated dataset, BSkyTree-P achieves up
to two orders of magnitude.

7.4 Real-life datasets
This section reports on the response time and DT of all

algorithms over real-life datasets. Specifically, Table 4 com-
pares the response time (and DT in parentheses) for varying
pivot selections implemented on BSkyTree-S and BSkyTree-P.
We can observe that Balanced consistently outperforms other
pivot point selections in real-life datasets as well. Table
5 reports the comparison results along with other exist-
ing algorithms. Just as we observed in synthetic datasets,
BSkyTree-P has an advantage over BSkyTree-S in high car-
dinality data. In other words, BSkyTree-S and BSkyTree-P
show a higher performance in NBA (smaller) and Household
(larger) datasets respectively.

8. CONCLUSION
This paper studied the optimization problem of skyline

query processing. To achieve this goal, we first identified
common skeletons for existing sorting- and partitioning-based
algorithms from which a cost model was derived. We then

Algorithms
Household NBA

d = 6, n = 127,931 d = 8, n = 17,264
s = 5,774 (4.51%) s = 1,796 (10.40%)

BSkyTree-S+ MaxDom 0.648 (DT = 124) 0.050 (DT = 16)
BSkyTree-S+ Random 0.749 (DT = 134) 0.053 (DT = 16)
BSkyTree-S+ Balanced 0.360 (DT = 59) 0.033 (DT = 7)

BSkyTree-P+ MaxDom 0.575 (DT = 129) 0.173 (DT = 12)
BSkyTree-P+ Random 0.421 (DT = 96) 0.162 (DT = 10)
BSkyTree-P+ Balanced 0.303 (DT = 83) 0.157 (DT = 8)

Table 4: Varying pivot point selections in BSkyTree-S
and BSkyTree-P

Algorithms
Household NBA

d = 6, n = 127,931 d = 8, n = 17,264
s = 5,774 (4.51%) s = 1,796 (10.40%)

SSkyline 0.899 (DT = 193) 0.050 (DT = 16)
SFS 0.302 (DT = 179) 0.041 (DT = 16)

SaLSa 0.329 (DT = 94) 0.053 (DT = 15)
BSkyTree-S 0.360 (DT = 59) 0.033 (DT = 7)
BSkyTree-P 0.303 (DT = 83) 0.157 (DT = 8)

Table 5: Comparisons with state-of-the-art algo-
rithms

devised a systematic pivot selection driven by this cost model
that exploited both the dominance and incomparability as
key optimization factors. We implemented two algorithms
BSkyTree-S and BSkyTree-P using the pivot point selection,
which significantly outperformed existing algorithms by up
to two orders of magnitude.
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