
Aggregation of asynchronous electric power consumption
time series knowing the integral

Raja Chiky
ISEP-LISITE

BILab Joint Lab EDF R&D
TELECOM ParisTech

Paris, France
raja.chiky@isep.fr

Laurent Decreusefond
TELECOM ParisTech

UMR CNRS 5141
Paris, France

decreusefond@enst.fr

Georges Hébrail
BILab Joint Lab EDF R&D

TELECOM ParisTech
UMR CNRS 5141

Paris, France
georges.hebrail@edf.fr

ABSTRACT
More and more data mining algorithms are applied to a
large number of long time series issued by many distributed
sensors. The consequence of the huge volume of data is
that data warehouses often contain asynchronous time se-
ries, i.e. the values have been sampled and are not anymore
observed at the same instants. This is a problem when ap-
plying data mining algorithms to such asynchronous time
series. The standard way to solve this problem is to inter-
polate intermediate points. We present here two new inter-
polation approaches which take into account the knowledge
of the integral of the time series between two points. The
first approach is naive and uses the history of slope values.
The second approach is stochastic and provides a confidence
interval of interpolated values. The two methods have been
assessed experimentally on a real dataset of electric power
consumption time series issued from smart meters.

1. MOTIVATION
Data warehouses are increasingly supplied with data pro-

duced by a large number of distributed sensors in many
applications: medicine, military, road traffic, weather fore-
cast, utilities like electric power suppliers etc. Such data
are widely distributed and produced continuously as data
streams. In order to be able to process and archive such
data in data warehouses, data are often sampled temporally
i.e. some records are removed either randomly or by op-
timizing some criteria (bandwidth of the server collecting
the data, battery life of sensors, quality of data, ...). We
focus in this paper on a particular case of distributed data
streams: a collection of identical sensors each producing one
unidimensional numerical time series, but providing at each
timestamp both the value of the time series and the value of
the integral between two timestamps. A typical example of
such data is electric power consumption where each meter
provides the instantaneous power at each timestamp and the
energy consumed between the last and current timestamp.
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The application considered in this paper is electric power
consumption monitoring. It involves a large number of data
streams issued from multiple remote sensors, each sensor
corresponding to the meter of one customer. The forthcom-
ing general deployment of communicating meters intensifies
the need for collecting and analyzing electric power con-
sumption data. It is not conceivable to load all such data
into a data warehouse due to its volume (over 30 million
meters in France), arrival rate (a measure up to every sec-
ond can be observed) and spatial distribution. Data mining
tasks on electric power consumption time series are related
either to unsupervised or supervised data mining. Typi-
cal unsupervised data mining applications are related to the
knowledge of customer behaviour, the definition of prices,
the study of the relationship between customer equipment
and power consumption, etc. Applications of supervised
data mining algorithms are mainly related to the prediction
of consumption but also to the prediction of customer char-
acteristics. In many cases, these algorithms are not applied
to individual time series but to aggregated ones for a se-
lected subset of the customers, for instance the customers of
a particular district or of a particular customer client group.
In the case where the subsets are known in advance, there
are several methods to do the job efficiently (see [6, 7]). But
we assume here that the subsets of interest are not known
in advance.

Several approaches have been investigated to reduce com-
munication cost and space storage to feed the data ware-
house. The most simple and efficient method is to select
a uniform random sample of the set of meters which are
all observed at the same timestamps. The estimation of
the aggregated time series can be done by using standard
survey theory approaches like the Horvitz-Thompson esti-
mator. This approach (referred as spatial sampling in the
following) gives very accurate results if the selected subset
is large enough but fails when the subset is small, i.e. from
10 to 100 which is frequent in real applications (such subsets
are called ’small domains’ [8]). In [3], we proposed another
approach (referred as temporal sampling in the following)
which collects data from all meters but samples them tem-
porally. Applied to electric power consumption data, the
time series resulting from such a summarizing step are con-
sequently not all observed at the same timestamps. The
intuition is that such temporal sampling will provide better
accuracy for aggregation on small domains since all meters
are observed at several timestamps.

Aggregating several time series is then not trivial: it re-
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quires the different time series to be estimated at common
timestamps and then to aggregate these estimations. The
standard way to do so is to first interpolate the different
time series, then select interpolated data points at same
timestamps and finally compute the aggregated time series
at these points. One usually uses interpolation or regres-
sion to address this problem. The difference between these
two techniques is that the interpolation indicates a function
that passes exactly through the known points, whereas the
regression is a function that comes closest to points as much
as possible under a given criterion (typically the least square
criterion) without having to go through them. The latter
method is used in practice when observations are noisy: this
may come from uncertainty in measurements for example.

