
A Logical Account of Uncertain Databases
Based on Linear Logic∗

Sungwoo Park and Seung-won Hwang
Pohang University of Science and Technology

Republic of Korea, 790-784
{gla,swhwang}@postech.ac.kr

ABSTRACT
A formal semantics of uncertain databases typically takes
an algebraic approach by mapping an uncertain database to
a set of relational databases, or possible worlds. We present
a new semantics for uncertain databases which takes a logi-
cal approach by translating uncertain databases into logical
theories. A characteristic feature of our semantics is that it
uses linear logic, instead of propositional logic, as its logical
foundation. Linear logic lends itself well to a logical interpre-
tation of uncertain information because unlike propositional
logic, it treats logical formulae not as persistent facts but as
consumable resources.

We motivate our development by arguing that proposi-
tional logic is inadequate as a logical foundation for uncer-
tain databases. As the main result, we show that our se-
mantics is faithful to the operational account of uncertain
databases in the algebraic approach.

1. INTRODUCTION
In efforts to overcome the limitation of relational databases

in dealing with uncertain information, a number of approaches
to formulating uncertain databases (i.e., “how do we build an
uncertain database?”) have been proposed. One approach
is to allow tuples to contain attribute variables whose con-
tents are left unspecified (like null values) or subject to ad-
ditional logical constraints, as in Codd tables [7], v-tables
and c-tables [11], g-tables [1], and Horn tables [10]. An
alternative approach is to use extended tuples whose syn-
tax directly accommodates disjunctive information (‘either
A or B’), maybe information (‘maybe A and maybe not’),
or their combinations, as in partial values and maybe tu-
ples [8], I-tables [17], M-tables [18], or-sets [12, 15], and
x-relations [2].

∗This work was supported by the Engineering Research Cen-
ter of Excellence Program of Korea Ministry of Education,
Science and Technology(MEST)/Korea Science and Engi-
neering Foundation(KOSEF), grant number 11-2008-007-
03001-0.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
ICDT 2009, March 23–25, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-423-2/09/0003 ...$5.00

An orthogonal problem to formulating uncertain databases
is to study the semantics of uncertain databases (i.e., “what
is the meaning of a given uncertain database?”). Prior work
on the semantics of relational databases (without uncer-
tainty) is categorized into the algebraic approach advocated
by Imieliński and Lipski [11] and the logical approach pro-
posed by Reiter [20]. In our context of uncertain databases,
the algebraic approach maps an uncertain database to a
unique set of relational databases, or possible worlds, whereas
the logical approach specifies how to translate an uncertain
database to logical theories. The algebraic approach is useful
when analyzing the efficiency of a specific implementation of
database operations, and the logical approach is useful when
proving the correctness of various database operations.

This paper develops a semantics for uncertain databases
based on the logical approach. We restrict ourselves to un-
certain databases that use two kinds of extended tuples,
disjunctive tuples and maybe tuples, but no attribute vari-
ables. (Logical accounts of uncertain databases using at-
tribute variables have been studied previously, for example,
in [20, 26, 21].) A disjunctive tuple T1 � · · · � Tn denotes
an exclusive disjunction between ordinary tuples T1 through
Tn. Given that Z is a disjunctive tuple, a maybe tuple Z?
states that Z may be the case, without ruling out the pos-
sibility that Z is not the case. The use of disjunctive tuples
and maybe tuples is adopted in recent work on uncertain
databases [2, 23].

The main difficulty in developing such a semantics is to
translate a maybe tuple Z?. Translating Z? to a logical
disjunction Z ∨ ¬Z (where ¬ stands for logical negation) is
meaningless in classical propositional logic because A ∨ ¬A
is true for any logical formula A. Liu and Sunderraman [17,
18] and Zimanyi [27] give a semantics based on propositional
logic, but it requires Z in Z? to be an ordinary tuple and
is not compositional in the sense that the translation of an
uncertain database combining U1 and U2 is not a direct sum
of the individual translations of U1 and U2.

In order to achieve a semantics that is both general (per-
mitting Z in Z? to be a disjunctive tuple) and composi-
tional (translating individual extended tuples independently
of each other), we take a radical departure from the tradi-
tional logical approach by choosing as the logical foundation
not propositional logic but linear logic [9]. Unlike proposi-
tional logic which interprets logical formulae as persistent
facts, linear logic treats logical formulae as resources which
can be consumed to produce new resources, or equivalently,
as descriptions of transient states. As such, linear logic of-
fers considerably simpler solutions than propositional logic

141

to those problems that require resource interpretations or
need to model state transitions. For example, the situation
calculus [22], the standard solution to the frame problem
in artificial intelligence, is considerably more complex than
those solutions based on linear logic [3, 19]. Based on lin-
ear logic, our semantics also interprets extended tuples as
descriptions of consumable resources. As the main result,
we show that the semantics is faithful to the operational
account of uncertain databases in the algebraic approach.

We are not the first to use linear logic in database research.
Lee and Tsang [14] present deductive databases based on lin-
ear logic. Bidoit et al. [4] use linear logic as a formal system
to reason about database updates. Considering the fact that
linear logic provides an elegant solution to the frame prob-
lem, however, we find it surprising that linear logic is little
in use for database research where the frame problem is a
recurring theme (see [5] for an example). We believe that
database research has plenty of opportunities to draw on the
vast literature on linear logic.

