
Efficient Data Structures for Range-Aggregate Queries on
Trees∗

Hao Yuan and Mikhail J. Atallah
Department of Computer Science

Purdue University
Lafayette, IN 47907

{ yuan3, mja }@cs.purdue.edu

ABSTRACT
Graph-theoretic aggregation problems have been considered
both in OLAP (grid graph) and XML (tree). This paper
gives new results for MIN aggregation in a tree, where we
want the MIN in a query subtree consisting of the nodes
reachable from a node u along paths of length ≤ k (u and
k are query parameters). The same problem is well solved
when the aggregation is SUM rather than MIN, but the
solutions rely on additive inverses for the “+” operator, and
they fail for the MIN aggregation which is the topic of this
paper. For the directed (rooted tree) case, we give an O(n)
space, constant query time solution. For the undirected case,
the space complexity is O(n log n) and the query time is
O(log n).

Categories and Subject Descriptors
E.1 [Data Structures]: Trees

General Terms
Algorithms

Keywords
Range aggregation, query answering

1. INTRODUCTION
Range search (or aggregation) is a fundamental function in
database systems. In a typical range search problem, we
have a set of objects S and a commutative semigroup (S, +),
where each object s ∈ S is assigned a weight w(s) from S.
A range counting query is in the form

∑
s∈S′ w(s), where

the query subset S′ ⊆ S usually has some shape or proxim-
ity properties, e.g., if S is a set of points in the 2D space,
then the S′ can be the points that are encapsulated by a

∗Portions of this work were supported by Grant CNS-
0627488 from the National Science Foundation, and by spon-
sors of the Center for Education and Research in Information
Assurance and Security.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
ICDT 2009, March 23–25, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-423-2/09/0003 ...$5.00

query rectangle, or are within a specified threshold distance
away from a query point, etc. A range minimum query is
similar to range counting except that the associative aggre-
gation operation is the “min” rather than the “+”. A range
query consists of the enumeration of the elements of the
query subset S′. Many geometric searching problems can
be formulated under this range querying framework, see the
survey paper [1] for more details.

While the notions of proximity and “range” that were con-
sidered in the above-mentioned previous work were geomet-
ric, equally important are the corresponding problems in a
graph-theoretic setting (where, e.g., the notion of distance
is “path length” rather than Euclidean, and where a range
is a subgraph having a specified shape or property, etc).
The work in that graph-theoretic setting includes aggrega-
tion (both SUM and MIN) in an OLAP data cube (a high-
dimensional grid graph)[12, 17, 16, 19, 6], and also in an
XML or other tree structure [13, 20, 14, 8, 18] whose special
case is the important range-min query of a path [9, 4] that
plays an important role in many applications (most notably
in sequence comparisons [10]).

In the proximity-based version of this graph-theoretic aggre-
gation problem, the query subset S′ would consist of all the
nodes that are within a distance of k from a node u (both u
and the nonnegative integer k are query parameters), where
distance could be either along directed edges or by ignor-
ing edge directions (i.e., using the undirected version of the
graph). In a more frivolous application, such a query would
correspond to the situation where, in a road network, some-
one wants to find the cheapest gas station that is within
a distance of k to a target location u. Another, more re-
cent motivation for considering such problems comes from
integrity verification in an environment of untrusted third-
party distributors (see, e.g., [2, 15, 21]). We have very re-
cently [21] provided efficient solutions to such problems on
a tree for the case where the aggregation operation is “+”.
The solutions in [21] make crucial use of the group structure
(the existence of additive inverses) and do not apply to the
case where the aggregation operation is a“min”and does not
have an inverse. Solving the problem for the case where the
aggregation operation is a“min” is harder, and it is the main
contribution of the present paper. A more formal statement
of the problem and our results is given next.

In this paper, we consider the case when S forms a tree
and S′ is a subtree of S. We consider both the directed

111

KRS(u, k)
k hops around u

u

(a) K-Radius Subtree.

u

KDS(u, k)

k hops

(b) K-Depth Subtree.

Figure 1: Example of the query subtrees (k = 2 in
the figures).

(rooted tree) case and the undirected one. We begin with
the undirected case. Particularly, we consider the subtree
S′ to have the following proximity properties: S′ consists of
all the nodes that are within a distance of k from a query
node u (both u and the nonnegative integer k are query
parameters). If we set the length of each tree edge to be 1,
and define d(u, v) to be the distance between any two nodes
u and v, then we can formally define our query subtree,
KRS(u, k), as follows

KRS(u, k) =
{
v

∣∣ d(u, v) ≤ k
}

.

In the directed case of a rooted tree, we set KDS(u, k) to be
the subtree which consists of node u’s descendants that are
within a distance of k to u, i.e.,

KDS(u, k) =
{
v

∣∣ d(u, v) ≤ k and v is a descendant of u
}

.

Here, u is considered as a descendant of itself. See Figure 1
for examples of the queries.

In the setting when S is a group (e.g., for SUM aggregation),
O(n log n)-size data structures (also built in O(n log n) time)
were given in [21] to sum over the group elements that are
associated with KRS(u, k) in O(log n) time, and O(n)-size
data structures (built in O(n) time) were given to sum over
those elements associated with KDS(u, k) in O(1) time [21].

For the setting when S is in a total order and the aggregation
operator is min (or max) over the total order, the data struc-
tures in [21] do not apply as they make crucial use of the
fact that each group element has an inverse. In this paper,
we follow a very different approach, and give O(n log n)-size
data structures (preprocessed in O(n log n) time) that can
be used to compute the minimum element of KRS(u, k) in
O(log n) time. As a subroutine for the minKRS query, the
minKDS query can be solved in O(1) time by preprocessing
in O(n) time and space. The computation model is the stan-
dard one used in the previous literature (i.e., the unit-cost
RAM model).

Note that the min KDS query is a natural extension of the
Range Minimum Query (RMQ) problem [9, 4], i.e., the
RMQ query on an array can be treated as a special case
of min KDS query when the tree considered is a chain, and
the query subtree is a subchain.

The followings are sample applications of the subtree MIN
(or MAX) queries:

• Assume that we have an XML document that stores
some statistical information about a web site hierar-
chy. More specifically: each tree node of the XML
document represents an HTML web page, and the web
pages form a tree hierarchy (e.g., the main page is at
the root); each node has stored the hits (number of vis-
itors) of the corresponding web page. An interesting
query can be: what is the least (or most) visited web
page in a set of pages that are organized as a k-depth
subtree?