The quality of the interpolation process (or regression) is
measured by estimating an error called “residue” in the lit-
erature. The aim is to check whether the interpolating func-
tion (or regression model) approaches the time series that
we seek to rebuild. These approximation methods depend
on some assumptions about the residue that are usually not
verified. Among these assumptions: the residue is a ran-
dom variable of mean equal to zero and a constant variance
(this is called homogeneity of variance or homoscedasticity).
Most results are based explicitly or implicitly on these two
assumptions (homoscedasticity and normality), but in prac-
tice this is not always true. Recently, important techniques
have emerged in the literature to model the phenomenon
where residues vary over time, this is called heteroscedastic-
ity [1]. However, to the best of our knowledge, none of the
proposed methods in the literature takes into account both
the time series to estimate and its integral, as it is the case
of electric power consumption data. We propose in the next
section two techniques which encompasses these problems:
(1) a naive one based on the use of the past distribution
of slopes in the time series ; (2) a more sophisticated one
based on a stochastic approach. These two approaches are
assessed and compared on a real data set of electric power
consumption time series.

2. TIME SERIES INTERPOLATION KNOW-
ING THE INTEGRAL AND ERROR ES-
TIMATION

Let us consider one time series for which measures at
timestamps ta and tb were collected but measures between
ta and tb were not collected due to a temporal sampling. We
have the following properties:

1. Values C(ta) and C(tb) are known

2. Values between ta and tb are positive

∀t ∈]ta, tb[ C(t) ≥ 0

3. Values between ta and tb must not exceed a maximum
threshold (maximum delivered power for electric power
consumption)

∃cmax ∀t ∈]ta, tb[ C(t) ≤ cmax

4. The integral Eab between ta and tb is known (the inte-
gral corresponds to energy for electric power consump-
tion). ∫ tb

ta

C(t) = Eab

We seek to estimate the points lying between ta and tb by
interpolation taking into account the properties described
above. We also want to estimate the residue of interpolation
at each point.

2.1 Naive approach
The Naive approach is based on historical data related

to the time series: for each time series the distribution of
slope values is computed for some past consecutive mea-
sures. We assume here that all data points are available
for a portion of the past for the time series and that the
timestamps are equally distributed in time and numbered
by integers. The slope between two consecutive values t1
and t2 is then defined by C(t2) − C(t1). Given a value X,
it is possible to compute a Lower Limit noted αmin and an
Upper Limit noted αmax for slopes, corresponding to the
probability that a random slope α is within the specified
interval [αmin, αmax], i.e.,

P (αmin ≤ α ≤ αmax) = X

Values αmin and αmax will be used to build an envelope
for the real curve between ta and tb, which respects the max-
imum value constraint and the known integral. In our ex-
periments, the distribution of slopes appears to be a normal
distribution. If a value X = 0.68 is chosen, this means that
68% of slope values in the past fall within 1 standard devia-
tion σ of the mean µ, that is between µ−σ and µ+σ. Note
that computing capacity of electric sensors can be exploited
in order to update slopes distribution.

2.1.1 Error estimation
This section describes the method used to build an en-

velope of possible curves between ta and tb respecting the
constraints of bounded values for C and the known value of
the integral. This envelope will represent an estimation of
the interpolation error for all timestamps between ta and tb.
The idea is that, given αmin and αmax, the value C(ta + 1)
cannot be outside the interval [C(ta) +αmin, C(ta) +αmax]
and so on until tb. We also add constraints on bounds for C
and on the known integral. This can be solved by the two
following optimization problems corresponding to the lower
and upper envelopes:

For each t ∈]ta, tb[ Minimize and Maximize C(t)

subject to:
C(t− 1) + αmin ≤ C(t) ≤ C(t− 1) + αmax

0 ≤ C(t) ≤ cmax, t ∈]ta, tb[∑tb
ta
C(t) = Eab

t ∈]ta, tb[

The first constraint defines αmin (αmax respectively) as a
minimum (maximum) slope between all intermediate values
to estimate. The second constraint is to state that values
are positive reals and do not exceed the cmax maximum.
The third constraint ensures that estimated values respect
the constraint of integral. These problems are easily solved
using linear programming optimization techniques such as
simplex, in very limited time.

