An Experimental Study of Time-Constrained Aggregate
Queries

Ying Hu' Wen-Chi Hou?

Seema Sundara’

Jagannathan Srinivasan’

{ying.hu, seema.sundara, jagannathan.srinivasan}@oracle.com, 2 hou@cs.siu.edu

ABSTRACT

Although the notion of time-constrained query was first
introduced two decades ago to address the problem of long
running SQL queries, none of the commercial database systems
support such a feature. This is rather surprising given the fact that
database systems are beginning to accommodate large datasets in
the order of terabytes to petabytes. Thus, the long running SQL
query problem needs to be addressed. Recently, at Oracle we
investigated and proposed a mechanism of supporting time-
constrained queries to provide quick approximate answers by use
of sampling for such long running SQL queries. This we followed
up by coming up with error estimates as a measure of goodness
for the approximation. To further validate our time-constrained
query work, in this paper we present an experimental study
conducted on our time-constrained query prototype built on the
Oracle Database. It is our hope that this work will revive interest
in time-constrained queries.

1. INTRODUCTION

The idea of time-constrained query was introduced in [11] two
decades ago to address the problem of long running SQL queries.
In the meantime, two developments have occurred that are worth
examining. On one hand, databases have grown to terabytes and
are now reaching petabytes (for example, Web Analytics
Databases of Yahoo [17], data warehouses of eBay, Wal-Mart,
etc. [18], and Oracle Exadata Storage Server [19]), making the
problem of long running SQL queries even more significant. On
the other hand, there have not really been any significant features
in commercial database systems to address this problem. The onus
is on users to limit the query execution time either by formulating
a top-k query, or by using sampling on the tables involved. All
these approaches are difficult in practice as translating the time
requirement to corresponding result size limit (k) or sample sizes
on tables involved is not an easy task. The database system is far
better suited to perform such a translation.

Recently, we at Oracle have started to look at supporting the
notion of time-constrained queries. The basic idea is that users
should only be required to specify the time constraint and the
database system should be able to do the rest, namely, augment
the query to return top-k rows, or provide quick approximate
answers by sampling. The latter approach of sampling is very

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

EDBT 2010, March 22-26, 2010, Lausanne, Switzerland.

Copyright 2010 ACM 1-60558-945-9/10/0003 ...$10.00.

669

promising, as there have been numerous papers published on this
topic [1, 2,4, 6,9, 11, 12, 13, 14].

However, the shift from accurate to approximate answers
immediately raises the question of how good those answers are.
To address this, error estimates must be provided. In our recent
work [13], we provided both point and interval estimators
especially for the case of join queries involving aggregates that
are processed using cross-product sampling. Even though the use
of cross-product sampling is shown to have issues [2], we feel our
approach of maximizing join result size warrants further study. In
this paper, we present a series of experiments, which bring out the
merits as well as shortcomings of this approach. Furthermore,
these experiments validate the goodness of the estimators
proposed in [13] where an experimental evaluation was omitted
due to space limitations.

Our approach to the experimental study has been as follows. We
focus on queries involving aggregates because those form a
significant portion of the class of long running SQL queries. We
study both single table queries and join queries involving
aggregates (SUM, COUNT, AVG, and MEDIAN), which are
processed either by sampling a single table or by cross-product
sampling. The experiments are conducted on both synthetic
dataset TPC-H [3] (generated with different degrees of skewness)
and a real world dataset (Lahman Baseball Database [15]) to see
the accuracy of our estimators. In addition, we present an
interesting use case for progressively estimating the aggregates
through multiple runs of time-constrained queries. Lastly, we
present an experiment that demonstrates the trade-offs between
the execution time and accuracy of query results.

We plan to continue this work and hope that the research
community participates in advancing the state-of-the-art work in
time-constrained queries so that such a feature becomes available
in commercial database systems, at least for a useful subset of
long running SQL queries.