The rest of this paper is organized as follows. Section 2
clarifies the goal of our work and gives an informal account
of why propositional logic is not a good choice as the logi-
cal foundation for uncertain databases. Section 3 gives an
introduction to linear logic. Section 4 develops a semantics
based on linear logic and proves the main result. Section 5
discusses related work and Section 6 concludes.

2. PRELIMINARIES
We use the following predicates in examples where x, y,

and z are term variables:

• Eat(x, y) means that person x wants to eat meal y.

• Where(y, z) means that meal y is served at restaurant
z.

• Go(x, z) means that person x visits restaurant z.

2.1 Syntax for uncertain databases
We formulate an uncertain database U as a set of extended

tuples, or x-tuples, X1, · · · , Xn. A relational database R is
a special case of an uncertain database which is a set of
ordinary tuples T1, · · · , Tn.

uncertain database U ::= · | X, U
relational database R ::= · | T, R

Note that both uncertain databases and relational databases
can be empty.

An x-tuple is either a disjunctive tuple Z or a maybe tuple
Z?. A disjunctive tuple is either an ordinary tuple T or
an exclusive disjunction Z1 � Z2 between two disjunctive
tuples Z1 and Z2. A tuple has the form P (t1, · · · , tn) which
applies a predicate P to a sequence of terms t1, · · · , tn. We
abbreviate P (t1, · · · , tn) as P (~t).

tuple T ::= P (~t)
disjunctive tuple Z ::= T | Z � Z
x-tuple X ::= Z | Z?

An x-tuple is well-formed if all tuples in it share the same
predicate. For example, Eat(Tom, Pizza)� Eat(Tom, Soup)
is well-formed whereas Eat(Tom, Pizza)�Where(Pizza, R1)
is not. An uncertain database is well-formed if all x-tuples in
it are well-formed and share the same predicate. We consider
only well-formed uncertain databases.

P (~t) ↪→ P (~t)
IP

Z ↪→ R

Z � Z′ ↪→ R
I�L

Z′ ↪→ R

Z � Z′ ↪→ R
I�R

Z ↪→ R
Z? ↪→ R

I?1
Z? ↪→ · I?2

· ↪→ · IU1

X ↪→ R U ↪→ R′

X, U ↪→ R, R′ IU2

Figure 1: Rules for U ↪→ R

Here is an example of an uncertain database using the
predicate Eat(x, y):

U = Eat(Tom, Pizza)� Eat(Tom, Soup),
Eat(John, Salad)?,Eat(Jane, Steak)

U says: 1) Tom wants to eat either Pizza or Soup; 2) John
may want to eat Salad; 3) Jane wants to eat Steak.

2.2 Instantiating uncertain databases
We write U ↪→ R to mean that relational database R is

an instance of uncertain database U . Figure 1 shows the
rules for deducing U ↪→ R which follow the style of the big-
step operational semantics for programming languages [13]
(where we regard U as a program, R as a value, and ↪→
as an evaluation). For example, the rule I�L says that
Z � Z′ ↪→ R holds whenever Z ↪→ R holds, and the rule
I�R says that Z � Z′ ↪→ R holds whenever Z′ ↪→ R holds.
Note that there can be multiple relational databases to which
the same uncertain database instantiates. We may think of
the system in Figure 1 as the operational account of uncer-
tain databases in the algebraic approach. The rules I�L

and I�R suggest that � is associative and commutative.
As an example, U in Section 2.1 instantiates to one of the

following relational databases:

R1 = Eat(Tom, Pizza),Eat(John, Salad),
Eat(Jane, Steak)

R2 = Eat(Tom, Soup),Eat(John, Salad),
Eat(Jane, Steak)

R3 = Eat(Tom, Pizza),Eat(Jane, Steak)
R4 = Eat(Tom, Soup),Eat(Jane, Steak)

2.3 Goal
The goal of our work is to specify a semantics for un-

certain databases with a semantic function F from uncer-
tain databases to logical formulae. The semantic function F
needs to satisfy the following requirement:

• F(U) logically implies F(R) if and only if U ↪→ R.

It says that F is faithful to the operational account of un-
certain databases given in Figure 1. Then the problem of
testing U ↪→ R reduces to the problem of checking the rela-
tion between logical formulae F(U) and F(R).

It is important that we do not stipulate a specific defini-
tion of ‘logical implication’ because it is to be determined
by the logical foundation for the semantics and the defini-
tion of F . For example, a semantics based on propositional
logic may deduce that A ‘logically implies’ B when A ⊃ B
is true (where ⊃ stands for propositional implication), but
depending on the definition of F , it may also be reasonable

142

to deduce the same judgment when the converse B ⊃ A is
true.

2.4 Inadequacy of propositional logic for un-
certain databases

This subsection gives an informal argument that propo-
sitional logic is not a good choice as the logical foundation
for uncertain databases. We set out to define the semantic
function F with propositional logic as its logical foundation,
and illustrate that it is far from obvious to obtain a defini-
tion of F satisfying the requirement. In order to obtain a
compositional definition of F , we assume an inductive defi-
nition

F(X, U) = F(X) ∧ F(U)

where ∧ stands for logical conjunction.
Consider a disjunctive tuple T1�T2. Since T1�T2 denotes

an exclusive disjunction between T1 and T2, it is reasonable
to define F(T1 � T2) as

(T1 ∧ ¬T2) ∨ (¬T1 ∧ T2).