• In a computer network of servers (naturally organized
in a tree structure), each server has a certain amount
of computing power. Consider the following scenario:
we want to choose a most powerful server to install a
database service, with the constraint that the chosen
server v must be within a distance of k to a targeted
server u (in which the major user of the the database
service is located). The distance constraint may be
due to the network delay requirement, in terms of the
maximum acceptable number of hops (i.e., k) for u to
reach the chosen v. This is indeed a maxKRS(u, k)
query.

This paper is organized as follows. In Section 2, we de-
fine some basic notation. Section 3 and Section 4 give our
data structures for the K-Depth Subtree aggregation and
K-Radius Subtree aggregation respectively. Section 5 con-
cludes.

2. BASIC DEFINITIONS
In a tree T = (V, E) with node set V and edge set E, we
assign to each node v ∈ V an element w(v) from S, where
S is total ordered under ≤. We call w the weight func-
tion. For any node set V ′ of T , we define min V ′ to be
min

{
w(v)

∣∣ v ∈ V ′}. We use T ′ to represent the node set
or the edge set of a subtree T ′ when there is no ambiguity,
so min T ′ means the minimum weight assigned to the nodes
of the subtree T ′.

112

Each tree edge is of length 1 by default. The distance be-
tween two nodes u and v is denoted by d(u, v). When u = v,
we define d(u, v) = 0. It is well-known (“folklore”) that the
distance function for a tree can be computed in constant-
time by a linear preprocessing as follows: specify a node r
as the root (if it’s the unrooted case), and then do a depth-
first search to pre-compute the depth d(z) for each node z;
for an online distance query for u and v, we first compute
the nearest common ancestor of u and v in constant time
by the method from [11, 4](using linear space, also built in
linear time); assume that the nearest common ancestor is w,
then we have d(u, v) = d(u) + d(v) − 2d(w), which can be
computed in constant time.

In a rooted tree, we define the depth, d(v), to be the dis-
tance of v to the root. Also, we define the height, h(v), to be
max

{
d(v′)− d(v)

∣∣ v′ is v or a descendant of v
}
. The com-

plete subtree, CS(v), is the subtree that is rooted at v and
includes all its descendants. The children node set of v is
denoted by C(v).

3. K-DEPTH SUBTREE AGGREGATION
In this section, we give linear data structures to compute
minKDS(u, k) for any u and k in constant time. The basic
idea of the algorithm is to partition the rooted tree T into
n/ log n blocks (each block is a sub-forest), and then process
the query subtree KDS(u, k) in each block efficiently.

Denote the root by r, then we partition the tree into B0,
B1, . . . , Bn/ log n−1 in the following way 1:

Bi =
{
v

∣∣ i · log n ≤ d(v) < (i + 1) · log n
}

, 0 ≤ i < n/ log n.

Let Bia , Bia+1, Bia+2, · · · , Bib be the consecutive blocks that
the query KDS(u, k) overlaps with, i.e., ia = bd(u)/ log nc
and ib = b(d(u) + k)/ log nc. We process the query using
three subqueries:

• KDS(u, k) ∩Bia ;

• KDS(u, k) ∩
⋃

ia<i<ib

Bi;

• KDS(u, k) ∩Bib .

For each subquery, we provide data structures that can be
built in linear time and space and answer the subquery in
constant time. Note that when ia < ib, the aggregation of
KDS(u, k) ∩ Bia is trivial to be done in constant time by a
simple bottom-up pre-aggregation. So the following Section
3.1 is used to cover the case when ia = ib (and in that case,
the second and third subqueries are not necessary). Section
3.2 covers the second subquery, and Section 3.3 covers the
third.

The reason to break the min KDS(u, k) query into three sub-
queries is to make use of the power of the Θ(log n) word size
in the unit-cost RAM model. The first subquery benefits
from the fact that the height of considered subtree is of

1Without loss of generality, we ignore the floor and ceiling
function in this paper, and always assume that the computed
results are integers.

at most log n, which allows a compact representation of the
query results for all possible pairs of parameters. The second
subquery takes advantage of the fact that only O(n/ log n)
tree nodes need special processing, and we can afford a su-
perlinear data structure for them. The third subquery is
reduced to a special 2D RMQ problem. See the following
subsections for details.

3.1 Rooted Tree with log n Height
The KDS(u, k) query in Bia is indeed a special case of the
KDS aggregation problem in a tree with log n height. So in
this subsection, we use T̂ instead of Bia to describe our data
structures with the restriction that the maximum depth of
a node in T̂ is log n− 1. Also, we denote the size of the tree
T̂ to be m. The goal is to preprocess T̂ in O(m) time and
space to answer minKDS(u, k) query in constant time. For
each tree component in each Bi (a forest), we preprocess it
using the data structure in this subsection. The total time
and space for preprocessing all such tree components will be
O(n).

The basic idea is to locate the depth of the node that has
the minimum element in KDS(u, k), and then do a range
minimum query [9, 4] at that depth level. More specifically,
let Li =

{
v

∣∣ d(v) = i
}

for 0 ≤ i < log n, and we want to
build the following data structure (TD for TargetDepth):

TD(v, k) = d(v′),

where v′ has the minimum weight in KDS(v, k).

If there are more than two nodes whose weights are mini-
mum, then we break the tie by choosing the one with the
smallest depth. Once we have built this data structure (see
Section 3.1.1), we could know that the depth of the mini-
mum element of KDS(u, k) is TD(u, k), and then we can find
out minKDS(u, k) by performing a range minimum query
(RMQ) [9, 4] at LTD(u,k) (see Section 3.1.2).

3.1.1 Find the Target Depth
Storing the data structures for TD(v, k) (v ∈ T̂ , 0 ≤ k <
log n) directly will cost Θ(m log n) time and space in the
worst case. To save space, observe that for any k1 and k2

such that k2 = k1 +1, we have either TD(v, k2) = TD(v, k1)
or TD(v, k2) = d(v) + k2, because KDS(v, k2) consists of
KDS(v, k1) and a portion of Lk2 . This observation can help
achieve linear space (under the unit-cost RAM model with

O(log n)-size words): for each node v, we use log n bits b
(v)
k

(0 ≤ k < log n) to represent the TD(v, k) structures, where

b
(v)
k = 0 if TD(v, k) = TD(v, k−1) and b

(v)
k = 1 if TD(v, k) =

d(v) + k. We use b(v) to denote this bit vector for node v.