Note that to deal with long-running queries, parallel database
features, and more recently cloud computing using the
MapReduce paradigm [20] have been explored. However these
mechanisms are orthogonal to our time-constrained query
mechanism, i.e., the time-constrained query mechanism can be
used in conjunction with parallel query option to further reduce
the query time. Also, parallel database features and the
MapReduce paradigm only split a big computing job into smaller
ones, which does not reduce the total computing resources (CPU
or I/O) as is the case for the time-constrained query mechanism.

The rest of the paper is organized as follows. We briefly
summarize previous work on time-constrained query (Section 2),
and error estimation for aggregates (Section 3). Section 4
discusses the experiments, which is followed by a conclusion in
Section 5.

2. TIME-CONSTRAINED QUERIES

In [12], time-constrained extensions were proposed to SQL that
can specify limits on the time taken by a query. Based on
specification in the SQL clause, a soft or hard time constraint with
a time limit can be imposed on a query. Furthermore, the user can
specify the acceptable nature of results (partial or approximate).

The basic approach as explained in detail in [12], is to look at the
estimated time for query completion in the query execution plan,
and then augment the original query with either the ROWNUM
clause (for partial results) or the SAMPLE clause (for
approximate results) to ensure that the query completes within the
specified time constraint. The cardinality of the result set or the
sample size is automatically determined iteratively by using a
root-finding algorithm and maximizing either the number of
returned rows or the number of rows in resultant joins.

For example, consider the following join query over the TPC-H
10 GB dataset that involves the SUM aggregate function:
SELECT SUM(CASE WHEN o orderpriority =
'1-URGENT' OR o orderpriority = '2-HIGH'
THEN 1 ELSE 0 END) AS cnt
FROM lineitem, orders
WHERE 1 orderkey = o_orderkey AND
1 receiptdate >= date '1994-01-01"' AND
1 receiptdate < date '1994-01-01"' +
interval 'l' year;
Such queries are common in applications like OLAP and data
warehouse. They tend to be long running as the aggregations are
computed over large datasets. The actual run of this query could
easily take more than 5 minutes. Instead of waiting for it to
complete, users on data exploration tasks would probably prefer
approximate but fast answers, say within one minute. Given this
time constraint, the database system will determine which table(s)
to sample and how much to sample in order to return an
approximate result within one minute.

To maximize the number of rows in resultant joins, our time
constraint mechanism relies on the following two heuristics: 1)
for a nested loop join, the SAMPLE clause should be put into the
outer relation, or the driver node; 2) for a normal hash join, when
the time to process a sampled relation is equal to the time to
process another sampled relation, the product of their sample sizes
is maximal. Note that the second heuristic is also used for a sort-
merge join. Based on these, our algorithm iteratively determines
which table(s) to sample and the corresponding sample sizes.

3. ESTIMATION OF AGGREGATES

In this section, we briefly describe prior work of using cross-
product sampling [6] to estimate SUM, COUNT, AVG, and
MEDIAN, and then discuss how our time-constrained query
mechanism can be used to progressively estimate aggregate
values.

3.1 Estimated SUM, COUNT, AVG, and
MEDIAN

The cross-product sampling scheme takes samples independently
from different tables and then joins them. While its point
estimates are straightforward, its interval estimates are fairly
complex. For example, the AVG over the joins of samples can be
simply taken as the estimated AVG. But its interval estimate has to
be done in two steps: 1) its estimated variance is computed from

670

some fairly complex formulas [13]; 2) the 100(1-a)% confidence
interval is computed using a normal approximation, which is
based on the finite-population Central Limit Theorem. The
normal approximation is used for SUM, COUNT, and AVG when
the sample size is large. For MEDIAN, we can use the MEDIAN
obtained from the cross-product sample as an estimate for
MEDIAN. To obtain a confidence interval for the estimated
MEDIAN, we need to do the following: 1) get a new aggregate
that counts the number of values that are less than the estimated
MEDIAN; 2) estimate an approximate variance for the new
aggregate (which is similar to COUNT); 3) from the estimated
approximate variance and the normal approximation, i.e. the
finite-population Central Limit Theorem, obtain both the lower
bound and upper bound for MEDIAN with a given confidence
level [13]. Note that this approach is different from the approach
of sampling only in the final stage [16] in that the variance in the
former case has to be computed using the techniques described
above.