This definition of F(T1 � T2), however, is unsatisfactory be-
cause of its use of logical negation. For example, T�T and T
are operationally equivalent in that both instantiate only to
T , but F(T � T) denotes logical falsehood which cannot be
logically equivalent to F(T). As another example, consider
the following databases:

U = Eat(Tom, Pizza)� Eat(Tom, Soup)
R = Where(Pizza, R1),Where(Soup, R2)
U ′ = Go(Tom, R1)�Go(Tom, R2)

With the assumption that Eat(x, y) and Where(y, z) pro-
duce Go(x, z), a join operation between U and R produces
U ′. Similarly, with the assumption that Eat(x, y) ∧Where(y, z)
proves Go(x, z), we would expect F(U) and F(R) to prove
F(U ′). This is not the case, however, because of logical
negation: ¬Eat(x, y) ∧Where(y, z) does not prove ¬Go(x, z).

A more serious problem arises when translating maybe
tuples. It is reasonable to define F(Z?) as Z ∨ ¬Z because
the intuition behind Z? is that Z may or may not be true.
Unfortunately A ∨ ¬A is a tautology and conveys no infor-
mation in classical propositional logic. That is, A ∨ ¬A is
true for any logical formula A by the law of excluded middle,
and defining F(Z?) as Z ∨ ¬Z makes it impossible to dis-
tinguish between an uncertain database U and its extension
U, Z?. That is, we have

F(U) ≡ F(U) ∧ (Z ∨ ¬Z) = F(U, Z?)

where logical equivalence A ≡ B means both A ⊃ B and
B ⊃ A.

A quick fix is to base the semantics on intuitionistic propo-
sitional logic [24] in which the law of excluded middle does
not hold and A ∨ ¬A actually conveys some information. In
our context, for example,

Eat(Tom, Pizza) ∨ ¬Eat(Tom, Pizza)

declares that Eat(Tom, Pizza) is one of the tuples under con-
sideration, thereby admitting Tom and Pizza as potential
arguments to the predicate Eat .

Even in intuitionistic propositional logic, however, this
definition of F(Z?) is unsatisfactory. As an example, con-
sider the following databases where a join operation between

A ⇒ A
Init

∆, A, B ⇒ C

∆, A⊗B ⇒ C
⊗L

∆ ⇒ A ∆′ ⇒ B

∆, ∆′ ⇒ A⊗B
⊗R

∆, A ⇒ C

∆, A & B ⇒ C
&L1

∆, B ⇒ C

∆, A & B ⇒ C
&L2

∆ ⇒ A ∆ ⇒ B
∆ ⇒ A & B

&R

∆ ⇒ A ∆′, B ⇒ C

∆, ∆′, A (B ⇒ C
(L

∆, A ⇒ B

∆ ⇒ A (B
(R

∆ ⇒ C
∆,1 ⇒ C

1L · ⇒ 1
1R

∆ ⇒ > >R

Figure 2: Inference rules in the sequent calculus for
linear logic

U and R produces U ′:

U = Eat(Tom, Pizza)?
R = Where(Pizza, R1)
U ′ = Go(Tom, R1)?

With the assumption that Eat(x, y) ∧Where(y, z) proves
Go(x, z), we would expect F(U) and F(R) to prove F(U ′)
because a join operation between U and R produces U ′.
Again this is not the case because of logical negation:
¬Eat(x, y) ∧Where(y, z) does not prove ¬Go(x, z).

These observations lead to the conclusion that proposi-
tional logic, whether classical or intuitionistic, may not be
the right choice as the logical foundation for uncertain databases.
In contrast, our semantics uses linear logic as its logical foun-
dation and does not suffer from those problems due to logical
negation. In addition, linear logic provides a more elegant
semantics for uncertain databases than propositional logic,
just like linear logic provides a solution to the frame problem
in artificial intelligence that is considerably simpler than the
situation calculus based on propositional logic.

3. LINEAR LOGIC
This section presents a decidable fragment of linear logic

that our semantics uses. Instead of a model-theoretic ap-
proach, we take a proof-theoretic approach which relies on
inference rules to deduce new logical theories from existing
logical theories. As we will see, the proof-theoretic approach
is a natural choice because inference rules easily express the
relationship between uncertain databases and their corre-
sponding relational databases (which are equivalent to pos-
sible worlds in the algebraic approach).

3.1 Linear logic with linear hypotheses
In linear logic, every formula denotes a resource that can

be consumed to produce new resources. It uses the following
inductive definition of formulae; we use metavariables A, B,
C for formulae:

formula A ::= P (~t) | A⊗A | A & A | A (A | 1 | >

For predicates, we use the same notation P (~t) that we use
for tuples in uncertain databases; hence tuples in uncertain
databases can be thought of as predicates in linear logic. A

143

simultaneous conjunction A⊗B denotes a pair of resources
A and B; hence consuming A⊗B produces both A and B.
An alternative conjunction A & B denotes a resource that
produces one of A and B as requested; hence we can choose
to produce from A & B either A or B, but not both. A lin-
ear implication A (B is a resource that produces B when
combined with A; hence consuming both A and A (B pro-
duces B. The unit 1 denotes no resource, or “nothing.” The
top > denotes an unspecified resource, or “something.”