The following bottom-up procedure is the basic framework
to compute the b(v) arrays: do a postorder tree walk starting
at the root; for each node v, maintain a linked list Mv(i)
(0 ≤ i < log n) whose values are minKDS(v, i)’s. Once

we have the Mv list, it can be convert to b(v) efficiently
according to the definition of b(v). The following algorithms
will show that the maintenance of the Mv list for all v can be
done in linear time and space in total, later we will describe
how to modify the algorithm to convert the Mv list to b(v)

without increasing the complexities.

Recall that C(v) represents the set of children of node v,

113

and let HC(v) to be the child of v with the largest height. If
C(v) = ∅, then we set HC(v) = ∅; if there is more than one
child who has the largest height, then choose any of them to
be HC(v). At the time when a node v is visited during the
postorder tree walk, we compute its Mv list by combining
the lists of its children nodes as in Algorithm 1.

Algorithm 1 Base Algorithm for Maintaining the Mv list

Procedure BaseMV(v)

1: for vc ∈ C(v) do
2: call BaseMV(vc)
3: end for
4: initialize Mv(i)← w(v) for 0 ≤ i ≤ h(v)
5: update Mv(i + 1)← min{Mv(i + 1), MHC(v)(i)}

for 0 ≤ i ≤ h(HC(v))
6: discard MHC(v)

7: for vc ∈ C(v) \HC(v) do
8: update Mv(i + 1)← min{Mv(i + 1), Mvc(i)}

for 0 ≤ i ≤ h(vc)
9: update Mv(i + 1)← min{Mv(i + 1), Mvc(h(vc))}

for h(vc) < i ≤ h(v)− 1.
10: discard the Mvc list
11: end for

The space complexity for Algorithm 1 is O(m). This is be-
cause: during the call of BaseMV(v), among those nodes
{v′

∣∣ v′ 6= v and list Mv′ is still in the memory}, no node is
a descendant of the other and the length of the Mv′ list is
no larger than the size of CS(v′), so the union of the active
(i.e., non-discarded) Mv′ ’s are no bigger than the size of the
whole tree.

A straightforward implementation of Algorithm 1 will re-
quire O(

∑
v h(v) |C(v)|) time, which can be as bad as

Θ(m log n). To achieve better time complexity (especially
the update operation at line 5, 8 and 9), we encode Mv by
packing those consecutive entries which have the same value
into a single entry. More specifically, we use M ′

v(j) = 〈aj , lj〉
(call it an entry or a record) to represent that Mv(i) = aj

for
∑

1≤j′<j

lj′ ≤ i <
∑

1≤j′≤j

lj′ , where the entry index j

ranges from 1 to the number of unique elements in Mv and∑
j lj = h(v)+1. That is to say, the values of the first l1 en-

tries of Mv are a1, the next l2 entries are a2, etc. To simplify
the representation, we use M ′

v(j).value and M ′
v(j).length

to denote the corresponding aj and lj of M ′
v(j). Using

this compact representation and monotonicity of M ′
v (i.e.,

M ′
v(j).value ≥ M ′

v(j + 1).value), we have Algorithm 2. In
the algorithm, we use |M ′

v| to represent the number of en-
tries (or records) in the linked list M ′

v.

In Algorithm 2, lines 4-6 try to initialize the records of M ′
v

by inheriting from M ′
HC(v), and update the records by con-

sidering w(v). The time complexity is proportional to

1 + number of records from M ′
HC(v) that are killed by w(v)

+ number of records that are created.

Here, a record is killed by w(v) means that the “value” field
of the record is greater than or equal to w(v). Also, the
number of records that are newly created is O(1) in lines
4-6. Lines 8-17 try to combine the M ′

vc
list to M ′

v. The
time complexity of lines 8-11 is O(h(vc) + 1), and the time

Algorithm 2 Maintaining the Compact M ′
v list

Procedure CompactMV(v)

1: for vc ∈ C(v) do
2: call CompactMV(vc)
3: end for
4: find the largest j such that M ′

HC(v)(j).value ≥ w(v) and

M ′
HC(v)(j + 1).value < w(v)

5: initialize M ′
v(1)← 〈w(v), l〉,

where l = 1 +
∑

1≤i≤j M ′
HC(v).length

6: append the list starting from M ′
HC(v)(j + 1) after the

first entry of M ′
v, which is equivalent to setting

M ′
v(1 + i− j)←M ′

HC(v)(i) for j < i ≤
∣∣M ′

HC(v)

∣∣
7: for vc ∈ C(v) \HC(v) do
8: convert M ′

vc
to the non-compact form Mvc

9: find the largest j such that∑
1≤i<j M ′

v(j).length ≤ 2 + h(vc);

set l←
∑

1≤i<j M ′
v(i).length

10: split M ′
v(j) = 〈aj , lj〉 into two parts:

m′
1 = 〈aj , 2 + h(vc)− l〉 and

m′
2 = 〈aj , lj − (2 + h(vc)− l)〉

11: convert M ′
v(1), M ′

v(2), . . . , M ′
v(j − 1) and m′

1 to the
non-compact form, and then update the non-compact
Mv(i) by min

{
Mv(i), Mvc(i−1)

}
for 1 ≤ i ≤ h(vc)+1;

convert the updated Mv(i) (0 ≤ i ≤ h(vc) + 1) back
to the compact form,
denote this new compact list by m′′

1

12: find the smallest j′ ≥ j such that M ′
v(j′).value <

m′′
1 (|m′′

1 |).value; if no such j′ exists, set j′ to be
|M ′

v(j′)|+ 1
13: if j′ > j then
14: extend the length of the last entry of m′′

1 by
m′

2.length +
∑

j≤i<j′ |M ′
v(i)| .length;

append M ′
v(i) (for i ≥ j′) to the m′′

1 list
15: else
16: append m′

2 and M ′
v(i) (for i > j′) to the m′′

1 list
17: end if
18: replace the M ′

v list by m′′
1

19: discard the Mvc list
20: end for

114

complexity of lines 12-17 is in proportional to

1 + number of records that are killed

+ number of records that are created.

