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ABSTRACT
Feedback process has been used extensively in document-centric
applications, such as text retrieval and multimedia retrieval. Re-
cently, there have been efforts to apply feedback to semi-structured
XML document collections as well. In this paper, we note that
feedback can also be an effective tool for exploring (through result
ranking and query refinement) large semi-structured data collec-
tions. In particular, in large scale data sharing and curation envi-
ronments, where the user may not know the structure of the data,
queries may initially be overly vague. Given a path query and a set
of results identified by the system to this query over the data, we
consider two types of feedback: Soft feedback captures the user’s
preference for some features over the others. Hard feedback, on
the other hand, expresses users’ assertions regarding whether cer-
tain features should be further enforced or, in contrast, are to be
avoided. Both soft and hard feedback can be “positive” or “nega-
tive”. For soft feedback, we develop a probabilistic feature signif-
icance measure and describe how to use this for ranking results in
the presence of dependencies between the path features. To deal
with the hard feedback efficiently (i.e., fast enough for interactive
exploration), we present finite automata based query refinement so-
lutions. In particular, we present a novel LazyDFA+ algorithm
for managing hard feedback. We also describe optimizations that
leverage the inherently iterative nature of the feedback process. We
bring together these techniques in AXP, a system for adaptive and
exploratory path retrieval. The experimental results show the ef-
fectiveness of the proposed techniques.
Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval: Relevance feedback.
General Terms
Algorithms, Measurement.
Keywords
Relevance feedback, inter-dependent structural feature, feature cover,
data-centric XML.
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Figure 1: Overview of tDAR (it currently curates 48
projects, 71 datasets, and 100 coding sheets accessible through
http://dev.tdar.org/tdar): provides search, integration, and
querying functionalities to advance scientists to conduct syn-
thetic and comparative research over data and metadata de-
posited by different researchers [24, 22, 23, 6]

1. INTRODUCTION
Scientific data needed to address the most pressing research

questions are almost never collected by a single research team.
tDAR [24, 22, 23, 6] archives and provides integrated access to
a multitude of data sets and metadata, collected by different re-
searchers within the context of different projects and deposited to
tDAR for sharing (Figure 1). Consider a scientist with a specific
research problem accessing tDAR to identify relevant databases.
When this scientist poses a query to tDAR, her query might match
many relevant databases and data tables that are not immediately
familiar to her. For this scientist to be able to leverage the avail-
able data sources in tDAR as effectively as possible, techniques
that support effective data exploration are needed.

In the absence of precise knowledge about the data, users’
queries may be initially vague. The results provided by the system
in response to such imprecisely formulated queries, however, may
contain hints to help users make their (initially vague) specifica-
tions iteratively more informed and precise. Especially when users
are not sufficiently informed about the data (or sometimes of their
interests) to formulate precise queries, feedback based exploration
can play a critical role in helping find relevant information.

Feedback-based exploration has been shown to be very effec-
tive in non-structured document-centric domains, such as text re-
trieval [27, 25] and multimedia [18] where formulating precise
queries is often impossible. This is sometimes referred to as bridg-
ing the semantic gap between the user and the database: given a
query (say a sample data object provided for a “similarity” search),
which features of the objects are relevant for the user’s query may
not be known in advance. In the context of information retrieval
(IR) and multimedia applications, where the data and queries on
text collections are often modeled as keyword vectors [28], user
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Figure 2: A small tree-structured data fragment
feedback about the relevance or irrelevance of the result documents
is used for adjusting the weights in the query vector by increasing
the weights of the more relevant keywords [28, 36].

Unlike the prior document-centric efforts [28, 36, 27, 25, 18],
in this paper, we focus on the use of feedback in data-centric ap-
plications, such as large scientific database collections like tDAR,
which houses heterogeneous and complex datasets. In data shar-
ing and curation environments where the user may not know the
underlying structure of the data which she is querying (thus is not
able to form precisely specified statements of interest), queries over
structured and semi-structured data (e.g., tree or graph) may also
suffer from similar problems. In particular, an incompletely spec-
ified query may return too many results. Consider, for example,
the data in Figure 2, which describes several metadata items in a
scientific repository; A query “I am interested in the ‘titles’ in the
current repository” (i.e. //title), would return six matches, each
corresponding to a path from the root to a node labeled with “title”.
While there are some initial attempts, such as [21, 30, 31, 29, 15],
to address the challenge of enabling feedback on structured data,
this is still a largely unexplored area, with no effective strategies
to support user feedback. One reason for this is that, while there
are plenty of works on feedback on data that can be represented
as vectors, not all data and queries are easy to map onto a vector
space. This is especially true in semi-structured and structured data
( e.g., data-centric XML, graphs), where the structure is often a
critical component of the data. Path expressions – which express
the desired characteristics of the paths on the data graph– combine
requirements about values (such as the tags of an XML data object)
with requirements about the structural organization of these values.
This renders the traditional feedback techniques inapplicable.

1.1 Contributions of this Paper
In this paper, we focus on the problem of feedback-based ex-

ploration of data-centric XML collections in large data sharing and
curation environments. Such queries are often represented in the
forms of path or tree (twig) queries. For processing, query twigs
are often partitioned into the constituent path queries and the re-
sults are joined during post-processing [9, 12]. Following the same
approach, we focus on path expressions of type P {/,//,∗}. Extend-
ing these results to twig queries is future work.

When the user is exploring the data within the context of an
initial query but does not have well-defined correctness criteria in
mind yet, she may want the system to rank the results in the next it-
eration according to the positive or negative feedback she provides
on the current results. To accommodate such declarations of pref-
erence, the system needs to support soft feedback and ranking. The
soft feedback process is most suitable for users who are exploring
the data and may change their minds about what they are looking
for as they learn more about the data. In some other cases, we rec-
ognize that after observing the initial set of results returned by the
system, the user may be able to identify certain structural aspects
of the returned paths that are critical for the correctness, but not
included in the original query. To accommodate these explicit as-

Figure 3: Overview of the AXP framework

sertions of desirability or un-desirability [34], we aim supporting
hard feedback and filtering. Hard feedback process1 is suitable for
expert users who know what they are looking for but do not know
the data to formulate “accurate” queries.
1.1.1 Contributions

More specifically, our contributions include the following:
• We propose and formalize four kinds of feedback

(SHOULD, SHOULD-NOT, LIKE, and DISLIKE) to filter
and reorder results to a path query. The proposed algorithms
provide the users with the option of denoting which part of
the results they want their feedback to focus on or to let the
system discover this automatically based on the feedback.
• In order to support soft feedback (LIKE and DISLIKE), we

propose a set of structural features suitable for feedback pro-
cessing. We then propose probabilistic measures and algo-
rithms for structural feature significance analysis to help re-
order path results based on their relevance to the user. We
also show how the structural dependencies between path fea-
tures can be taken into account for semantically correct and
effective feedback-based ranking. 2

• We develop data structures and algorithms to refine user’s
query based on positive and negative hard feedback. In par-
ticular, we propose an efficient lazy automata based mech-
anism to capture both types of hard feedback. We propose
a LazyDFA algorithm for minimizing the automaton con-
struction time. Unlike the lazy-DFA schemes reported in the
literature for message filtering [14, 13, 8], LazyDFA con-
sists of two parts: LazyDFA+ and LazyDFA− to deal with
conjunctive and disjunctive filtering statements. We also
present techniques to minimize DFA storage and execution
costs.

We bring together these techniques in an adaptive, and ex-
ploratory, path retrieval (AXP) framework. The goal of AXP is to
let the users explore the available data starting from an initial query
context and by providing hard and soft feedback as appropriate.