2.1.2 Time series reconstruction
The method used to estimate the envelope can also pro-

vide an estimation for all values between ta and tb. The idea

664



is to reduce the envelope until the lower and upper envelopes
coincide. This leads to the following optimization problem:

Minimize α

subject to:


C(t)− C(t− 1) = α, t ∈]ta, tb[
0 ≤ C(t) ≤ cmax, t ∈]ta, tb[∑tb

ta
C(t) = Eab

αmin ≤ α ≤ αmax

This optimization problem searches for the minimum value
of α for which there is a solution giving an envelope. This is a
linear programming problem involving the optimization of a
linear objective function. Consequently, it can also be solved
using standard linear programming optimization techniques.

2.1.3 Example
We illustrate the approach described above on an electric

power consumption time series with timestamps every 30
minutes (48 values for one day). The computation of αmin

and αmax was done on 100 past days by computing all the
slopes between past consecutive values. Fig. 1 depicts the
distribution of these slopes. The distribution of slopes is
almost a normal distribution, with a mean nearly equal to
0 (there is no trend in the consumption for this customer).
The αmin = −8.18 and αmax = 8.18 correspond to a prob-
ability equal to 68% that a slope α is within the interval
[αmin, αmax].

Figure 1: Histogram of past slopes

Estimation between two collected values.
We consider the following sub-time series featuring 5 val-

ues:
C = {31.67, 30.33, 24.33, 23, 28}
Suppose that temporal sampling has kept only 1 value over
4: only C(0) = 31.67 and C(4) = 28 were collected with a
known energy of E = 109.33kWh between 0 and 4. Know-
ing that the maximum power for this customer is cmax =
250kW , 7 linear optimization problems were solved: 2 for
each the 3 intermediate points and one to find the estimated
curve. The result is shown in Fig. 2: the original curve (LC)
is represented in plain style (black curve), the interpola-
tion (Inter.) is presented with dashed style (red curve), and
the envelopes (Env.) are presented with dotted style (blue
curves).

Figure 2: Naive estimation and envelope between two se-
lected points

Estimation on a time series.
We now present the results of the approach on a daily

time series, showing interpolation performed with two dif-
ferent temporal sampling rates. In these two experiments,
sampling rates of 5 (Fig. 3(a)) and 20 (Fig. 3(b)) were used.

Figure 3: Naive time series estimation and envelope

Each chart of Fig. 3 shows the original time series (plain
black line), the reconstruction using the Naive approach
(dashed red line) and the envelope (dotted blue line). It
is clear that for both sampling rates, the estimated curve is
close to the original one. We also note that the higher is the
sampling rate, the larger is the envelope.

However, if sampling rates are chosen using an optimiza-
tion technique that gives a larger sampling rate to time series
which lightly fluctuate, the envelope in this case gives a very
pessimistic estimation of errors. In fact, this approach does
not provide any probability that a time series is inside the
envelope since there is no underlying stochastic model. The
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second approach we propose, based on a stochastic model,
provides such a probability in the form of a confidence in-
terval.

2.2 Stochastic approach
The idea behind this second interpolation approach using

a stochastic process is that fluctuations in consumption are
random. Indeed, variations in an electric power consumption
time series are induced by the start of a domestic activity
such as meal preparation, launch of the washing machine,
turn off of an electric heater, etc. Transitions between these
activities can be modeled by a Markov process [5]. Even
if it is hardly feasible to have a precise view of what this
process should be on the basis of day-to-day behavior of
each individual, this justifies the existence of randomness in
the time series. As it is usually done, we presuppose that the
global effect of all small fluctuations can be summarized by
Brownian fluctuations. Moreover, an electric consumption
is always a non-negative number, leading us to use a non-
negative process with Brownian behavior. The simplest of
them all is the so-called geometric Brownian motion (see
below) which is also the basic model for the evolution of
assets in mathematical finance.

2.2.1 Time series reconstruction and error estima-
tion

We assume that the time series C(t) follows a geometric
Brownian process that is to say:

C(t) = C(ta) exp(ρt+ βB1
t ),

where B1 is a one-dimensional standard Brownian motion.
Furthermore, e(t) is the consumed energy corresponding to
the moment t (integral value at t), hence

de(t) = C(t)dt or e(tb)− e(ta) =

∫ tb

ta

C(t) dt.