Note that in lines 8-17, only O(1) number of records are
created (including the splitted records at line 10). Combing
the analysis above, the number of records that are created
during the whole algorithm is O

(∑
v(1 + |C(v)|)

)
= O(m).

This implies that the number of records that are killed is
also O(m). The total complexity of lines 8-11 over all the
loops is O

(∑
v

∑
vc∈C(v)\HC(v) (h(vc) + 1)

)
, which is indeed

O(m) according the following Lemma 1. Therefore, the total
time complexity of Algorithm 2 is O(m).

Lemma 1.∑
v∈T̂

∑
vc∈C(v)\HC(v)

(h(vc) + 1) ≤ m

Proof. Perform a Longest Path Assignment as follows:
do a bottom-up tree walk; when a leaf node v is visited,
assign LP(v) ← {v}; when an internal node v is visited,
choose any child node v′ who has the highest height, then
assign LP(v)← LP(v′) ∪ {v}.

We have |LP(v)| = h(v) + 1 according to the definition.
Let UP(v) be the union of the paths assigned to the nodes
in the set vc ∈ C(v) \ HC(v), then it is sufficient to prove
that

∑
v |UP(v)| ≤ m. This can be proved by showing that

UP(v1) ∩ UP(v2) = ∅ for any two v1 and v2. To show this,
we consider the following cases.

• Case 1, CS(v1) does not overlap with CS(v2). In this
case, the argument holds as UP(v) ⊆ CS(v) for any v.

• Case 2, CS(v1)∩CS(v2) 6= ∅. Without loss of general-
ity, we assume that v2 is a descendant of v1.

– Case 2a, v2 is in LP(v1). By definition, UP(v1)
does not include LP(v1), therefore, CS(v2) does
not overlap with UP(v1), which implies that
UP(v2) ∩UP(v1) = ∅.

– Case 2b, v2 is not in LP(v1). In this case, v2 must
belong to LP(vc) for one of v1’s child node vc. We
have

UP(v2) ∩UP(v1)

=UP(v2) ∩ LP(vc)

⊆UP(v2) ∩
((

LP(vc) \ LP(v2)
)
∪ LP(v2)

)
=

(
UP(v2) ∩ (LP(vc) \ LP(v2))

)
∪

(
UP(v2) ∩ LP(v2)

)
=∅ ∪ ∅
=∅.

A slight modification of Algorithm 2 can enable it to get b(v)

for all v: at any place where an entry of M ′
v is changed, we

update its corresponding bits in b(v) accordingly. Each up-
date can done in constant time due to the power of the unit-

cost RAM model. Therefore, we have a O(
∣∣∣T̂ ∣∣∣) time/space

algorithm to preprocess the b(v) lists, and then subsequently
find the depth of the minimum element of KDS(u, k) for any
u and k in constant time.

3.1.2 RMQ at Target Depth
Once the b(v) lists are computed, we can locate the depth of
the minimum weighted node in KDS(u, k). Let i = TD(u, k)
be the target depth, then we can do a range minimum query
(RMQ) at Li if the nodes at Li are sorted by their pre-
order number (or postorder number), because the nodes in
KDS(u, k) ∩ Li are in consecutive positions.

Let Vi(1), Vi(2), . . . , Vi(|Li|) represent the the sorted array
of size |Li| where Vi(j) represents the node in Li with the jth
smallest preorder number. The orders of those nodes in the
array are still the same if we sort them by their postorder
numbers. Let wi(j) = w(Vi(j)) for 1 ≤ j ≤ |Li|. The
range minimum query should be performed on the array
wi between two indices, i.e., we need to find out the two
boundary nodes LD(u, i) and RD(u, i) respectively, where
node LD(u, i) is immediately to the left of the node that has
the smallest preorder number in KDS(u, k) ∩ Li, and node
RD(u, i) is the node that has the biggest postorder number
in KDS(u, k) ∩ Li. Once we locate the indices j1 and j2
where LD(u, i) = Vi(j1) and RD(u, i) = Vi(j2), we can do a
RMQ(j1 +1, j2) on the array wi to get minKDS(u, k)∩Li =
minj1<j≤j2 wi(j) in constant time. The total time and space
for precomputing the data structures for RMQ is linear [4].

To compute LD(u, i) and RD(u, i) (where i = TD(u, k)) in
constant time, in the following paragraphs, we reduce the
problem to the Level Ancestor Problem [7, 5], which can
be preprocessed in linear time and space, and subsequently
answer a query in constant time. The reduction is done in
the preprocessing stage and uses linear time and space.

The definition of the functions LD(u, i) and RD(u, i) (re-
stricted to i ≥ d(u)) can be reformulated in the following
way without changing its meaning: let Preorder(v) be the
preorder number and Postorder(v) be the postorder number
during the tree walk, then LD(u, i) is the node that has the
largest preorder number in the set

{v
∣∣ v ∈ Li and Preorder(v) < Preorder(u) };

and RD(u, i) is the node that has the largest postorder num-
ber in the set

{v
∣∣ v ∈ Li and Postorder(v) ≤ Postorder(u) }.

Note that we need to consider the special cases when LD(u, i)
or RD(u, i) does not exist, which is trivial to handle.

Here, we will show how to reduce the problem to the level
ancestor problem for computing RD(u, i), and similar ap-
proach can be applied to compute LD(u, i). Build an auxil-
iary graph for the given tree as follow: for every node v, we
link an arc from v to RD(v, d(v) + 1). This can be done in
linear time during the postorder tree walk:

• At each depth level l during the tree walk, we maintain

115

LastVisit(l), the last visited node on depth l. Initially,
we set LastVisit(l) = ∅; after every visit of v, we set
LastVisit(d(v))← v.

• When a node v is visited, we link an arc to
LastVisit(d(v)+1). If LastVisit(d(v)+1) is ∅, we treat
it specially: RD(v, l) does not exist for l > d(v).

The resulting graph is indeed a tree (denoted by T ∗), be-
cause each node has only one out-going arc to a node at a
deeper level. The root of this auxiliary tree is the rightmost
node at the deepest level of the original tree. Denote this
root by T ∗

r .

A useful property of the RD function is that: for any node
v and depth level l1, l2 where d(v) ≤ l1 ≤ l2, we have

RD(v, l2) = RD(RD(v, l1), l2).