1.1.2 Overview of the AXP Framework
An overview of the AXP framework is presented in Figure 3:
• Initially, the user poses a query.

1Hard feedback based exploration is supplemented by “bread-
crumb” and “undo” functions: the user can undo recent feedback
and go to an earlier state in the exploration following breadcrumbs.
2A preliminary version of the soft feedback process appeared as a
poster at [7].
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Figure 4: The interface to help the user provide feedback:
the user highlights multiple different feedbacks in one of the
path results; feature “project/contributor” in path “repos-
itory/project/contributor/title” is marked as SHOULD-NOT
feedback, “contributor/title” is marked as SHOULD feedback,
and “repository//title” is marked as LIKE feedback

• The path results that match this initial query are retrieved
(at this stage these results are used to form an abridged data
representation to help efficient feedback processing).

• Since the number of the query results may be prohibitively
large for the user to view, explore, and provide feedback on,
a subset of the resulting paths are presented. Initially, the the
system picks a random3 K among the results to present to
the user. (At each later iterations, the user is presented with
subsets improved based on her feedback.)

• From the top-K results, the user marks parts of the presented
results as preferred or not preferred (soft feedback). The user
may also highlight some other parts as required or to be elim-
inated (hard feedback).

• Based on the hard feedback and the initial query, a new query
is formulated and executed on an abridged tree, formed dur-
ing the previous iteration. The results are written to a new
abridged tree (to support exploration in later iterations).

• The results are re-ranked based on the soft feedback, and the
top-K best results are presented to the user. The re-ranking
can take into account both the feedback in the current itera-
tion as well as previous iterations.

• Hard/soft feedback can be used to annotate the data and
shared within the framework.

AXP maintains the feedback history to prevent conflicts in hard
feedback as well as to minimize redundant work. In particular,
hard and soft feedback can decay over time to give more empha-
sis on more recent feedback during exploratory data access4. To
allow users highlight their feedback on their query results, tDAR
prototype provides the feedback interface shown in Figure 4.

1.2 Related Work
Query refinement through relevance feedback has been well

studied in the fields of information retrieval [27, 25] and multi-
media [18]. Most of the existing algorithms rely on the vector
model [28] of data to support feedback-based query refinement. In-
tuitively, the vector describes the composition of the data or the
query in terms of its constituent features (such as color, edge, or
keyword). The vector model is especially suitable for supporting
feedback, because the user feedback can be used both (a) to move

3This initial set may not represent the entire result set well, but
often contains sufficient information to bootstrap the feedback pro-
cess. Alternatively, one can try to select and present an initial set
of paths that will collectively help highlight the critical structural
alternatives in the data. This is ongoing research.
4In this paper, we do not investigate the challenge of finding best
way to implement feedback decay for path queries.

the initial query vector in the vector space in a way that better rep-
resents the user’s intentions or (b) to re-assess the significance of
the features so that the query better reflects user’s feedback.

As we described in the introduction, relevance feedback may
also be needed when dealing with structured and semi-structured
data. While vector models are proven to be effective in support-
ing feedback, not all data can be easily mapped onto a feature
space and this is especially true for data with complex structures.
The increasingly common usage of graph- and tree-structured data,
such as data-centric XML collections, poses new challenges in
data retrieval [12] and feedback processing. A recent Dagstuhl re-
port [4] on “Ranked XML Querying” highlights the significance of
the “too-many-answers” problem to keyword-based XML retrieval.
Observing that the traditional IR-based feedback processes cannot
be directly applied to improve semi-structured data or XML re-
trieval, recent works, including [35, 20, 21, 30, 31, 29, 15], have
tried to explore the role of relevance feedback for refining queries
over XML documents. In [20, 21], Pan et al. decomposed the
query into its elementary sub-queries. Given user feedback, each
elementary sub-query is expanded with a weight showing its rela-
tive importance in the overall query. The total score of an XML
path (or XML document) is then computed from the elementary
scores of the sub-queries. Schenkel et al. [30, 31] also consider
path-based feedback to expand queries. Given a result path, (e.g.,
/article/fm/cr/p), their method extracts path fragments (e.g.,
prefix /article/#, infix #/fm/#, etc.). Then, these path frag-
ments are used to identify significant tags or tag-pairs (of par-
ent/child). In this approach, structural expansion is limited to only
the tag-pairs. [15] and [29] both propose to enrich the initial query
by adding significant terms and common sub-paths shared by most
relevant result paths. Existing works in this area [20, 21, 30, 31, 29,
15] focus on the use of feedback for document-centric XML (e.g.,
INEX [1] efforts), but not data-centric XML collections. Also, dif-
ferent from the above works which only tackle soft-feedback pro-
cesses, AXP provides an integrated both hard- and soft-feedback.
In addition, AXP considers both positive and negative feedback.

In AXP, soft feedback is used for ranking data features from po-
tentially most relevant to the user to the least relevant ones. Once
the data features are associated with relevance scores and an ap-
propriate scoring function is developed to rank query results, var-
ious ranked query processing techniques (such as, nearest neigh-
bors [26], top-K ranked joins [32, 23, 17], and skylines [5, 16])
can be adopted to identify the set of results to be shown to the
user. In [23] and [6], for example, we focused on ranked path and
tree query processing on weighted graphs, respectively. Our focus,
however, is not on the ranked query processing, but on learning the
importance of structural features based on user feedback.

Also, we highlight that learning preferences for structured data
(where the various structural features are structurally dependent)
is not the same as the more traditional problem of learning pref-
erences for independent attributes/dimensions of vector data [28].
This structural dependence is our focus in Section 3.3.1.

2. PRELIMINARIES
In this section, we introduce the data model, the notions of query

and answer on the data model, and the concept of user feedback.

2.1 Data and Query Models
In this paper (and in our evaluation) we focus on data-centric

XML collections (Figure 2). As mentioned earlier, we also focus
on path expressions of type, P {/,//,∗}. Such path expressions are
composed of query steps, each consisting of an axis (parent/child
“/” or ancestor/descendant “//”) test and a label test. Given a doc-
ument, T , and a path query, Q, the result to the query is an em-
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bedding of the query nodes onto the nodes of the data tree in such
a way that all label and structural predicates are satisfied. This
definition of a result is more general than the result definition in
XPath, where only the right most query node is returned as a match.
Notice that there can be zero, one, or more than one results to a
given query in a given document. Reconsider for example the path
query //title and the tree document in Figure 2: the query has
six matches, each corresponding to a different path from the root
to a node labeled with “title”. Note that the query model can ac-
commodate predicates applied on elements (e.g., “get project titles
containing ‘Harp”’). However, we omit the corresponding details.

2.2 Structural Features of a Label Path
We define the structural features of a given label-path as follows:

DEFINITION 2.1 (FEATURES OF A LABEL PATH). The set,
F(P ), of features of a label-path P = l0 · · · · · lj is the maximal
set of path queries such that F(P ) = {Qi | Qi(P ) = true},
where Fi is in the type of P {/,//}.

A feature of a label-path can be as short as a 1-label like //l1, or as
long as a whole result path.

EXAMPLE 2.1. Given a label-path P = repository ·project ·
title, where “repository” is the label of the root node, F(P )
includes single label features, /project, //project, //title,
as well as 2-label features, /project/title, /project//title,
//project/title, and //project//title (we ignore the root label).