3.2 Progressive Estimation of Aggregates
Although progressive estimates are provided in current online
aggregation systems [9, 5, 14], they rely on special join
algorithms (such as ripple join algorithms) or engines (such as
DBO query engine) to perform online aggregation. As an
alternative, our time-constrained query mechanism can be used to
progressively estimate aggregate values. The basic idea is to take
advantage of the independence of multiple runs of the same time-
constrained query. For example, suppose a long-running query
involving SUM, COUNT, or AVG takes 10 minutes to finish. We
repeatedly issue this query with a time constraint, say 5 seconds.
This is the period at which the estimates are updated. For each
run, we keep the estimated SUM, COUNT, or AVG, and their
variance. We can use the average of the estimated SUM, COUNT,
or AVG values as a new combined estimator. Because these runs
are independent of each other, the estimated variance of the new
estimator is 1/n times the average of the estimated variance from
these runs, where 7 is the number of runs.

Assume A, denotes the estimated SUM, COUNT, or AVG in the i-th
run, and ,21*” denotes the combined estimator after the n-th run.
The new estimator, its variance, and the estimator of its variance
are given by:

2*" = (1?1l +212 +...+121n)/n

V(A*,)=V(A)+V(A) +..+V(A4,))/n?

V(A*) =V (A)+V (Ay) +..+V(A4,))/n’.

We can also compute }1*” and f/(}l*n) recursively:

A*, =((n-1)A*, _ +4,)/n
{V(/i*,,) =((n=1V (4%,)+ V(A n’.
The above arithmetic mean of 4; i = 1, ..., n, is an optimal
combined estimator, when y(4)=y (4,)=..=V(A)- As the time
(or n) increases, the estimated running variance p A%) decreases

in the order of 1/n, and the running confidence interval continues
to narrow in the order of 1/n. When y(4), v(4,), ---,» and

v (4) are different, the best combined estimator is given by a
weighted mean.

Thus, we can provide estimated aggregates progressively by our
time-constrained query mechanism easily, without any special
query engine. The storage for intermediate results (i.e. 4 * and

J(4*) at the i-th run) is also very minimal. The effectiveness of

our approach is demonstrated by experiments presented in Section
4.2. Similarly, this estimation technique can also be used in error-
constrained queries [10, 7].

4. EXPERIMENTS

This section describes the experiments conducted using the
prototype built on top of the Oracle Database. We run
experimental queries with soft time constraints, that is, the queries
are run against a small data set and expected to finish within the
specified time limits. The time-constrained queries are translated
into queries augmented with SAMPLE clauses that complete
sooner due to the reduction in the amount of data blocks scanned
and the sizes of intermediate results. However, the focus of these
experiments is on the goodness of the estimated aggregate values
derived from the approximate queries on both synthetic and real
world datasets - TPC-H benchmark and Lahman Baseball
Database [15]. In addition, to see how our estimators perform for
skewed data, we conducted experiments by varying the degree of
skewness of the TPC-H dataset [3]. Note that all TPC-H
experiments are conducted under the Bernoulli block sampling
scheme. However, since queries against the Lahman Baseball
Database are not long running, Bernoulli row sampling is used in
these experiments to get a relatively large sample. We also
conducted experiments on the tradeoffs between the execution
time and accuracy of query results, and then conclude this section
with a discussion on several aspects of the experiments.

4.1 Estimating SUM in TPC-H

The biggest two tables (LINEITEM and ORDERS) in TPC-H
benchmark are used to run the same join query discussed in
Section 2. The scale factor is set to 1, which translates to a
database size of about 1GB.