This implies an iterative method to compute RD(v, l) for
any l ≥ d(v), as follows:

• first, we compute v1 ← RD(v, d(v) + 1);

• then v2 ← RD(v1, d(v1)+1), which is RD(v, d(v)+2);

• we can get vj ← RD(vj−1, d(vj−1) + 1) for j ≥ 2, and
the computed vj is indeed RD(v, d(v) + j).

By definition, the node RD(v, d(v) + 1) in the tree T̂ is the
parent node of v in the auxiliary tree T ∗. So the above iter-
ative method can be directly reduced to the level ancestor
problem in T ∗ as follows: to compute RD(u, i), we need to
find the ancestor of u in T ∗ such that the ancestor is i−d(u)
levels above u in T ∗. Here, the depth d(u) is still computed

in T̂ .

A similar approach can be used to do the reduction for
LD(u, i) if a preorder tree walk is performed instead of the
postorder tree walk when we build the auxiliary graph. Al-
ternatively, a different way to achieve constant-time compu-
tation of LD(u, i) and RD(u, i) is discussed in Ben-Amram’s
work [3]. Combining the data structures in this subsection,
we have the following theorems to solve the first subquery
for KDS(u, k).

Theorem 1. For a tree T̂ whose height is at most log n,

we can preprocess it in O(
∣∣∣T̂ ∣∣∣) time and space to answer the

minKDS(u, k) query in O(1) time for any node u ∈ T̂ and
nonnegative integer k.

Theorem 2. We can preprocess the tree T in O(n) time
and space to answer the top subquery of any minKDS(u, k)
query in O(1) time.

3.2 The Middle Subquery
The middle subquery is KDS(u, k) ∩

⋃
ia<i<ib

Bi. The basic

idea of our solution is to compute the minimum weight of

the following two parts separately and then combine them

Part 1: KDS(u, k) ∩
⋃

ia+1≤i≤ia+2q

Bi;

Part 2: KDS(u, k) ∩
⋃

ib−2q≤i<ib

Bi;

where q = blog2(ib − ia − 1)c. These two parts completely
cover the middle subquery, and the min element for each
part can be computed efficiently by the algorithm given in
this subsection.

3.2.1 Preprocessing Stage
We need to preprocess f(v, p) = min KDS(v, 2p log n) for
v ∈ Z and 0 ≤ p ≤ log(n/ log n) ≤ log n where

Z =
⋃

0≤j≤n/ log n

Lj log n.

The preprocessing can be done by a dynamic programming
approach.

First, perform a preorder tree walk to initialize f(v, 0) (which
is minKDS(v, log n): whenever we visit a node v ∈ Z, set
f(v, 0) ← w(v) and the working node vworking ← v; when
we visit a node v 6∈ Z, we update

f(vworking, 0)← min {f(vworking, 0), w(v)} .

Assume that f(v, p− 1) is computed for all v ∈ Z, then we
can let f(v, p) for each v ∈ Z equal to

min{f(v, p− 1), min
v′

f(v′, p− 1)}

where v′ goes over all the descendants of v at depth level
d(v)+2p−1 log n. Since all the descendants of v at that depth
level occupy consecutive positions, we can build a RMQ data
structure at each j log n (0 ≤ j ≤ n/ log n) depth level,
where the underlying array element is f(v, p − 1), to speed
up the computation. Similar to Section 3.1.2, we need to
identify the boundary nodes LD(v, l) and RD(v, l) to do the
RMQ query, where l = d(v) + 2p−1 log n.

A naive interpretation of the dynamic programming above
shows it will need O(|Z| log(n/ log n)) = O(n log n) time
and space. To speed this up, we will show that the ac-
tual number of relevant v, p pairs for computing and storing
f(v, p) are O(n) by a more refined analysis. Define Z0 ={
v

∣∣ v ∈ Z and h(v) < log n
}

and Z1 =
{
v

∣∣ v ∈ Z and h(v) ≥ log n
}
.

We have Z = Z0 ∪ Z1. For a node v ∈ Z0, there is no
need to compute f(v, p) for p ≥ 1, because v has no descen-
dant at any depth level bigger than or equal to d(v) + log n.
Hence, the total number of relevant pairs associated with Z0

is bounded by n. For a node v ∈ Z1, the corresponding p can
be as large as log(n/ log n), but the size of Z1 is bounded by
O(n/ log n). Here is a short proof: for each v ∈ Z1, assume
that v ∈ Li for an i, then there are at least log n descendants
of v, choose log n−1 such descendants with minimal depths
(with ties broken arbitrarily) along with v to form a set Av,
where |Av| = log n; for any v1, v2 ∈ Z1, we have Av1 ∩Av2 =

∅, therefore, |Z1| · log n =
∑

v∈Z1
|Av| =

∣∣∣⋃v∈Z1
Av

∣∣∣ ≤ n,

which is equivalent to |Z1| ≤ n/ log n. Hence, the number of
relevant v, p pairs that are associated with Z1 is bounded by

116

n/ log n · log(n/ log n) ≤ n. The linear number of v, p pairs
shows that the dynamic programming uses linear time and
space.

3.2.2 Query Stage
Both parts of the middle subquery can be done by doing a
RMQ at the pre-computed data structures. More specifi-
cally, for the first part, we identify the two boundary nodes
LD(u, (ia + 1) log n) and RD(u, (ia + 1) log n), and let their
positions in the sorted L(ia+1) log n be j1 and j2, then we can
get the first part by

minKDS(u, k)∩
⋃

ia<i≤ia+2q

Bi = min
j1<j≤j2

f(V(ia+1) log n(j), q).

Part 2 is done in a similar way: we identify the two boundary
nodes LD(u, (ib − 2q) log n) and RD(u, (ib − 2q) log n), and
let their positions in the sorted L(ib−2q) log n be j1 and j2,
then

minKDS(u, k)∩
⋃

ib−2q≤i<ib

Bi = min
j1<j≤j2

f(V(ib−2q) log n(j), q).

The above computations require locating four boundary nodes
and two range minimum queries, all of which can be done in
constant time. Finally, the result for the middle subquery
can be computed by choosing the minimum of the results for
those two parts. Therefore, we have the following theorem:

Theorem 3. For the middle subquery of KDS(u, k), we
can preprocess the tree in O(n) time and space to answer the
subquery in O(1) time.