2.3 Feedback Model
As we mentioned in the Introduction (Section 1), AXP handles

different forms of feedback:
DEFINITION 2.2 (USER FEEDBACK OVER A RESULT). Let

Q be a query over a document T , and r be a result for Q against
T . Let P (r) be a data path defined by r. The user feedback over r
is a 4-tuple F = 〈F+

h , F−
h , F+

s , F−
s 〉:

• F+
h is a set of features of P (r), which the user marks as pos-

itive hard feedback: the intended meaning is that any future
results SHOULD contain all the features listed in F+

h .
• F−

h is a set of features of P (r), which the user marks as
negative hard feedback: the intended meaning is that any
future result SHOULD NOT contain any features in F−

h .
• F+

s is a set of features of P (r), which the user marks as
positive soft feedback: the intended meaning is that the user
LIKEs those results that contain these features better than
others that do not contain these features.
• F−

s is a set of features of P (r), which the user marks as
negative soft feedback: the intended meaning is that the user
DISLIKEs any result containing the features included in F−

s .

EXAMPLE 2.2. Consider again the path query //title over the
tree document in Figure 2, when presented with the set of results
the user might want to express that (a) she is only interested in
paths that contain the tag “contributor”, while (b) she does not
want to see any projects in the results, while she would (c) prefer
to see datasets. Her feedback can be represented as the 4-tuple
〈{//contributor}, {//project}, {//dataset}, {}〉.
Note that it is on the top K results that a user provides her feature
feedback. In other words, these K results define the boundaries
of the user’s current exploration space. The user can express her
preferences in terms of features.

3. SOFT FEEDBACK PROCESS
The soft feedback is used for ranking the alternative results so

that user can explore relevant parts of the data more readily.

3.1 Structural Feature Elements
AXP splits any complex feedback statement into its constituent

1- and 2-label feature elements for further analysis. In particu-
lar, given a feedback statement l0, · · · , lx, the 1-label features are
{//li} where 0 ≤ i ≤ x, and 2-label features are {//li/li+1} for
0≤ i<x and {//li//lj} for 0≤ i, j <x and j−i> 1. These fea-
tures capture the two key structural building blocks of label paths:
1-label features of the form “//ln” capture existence of nodes with
a certain label and 2-label features of the form “//ln/lm”, and
“//ln//lm” capture the parent/child and ancestor/descendant re-
lationships between these labels (Figure 4). Note that, while they
are simpler than more complex structural features, even these are
not fully independent from each other; e.g., “//ln/lm” implies
“//ln//lm”. If a set of features are not mutually independent (e.g.,
one path feature includes the other one as a sub-feature), this might
negatively affect the relevance feedback process: feature indepen-
dence assumption is often necessary for simplifying the probabilis-
tic formulas [27]. In Section 3.3.1, we describe how AXP addresses
inter-dependences between the features.

3.2 Structural Feature Significance
Path features used during the soft feedback process need to dis-

tinguish those paths that are aligned with the user’s relevance judg-
ment from those that are against it. Thus, features can be weighted
based on how well they contribute to this relevance judgment.

DEFINITION 3.1 (FEATURE SIGNIFICANCE). Let RK be the
set of K results presented to the user for feedback, and Fs be the
set of 1- or 2-label features extracted from the user’s (LIKE or DIS-
LIKE) relevance feedback statements. The significance of feature
f ∈ Fs, relative to the result set, RK denoted as p(f |RK , Fs) is
defined as p(f |RK , Fs) = |RK(f)|

|RK(Fs)| , where RK(f) is the set of re-
sults that satisfy the feature f , whereas RK(Fs) is the set of results
that satisfy any of the feedback statements in Fs.

Note that the definition of feature significance is probabilistic in
nature: it measures the likelihood of a result that is relevant to any
of the feedback containing the given feature.

EXAMPLE 3.1. Let us consider two results to query, ‘//title’:
r1 = repository · coding_sheet · title, and r2 =
repository · coding_sheet · data_file · title. Let us
assume that the user marks ‘/coding_sheet’ in r1 and
‘//coding_sheet/data_file’ in r2 as feedback. Thus,
Fs = {/coding_sheet, //coding_sheet/data_file} and RK =
RK(Fs) = {r1, r2}. The 1-label feature ‘f1 = /coding_sheet’
appears in both r1 and r2; thus, p(f1|RK , Fs) = 1.0. The 2-label
feature ‘f2 = //coding_sheet/data_file’ appears only in r2;
thus, p(f2|RK , Fs)=0.5.

3.3 Combined Result Score
We define the score of a result in terms of the significances of

its features as they relate to the user feedback: If a result contains
features that are significant relative to the positive feedback, intu-
itively, its score needs to be high; on the other hand, if the result
path contains features that are significant relative to the negative
feedback, its overall score needs to be low. Let F+

s and F−
s repre-

sent positive and negative feedback, respectively.

DEFINITION 3.2 (RESULT SCORE). The combined score of a
result ri is defined as follows:

score(ri) =
p(Like|ri,F+

s ) · p(Like|ri,F−
s )

p(Dislike|ri,F−
s ) · p(Dislike|ri,F+

s )
.

Here, p(Like|ri,F+
s ) denotes the probability that result ri will be

judged relevant by the system based on the feedback in F+
s . Let
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RK be the set of K results shown to the user for feedback and
R+

K denote those that satisfy at least one of the positive feedback
statements in F+

s . Then,
p(Like|ri,F+

s ) =
p(ri|R+

K ,F+
s )p(R+

K ,F+
s )

p(ri,F+
s )

.

On the other hand, p(Dislike|ri,F+
s ) denotes the probability

that result ri is judged not relevant based on F+
s . Let R

¬(+)
K =

RK − R+
K denote those results that do not satisfy any of the posi-

tive feedback statements in F+
s . Then,

p(Dislike|ri,F+
s ) =

p(ri|R¬(+)
K ,F+

s )p(R
¬(+)
K ,F+

s )

p(ri,F+
s )

.

The terms, p(Dislike|ri,F−
s ) and p(Like|ri,F−

s ) are defined
similarly based on F−

s . Note that, since they are computed based
on different sets of feedback, p(Dislike|ri,F+

s ) is not necessarily
equivalent to p(Dislike|ri,F−

s ). Similarly, for p(Like|ri,F−
s )

and p(Like|ri,F+
s ). Given these, and using the Bayes’ theorem,

we can rewrite score(ri) as follows:

p(ri|R+
K ,F+

s ) · p(ri|R¬(−)
K ,F−

s )

p(ri|R−
K ,F−

s ) · p(ri|R¬(+)
K ,F+

s )
× p(R+

K ,F+
s ) · p(R

¬(−)
K ,F−

s )

p(R−
K ,F−

s ) · p(R
¬(+)
K ,F+

s )
.

(1)
Since the term at the right is constant, we only need to compute

the term on the left. Given a feature set F ′ and a corresponding
R′ ⊆ RK , we need to compute p(ri|R′, F ′). Let F ′(ri) de-
note the set of corresponding features of the path ri. Since ri is
the conjunction of all of its features, we can write p(ri|R′, F ′) as
p(
∧

fj∈F ′(ri)
fj |R′, F ′). If all the features of ri were independent,

we could easily rewrite this as

p(ri|R′, F ′) =
∏

fj∈F ′(ri)

p(fj |R′, F ′) =
∏

fj∈F ′(ri)

|R′(fj)|
|R′| ;

however, the 1- or 2-label features of the form “//ln”, “//ln/lm”,
and “//ln//lm” are not always independent. For example, feature
“//ln//lm” implies the feature “//ln”. Similarly, “//ln/lm” im-
plies “//ln//lm”. Thus, such dependencies between features have
to be taken into account in assessing their contributions.