Remind C(ta), C(tb), e(ta) and e(tb) are known. It is there-
fore difficult to simulate such a process since a stochastic
behavior is antonymous to deterministic limit conditions.
The usual techniques are useless here because they involve
intractable computations. We borrowed an idea from [4]
which consists in constructing a simpler process which is
relatively easy to simulate. We take into account the limit
conditions and then use the Girsanov theorem. The detailed
working of this problem’s solution is available as supplemen-
tary material [2].

For any function f defined on [ta, tb], the solution is given
by the following expression of expectation:

E

[
f(C, e)

∣∣∣∣
(
C(ta)

e(ta)

)
,

(
C(tb)

e(tb)

)]
=
E[f(Q0, R0)M(Q0, R0)]

E[M(Q0, R0)]

(1)
Where M is a function depending on two processes Q0 and
R0 that can be easily simulated.

To estimate the time series between two sampled points
ta and tb, we use a constant function defined by f(X) = X.
Then, Equation 1 becomes

E

[
C(t)

∣∣∣∣
(
C(ta)

e(ta)

)
,

(
C(tb)

e(tb)

)]
To compute the variance (error estimation), we use the func-
tion f(X) = (X−E(X))2 as V ar(X) = E[X−E(X)2], and

we apply this function to the result given by Eq.( 1):

E

[
(C(t)− E(C(t))2

∣∣∣∣
(
C(ta)

e(ta)

)
,

(
C(tb)

e(tb)

)]
(2)

To estimate parameters of the stochastic approach, we use
the known properties of the geometric Brownian motion.
Indeed, we know that ln(C(t)) between ta and tb follows a
normal distribution with a mean equal to ρ(tb− ta). There-
fore, we estimate ρ using:

ρ =
1

(tb − ta)
(ln(C(tb))− ln(C(ta))).

Parameter β can be estimated from historical data or us-
ing simulations. For instance, we can compute an approxi-
mation of the time series using a second-degree polynomial
that respects the constraint of energy. We can perform sev-
eral simulations with different values of β to get one that
approaches the polynomial. In our experiments, we have
fixed parameter β to be equal to 1.

2.2.2 Example
We study the same time series as that used for the Naive

approach, i.e a day curve of 48 measurements (measurements
every 30 minutes).

Estimation between two collected values.
We use the same sub-time series as in the naive approach

with 5 values:

C = {31.67, 30.33, 24.33, 23, 28}

we recall that the sampling rate is 4. We seek to interpo-
late the time series between C(0) = 31.67 and C(4) = 28
knowing the energy consumed E = 109.33KWh (e(ta) = 0
and e(tb) = E). We used the following parameters for the
conditioned geometric Brownian motion:

β = 1, ρ =
1

(tb − ta)
(ln(C(tb))− ln(C(ta))) = 0.62.

Fig. 4 shows the result of interpolation (Inter.) repre-
sented by the red dashed curve. The envelope of standard
deviation around this interpolation (+/- one standard de-
viation) is represented by the blue dotted curve (CI). The
black curve (LC) is the original curve C.

Estimation on a time series.
We applied the stochastic approach to interpolate the day

time series passing through selected points. Fig. 5 shows the
result of interpolation using two sampling rates. A first sam-
pling rate of 5 is applied and results are shown in Fig. 5(a).
A second sampling rate of 20 is shown in Fig. 5(b).

Each chart of Fig. 5 shows the original time series (plain
black line), the reconstruction using the brownian stochas-
tic approach (dashed red line) and the confidence interval
(dotted blue line). As in the Naive approach, it is clear that
for both sampling rates, the estimated time series is close
to the original one. Moreover, unlike the Naive approach,
the envelope does not seem to be pessimistic in the exam-
ple. Indeed, we have an analytical expression (eq. (2)) that
allows us to compute a real confidence interval.

3. EXPERIMENTAL STUDY
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Figure 4: Brownian stochastic estimation between two se-
lected points

Figure 5: Brownian stochastic time series estimation and
confidence interval

We report in this paper experiments carried out on a real
data set of 1000 electric meters, each meter measuring the
electric power consumption of one customer. The data set
consists of 1000 times series with one measure every 10 min-
utes during one day (144 measurements per meter per day).
It has been used to assess the efficiency of the approach in
the case of small domain estimation: we estimate the aggre-
gated sum of daily time series for a small sub-population,
i.e., a small subset of meters.