3.3 The Bottom Subquery
The bottom subquery is KDS(u, k) ∩ Bib . We will reduce
this subquery to what we call the Skyline RMQ problem,
for which we give a constant time query solution with linear
time/space preprocessing.

3.3.1 Reduction to Skyline RMQ
The Skyline RMQ problem:
INPUT: Given a 2D array M(x, y) (1 ≤ x ≤ nx and
0 ≤ y < ny) with the following property: let S′ = S ∪ {>}
where > 6∈ S and s ≤ > for any s ∈ S, i.e., we add a top (or
maximal) element to S, then the 2D array must satisfy

• Skyline Property : for any x, y such that M(x, y) 6= >,
we have M(x, y′) 6= > for all 0 ≤ y′ ≤ y;

• Non-Increasing Property: for those M(x, y) 6= > where
y > 0, we have M(x, y) ≤M(x, y − 1) ;

• M(x, 0) 6= > for all 1 ≤ x ≤ nx.

Use |M | to denote the number of non-> elements in the 2D
array. Because of the skyline property, the array can be
represented by a vector of variable-length vectors using only
O(|M |+ nx + ny) space.
QUERY: a three sided range minimum query is asked in the
form of Q(x1, x2, y1) (1 ≤ x1 ≤ x2 ≤ nx and 0 ≤ y1 < ny)
whose result should be

min
x1≤x≤x2,0≤y≤y1

M(x, y).

Let i = ib log n, then observing that

KDS(u, k) ∩Bib =
⋃

j1<j≤j2

KDS(Vi(j), d(u) + k − i),

where j1 and j2 are the indices of LD(u, i) and RD(u, i) at
array Vi (see 3.1.2 for the related definitions), a 2D Skyline
RMQ instance can be constructed by mapping
minKDS(Vi(j), d(u) + k′ − i) to M(j, d(u) + k′ − i)
for 1 ≤ j ≤ |Li| and i − d(u) ≤ k′ ≤ h(u), with all
other entries to be >. Obviously, the resulting 2D array
satisfies the skyline property, and it also satisfies the non-
increasing property because KDS(Vi(j), d(u) + k′ − i) ≤
KDS(Vi(j), d(u) + k′ − 1 − i) (the greater the depth of the
subtree, the smaller the result).

The time and space complexity of this reduction are O(|Bib |),
because we can do a top-down aggregation starting at depth
level i. Also, the size of the resulting skyline array is |Bib |,
i.e. |M | = |Bib |; and the corresponding width and height
satisfy nx ≤ |Bib |, ny ≤ |Bib | . Therefore, if we can prepro-
cess the Skyline RMQ problem in O(|M | + nx + ny) time
and space and do constant-time querying, then the bottom
subquery of KDS(u, k) can also be done in constant-time
with linear preprocessing for every Bi.

3.3.2 Constant-time Query
3.2.1 For a three sided range query on the skyline array, we
consider two cases: in the first case, both M(x1, y1) and
M(x2, y1) are not >; in the second case, either M(x1, y1) or
M(x2, y1) is > (or both).

For the first case, we can solve the problem by building a
RMQ data structure for each level by associating the >-
runs with the minimum elements below the them. Here, let
M(x′1, x

′
2, y

′) where x′1 ≤ x′2 represent a run of horizontal
entries: {M(x′1, y

′), M(x′1 + 1, y′), · · · , M(x′2, y
′)}; we call it

a >-run if all of the entries are >. A maximal-length >-run
is defined based on a >-run with the additional restriction:
M(x′1 − 1, y′) 6= > and M(x′2 + 1, y′) 6= >. Now, for each
y′, we build a RMQ data structures on top of an auxiliary
array for M(·, y′). The auxiliary array is built based on
M(x, y′) (1 ≤ x ≤ nx) but with each maximal-length >-run
M(x′1, x

′
2, y

′) replaced by minx′
1≤x≤x′

2,0≤y<y′ M(x, y). Each
replacement can be done in constant-time in the following
way:

• pre-build a roof array R(·), where

R(x) = min
0≤y<ny

M(x, y)

for 1 ≤ x ≤ nx; the roof array can be built in
O(|M |+ nx + ny) time by a bottom-up scanning;

• for the replacement of a maximal-length >-run
M(x′1, x

′
2, y

′), we have

min
x′
1≤x≤x′

2,0≤y<y′
M(x, y) = min

x′
1≤x≤x′

2

R(x),

which can be computed by a range minimum query on
the roof array.

The total number of maximal-length >-runs in M(·, ·) is
bounded by O(|M | + ny), because each maximal-length >-
run M(x′1, x

′
2, y

′) should have a non-> entry M(x′1−1, y′) to

117

its left, or it is in the form of M(1, x′2, y
′). The former >-run

to non-> entry mapping is one-to-one, and the number of
non-> entries is O(|M |); the latter forms have at most ny

instances. Combining with all the non-> entries, the sum of
the sizes of the auxiliary arrays are O(|M |+ny). Hence, the
preprocessing time and space complexity for the auxiliary
arrays are O(|M | + nx + ny). To answer the three sided
range minimum query, we just need to locate M(x1, y1) and
M(x2, y1)’s positions in the auxiliary array for M(·, y1), and
do a standard range minimum query between those positions
in constant time.

The second case is reduced to the first case as follows. Lo-
cate the smallest x̂1 such that x̂1 ≥ x1 and M(x̂1, y1) 6= >.
Locate the biggest x̂2 such that x̂2 ≤ x2 and M(x̂2, y1) 6= >.
We then have

Q(x1, x2, y1) = min
{
Q(x1, x̂1 − 1, y1), Q(x̂1, x̂2, y1),

Q(x̂2 + 1, x2, y1)
}
.

In the equation, Q(x̂1, x̂2, y1) is indeed the first case, while
Q(x1, x̂1−1, y1) and Q(x̂2 +1, x2, y1) can be solved by range
minimum queries on the roof array due to the skyline prop-
erty, i.e.,

Q(x1, x̂1 − 1, y1) = min
x1≤x≤x̂1−1

R(x);

Q(x̂2 + 1, x2, y1) = min
x̂2+1≤x≤x2

R(x).

So the question is how to locate x̂1 and x̂2 in constant time.
This can be done by a construction similar to the LD and
RD functions that we used in Section 3.1.2. Because locating
x̂1 is symmetric to locating x̂2, here we only show how to
locate x̂1, and locating x̂2 can be done in the same way.