3.3.1 Feature Cover
Given two inter-dependent features of a path, we refer to the one

that always implies the other as the more specific feature:

DEFINITION 3.3 (SPECIFICITY). Given two features fg , fs,
the feature fs is more specific than fg , (denoted as fs � fg) iff for
any label path P , fg is a feature of P if fs is a feature of P .

Whenever the feature //project/title is in a path, the feature
//project//title is also satisfied; thus //project/title is a more
specific feature than //project//title. Given a set of features, its
feature cover consists of the most specific features in the set:

DEFINITION 3.4 (FEATURE COVER). A feature cover Fc

corresponding to a feature set F is the set of all features in F such
that ∀fi ∈ Fc, �fj ∈ F s.t. fj � fi.

EXAMPLE 3.2. Given the label path P =repository ·project·
contributor · title (where repository is the root), its complete
feature set, F (P ), is

{ //project, /project, //contributor, //title,

//project/contributor, //project//contributor,

/project/contributor, /project//contributor,

//project//title, /project//title,

//contributor//title, //contributor/title}.

The feature cover for this path, however, is much smaller:

F (P ) ={ /project, //project/contributor,

//project//title, //contributor/title}.
THEOREM 3.1. Let F be a set of features and Fc be the corre-

sponding feature cover. Then, p
(∧

f∈F f
)

= p
(∧

f∈Fc
f
)

.
That is, the probability that any given path P contains all features
in F is equal to the probability that the path contains all features
in the cover, Fc. Let p(F ) be a shorthand for p(

∧
f∈F f); then we

can prove the above theorem as follows:

PROOF SKETCH 3.1. First of all, if fs � fg , then p(fs∧fg) =
p(fs): from the Bayes’ theorem, we can get: p(fs ∧ fg) =
p(fg|fs)·p(fs). Since fs → fg , p(fg|fs) = 1. Thus, p(fs∧fg) =
p(fg|fs) · p(fs) = p(fs). Let fi ∈ F be a feature such that there
is a more specific feature in F . Using the Bayes’ theorem, we can
see that

p(F ) = p(F |F/{fi}) · p(F/{fi}),

where F/{fi} = F − {fi}. But, since F/{fi}) is collectively more
specific than F , p(F |F/{fi}) = 1 and, consequently,

p(F ) = 1 · p(F/{fi}) = p(F/{fi}).

This process can be applied to all features in F which have a
more specific feature, eliminating them from the set. Finally, all the
features that are in the set are those that are the most specific ones;
i.e, p(F ) = p(Fc).

3.3.2 Computing p(ri|R′, F ′) based on the Cover
The following corollary provides us with a way to deal with

inter-dependent features of a path when computing p(ri|R′, F ′).

COROLLARY 3.1. Let ri be a result path, F ′(ri) be the set of
features of ri, and F ′

c(ri) be the corresponding feature cover. Then,

p(ri|R′, F ′) = p(F ′(ri)|R′, F ′) = p(F ′
c(ri)|R′, F ′)

=
∏

f∈F ′
c(ri)

p(f |R′, F ′) =
∏

f∈F ′
c(ri)

|R′(f)|
|R′|

In other words, the features in the cover are sufficient when com-
puting the score of a path.

However, one more challenge remains in computing
p(ri|R′, F ′) based on the feature cover. While the above
corollary is sufficient for computing p(ri|R′, F ′) for paths that
consist solely of features that occur in R′, if any of the features
does not occur in R′, then we have p(ri|R′, F ′) = 0. This means
that if any one of ri’s features does not occur in R′, it is not dis-
tinguishable from other such paths, irrespective of how significant
all its other features are. Naturally, this is not appropriate when
ranking paths that contain a feature for which no user feedback is
applicable. To prevent 0-ing out of p(ri|R′, F ′) for such paths, a
lower-bound, α, is used: i.e., if a feature f does not occur in R′

or when R′ = ∅, then p(f |R′, F ′) = α. Here, α is a positive real
number, such that α� 1/|R′|; i.e., smaller than the p(f |R′) value
of any single feature. In the experiments we use α = 1/|R′|2.

3.4 Complexity
Let the number of results presented to the user for feedback be

K and let the average length of the result path be l. Let the size of
the feedback cover be |Fc|. Thus, computing feature scores takes
O(Kl|Fc|) time, where each result is scanned and the features are
counted. Once the features are counted, all results obtained in the
previous iteration have to be re-scored. If the total number of results
is |R|, then this is done in O(|R||Fc|) time.
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4. HARD FEEDBACK
As described in Sections 1.1 and 2.3, hard feedback is used for

refining the user’s initial imprecise query based on structural fea-
tures that the user expects to see in the results as well as with
features that the user expects not to see in the results. Let F+

h

and F−
h be the sets of positive and negative hard feedback fea-

tures. Intuitively, the initial query Q can be rewritten into the query
Q(F+

h ,F−
h ) as

Q(F+
h ,F−

h ) = Q ∧

⎛
⎜⎝

∧

Qi∈F+
h

Qi

⎞
⎟⎠ ∧ ¬

⎛
⎜⎝

∨

Qi∈F−
h

Qi

⎞
⎟⎠ . (2)

One way to process this refined query would be to simply go over
the initial results to the query Q and eliminate those that satisfy
any feature in F−

h or do not satisfy all features in F+
h . Finite au-

tomata (FA) have been shown to be effective in message filtering
tasks [9, 13, 19], where a set of incoming messages are filtered
against a set of pre-registered filter conditions. For example, Diao
et al. use nondeterministic finite automata (NFA) to filter incoming
XML messages based on pre-specified filtering criteria [9]. In [13],
Green et al. propose to use deterministic finite automata (DFA) to
represent the filtering conditions in an integrated manner. The dif-
ference between these two approaches is that in the nondeterminis-
tic finite automata based schemes, the initial filter representation is
easy to construct and small, while the run-time state space can be
arbitrarily large, whereas in DFA-based schemes, the initial filter
representation itself may be large, but the system has more control
over how to expand and explore the state space needed for filtering.
The lazy-DFA based schemes, for example, leverage this to reduce
the filtering costs significantly [14, 13, 8].

The existing DFA- and lazy-DFA based message filtering
schemes however cannot be directly applied to query refinement:
in message filtering, filter conditions are combined using a disjunc-
tion (“∨”) operator (i.e., a path is selected if it satisfies any of the
conditions), whereas Q(F+

h ,F−
h ) consists of conjunctions (“∧”)

of path expressions. Moreover, the naive use of path filtering strat-
egy is likely to be unnecessarily expensive: the inherently iterative
nature of the feedback process gives rise to optimization oppor-
tunities that a naive filtering scheme may not be able to leverage
effectively. As in the message filtering schemes, AXP relies on a
finite automata-based representation which has the right expressive
power to express Q(F+

h ,F−
h ). However, the construction and exe-

cution of the AXP DFA differ from the DFAs for message filtering.