We formulate linear logic as a sequent calculus which is
equivalent to other formulations such as the natural deduc-
tion system, but simplifies proofs of metatheorems in Sec-
tion 4 (because it generates only normal proofs). The basic
judgment in the sequent calculus is a linear sequent ∆ ⇒ A
where a linear context ∆ is a set of formulae:

linear context ∆ ::= · | A, ∆

∆ ⇒ A means that we have to produce a new resource A by
consuming every existing resource in ∆ exactly once, i.e.,
linearly. (Hence we use such terms as “linear” sequents and
“linear”contexts.) Note that the definition of ∆ ⇒ A implies
that we have to consume all resources in ∆. That is, ∆ ⇒ A
does not hold if some resources in ∆ remain unconsumed.
We say that two formulae A and B are logically equivalent,
written as A ≡ B, if both A ⇒ B and B ⇒ A hold.

Figure 2 shows inferences rules for linear sequents which
should be read not top-down but bottom-up. The system ex-
plains the meaning of logical connectives with left rules and
right rules. A left rule specifies how to exploit an existing
formula involving a particular connective. For example, the
left rule for ⊗, namely the rule ⊗L, decides to exploit an
existing formula A⊗B and splits it into A and B; hence the
problem of proving ∆, A⊗B ⇒ C reduces to the problem
of proving ∆, A, B ⇒ C. A right rule specifies how to pro-
duce a new formula involving a particular connective. For
example, the right rule for ⊗, namely the rule ⊗R, decides
to produce a new formula A⊗B by attempting to produce
A from ∆ and B from ∆′; hence the problem of proving
∆, ∆′ ⇒ A⊗B reduces to the problem of proving ∆ ⇒ A
and ∆′ ⇒ B. The rule Init has no premise because consum-
ing A immediately produces A; it has an implication that a
linear sequent must consume all resources in its linear con-
text. Note that there is no left rule for >.

Now it is easy to show that 1 is the identity for ⊗, i.e.,
1⊗A ≡ A⊗ 1 ≡ A, and that > is the identity for &, i.e.,
> & A ≡ A & > ≡ A. Both & and ⊗ are associative and
commutative, and (is right associative.

The system in Figure 2 is decidable [16]: there is a decision
procedure for testing whether ∆ ⇒ A holds or not.

3.2 Linear logic with unrestricted hypotheses
Linear logic also provides the “of course”modality ! which

allows a resource to be consumed in an unrestricted way. A
formula !A denotes an infinite supply of resource A which
we may use any number of times, including zero times:

formula A ::= · · · | !A

In order to incorporate the modality !, we follow the style
in [6] and use an extended linear sequent Γ;∆ ⇒ A where
an unrestricted context Γ is a set of formulae:

unrestricted context Γ ::= · | A, Γ

Γ; ∆ ⇒ A means that we have to produce a new resource

Γ, A; ∆, A ⇒ C

Γ, A; ∆ ⇒ C
Copy

Γ, A; ∆ ⇒ C

Γ; ∆, !A ⇒ C
!L

Γ; · ⇒ A

Γ; · ⇒ !A
!R

Figure 3: Inference rules for the modality !

A by consuming every resource in ∆ exactly once but any
resource in Γ as many times as necessary, i.e., in an unre-
stricted way. A linear sequent ∆ ⇒ A is now an abbreviation
of ·; ∆ ⇒ A.

The rules for extended linear sequents are derived from the
previous rules in Figure 2 by rewriting every linear sequent
∆ ⇒ A as Γ; ∆ ⇒ A. In addition, we need three new rules
in Figure 3. The rule Copy enables us to use resources in
unrestricted contexts. The left rule !L decides to exploit an
existing formula !A by incorporating A into the unrestricted
context. The premise of the right rule !R proves that A is a
resource that can be produced any number of times because
it does not require additional resources except those in Γ.

Although linear logic with the modality ! is undecidable in
general [16], restricting A in !A to atomic formulae recovers
its decidability. Intuitively we can always get rid of the
modality ! from an extended linear sequent by repeatedly
applying the rules !L and !R, and for each atomic formula
A, we need to apply the rule Copy no more times than it
occurs in the original sequent. Our semantics for uncertain
databases restricts A in !A to atomic formulae and thus uses
a decidable fragment of linear logic.

4. SEMANTICS BASED ON LINEAR LOGIC
This section presents our semantics for uncertain databases.

We define the semantic function F in such a way that the
following invariant holds:

• F(U) ⇒ F(R) if and only if U ↪→ R.

Since F(U) ⇒ F(R) proves F(U) (F(R) and vice versa,
‘logical implication’ in our semantics is in fact ‘linear im-
plication.’ Then F satisfies the requirement given in Sec-
tion 2.3.

4.1 Definition of the semantic function F
Informally our semantics interprets x-tuples as descrip-

tions of resources in the following way.

• Consuming a disjunctive tuple T1� · · · �Tn produces
one of T1, · · · , Tn. Note that once a new tuple is
produced, the original disjunctive tuple disappears.