To approximate the result of the above query, we can push the
sampling operation to the LINEITEM table only, since the
LINEITEM table is the fact table for the TPC-H and has a foreign
key reference to o orderkey, which is the primary key of
ORDERS [1]. We select a time constraint of 11s, which is about
16% of the estimated time for running the query to completion
(70s). This gives us a sample size of 1% on the LINEITEM table,
which constitutes the configuration (a) in our experiments. With
the same time constraint and the goal to maximize f*f, or sample
as many rows as possible in resultant joins, our time constraint
mechanism [12] can also pick cross-product sampling with a
sampling fraction of 10% for the LINEITEM and 40% for the
ORDERS tables. This configuration corresponds to configuration
(b) in our experiments. A hash join method is used in processing
for both configurations.

We start with a uniformly distributed TPC-H database (z=0) and
run the query 200 times against it under both configurations.

Figure 1 shows the results of the 200 runs with z=0 and
configuration (a). The estimated SUM values are shown in blue,
and their 95% upper/lower confidence limits, obtained by adding

671

£24F (V) (where V() is the estimated standard error of the

estimated SUM - Y) to the estimated SUM values, are in red and
green, respectively. The actual SUM = 365666 is also shown as a
straight line in the figure. In 189 of 200 runs (94.5%), the actual
SUM = 365666 lies inside the 95% confidence interval, whereas in
other 11 runs (5.5%), it lies outside the 95% confidence intervals.
The average and standard deviation of the estimated SUM from the
200 runs are 364703 and 12353. The average of the estimated
standard error from 200 runs is 12132, and the standard error is
12222.

440000
420000
400000
380000
360000
340000 -}
320000
300000

Run Number

Figure 1. Estimated SUM and confidence interval in TPC-H
(z=0 and configuration (a))

410000

390000

370000 -

350000 -

330000

Figure 2. Estimated SUM and confidence interval in TPC-H
(z=0 and configuration (b))

Figure 2 shows the results with z=0 and configuration (b). In 192
of 200 runs (96%), the actual value lies in the 95% confidence
intervals, whereas in other 8 runs (4%), it lies outside the 95%
confidence intervals. The average and standard deviation of the
estimated SUM from the 200 runs are 367729 and 7170. The
average of the estimated standard error from 200 runs is 7234, and
the standard error is 7167. Comparing Figure 1 and Figure 2, we

can see that the estimated standard error [y (y) in configuration

(b) is smaller than, or almost half of that in configuration (a).
Thus maximizing f;*f can help reduce [y’ (¥) . In addition, both

experiments show that the estimated standard error is close to the
standard error (./ V(Y))> and they are also close to the standard
deviation (STDDEV) of the estimated SUM from the 200 runs. All
these results confirm the accuracy of these estimators.

We also ran the same query with the above two configurations
against three skewed TPC-H databases (z=1, 2, and 4) 200 times.

The results are similar to those shown in Figure 1 and Figure 2,
and the statistics of these runs (including

/1}({1) - /V(fz) = stppey of the estimated SUM from the 200
runs) are listed in Table 1.

We can see that although the data distribution becomes more
skewed as z increases, the standard error in configuration (b) is
almost half of that in configuration (a), which indicates that cross-

product sampling can do better than single table sampling under
certain time constraints.

Table 1. Statistics for estimated SUM in TPC-H (z =1, 2, and
4; configurations (a) and (b))1

z=1 z=1 z=2 z=2 z=4 z=4
(a) (®) (a) (®) (a) (b)
SUM 398264 109596 4499
AVG (7) 399906 | 401848 | 110058 | 112469 | 5290 4616
STDDEV 24074 13871 16043 8669 3376 1651
IV (Y) 24969 13732 16046 8782 3360 1772
STDDEV, 1067 391 1346 441 1313 429
N3 25228 13485 16091 8438 3341 1738
% in CI 97% 95.5% 95% 94.5% 94% 94%

4.2 Estimating SUM Progressively

To return results progressively like in an online aggregation
system, we combine the latest result with the previous results to
calculate the combined aggregates and confidence intervals, as
described in Section 3.2. Figure 3 shows the new combined
results using the first 25 runs from the TPC-H database (z = 0),
which are obtained from previous experiments under the same
two configurations. The running confidence intervals continue to
narrow and the estimated SUMs do not fluctuate as much as shown
in Figures 1 and 2. Because the runs are on random samples, the
estimated SUMs also converge randomly from different signs.