4.1 DFA-based Path Query Refinement
A deterministic finite automaton (DFA) is a 5-tuple D =

(S, Σ, δ, s0, Sf ), where S is the set of all states, Σ is the alpha-
bet of symbols, δ is the set of all transitions between the states,
s0 ∈ S is the starting state, and Sf is the set of accepting states.
A string, u, is accepted by a deterministic finite automaton if, start-
ing from state s0 and following the state transitions implied by δ
for each symbol of u, the automaton reaches an accepting state in
Sf after the final symbol of u is processed. It is known that any
regular language can be recognized by a DFA. Moreover, regular
languages are known to be closed under union, intersection, dif-
ference, and complement operations. Let L(Q) denote the regular
language expressed by the path expression Q (since path expres-
sions are a subset of the regular expressions which describe regular
languages, such a regular language exists). Let D(Q) = D(L(Q))
denote the DFA that recognizes L(Q). Then, one can obtain a DFA,
D(Q(F+

h ,F−
h )), recognizing Q(F+

h ,F−
h ) as

0 1
repository

title

others

others

3

title

2 all
others

0 1 6

2
allothers

title

3

others

5
title

4

others

title

others

dataset
repository

(a) DFA for the initial query //title
(b) DFA for the initial query and the

feedback /dataset

Figure 5: DFA samples to represent user feedback; the path
query is implicitly with respect to the data root

D(L(Q)) ⊗

⎛
⎜⎝

⊗

Qi∈F+
h

D(L(Qi))

⎞
⎟⎠ ⊗

⎛
⎜⎝

⊗

Qi∈F−
h

D(L(Qi))

⎞
⎟⎠ , (3)

where⊗ denotes the DFA intersection operation, and L(Qi) is the
complement of the language L(Qi).

THEOREM 4.1. The language that D(Q(F+
h ,F−

h )) recognizes
is the set of results to the query Q which also satisfy the
“SHOULD” feedback, but do not satisfy any of the “SHOULD-
NOT” feedback.

PROOF SKETCH 4.1. The proof relies on using Equation 2, clo-
sure properties of the regular languages, and the relationship be-
tween regular languages and finite automata.

The above theorem does not specify how to construct an efficient
automaton to represent the feedback. A well-known result in au-
tomata theory is that for any regular language, there is a unique
DFA having the smallest number of states that accepts it and this
DFA can be constructed by clustering similar states and removing
unreachable ones. The time complexity of the DFA minimization
task is polynomial in the size of the input DFA. In AXP, we con-
struct a base DFA directly from Equation 3.

EXAMPLE 4.1. Let Q be //title and let the user positive feed-
back be of the form /dataset (i.e., “the child of the root must be
‘dataset’ ”). Figures 5(a) and 5(b) show the DFAs corresponding
to the original query and the refined query, respectively.

4.1.1 DFA-based Query Refinement
DFA is constructed for reflecting the hard feedback on the query

results. After AXP constructs a DFA, the algorithm runs the XML
data/document over the DFA to get results incorporating feedback.
The algorithm assumes that the document nodes are visited in pre-
order. To leverage the tree-structured nature of the input to min-
imize the number of state transitions, the algorithm maintains a
Stack to keep track of the DFA states. The algorithm also main-
tains a contextPath to remember the visited document element
sequences so that result paths can be extracted. When seeing a start
tag, 〈e〉, the process finds the next state, ns, and updates the context
path and the running stack appropriately. If this state corresponds
to an accepting state, the algorithm extracts and reports the result
path. When seeing an end tag, 〈/e〉, the top elements of context
path and the running stack are popped out. Since the refined DFA
of the query incorporates feedback in each iteration, its states and
transitions may grow with the number of feedback iterations. We
improve this by getting rid of useless states and transitions.

4.1.2 Abridged Data Tree
The above discussion and the algorithm assume that in each it-

eration, AXP applies the DFA on the initial document, D. This is
not necessary and would involve significant amount of redundant
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work. In fact, in iteration j, AXP could run the feedback refined
DFA only over the part of the tree that contributed to the results in
iteration j − 1. We call this the abridged tree, D′ ⊆ D.

The abridged tree, D′, is constructed by combining distinct re-
sults. On seeing a new result, the current tree, D′ is scanned from
the root in a top-down manner to match the labels in this result
path. A new branch is created in the tree when a non-matching tag
is met. The construction time of the abridged tree (including the
disk I/O) is linear in the size of the number of the results. This is
also confirmed by experiments (Section 5).

4.1.3 Complexity
Each iteration, j, of the feedback process involves (a) computa-

tion of the refined DFA and (b) processing of the input data on this
DFA. Since the DFA state transition is O(1) for each data element
observed in the abridged tree, the time complexity of processing
the input data on the refined DFA is O(|Dj |) where |Dj | is the size
of the abridged tree input to the iteration j.

The worst case time complexity of combining two DFAs, namely
DFA1 and DFA2, using DFA intersection and/or union opera-
tions, is O(|DFA1| · |DFA2| · |Σ|) where Σ is a set of the dis-
tinct labels, and |DFA1| and |DFA2| are the numbers of states in
these DFAs. Thus, if applied naively, the worst case size of the re-
fined DFA would grow exponentially with the number of iterations.
The DFA compression process described in Section 4.1.1 prevents
this exponential growth by eliminating after each iteration, j, those
states that have not been visited in that iteration. Since the number
of states that have been visited at iteration j is limited by the size,
|Dj |, of the input abridged tree, the DFA construction cost for it-
eration j is bounded by O(|Dj | · |DFAfeedback,j | · |Σ|), where
DFAfeedback,j is the DFA needed to express the feedback col-
lected at iteration j.

4.2 Lazy-DFA Support
The main idea behind the lazy-DFA approach is that not all

states of the DFA will be needed in run-time; thus, enumerating all
the states of the underlying DFA can potentially waste significant
amount of time and other resources [14, 13, 8]. Non-deterministic
finite automata (NFA) solves this problem by encoding the automa-
ton non-deterministically so that exponentially many states of the
DFA can be combined into one. These states are unfolded in run-
time as they are needed. In the lazy-DFA schemes, the query crite-
ria are first captured using an NFA. During query processing, how-
ever, this is converted into a DFA on an on-demand basis, as par-
ticular states and transitions are needed.

Most existing works on lazy-DFA creation target the messaging
filtering problem where multiple trigger criteria are combined using
disjunctions [8]: if some document/path satisfies any of the given
trigger query criteria, this document/path needs to be reported as
a result. In contrast, the query refinement process discussed in
this paper also requires conjunctions of the user’s positive hard
feedback statements: i.e., a path needs to be maintained only if
it satisfies all positive feedback criteria. While this means that the
acceptance criterion is more strict, verifying this acceptance crite-
rion using a lazy-DFA approach may be more costly. This is be-
cause, when the traditional disjunctive lazy-DFA schemes [14, 13,
8] combine the NFA of the individual query statements into a single
NFA, any of the original acceptance states can act as an acceptance
state for the combined NFA. On the other hand, in the conjunctive
case, the acceptance states of the original NFA are not individually
sufficient: to accept a path, all the original NFA acceptance states
should be reached simultaneously.

Since, according to Equation 2, the positive feedback and the

Function LazyDFA (Q, D′ , F+
h

, F−
h

)

• Q is the initial query, D′ is the abridged document tree from the previous
iteration, and F+

h , F−
h are the feedback statements

• Output: R search results with context paths.