• Consuming a maybe tuple Z? produces either Z or
nothing. Similarly to disjunctive tuples, the original
maybe tuple disappears when either Z or nothing is
produced.

• Separate x-tuples represent independent resources. That
is, consuming an x-tuple does not affect other x-tuples.

• An ordinary tuple T , which is a special case of an
x-tuple, represents a resource that permits an unre-
stricted use. Hence T does not disappear even after
it is consumed. Intuitively T contains no element of
uncertainty and thus denotes a persistent fact.

This resource interpretation of x-tuples exhibits a pleasant
correspondence with logical connectives in linear logic.

144

• Consuming an x-tuple X to produce another x-tuple
X ′ is encoded as a linear implication X (X ′.

• A disjunctive tuple T1 � · · · � Tn is encoded as an
alternative conjunction T1 & · · · & Tn.

• A maybe tuple Z? is encoded as an alternative con-
junction Z & 1 where 1 means ‘nothing.’

• A set of x-tuples X1 through Xn is encoded as a si-
multaneous conjunction X1 ⊗ · · · ⊗Xn.

• An ordinary tuple T is encoded as !T where T is as-
sumed to have the form of a predicate.

Then an uncertain database consisting of x-tuples X1, · · · ,
Xn corresponds to a simultaneous conjunction X1 ⊗ · · · ⊗Xn,
and instantiating an uncertain database U to a relational
database R corresponds to a linear implication U (R.

Formally the semantic function F uses ⊗, &, 1, and ! in
linear logic:

F(P (~t)) = !P (~t)
F(Z � Z′) = F(Z) & F(Z′)

F(Z?) = F(Z) & 1
F(·) = 1

F(X, U) = F(X)⊗F(U)

The definition of F is based on the following observations:

• A tuple P (~t) itself contains no element of uncertainty
and thus denotes a persistent fact. For example, we
may not use Eat(Tom, Pizza)� Eat(Tom, Soup) twice
to obtain both Eat(Tom, Pizza) and Eat(Tom, Soup),
but once we decide to choose Eat(Tom, Pizza), it be-
comes a persistent fact which may be used any number
of times afterwards. Hence we translate P (~t) to !P (~t).

• A disjunctive tuple Z � Z′ allows us to choose either
Z or Z′. Hence we translate it to F(Z) & F(Z′).

• A maybe tuple Z? states that Z may or may not be
the case. If Z is not the case, we choose to ignore it,
obtaining no information, instead of refuting it with
logical negation. Hence we can choose to produce Z
or nothing from Z?, and translate Z? to F(Z) & 1.

• An empty uncertain database gives no information.
Hence we translate it to 1.

• Given an uncertain database consisting of X and U , we
may use X and U independently of each other. Hence
we translate X, U to F(X)⊗F(U), which means that
F is compositional.

The definition of F does not use the top >, but we will
use it in Section 4.3 where we discuss membership problems
in uncertain databases.

4.2 Soundness and completeness of F
We now show that the invariant holds on the semantic

function F . We need to prove the soundness and complete-
ness of F in the following sense:

Theorem 4.1 (Soundness of F).
If U ↪→ R, then F(U) ⇒ F(R).

Theorem 4.2 (Completeness of F).
If F(U) ⇒ F(R) where the proof does not use the rules

for the modality ! given in Figure 3, then U ↪→ R.

The assumption on the proof of F(U) ⇒ F(R) in Theo-
rem 4.2 implies that we regard !P (~t) as an atomic formula
and never decompose it to add P (~t) to an unrestricted con-
text. (Hence we do not need extended linear sequents.)
The rationale is that the proof of F(U) ⇒ F(R) concerns
itself only with the relationship between U and R, and not
with deducing new logical theories from U and R. Without
this assumption, the completeness of F fails. For example,
F(U) ⇒ F(·) holds for any uncertain database U by repeat-
edly applying the rule !L while U ↪→ · holds only if U is
empty or consists of maybe tuples.

The soundness of F is easy to prove because of the com-
positionality of F :

Proof Theorem 4.1. By induction on the structure of
the proof of U ↪→ R.

The proof of the completeness of F is also straightforward
(mainly because of the use of the sequent calculus in formu-
lating linear logic), but requires a series of lemmas. We
write ⊗ n

i=1!P (~ti) for !P (~t1)⊗ · · · ⊗ !P (~tn), and ∪n
i=1P (~ti)

for P (~t1), · · · , P (~tn). Theorem 4.2 follows immediately from
Lemma 4.10.

Lemma 4.3. If F(Z) ⇒ !P (~t), then Z ↪→ P (~t).

Proof. By induction on the structure of Z.
The case Z = T is trivial.
We let Z = Z1 � Z2 and F(Z) = F(Z1) & F(Z2).
F(Z1) ⇒ !P (~t) or F(Z2) ⇒ !P (~t) by the rules &L1 and

&L2.
Z1 ↪→ P (~t) or Z2 ↪→ P (~t) by induction hypothesis.
Z ↪→ P (~t) by the rules I�L and I�R.

Proposition 4.4. If F(X) ⇒ !P (~t), then X ↪→ P (~t).