For z =1, 2, 4, we get similar figures. Table 2 lists the estimated
running standard errors /() after 1%, 5™ 10" and 25™ runs. For

example, the estimated running standard errors of the 25" run are
only about 1/5 of the estimated running standard errors of the 1*
run except the two cases under z=4, where the STDDEV of
estimated standard errors Nezea) becomes relatively big, as seen
in the last two columns of Table 1.

400000

400000

390000 300000

380000 380000

370000

s

330000 =TT T
1.3 5 7 9 111315 1719 2123 25

370000

360000 360000

350000 350000

340000 340000

330000 =TT T T
135 7 911131517 1921 2325

Run Number Run Number

() (b)
Figure 3. Estimated running SUM and running confidence
interval in TPC-H (z = 0, configurations (a) and (b))

" In the first column of Table 1, SUM: the actual SUM; AVG (¥):
the average of 200 estimated SUMs; STDDEV: the STDDEV of
200 estimated SUMs; [(y): the average of 200 estimated

standard errors; STDDEV;: the STDDEV of 200 estimated
standard errors; [y (y): the standard error; % in CI: the

percentage of the actual SUM lying in the 95% confidence
interval.

672

Table 2. Estimated running standard error for estimated SUM
in TPC-H (z =1, 2, and 4; and configurations (a) and (b))

z=1 z=1 z=2 z=2 z=4 z=4

(a) (b) (a) (b) (a) (b)
1% 25185 14315 17027 9094 3064 2237
5t 11164 6254 7604 3958 1259 790
10" 8060 4377 5248 2832 1105 567
25M 4992 2754 3196 1768 705 383

4.3 Estimating AVG in the Lahman Baseball

Database
The following query is executed, to get the average number of
hits by a Hall of Fame player in a stint:

SELECT AVG(h) AS R

FROM master ma, batting ba

WHERE ma.playerID = ba.playerID AND
ma.hofID IS NOT NULL;

The above query would normally finish in less than 1 second,
which is the minimal time unit. We run the experiments with the
following two configurations: in configuration (a), only the
BATTING table is sampled at 1%; in configuration (b), the
BATTING table is sampled at 10% and the MASTER table is
sampled at 40%. Queries in both configurations use a hash join
method and are completed in about 50% of the execution time
(0.33s) for the original query.

Table 3 shows the statistics from 200 experiments. It is clear that
the variances in configuration (b) are smaller than those in
configuration (a). Like in Section 4.2, AVG can also be estimated
progressively by combining the latest result and its previous
results, as described in Section 3.2.

Table 3. Statistics for estimated AVG in the Lahman Baseball

Database

R=75.6081061 Configuration (a) Configuration (b)
AVG (R) 76.03 75.44
STDDEV (R) 5.903 3.452
AVG (7 &)) 5.827 3.603
STDDEV(/V(Ié)) 0.3411 0.1340

v (k) 5.838 3.482
% in confidence interval 95.5% 97%

4.4 Estimating MEDIAN
The following query is run against 1G TPC-H databases:

SELECT MEDIAN (1 extendedprice)

FROM lineitem, orders

WHERE 1 orderkey = o orderkey AND
1 receiptdate >= date '1994-01-01"'
1 receiptdate < date '1994-01-01' +

AND

interval 'l' year AND
(o_orderpriority = '1-URGENT' OR
o orderpriority = '2-HIGH');

The query run against the Lahman Baseball Database is the same
query as in Section 4.3 with AVG being replaced by MEDIAN.
Because the TPC-H z = 2, 4 databases either have so many

duplicates that M:sz(l) =Y (where M, M, Yy and
Vi are the actual MEDIAN, the estimated MEDIAN, the lower

confidence limit and the upper confidence limit of MEDIAN,
respectively), or have so few returned rows that 95% confidence
interval cannot be obtained from the sample data (for example, / <

1), we list only results from the TPC-H databases (z = 0, 1), as
well as those from the Lahman Baseball Databases (LBD) in
Table 4. The same configurations (a) and (b) are used.