The reported experiments show the results for two com-
pression rates (50% and 10%) and compare the temporal
sampling approach (data are collected from all meters but
not at all timestamps) with a spatial random sampling ap-
proach (data are collected only from a random sample of
meters but at all timestamps). A compression rate of 10%
(resp. 50%) means: (1) in the spatial approach the size of
the random sample of meters is 100 (resp. 500); (2) in the
temporal approach only one value every 10 (resp. 2) times-
tamps is kept.

The reported experiments show the average relative error
between the estimated aggregated time series ( ErrorAvg
in Fig. 6a and 6b ) and the associated relative confidence
interval (CI ). The confidence intervals are defined as follows:

• spatial sampling: the 68% Horvitz-Thompson confi-
dence interval

• temporal sampling with naive estimation: sum of indi-
vidual sizes of the envelopes with αmin adjusted with
X = 0.68

• temporal sampling with stochastic estimation: sum of
individual confidence intervals corresponding to +/- 1
standard variation

The experiments were carried out over different sizes of
small domains Na on which the aggregated time series were
computed. These domains are of size

Na ∈ {10, 20, 30, 50, 100, 200, 300, 400, 500}

In order to have an idea of the average behavior for each
domain size, 100 Monte Carlo simulations were made.

In the case of spatial sampling with a 10% compression
rate, it may happen with very small domains that either no
or a very small number of time series belong simultaneously
to the sample and to the domain. In this case, another
estimator is used (called ’synthetic’ estimator) which uses
the whole sample instead of the small domain selection on
the sample. This leads to the ’Synt.’ blue curve in Fig. 6b.

Fig. 6a reports the results with a compression rate of 50%,
i.e. the time series are summarized by dividing by 2 their
original size. The lower chart shows the average relative er-
ror (measured in terms of Sum of Square Errors (SSE)) over
the size of the domains on which the aggregation is done.
The upper chart shows the size of the confidence intervals
as defined above. As one can see, temporal sampling in
this case always gives a better estimation than spatial sam-
pling. The Naive estimation appears to be a little better
than the stochastic brownian approach. As for the confi-
dence interval, the naive envelope is better than the brow-
nian confidence interval, but we recall here that there is no
probabilistic interpretation to the confidence interval of the
naive approach. With no surprise, the confidence interval
of the spatial sampling decreases when the domain size in-
creases, and ends up to be better than the ones of temporal
sampling.

Fig. 6b reports the results with a compression rate of 10%,
i.e. the time series are summarized by dividing by 10 their
original size. We observe that temporal sampling with Naive
estimation still gives the best estimation. The Brownian
stochastic estimation is also very good. The results show
clearly that temporal sampling is better than spatial sam-
pling for small domains, even when the size of the domain is
500 (half of the dataset here). Note that for small domains
the ’synth’ spatial sampling estimator is always better than
the standard Horvitz-Thompson one. As for the confidence
interval, the temporal sampling confidence intervals are al-
most always worse than the spatial sampling one: this can
be explained by the fact that the confidence interval in the
temporal sampling approach is pessimistic since it is com-
puted by adding confidence intervals of every time series
which are aggregated (all time series are considered sepa-
rately: errors cannot cancel each other out in the confidence
interval computation).
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(a) compression rate = 50% (b) compression rate = 10%

Figure 6: Spatial sampling Vs. Temporal sampling

4. CONCLUSIONS AND PERSPECTIVES
Within the context of storing a summarized version of a

large set of time series issued from distributed sensors, we
have shown that in many cases the time series may be ob-
served at different timestamps. This is a problem when one
wants to compute aggregates over a subset of the time series.
The standard solution is to interpolate missing values and
aggregate interpolated values. In the case where both the
time series and their integrals are known, we have proposed
two new approaches which take into account this informa-
tion and provides also a confidence interval. Experiments
have been reported to show that these approaches are ef-
ficient for estimation of the aggregated sum of time series
over small domains, in particular if there are compared to
another approach for summarizing distributed time series
which naturally keeps all the time series values: the collec-
tion of a random sample of the sensors. This work opens
several perspectives which are worth studying, mainly:

• develop the naive estimation method which gives a
very accurate estimation, in order to provide a proba-
bilistic confidence interval

• take into account possible correlations between values
issued by different sensors

• propose an hybrid approach combining temporal and
spatial sampling with a probabilistic confidence inter-
val
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Supplementary material, available at
http://www.infres.enst.fr/~chiky/edbt2010.
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