1. NFAtemplate+ = combine the NFA-fragments of Q and F+
h ;

NFAtemplate− = combine the NFA-fragments of F−
h ;

LazyDFA+ = initLazyDFAplus (NFAtemplate+ );
LazyDFA− = initLazyDFAminus (NFAtemplate− );
map+ = ∅; /* Correspondence between LazyDFA+ states and
NFAtemplate+ state-sets*/
map− = ∅; /* Correspondence between LazyDFA− states and
NFAtemplate− state-sets*/

/* Process D′ against the LazyDFA*/
2. R = null;
3. Treat D′ as a sequence, E, of tag events of the form

〈e1〉〈e2〉...〈/e2〉〈/e1〉;
4. contextPath = null; /*Remember the path from the root to the current ele-

ment*/

5. Stack+ = null; Stack− = null;
/* Remember the states of the LazyDFA+ and LazyDFA−*/

6. while (e ∈ E is not the end of E)

(a) if (e is start tag)

i. if no LazyDFA− state is reachable from e, update LazyDFA−

and map− ;
ii. if a terminal state in LazyDFA− can be reached from e

skip all the descendent elements of e; goto Step 6;
iii. contextPath.push(e);
iv. Process e through LazyDFA+

A. S+
dfa = Stack+.top(); /* top LazyDFA+ state */

S+
dfa_next = nextLazyDFA+State(LazyDFA+,

NFAtemplate+ , map+, S+
dfa, e);

B. Stack+ .push(S+
dfa_next);

C. if (S+
dfa_next is a terminal state), extract result from

contextPath and put it to R;

(b) else
contextPath.pop(); Stack+.pop(); Stack−.pop();

7. return R;

(a) LazyDFA algorithm

Function nextLazyDFA+State (LazyDFA+, NFAtemplate+ , map+, Sdfa ,
e)

• Return: the LazyDFA+ state reachable from Sdfa through e.
• Procedure:

1. S′
dfa = LazyDFA+.nextState(Sdfa , e);

2. if (S′
dfa is empty) /* this state need to be generated */

(a) Get the set of NFAtemplate+ states Snfa corresponding to Sdfa

from map+;
(b) Get the set of NFAtemplate+ states S′

nfa reachable from Snfa

through e;
(c) Create a new LazyDFA+ state S′

dfa corresponding to S′
nfa;

(d) Update LazyDFA+ by adding S′
dfa and related transitions;

(e) Update map+ by adding the correspondence between S′
dfa and

S′
nfa;

3. Return S′
dfa;

(b) LazyDFA+ runtime generation
Figure 6: LazyDFA based feedback processing

initial query are to be combined using conjunctions, whereas the
negative feedback can be combined using disjunctions (as in the
message filtering schemes), AXP separates the positive feedback
and negative feedback into two different sets and creates a lazy-
DFA for each (LazyDFA+ and LazyDFA−, respectively). Figure
6 shows the combined LazyDFA algorithm. In what follows, we
describe the LazyDFA strategy for managing hard feedback.
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4.2.1 Positive LazyDFA (LazyDFA+)
To begin with, the path query and each of the positive

feedback statements are converted into NFA-fragments. Let
us consider a query or a positive feedback of the form
op1 vq1 op2 vq2 · · · opn vqn. As in [9], the algorithm,

1. creates a starting state for the NFA-fragment,

2. creates a transition, Tr(vqi), labeled vqi for each vqi (in-
cluding ∗) and the ancestor/descendant operator “//”,

3. creates a state for each vqi−1/vqi, such that
Tr(vqi−1).end = Tr(vqi).start,

4. creates a state for each vqi−1//vqi, such that
Tr(vqi−1).end = Tr(//).start and Tr(//).end =
Tr(vqi).start.

All NFA-fragments are combined into a single NFA-template as
in [9] (Step 1 in Figure 6(a)). Figure 7(a) shows the NFA-template
created for an initial query “//title” and feedback “/dataset”.

One major difference of this process from [9] is that

• if the input is the original query, then the transition corre-
sponding to the final label vqn points to a partial terminal
state (i.e., the state is not sufficient by itself to accept a path).

• if the input is a feedback statement, then a new partial termi-
nal state is created and a “//” transition from the last state
of this feedback statement to the new partial terminal state is
added to the NFA-fragment. This extra transition is needed
because feedback statements can be satisfied by sub-paths of
a result path: for example, a result path, a · b · c, can satisfy
both the query “//c” and the feedback “//b”.

Note that the NFA-template created above is not a standard NFA.
First of all, the “//” transitions in the NFA-templates do not cor-
respond to real NFA transitions. More importantly, as described
above, due to the conjunctive integration semantics, the partial ter-
minal states of the NFA fragments are not real final states. For the
automaton to be in an acceptance state, all its partial terminal states
have to be reached together. Thus, to distinguish from a real termi-
nal state, as in Figure 7, we use a double dotted circle to represent
these partial terminal states.

The NFA-template is used by the LazyDFA+ algorithm as a
blueprint to create the necessary DFA states in run-time (Steps 2
to 6 in Figure 6(a)). In general, a LazyDFA+ state corresponds
to several NFA-template states. During the processing of the input
data tree, when the LazyDFA+ needs to move to a new state, if the
required LazyDFA+ state has already been created, then this state
is used. Otherwise, a new LazyDFA+ state needs to be created.
This new state is inserted into an index structure, map+, which
keeps track of the correspondences between created LazyDFA+

states and the associated NFA-template state-set. Whether it is
reused or newly created, the state is also inserted into a stack to
keep track of the states visited for the current data branch.

When an input symbol necessitates a transition into a not-yet-
created LazyDFA+ state, all NFA-template states reachable us-
ing this symbol are combined into a new LazyDFA+ state. Let
Snfa be the set of NFA-template states corresponding to the current
LazyDFA+ state. The set S′

nfa of NFA-template states reachable
from Snfa is computed as follows:

• Rule 1 - All positive feedback need to be satisfied to-
gether: If an NFA-template state has several outgoing transi-
tions, they must be satisfied together to get a reachable NFA-
template state.

0 1
repository

3

2 title//

5
//

dataset

4 Q1

Q2

(a) NFA-template for the initial query Q1 = //title combined with the
feedback Q2 = /dataset

LazyDFA+ state NFA-template state-set
0 {0}
1 {1}
2 ∅
3 {2//, 3, 5//}
4 {2//, 4, 5// }
5 {2//, 5//}

(b) LazyDFA+ state and NFA state-set correspondence map (a state with
superscript “//” means this state is reached through a “//” transition; the

underlined states are terminal states)

0 1

2

3
titledataset

others

4

all

5
others

others

repository title

(c) LazyDFA+ after processing the document in Figure 2.

Figure 7: LazyDFA+ for positive hard feedback

A LazyDFA+ state is a terminal state only when it contains
all the partial terminal states of the NFA-template. Thus, if,
for no possible input string, the NFA-template state-set cor-
responding to a given LazyDFA+ state cannot eventually
reach to all partial terminal states of the NFA-template, then
this LazyDFA+ state can be marked as a failure state.

• Rule 2 - “//” transitions on the NFA-template can corre-
spond to empty sequences: If an NFA-template state s1

reaches another state s2 through “//” transition, then any
transition reaching s1 automatically reaches s2.

• Rule 3 - “//” transitions on the NFA-template can corre-
spond to sequences of variable length: If an NFA-template
state is reached through a “//” transition, it can be reached
by any transitions. Therefore, the NFA-template state-set
corresponding to a LazyDFA+ state must include all past
NFA-template “//” transitions used when processing the
corresponding data branch.

Note that rule 1 is specific to the LazyDFA+ due to its conjunc-
tive nature, whereas rules 2 and 3 are similar to the treatment of
“//” transitions in existing path filtering work, e.g. [9]. We illus-
trate these rules using the following example.

EXAMPLE 4.2. We use the query in Example 4.1 to illustrate
the LazyDFA+ execution. The NFA-template is shown in Figure
7(a). In this figure, the NFA-template state 4 represents the partial
terminal state for the initial query and state 5 denotes the partial
terminal state for the feedback.

Let us consider the document in Figure 2. Running this
document over the NFA-template in Figure 7(a) results in the
LazyDFA+, shown in Figure 7(c). The correspondence between
the LazyDFA+ states and the NFA-template state-sets are shown
in Figure 7(b). In what follows, we go over some of the key steps to
illustrate how the LazyDFA+ mechanism works.