The 95% confidence intervals for MEDIAN are more conservative
because of higher percentages (98-100%) of actual MEDIAN lying
in them. This is because several approximations are used to obtain
them.

Table 4. Statistics for estimated MEDIAN?

z=0 z=0 z=1 z=1 LBD LBD
@ O |@ ®) @ | O
MEDIAN 36731 34585 59
AVG 36754 | 36712 | 34890 34723 61.6 58.7
STDDEV 591 115 2539 1663 17.1 11.7
AVG, 5352 3033 12511 7549 71.5 58.7
STDDEV, 355 66 2369 977 11.5 6.1
% in CI 100% | 100% | 99.5% 99% 98% 99.5%

4.5 Tradeoffs between Time and Accuracy
Both Q6 and Q5 in TPC-H are used to run against a 10G TPC-H
database (z = 0). Q6 is a single table query to forecast revenue
change, and Q5 is a 6-table-join query to list the revenue volume
done through local suppliers. Q5 returns 5 rows (each for one
Asian country), and here we just show the first resulting row (i.e.
the row for INDONESIA) since the other four rows have similar
results. Figure 4 shows that the estimated standard error becomes
smaller as more time is spent on Q6, and Figure 5 shows the same
results for Q5.

20000000

14874249.96

15000000

10000000

Est. Standard Error

5000000

2501966.815

[_

0 20 40 60 80 100 120 140 160 180
Execution Time (in second)

Figure 4. Estimated standard error vs actual execution time
for Q6 in TPC-H (z =0, 10G)

Note that although both queries can be completed in about 3
minutes, it takes only 4 seconds for Q6 to have its 95%
confidence interval: £2%14874250, or £2.4% relative error of the
actual value 1231283271, while it takes more than 70 seconds
(but still 37.7% of the original completion time) for Q5 to have its
95% confidence interval: +2*13072664.5, or + 4.9% relative error
of the actual value 530355705. The main reason is that there are
more elements selected in Q6 than Q5 to compute the aggregates;
more specifically, 1140640 rows vs. 14571 rows from about 60
million rows in the LINEITEM table meet the selection criteria of
Q6 and QS, respectively. The confidence intervals in time-

2 In the first column of Table 4, MEDIAN: the actual MEDIAN;
AVG: the average of 200 estimated MEDIANs; STDDEV: the
STDDEV of 200 estimated MEDIANSs; AVG;: the average of 200
estimated (y(u) _y(/)) values; STDDEV;: the STDDEV of 200

estimated (Yo _Y(l)) values; % in CI: the percentage of the

actual MEDIAN lying in the 95% confidence interval.

673

constrained queries can help users to understand whether the
approximate results are already good enough even for a short
period of time of processing, whereas other queries may need
more time to complete if the accuracy of their results is important.

160000000
X 150689430.3
§ 120000000
&
B \
s
S 80000000
5
s \izﬁmm
& 40000000 2323071352
13072664.52 1115881.05 0
, . 4

0 20 40 60 80 120 140 160 180 200

Execution Time (in second)

100

Figure 5. Estimated standard error vs. actual execution time
for Q5 in TPC-H (z =0, 10G)

4.6 Discussion

Although queries against the Lahman Baseball Database are not
long running, (for instance, the query in Section 4.3 is completed
in 0.33 seconds and the queries augmented with SAMPLE clauses
are completed in about half of the time,) these results were
presented mainly to confirm the goodness of our estimators on a
real world dataset.