To locate x̂1, we build the following data structures: for each
(x, y) pair such that M(x, y) 6= >, we map it to the pair
NT(x, y) = (x′, y + 1), where x′ is the smallest number that
satisfies x′ ≥ x and M(x′, y+1) 6= >; if the x′ does not exist,

then set x′ = nx + 1. Define the iterative function NT(j) by
NT(j)(x, y) = NT(j−1)(x, y) and NT(1)(x, y) = NT(x, y).

Due to the skyline property, either we have NT(y1)(x1, 0) =
(x̂1, y1), or x̂1 does not exist because of M(x, y1) = > for

x ≥ x1. In the latter case, NT(y1)(x1, 0) will result in a
pseudo-pair (nx +1, y1), so we can treat x̂1 = nx +1 in such
a case. Note that if x̂1 > x2, then we have M(x, y1) = > for
x1 ≤ x ≤ x2, which means that the query Q(x1, x2, y1) can
be reduced to the range minimum query on the roof array,
i.e., Q(x1, x2, y1) = minx1≤x≤x2 R(x).

The NT(x, y) mapping can be built in O(|M | + nx + ny)
time by a simple right-to-left and top-to-down scanning as
shown in Algorithm 3.

The iterative calculation of NT(j) can be reduced to the
level ancestor problem [7, 5]. Build an auxiliary tree as
follows: treat each pair (x,y) in the set {(x, y)

∣∣ M(x, y) 6=
>}∪{(nx+1, y)

∣∣ 0 ≤ y ≤ ny} as a node of the auxiliary tree;
the parent node of (x, y) is NT(x, y); the root of the auxiliary

tree is (nx + 1, ny). In this auxiliary tree, NT(j)(x, y) is
actually the ancestor of (x, y) at j levels above it. Since the
level ancestor problem can be solved in constant time with

Algorithm 3 Build the NT(x, y) mapping.

Define h(x) to be the maximum y that satisfies M(x, y) 6= >.

1: Set LastVisit(y)← nx + 1 for all 0 ≤ y ≤ ny

2: for x = nx down to 1 do
3: for y = h(x) down to 0 do
4: NT(x, y)←

(
LastVisit(y + 1), y + 1

)
5: LastVisit(y)← x
6: end for
7: end for

linear preprocessing, the reduction shows that NT(j)(x, y)
can be computed in constant time with O(|M | + nx + ny)
preprocessing. Therefore, the x̂1 (or x̂2) can be located with
the same complexities.

Combining the data structures for the two cases above, the
Skyline RMQ problem is efficiently solved, and we have the
following theorem.

Theorem 4. For the bottom subquery of minKDS(u, k),
we can preprocess the tree in O(n) time and space to answer
the subquery in O(1) time.

With Theorem 2, 3 and 4, we have solved the KDS(u, k)
query efficiently.

Theorem 5. The minKDS(u, k) query can be solved in
O(1) time by preprocessing the tree in O(n) time and space.

4. K-RADIUS SUBTREE AGGREGATION
In this section, we give an O(n log n)-space data structure
to compute minKRS(u, k) for any u and k in O(log n) time.
The basic idea is to divide and conquer with the help of
Heavy Path Decomposition, which was introduced by Harel
and Tarjan in [11]. Our KRS(u, k) algorithm uses the
KDS(u, k) algorithm discussed in the previous section as a
key routine.

Given a tree T , choose one of its nodes to be the root r.
Then starting at the root, we do a Heavy Path Decompo-
sition [11] by calling Decomposition(r), which is described
in Algorithm 4. In the algorithm, C(v) represent the set
of children of node v, and CS(v) represents the complete
subtree rooted at v.

For each heavy path HeavyPath(vs) created during Algo-
rithm 4, let vl be the leaf node in the path, we build the
KDS data structure for CS(vs) rooted at vs, and then we
build another KDS data structure for CS(vs) rooted at vl

(i.e., make vl the root of CS(vs)). This preprocessing would
result in the following Lemma.

Lemma 2. We can compute minKRS(u, k) ∩ CS(vs) for
any u ∈ HeavyPath(vs) in constant time.

Proof. This is based on the fact that KRS(u, k)∩CS(vs) =
KDS1(u, k)∪KDS2(u, k) for any u ∈ HeavyPath(vs), where

118

Algorithm 4 Heavy Path Decomposition

Procedure Decomposition(vs)

1: initialize HeavyPath(vs) = {vs}
2: set v ← vs

3: while C(v) 6= ∅ do
4: let vc be the child of v that has the largest number of

descendants, i.e.,
vc = arg max

v′∈C(v)

∣∣CS(v′)
∣∣

5: HeavyPath(vs) = HeavyPath(vs) ∪ {vc}
6: for v′c ∈ C(v) \ {vc} do
7: call Decomposition(v′c)
8: end for
9: set v ← vc

10: end while

u

vs

vl

vx

v's

HeavyPath(vs)

Figure 2: Labels of important nodes.

KDS1(u, k) is the k-depth subtree of CS(vs) with vs as the
root, and KDS2(u, k) is the k-depth subtree of CS(vs) with
vl as the root. Hence, two constant-time KDS queries are
sufficient.

Now, consider the general KRS(u, k) query within the sub-
tree CS(vs), where vs is the root of a heavy path. There are
two cases: KRS(u, k) ∩ HeavyPath(vs) = ∅ or KRS(u, k) ∩
HeavyPath(vs) 6= ∅. Here is the method to test which case
applies: let vl be the leaf node in HeavyPath(vs), then we
first compute the lowest common ancestor of u and vl in
constant time [11, 4], denote this ancestor to be vx (see Fig-
ure 2); if d(u, vx) ≤ k, then the first case applies, otherwise
the second case applies.

In the first case, we can recursively reduce the query to be
KRS(u, k)∩CS(v′s), where v′s is the only child node of vx such
that v′s is an ancestor of u. We can locate v′s in constant-
time by a level ancestor query [7, 5], i.e., v′s is the ancestor
of u at depth level d(vx)+1. This is recursive because there
is a heavy path starting at v′s.