Proof. By induction on the structure of X.
The case X = Z follows from Lemma 4.3.
We let X = Z? and F(X) = F(Z) & 1.
F(Z) ⇒ !P (~t) or 1 ⇒ !P (~t) by the rules &L1 and &L2.
F(Z) ⇒ !P (~t) because 1 ⇒ !P (~t) is not provable.
Z ↪→ P (~t) by Lemma 4.3.
X ↪→ P (~t) by the rule I?1.

Lemma 4.5. F(Z) ⇒ 1 never holds.

Proof. By induction on the structure of Z.
The case Z = T is trivial (because the proof does not use
the rules for !).
We let Z = Z1 � Z2 and F(Z) = F(Z1) & F(Z2).
F(Z1) ⇒ 1 or F(Z2) ⇒ 1 by the rules &L1 and &L2.
Neither case holds by induction hypothesis.

Proposition 4.6. If F(X) ⇒ 1, then X ↪→ ·.

Proof. By Lemma 4.5, we have X = Z?. Then we have
X ↪→ · by the rule I?2.

Lemma 4.7. If F(Z) ⇒ ⊗ n
i=1!P (~ti), then n = 1.

Proof. By induction on the structure of Z.
The case Z = T is trivial.
We let Z = Z1 � Z2 and F(Z) = F(Z1) & F(Z2).

The proof applies the rule &L1 or &L2 immediately be-
cause the right formula is a simultaneous conjunction.

In either case, we have n = 1 by induction hypothesis.

145

Proposition 4.8. If F(X) ⇒ ⊗ n
i=1!P (~ti), then n ≤ 1.

Proof. By induction on the structure of X.
The case X = Z follows from Lemma 4.7.
We let X = Z? and F(X) = F(Z) & 1.

The proof applies the rule &L1 or &L2 immediately be-
cause the right formula is a simultaneous conjunction.

If F(Z) ⇒ ⊗ n
i=1!P (~ti), we have n = 1 by Lemma 4.7.

If 1 ⇒ ⊗ n
i=1!P (~ti), we have n = 0 because there is no

proof of 1 ⇒ !P (~t).

Lemma 4.9. Suppose

...
∆ ⇒ C

F(U1), · · · ,F(Un) ⇒ C
Rule

where

Rule is a left rule ⊗L, &L1, &L2, or 1L. Then we have
∆ = F(U ′

1), · · · ,F(U ′
m) such that U ′

1, · · · , U ′
m ↪→ R implies

U1, · · · , Un ↪→ R for any relational database R.

Proof. By case analysis of the rule Rule.

Lemma 4.10. If F(U) ⇒ ⊗ n
i=1!P (~ti), then U ↪→ ∪n

i=1P (~ti).

Proof. By induction on the size of U (not on its struc-
ture).
If U = ·, then we have n = 0 and U ↪→ · by the rule IU1.
If U = X, then U ↪→ ∪n

i=1P (~ti) holds by Propositions 4.4,
4.6, and 4.8.
If U = X, U ′ where U ′ is not empty, we have F(U) =
F(X)⊗F(U ′). We consider a proof D of
F(X)⊗F(U ′) ⇒ ⊗ n

i=1!P (~ti).
Suppose that D does not use the rule ⊗L. Then we have

n > 1 and F(X)⊗F(U ′) = ⊗ n
i=1!P (~ti), which implies

X, U ′ = ∪n
i=1P (~ti) and U ↪→ ∪n

i=1P (~ti).
Now suppose that D uses the rule ⊗L. Then D has the

following structure

...
∪iF(Ui) ⇒ ⊗ m

p=1!P (~tip)

...
∪jF(Uj) ⇒ ⊗ l

q=1!P (~tjq)

[F(X)], [F(U ′)] ⇒ ⊗ n
i=1!P (~ti)

...

F(X),F(U ′) ⇒ ⊗ n
i=1!P (~ti)

9>>=>>; E

⊗R

F(X)⊗F(U ′) ⇒ ⊗ n
i=1!P (~ti)

⊗L

where E consists only of applications of left rules and we
have

⊗ n
i=1!P (~ti) = (⊗ m

p=1!P (~tip))⊗ (⊗ l
q=1!P (~tjq))

∪n
i=1P (~ti) = ∪m

p=1P (~tip),∪l
q=1P (~tjq)

[F(X)] , [F(U ′)] = ∪iF(Ui),∪jF(Uj).

Here [F(X)] is a linear context originating from F(X) in the
course of applying those left rules in E . Similarly [F(U ′)] is
a linear context originating from F(U ′). Note that the right
formula ⊗ n

i=1!P (~ti) remains intact in E .
From ∪iF(Ui) ⇒ ⊗ m

p=1!P (~tip), we obtain

F(∪iUi) ⇒ ⊗ m
p=1!P (~tip).

Similarly we obtain

F(∪jUj) ⇒ ⊗ l
q=1!P (~tjq).

Since both ∪iUi and ∪jUj are strictly smaller than U , we
obtain ∪iUi ↪→ ∪m

p=1P (~tip) and ∪jUj ↪→ ∪l
q=1P (~tjq) by in-

duction hypothesis. Combining the two results, we obtain

∪iUi,∪jUj ↪→ ∪n
i=1P (~ti). By repeatedly applying Lemma 4.9

to E (starting from [F(X)], [F(U ′)] ⇒ ⊗ n
i=1!P (~ti)), we even-

tually obtain U ↪→ ∪n
i=1P (~ti).