Also, the standard error (or variance) computation can be done
with minimal overhead by leveraging the original aggregate query
processing. For the example of configuration (b) in Section 4.3,
the standard error calculation for average number of hits by a hall
of fame player in a stint can be conceptually expressed as an
aggregate SQL query as follows:

WITH
g0 AS (SELECT h, ba.ROWID AS rwd,
ma.playerID AS playerID
FROM master SAMPLE (40) ma,
batting SAMPLE (10) ba
WHERE ma.playerID = ba.playerID AND
ma.hofID IS NOT NULL),
gl AS (SELECT AVG(h) AS avg _h, COUNT(h) AS cnt_h
FROM q0),
g2 AS (SELECT (SUM(h) - (SELECT avg h FROM
gl) *COUNT (h)) AS cnt, rwd, playerID
FROM g0 GROUP by playerID, rwd),
g3 AS (SELECT SUM(cnt) AS x0, SUM(cnt*cnt) AS x1
FROM g2),
g4 AS (SELECT SUM(cntl*cntl) AS x2 FROM
(SELECT SUM(cnt) AS cntl
FROM g2 GROUP BY rwd)),
g5 AS (SELECT SUM(cntl*cntl) AS x3 FROM

(SELECT SUM(cnt) AS cntl
FROM g2 GROUP BY playerID))

SELECT gl.avg h AS est avg h, SQRT(g4.x2*(1-0.1)
+q5.x3*% (1-0.4) -g3.x1*(1-0.1) * (1-0.4)) /ql.cnt_h
AS est std error

FROM gl, g3, g4, g5

This computation is similar to the data cube computation, which

can be optimized by algorithms described in [8]. A key aspect in

the data cube computation is the size of the cube, which
theoretically would be n;*...*n;, where ny, ..., n; are the sample
sizes for each of the joined tables. But in practice, this is much
smaller owing to join selectivity and presence of filter predicates

(if any) on the participating tables. For example, for the above

case, the theoretical size is about 89945%17022*0.1*0.4 or about

60 Million cells, whereas in actuality the size of resulting cells is

about 500. Also, for large tables (such as tables in the TPC-H
dataset) our time-constrained query mechanism uses block
sampling, so cardinality of each dimension, namely sample size,
would be calculated in terms of number of blocks (as opposed to
number of rows), which would usually be much smaller.

Furthermore, note that the estimator derived using Bernoulli
sampling gives much tighter bounds for the standard error (in the
above example, SQORT (gq4.x2*0.9 + g5.x3*0.6 -
q3.x1*0.54) /ql.cnt_hr) when compared to approximating
the standard error using sampling with replacement (SQRT (g4 . x2
+ g5.x3) /gl.cnt_hr). For the above example, the average of
200 estimated standard errors returned by the latter is 5.014, or
about 44% (= (5.014-3.482)/3.482) higher than the standard error
(3.482 as per Table 3). In contrast, the average of estimated
standard errors returned by the former is 3.603 or only 3.5%
higher.

For the TPC-H dataset, we see that the execution time is reduced
significantly by adding SAMPLE clauses. For instances, the
original query (i.e. without SAMPLE clause) in Section 4.1 (z=0)
is estimated to finish in 70 seconds, and is normally completed in
less than 65 seconds. The approximate queries in configurations
(a) and (b) are estimated to finish in 11 seconds, and are normally
completed in less than 7 seconds. For z=1, 2, and 4, we see similar
results because the major part of execution time is spent in
scanning the two tables. In summary, although there are
differences between actual execution time and estimated
execution time, we do observe that sampling speeds up the
queries as was also shown in [12].