Initially, LazyDFA+ has a single state 0, which corresponds to
the NFA-template state-set {0}. When we see the root tag ‘repos-
itory’, we follow the only available NFA-template transition from
{0} to reach the NFA-template state-set {1}. Since this state-set
did not exist before, a new LazyDFA+ state, 1, corresponding to
this state-set is created and recorded in map+.

10



From LazyDFA+ state 1 (i.e., the NFA-template state-set {1}),
• when we see either ‘coding_sheet’ or ‘project’ start tag,

we can follow only one of the two available transitions on
the corresponding NFA-template state-set, {1}. Since the
semantics of the DFA merge operation is conjunctive, this
means that the LazyDFA+ cannot reach both of the partial
acceptance states. This means that the current path cannot
be recognized by the LazyDFA+ (Rule 1). Thus, we gener-
ate a failure state, 2, for LazyDFA+.

• if we see ‘dataset’ start tag, we could follow both of the
available NFA-template branches to reach NFA-template
states 2 and 3. In addition, since NFA-template state 3 and
5 are connected with a “//” transition, state 5 is also in
the reachable set (Rule 2). Thus the set of reachable NFA-
template states from the LazyDFA+ state 1 is {2, 3, 5}.
Thus, we generate a LazyDFA+ state 3 to correspond to the
NFA-template state-set {2//, 3, 5//} and record it in map+.
The superscript “//” is used to remember that this NFA-
template state is reached through a “//” transition: as long
as we are on this data branch, we need to include this NFA-
template state in newly created LazyDFA+ states.

When we are on the LazyDFA+ state 3 (i.e., the corresponding
NFA-template state-set {2//, 3, 5//}), if we see the tag ‘title’, the
NFA-template state
• 4 is reachable from state 2//

• 2// is reachable from itself 2// (Rule 3), and
• 5// is reachable from itself 5// (Rule 3) and state 3.

Thus, the reachable NFA-template state-set is {2//, 4, 5//}.
Since the state contains both NFA-template states 4 and 5 (i.e., the
partial terminal states of the two NFA fragments), the correspond-
ing LazyDFA+ state, 4, is marked as a terminal state.

4.2.2 Negative LazyDFA (LazyDFA−)
Unlike for the LazyDFA+, if a given path satisfies any of the

negative hard feedback statements, we can decide that it cannot
contain a result. Thus, the LazyDFA− has a disjunctive logic.
Hence, LazyDFA− can be constructed using the standard lazy-
DFA construction algorithms for message filtering systems [8].

When we see a new XML start tag 〈e〉 in the input, before pass-
ing it to the LazyDFA+, LazyDFA first checks whether it reaches
a terminal state in LazyDFA− (Step 6(a)ii in Figure 6(a)). If so,
then the system skips this tag as well as all the descendant tags of
〈e〉 (i.e., the whole subtree rooted at e in D′).

Since LazyDFA− can prune data sub-trees without further pro-
cessing, in general, negative feedback is likely to reduce overall
feedback processing time. In addition, especially if the overlaps
between the result paths to the original query are large, then the
negative feedback is likely to be more effective than the positive
feedback in trimming the user’s exploration space.

4.2.3 Complexity
The time complexity of the hard feedback management mostly

depends on the time in creating the data structures, which include
the NFA-templates, the LazyDFA, and the mapping table between
the LazyDFA states and the NFA-template state-sets. Let |Fh|
be the number of hard feedback statements. Let n be the maxi-
mum length of the query and the feedback statements. Given these,
the size of the NFA-template is at most O(|Fh|n). As a conse-
quence, the correspondence table size is bounded by 2n|Fh|. [13]
has shown for disjunctive lazy-DFA that, given an XML document
D, the lazy-DFA has at most O(G) states, where G is the number
of nodes in the data guide [11] of D. The sizes of both LazyDFA+

and LazyDFA− are also similarly bounded (though due to its con-
junctive nature, LazyDFA+ explores a much smaller state space).
LazyDFA reduces the overall execution time by splitting the

DFA into LazyDFA+ and LazyDFA− and by letting LazyDFA−

prune parts of the data tree without further processing. Thus, ele-
ments that are not guaranteed to lead to an acceptance state are not
processed, saving processing time.

5. EXPERIMENTS
We implemented the AXP framework and the underlying tech-

niques using Java. The experiments were performed on a
Xeon(TM) 2.9GHz processor workstation with 2.00G RAM.

Data, queries, and the ground truth: The experiment results
we report here are on the TreeBank data set [2]. We chose this
dataset for its wide use in XML query processing and filtering lit-
erature [3]. This data set is a data-centric collection in that it con-
tains the part-of-speech tags of Wall Street Journal articles, but not
the textual content itself. Thus, it is a suitable set for evaluating
feedback over data-centric XML. As an alternative, we have also
considered the popular INEX data set [1] but could not use it be-
cause of its document-centric nature.

Except the tests on LazyDFA input and scalability (Figures
14 and 15), we used a portion of the Treebank XML tree, with
∼ 400K nodes and with a deep (the maximum depth is ∼ 30 and
the average depth is∼ 8) recursive structure. Thus, the data set also
provides a suitable environment for testing the effect of feedback
based exploration of path structured data. We randomly generated
initial queries of the form “//l1//l2”. Each data point presented in
the feedback performance figures in this section is obtained by av-
eraging the corresponding performance metric for multiple queries
on the same data set.

Feedback. We have performed two types of feedback experiments:
(1) In the first, larger, set of experiments, we used simulated user
judgments (relying on an approach often applied in feedback re-
search; e.g. [10] as well as INEX 2006 feedback track [33] 5 ): for
each query, one of its results is randomly chosen to represent its
ground truth; i.e., the path that best represents user’s preferences.
Given K(= 20) result paths, those features occurring in the ground
truth are candidates to be provided as positive feedback; features
conflicting with the ground truth are negative feedback candidates.

(2) The second set of experiments, reported in Section 5.3, were
performed with the help of human subjects and they verify the re-
sults of the first set of experiments.

Efficiency and effectiveness measures. For soft feedback we are
reporting execution times as the measure of efficiency. The effec-
tiveness of the soft feedback process can be evaluated by observing
whether the rankings obtained through the feedback process are
correlated with the ground truth: given a result path with a sys-
tem assigned score, s, and with m mismatches with the ground
truth (each missed or extra feature counts as a mismatch), the score
should be negatively correlated with the number of mismatches.
The standard measure of correlation, Pearson correlation coeffi-
cient assumes that the relationship between the two variables is lin-
ear. In AXP, we do not expect the result score and the number of
mismatches will necessarily have a (inversely) linear relationship.
Thus, we report Kendall-tau rank coefficient which does not make
the assumption of linearity.

5Personal communications with the authors confirmed that the
feedbacks in [33] and their other works on the INEX data set are
provided by simulated users based on the pre-specified ground truth
as we do in this paper. A top-K result gets positive feedback iff it
has been identified as relevant in this ground truth.
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Figure 9: Effectiveness of soft feedback in matching ground
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For hard feedback (DFA and LazyDFA), we report the number
of states of the automata, number of transitions in the automata,
and the execution time. Since the goal of the hard feedback process
is to focus the exploration by eliminating the irrelevant paths from
consideration, the effectiveness measure for the hard feedback is
the number of paths in the result set. If the hard feedback process
is effective, the number of paths matching the revised query should
go to “1” (i.e., the ground truth) with only few iterations.

5.1 Evaluation of the Soft Feedback Process
Soft feedback results are collected using 10 different feedback

sequences on 10 different queries; thus, each value presented in the
results is the average of (10× 10) 100 runs.