4.3 Application: membership problems
In addition to logically interpreting uncertain databases,

the semantic function F also enables us to logically interpret
membership problems arising in uncertain databases. We
consider four membership problems discussed in [23]:

• The instance membership problem tests whether a rela-
tional database R is an instance of an uncertain database
U , i.e., U ↪→ R. By Theorems 4.1 and 4.2, the problem
reduces to proving F(U) ⇒ F(R).

• The instance certainty problem tests whether an uncer-
tain database U is equivalent to a relational database
R, i.e., R is the only instance of U . A logical equiv-
alence F(U) ≡ F(R) checks whether U and R are
equivalent or not.

• The tuple membership problem tests whether an uncer-
tain database U instantiates to a relational database
containing a specific tuple T , i.e., U ↪→ T, R for some
relational database R. By Theorems 4.1 and 4.2, the
problem reduces to proving F(U) ⇒ F(T, R), or
F(U) ⇒ F(T)⊗F(R). Since R is unknown, we may
prove F(U) ⇒ F(T)⊗> instead.

• The tuple certainty problem tests whether a tuple T
appears in every instance of an uncertain database U .
In order for U to produce T in all its instances, U must
be equivalent to T, U ′ for some uncertain database U ′.
Hence the problem reduces to proving F(U) ≡ F(T, U ′),
or F(U) ≡ F(T)⊗F(U ′).

4.4 Extension of F
We now discuss how our definition of the semantic func-

tion F straightforwardly extends to a more general definition
of x-tuples. Consider the following new definition of x-tuples
which does not require maybe tuples to contain only disjunc-
tive tuples:

x-tuple X ::= T | X? | X �X

We revise the definition of F as well as the rules I�L, I�R,
I?1, and I?2 in Figure 1 so as to reflect the change in the
definition of x-tuples:

F(P (~t)) = !P (~t)
F(X �X ′) = F(X) & F(X ′)

F(X?) = F(X) & 1

X ↪→ R

X �X ′ ↪→ R
I�L

X ′ ↪→ R

X �X ′ ↪→ R
I�R

X ↪→ R
X? ↪→ R

I?1
X? ↪→ · I?2

Then Theorems 4.1 and 4.2 continue to hold and F remains
sound and complete. The proof of Theorem 4.1 proceeds
by induction on the structure of the proof of U ↪→ R, and
the proof of Theorem 4.2 is similar to the previous case
except that it proves Propositions 4.4, 4.6, and 4.8 directly
by induction on the structure of X.

146

5. RELATED WORK
While logical accounts of uncertain databases using at-

tribute variables (null values in particular) have been stud-
ied thoroughly (see [25] for a survey), there is a distinct
lack of research on logical accounts of uncertain databases
with maybe information, perhaps because of the difficulty
of directly mapping maybe information to logical formulae.
The only work that we are aware of is the semantics pro-
posed by Liu and Sunderraman [17] (and later adopted by
Zimanyi [27]) which is based on propositional logic. Their
semantics circumvents the problem of translating maybe tu-
ples by generating a first-order formula that amounts to
declaring at once all predicates present in a given uncer-
tain database. For example, the uncertain database U in
Section 2.1 generates the following first-order formula which
essentially states the completion axiom in the formulation
of Reiter [20]:

∀x.∀y.Eat(x, y) ⊃
Eat(Tom, Pizza) ∨ Eat(Tom, Soup) ∨
Eat(John, Salad) ∨ Eat(Jane, Steak)

Since there is now a possibility that Eat(John, Salad) is true,
the semantics just ignores the maybe tuple Eat(John, Salad)?.

Unlike our semantics, the semantics of Liu and Sunderra-
man requires Z in Z? to be an ordinary tuple. If Z is allowed
to be a disjunctive tuple, the semantics may translate op-
erationally different uncertain databases to the same logical
formulae. For example, the following uncertain databases
U1 and U2 are translated identically even though they are
operationally different:

U1 = (Eat(Tom, Pizza)� Eat(Tom, Soup))?
U2 = Eat(Tom, Pizza)?,Eat(Tom, Soup)?

Another difference is that their semantics is not composi-
tional: the translation of an uncertain database U1, U2 is
not a direct sum of the individual translations of U1 and
U2. In summary, our semantics is more general and compo-
sitional, yet considerably simpler, thanks to the use of linear
logic as its logical foundation.

6. CONCLUSION
We have studied a formal semantics of uncertain databases.

We take a logical approach of translating uncertain databases
to logical formulae. Our semantics distinguishes itself from
prior efforts by using linear logic as its logical foundation.
We show that our semantics is faithful to the operational
account of uncertain databases in the algebraic approach.

As future work, we plan to investigate a logical interpreta-
tion of operations on uncertain databases. For example, we
could define a semantic function from database operators to
logical formulae so that the problem of testing the correct-
ness of database operations reduces to checking the relation
between logical formulae. In conjunction with the semantic
function F for uncertain databases, such a semantic func-
tion will make the logical account of uncertain databases not
only theoretically interesting but also practically important.

Acknowledgement
We are grateful to Hyeonseung Im and anonymous reviewers
for their helpful comments.