Note that under configuration (a) in TPC-H dataset, the query
result corresponds to the result of a uniform sample from the
original join, because only LINEITEM (a fact table) is sampled
and it has a foreign key reference to o orderkey, which is the
primary key of ORDERS (dimension table) [1]. Configuration (b)
is obtained to maximize f;*f,, or sample as many rows as possible
in resultant joins. We find that when a fact table after sampling
becomes much smaller than a dimension table, using cross-
product sampling to maximize f;*f; can be better than the strategy
of uniform sampling only on the fact table, because the variance
of its estimated aggregates can be smaller, as shown in our
experiments. For instance, 1% LINEITEM is much smaller than
ORDERS. When a fact table after sampling is still bigger than a
dimension table, the approach of maximizing f;*f, can result in
the same configuration as the approach of sampling only on a fact
table. Thus, when the knowledge of the variances is absent
without trials, the objective of achieving a maximal f,*f, (or
sampling for as many rows as possible in resultant joins) is
justified in practice.

5. CONCLUSION

The paper considered time-constraint aggregate queries where
time reduction is obtained by the use of sampling. The
experimental study conducted in our time-constrained query
prototype, built on top of the Oracle Database, demonstrates the
effectiveness of the proposed estimation techniques.

674

6. REFERENCES

[1] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy,
“Join Synopses for Approximate Query Answering,”
SIGMOD 1999, pp. 275-286.

S. Chaudhuri, R. Motwani, V. R. Narasayya, “On Random
Sampling over Joins,” SIGMOD 1999, pp. 263-274.

S. Chaudhuri, V. R. Narasayya, “Program for TPC-D Data
Generation with Skew,” [Online]. Available:
ftp://ftp.research.microsoft.com/users/viveknar/tpcdskew

(2]

(3]

P. J. Haas, “Large-Sample and Deterministic Confidence
Intervals for Online Aggregation,” SSDBM 1997, pp. 51-63.

P. J. Haas, J. M. Hellerstein, “Ripple Joins for Online
Aggregation,” SIGMOD 1999, pp. 287-298.

P.J. Haas, J. F. Naughton, S. Seshadri, A. N. Swami,
“Selectivity and Cost Estimation for Joins Based on Random
Sampling,” J. Comput. Syst. Sci. 52(3), pp. 550-569, 1996.

P.J. Haas, A. N. Swami, “Sequential Sampling Procedures
for Query Size Estimation,” SIGMOD 1992, pp. 341-350.

J. Han, M. Kamber, Data Mining: Concepts and Techniques,
Morgan Kaufmann, San Francisco, CA, 2006.

J. M. Hellerstein, P. J. Haas, H. J. Wang, “Online
Aggregation,” SIGMOD 1997, pp. 171-182.

[10] W.-C. Hou, G. Ozsoyoglu, E. Dogdu, “Error-Constraint
COUNT Query Evaluation in Relational Databases,”
SIGMOD 1991, pp. 278-287.

[11] W.-C. Hou, G. Ozsoyoglu, B. K. Taneja, “Processing
Aggregate Relational Queries with Hard Time Constraints,”
SIGMOD 1989, pp. 68-77.

[12] Y. Hu, S. Sundara, J. Srinivasan, “Supporting Time-
Constrained SQL Queries in Oracle,” VLDB 2007, pp. 1207-
1218.

[13] Y. Hu, S. Sundara, J.Srinivasan, “Estimating Aggregates in
Time-Constrained Approximate Queries in Oracle,” EDBT
2009, pp. 1104-1107

[14] C. M. Jermaine, S. Arumugam, A. Pol, A. Dobra, “Scalable
Approximate Query Processing with the DBO Engine,”
SIGMOD 2007, pp. 725-736.

[15] S. Lahman, The Lahman Baseball Database, Version 5.5.
[Online]. Available: http://www.baseballl.com/, Dec. 11,
2007.

[16] G. S. Manku, S. Rajagopalan, B. G. Lindsay, “Approximate
Medians and other Quantiles in One Pass and with Limited
Memory,” SIGMOD 1998, pp. 426-435.

[17] http://www.informationweek.com/news/software/database/sh
owArticle.jhtml?articleID=207801436

[18] http://www.computerworld.com/s/article/9117159/Teradata
creates_elite _club_for petabyte plus data warchouse custo
mers

[19] http://www.oracle.com/database/exadata.html

[20] J. Dean, S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” OSDI 2004, pp.137-150.