Effectiveness. The first set of soft feedback experiments shows the
effectiveness of the positive and negative soft feedback in match-
ing the rankings that would have been imposed by the ground truth
(if the ground truth was available to the system in advance). As it
can be seen in Figure 8, even when the feedback is selected naively
without care at the discriminatory power of the features, both posi-
tive and negative feedback improve the quality of the ranking. Neg-
ative feedback is somewhat more effective than positive feedback;
this is because there are more negative features in the data that can
cause mismatches with the ground truth than the positive features
that can be missed. Nevertheless, using both positive and nega-
tive feedback together is the most effective approach for improv-
ing rankings (compare the 1P+1N curve (1 positive and 1 nega-
tive feedback per iteration) with the 2P+0N (2 positive feedback,
no negative feedback) and 0P+2N curves (no positive feedback, 2
negative feedback)). Providing more feedback (2P+2N curve) con-
sistently improves the quality of the ranking, indicating that AXP is
effective in getting the most out of the feedback statements.

We also ran a set of experiments to study the effects of poten-
tial inconsistencies in user feedback. For this purpose, a portion
of the feedback provided to the system were modified to be incon-
sistent with the ground truth: in other words, the user is providing
counter-productive feedback to this search goal. As shown in Fig-
ure 9, when the inconsistency of the user feedback increases, this
negatively affects the quality of the ranking with respect to the base
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Figure 10: Scatter-plot depicting the processing times of soft
feedback as a function of the number of results to be reranked
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Figure 11: The speed with which hard feedback helps focus the
user’s exploration space; different curves correspond to differ-
ent amounts of positive and negative feedback at each iteration

ground truth. In fact, when most of the feedback are inconsistent
with the ground truth (see the “I=0.8” curve where the inconsis-
tency rate in the feedback is 80%), the ranking coefficient becomes
negative: in other words, if the user’s feedback is inconsistent with
what she really wishes to obtain (represented by the ground truth),
the system learns, not what she wishes, but what she provides as
feedback. This result is consistent with the expected behavior of
feedback schemes and shows that our feedback process interprets
the user’s feedback correctly and can help the user when she is able
to provide feedback that does not contain extreme inconsistency.

Execution time. As it can be seen in Figure 10, the execution time
of the soft feedback generation process is linear in the number of
results to be reranked. The cost of the statistical analysis phase for
the soft feedback is negligible.

5.2 Evaluation of the Hard Feedback Process
Hard feedback results are also collected using 10 different feed-

back sequences for 10 random queries.

Effectiveness of hard feedback. The first set of experiments, pre-
sented in Figure 11, shows the effectiveness of the hard feedback
in helping reduce the size of the user’s exploration space. As it can
be seen in this figure, both positive and negative feedback can help
focus user’s exploration. However, in general, negative feedback
is more effective in helping eliminate irrelevant results. This can
be shown by comparing the 2P+0N curve with the 0P+2N curve.
Nevertheless, using both feedback together provides the best re-
sult (compare the 1P+1N curve with 2P+0N and 0P+2N curves).
Also, as expected, adding more feedback per iteration (2P+1N and
2P+2N versus 1P+1N) helps improve the speed with which the
exploration space is trimmed.

This also impacts the execution time for processing feedback.
Figure 12 shows the execution times for positive and negative feed-
back statements. Since it eliminates more results early on (thus
reducing the abridged data tree size), negative feedback helps cut
down the execution times. In general, however, both LazyDFA+

for positive feedback and LazyDFA− for negative feedback work
very efficiently and can support real-time interaction.

The number of results obtained in each iteration also affects the
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Figure 13: Scatter-plot depicting the construction time of
abridged tree as a function of the number of distinct results

time taken to construct the abridged tree. As illustrated in Fig-
ure 13, as expected based on the discussion in Section 4.1.2, the
abridged tree construction time is linear in the number of distinct
results and is mostly negligible. Figure 14 illustrates how the
abridged tree helps in the process. The execution time of the al-
gorithm without the abridged tree is constant across multiple itera-
tions because the input data for each iteration is the same (the whole
dataset). When using the abridged tree, however, the running time
of the algorithm drops with consecutive iterations: this is because
the number of results (which are used to construct the abridged tree)
decreases in each iteration as shown in Figure 14. Figure 15 further
elaborates on the scalability of the LazyDFA method; LazyDFA
is fast even for data sets as large as ∼ 750K nodes and the com-
plexity increases linearly (∼ 3×) in the number of nodes.

LazyDFA vs. DFA. As shown in Figure 16, the LazyDFAmethod,
which generates the necessary states on demand, is more efficient
than the pure DFA solution. This is because, the DFA method has
to construct a potentially large automaton at each feedback itera-
tion. Thus, while the LazyDFA method allows near real-time ex-
ploration, the naive DFA is not suitable for interactive use.
Space usage. The memory space used in each iteration is mainly
for the FA states, transitions, and the results for this particular it-
eration. Abridged trees are written to the disk. Figure 17 shows
the number of states and transitions created by the DFA and the
LazyDFA schemes. As it can be seen here, the LazyDFA scheme
significantly reduces the number of states and transitions generated
(by creating these on demand, as necessary), thus providing both
efficiency and scalability.

5.3 User Study Results
Using the same data set and 7 users who are not knowledgeable

about the data, we also ran a set of user studies to verify the sim-

No Feedback 1P+1N 2P+2N
Soft (Kendall-tau) 0.12 0.31 0.38
Hard (num results) 2290 1158 530

Table 1: Hard feedback helps users reduce the number of re-
sults; soft feedback improves the Kendall-tau coefficient
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ulation results. We have provided these users 10 random queries
and target results and asked them to try to reach the target result
paths using hard and soft feedbacks. After each iteration, the user
is presented 10 result paths to support feedback.

Results presented in Table 1 verifies the simulation results: soft
feedback helps improve the Kendall-tau coefficient of the results
presented to the user; similarly, users are able to reduce the number
of results using hard feedback. As expected, more feedback helps
users achieve higher improvements.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented an adaptive, and exploratory, path

retrieval framework, AXP, to help the user explore the data-centric
XML data, by providing positive and negative feedback that reflect
her judgments and interests. Soft feedback are for ordering paths
based on preference criteria, whereas hard feedback are used for
eliminating irrelevant paths from consideration. We developed a
probabilistic path ranking scheme to deal with soft feedback state-
ments. We also introduced a novel LazyDFA data structure to pro-
cess positive and negative feedback statements and leveraging the
iterative nature of the feedback process. Experiments showed that
feedback statements can be very effective in helping focus the ex-
ploration process. Similarly especially when used together, positive
and negative soft feedback statements help improve the rankings of
the results presented to the user during her exploration.

We focused on feedback processing over path query results. Our
framework can be extended to more general twig queries for which
the results are subtrees of the data. For twig queries, our soft feed-
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Figure 17: Number of states and transitions

back process can be applied without any change since any complex
feedback statement (even on twigs) can be split to its constituent
1- or 2-label features. Adapting the hard feedback process for twig
query processing however is not as straightforward: our framework
combines the initial query with positive feedback on its results to
form the LazyDFA+; on the other hand, the positive feedback on
different branches in a result subtree cannot be combined into a
single LazyDFA+. This problem, however, can be dealt with by
building a LazyDFA+ for each twig branch and the positive feed-
back on that particular branch. The final result then will be cal-
culated by combining the results obtained from all LazyDFA+s
in a post-processing step. We leave this as a future work. Note
that, given a twig query, it may also be desirable to consider more
complex features (e.g., feature in the form of twigs) in feedback
assessment. This is also ongoing research.
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