For the second case, observing that

KRS(u, k) ∩ CS(vs)

=
(
KRS(u, k) ∩ CS(v′s)

)
∪

(
KRS

(
vx, k − d(u, vx)

)
∩ CS(vs)

)
,

we can compute the query for KRS(u, k) ∩ CS(v′s) and
KRS

(
vx, k − d(u, vx)

)
∩ CS(vs) separately, and then choose

the minimum of them. The minimum element of KRS(u, k)∩
CS(v′s) can be computed recursively like the first case, while
KRS

(
vx, k− d(u, vx)

)
∩CS(vs) can be answered in constant

time by Lemma 2 because vx ∈ HeavyPath(vs). The recur-
sion should stop once d(u, vx) = 0 (ie., u is on the heavy
path starting from the working root vs), as there is no need
to recurse.

Based on the above discussions, we can compute KRS(u, k)
recursively: the starting case is KRS(u, k) ∩ CS(r), where
r is the chosen root of the whole tree. The time and space
required to preprocess the data structures is O(n log n) be-
cause the recursion depth of Algorithm 4 is O(log n) due to
the property of the Heavy Path Decomposition [11]. For the
same reason, the time complexity for the recursive query
answering is O(log n).

Theorem 6. We can preprocess a tree T in O(n log n)
time and space to answer the minKRS(u, k) query in O(log n)
time for any node u ∈ T and nonnegative integer k.

5. CONCLUSIONS
We gave efficient data structures and algorithms for process-
ing MIN aggregation queries on subtrees of a tree, where the
query subtree is specified as a node u and integer k, and con-
sists of the nodes that are within a distance of k from node
u. Both directed (rooted tree) and undirected versions of the
problem were considered. Our main result for the directed
case is an O(n)-space data structure that can be used to
compute, in constant time, the minimum element of a k-
depth subtree rooted at a node u (for any u, k pair). For the
undirected case, we give an O(n log n)-space data structure
that can be used to compute, in O(log n) time, the minimum
element within a distance of k from node u. Future research
will consider the case when the tree is dynamic, and also
consider classes of graphs other than trees.

6. REFERENCES
[1] P. Agarwal and J. Erickson. Geometric range

searching and its relatives. Advances in Discrete and
Computational Geometry, volume 23 of Contemporary
Mathematics, 1–56. American Mathematical Society
Press, Providence, RI, 1999.

[2] M. J. Atallah, Y. Cho, and A. Kundu. Efficient data
authentication in an environment of untrusted
third-party distributors. In Proceedings of the 24th
International Conference on Data Engineering, ICDE
2008, April 7-12, 2008, Cancún, México, pages
696–704, 2008.

[3] A. M. Ben-Amram. The Euler path to static
level-ancestors. Unpublished manuscript.

[4] M. A. Bender and M. Farach-Colton. The LCA
problem revisited. In Proceedings of the 4th Latin
American Symposium on Theoretical Informatics,
pages 88–94, 2000.

119

[5] M. A. Bender and M. Farach-Colton. The level
ancestor problem simplified. Theor. Comput. Sci.,
321(1):5–12, 2004.

[6] F. Bengtsson and J. Chen. Space-efficient range-sum
queries in OLAP. In Y. Kambayashi, M. K. Mohania,
and W. Wöß, editors, DaWaK, volume 3181 of Lecture
Notes in Computer Science, pages 87–96. Springer,
2004.

[7] O. Berkman and U. Vishkin. Finding level-ancestors
in trees. J. Comput. Syst. Sci., 48(2):214–230, 1994.

[8] B. Chazelle. Computing on a free tree via
complexity-preserving mappings. In 25th Annual
Symposium on Foundations of Computer Science,
24-26 October 1984, Singer Island, Florida, USA,
pages 358–368, 1984.

[9] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling
and related techniques for geometry problems. In
STOC ’84: Proceedings of the sixteenth annual ACM
symposium on Theory of computing, pages 135–143,
New York, NY, USA, 1984. ACM.

[10] D. Gusfield. Algorithms on Strings, Trees, and
Sequences - Computer Science and Computational
Biology. Cambridge University Press, 1997.

[11] D. Harel and R. E. Tarjan. Fast algorithms for finding
nearest common ancestors. SIAM J. Comput.,
13(2):338–355, 1984.

[12] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant.
Range queries in OLAP data cubes. In J. Peckham,
editor, SIGMOD 1997, Proceedings ACM SIGMOD
International Conference on Management of Data,
May 13-15, 1997, Tucson, Arizona, USA, pages
73–88. ACM Press, 1997.

[13] R. Kaushik, P. Bohannon, J. F. Naughton, and H. F.
Korth. Covering indexes for branching path queries. In
M. J. Franklin, B. Moon, and A. Ailamaki, editors,
SIGMOD Conference, pages 133–144. ACM, 2002.

[14] J. Komlós. Linear verification for spanning trees. In
25th Annual Symposium on Foundations of Computer
Science, 24-26 October 1984, Singer Island, Florida,
USA, pages 201–206, 1984.

[15] A. Kundu and E. Bertino. Secure dissemination of
XML content using structure-based routing. In
EDOC, pages 153–164, 2006.

[16] H.-G. Li, T. W. Ling, and S. Y. Lee. Range-max/min
query in OLAP data cube. In M. T. Ibrahim, J. Küng,
and N. Revell, editors, DEXA, volume 1873 of Lecture
Notes in Computer Science, pages 467–476. Springer,
2000.

[17] W. Liang, H. Wang, and M. E. Orlowska. Range
queries in dynamic OLAP data cubes. Data Knowl.
Eng., 34(1):21–38, 2000.

[18] S. Pettie. An inverse-ackermann style lower bound for
the online minimum spanning tree. In 43rd Symposium
on Foundations of Computer Science (FOCS 2002),
16-19 November 2002, Vancouver, BC, Canada,
Proceedings, pages 155–, 2002.

[19] C. K. Poon. Orthogonal range queries in OLAP. In
J. V. den Bussche and V. Vianu, editors, Database
Theory - ICDT 2001, 8th International Conference,
London, UK, January 4-6, 2001, Proceedings, volume
1973 of Lecture Notes in Computer Science, pages
361–374. Springer, 2001.

[20] R. E. Tarjan. Sensitivity analysis of minimum
spanning trees and shortest path trees. Inf. Process.
Lett., 14(1):30–33, 1982.

[21] H. Yuan and M. J. Atallah. Efficient distributed
third-party data authentication for tree hierarchies. In
Proceedings of The 28th International Conference on
Distributed Computing Systems (ICDCS 2008).

120