7. REFERENCES
[1] S. Abiteboul, P. Kanellakis, and G. Grahne. On the

representation and querying of sets of possible worlds.
In SIGMOD ’87: Proceedings of the 1987 ACM
SIGMOD international conference on Management of
data, pages 34–48, New York, NY, USA, 1987. ACM.

[2] O. Benjelloun, A. Das Sarma, A. Halevy, and
J. Widom. ULDBs: databases with uncertainty and
lineage. In VLDB ’06: Proceedings of the 32nd
international conference on Very large data bases,
pages 953–964. VLDB Endowment, 2006.

[3] W. Bibel. A deductive solution for plan generation.
New Generation Computing, 4(2):115–132, 1986.

[4] N. Bidoit, S. Cerrito, and C. Froidevaux. A linear logic
approach to consistency preserving updates. Journal
of Logic and Computation, 6(3):439–463, 1996.

[5] A. J. Bonner and M. Kifer. The state of change: A
survey. Lecture Notes in Computer Science, 1472:1–36,
1998.

[6] B. Chang, K. Chaudhuri, and F. Pfenning. A
judgmental analysis of linear logic. Technical Report
CMU-CS-03-131, School of Computer Science,
Carnegie Mellon University, 2003.

[7] E. F. Codd. Extending the database relational model
to capture more meaning. ACM Transactions on
Database Systems, 4(4):397–434, 1979.

[8] L. G. DeMichiel. Resolving database incompatibility:
An approach to performing relational operations over
mismatched domains. IEEE Transactions on
Knowledge and Data Engineering, 1(4):485–493, 1989.

[9] J.-Y. Girard. Linear logic. Theoretical Computer
Science, 50(1):1–102, 1987.

[10] G. Grahne. Horn tables-an efficient tool for handling
incomplete information in databases. In PODS ’89:
Proceedings of the eighth ACM
SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, pages 75–82, New York, NY,
USA, 1989. ACM.

[11] T. Imieliński and W. Lipski, Jr. Incomplete
information in relational databases. Journal of ACM,
31(4):761–791, 1984.

[12] T. Imielinski, S. Naqvi, and K. Vadaparty. Incomplete
object—a data model for design and planning
applications. In SIGMOD ’91: Proceedings of the 1991
ACM SIGMOD international conference on
Management of data, pages 288–297, New York, NY,
USA, 1991. ACM.

[13] G. Kahn. Natural semantics. In 4th Annual
Symposium on Theoretical Aspects of Computer
Sciences (STACS), pages 22–39. Springer-Verlag, 1987.

[14] D.-T. Lee and C. P. Tsang. Linear logic for deductive
databases. New Generation Computing, 17(2):201–228,
1999.

[15] L. Libkin and L. Wong. Semantic representations and
query languages for or-sets. In PODS ’93: Proceedings
of the twelfth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages
37–48, New York, NY, USA, 1993. ACM.

[16] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar.
Decision problems for propositional linear logic.
Annals of Pure and Applied Logic, 56:239–311, Apr.
1992.

147

[17] K.-C. Liu and R. Sunderraman. Indefinite and maybe
information in relational databases. ACM
Transactions on Database Systems, 15(1):1–39, 1990.

[18] K.-C. Liu and R. Sunderraman. A generalized
relational model for indefinite and maybe information.
IEEE Transactions on Knowledge and Data
Engineering, 3(1):65–77, 1991.

[19] M. Masseron, C. Tollu, and J. Vauzeilles. Generating
plans in linear logic I: actions as proofs. Theoretical
Computer Science, 113(2):349–370, 1993.

[20] R. Reiter. Towards a logical reconstruction of
relational database theory. In M. L. Brodie,
J. Mylopoulos, and J. W. Schmidt, editors, On
Conceptual Modelling: Perspectives from Artificial
Intelligence, Databases, and Programming Languages,
pages 191–233. Springer, 1984.

[21] R. Reiter. A sound and sometimes complete query
evaluation algorithm for relational databases with null
values. Journal of ACM, 33(2):349–370, 1986.

[22] R. Reiter. The frame problem in the situation calculus:
a simple solution (sometimes) and a completeness
result for goal regression. Artificial Intelligence and
Mathematical Theory of Computation: Papers in
Honor of John McCarthy, pages 359–380, 1991.

[23] A. D. Sarma, O. Benjelloun, A. Halevy, and
J. Widom. Working models for uncertain data. In
ICDE ’06: Proceedings of the 22nd International
Conference on Data Engineering, page 7, Washington,
DC, USA, 2006. IEEE Computer Society.

[24] A. S. Troelstra and D. van Dalen. Constructivism in
Mathematics: An Introduction. North-Holland, 1988.

[25] R. van der Meyden. Logical approaches to incomplete
information: a survey. In Logics for databases and
information systems, pages 307–356. Kluwer Academic
Publishers, 1998.

[26] M. Y. Vardi. Querying logical databases. In PODS ’85:
Proceedings of the fourth ACM SIGACT-SIGMOD
symposium on Principles of database systems, pages
57–65, New York, NY, USA, 1985. ACM.

[27] E. Zimányi. Incomplete and Uncertain Information in
Relational Databases. PhD thesis, Université Libre de
Bruxelles, Brussels, Belgium, October 1992.

148

