
G-Hash: Towards Fast Kernel-based Similarity Search in
Large Graph Databases

Xiaohong Wang1,Aaron Smalter1,Jun Huan1, Gerald H. Lushington2

1Department of Electrical Engineering and Computer Science,
University of Kansas,Lawrence, KS, USA

1{xwang85,asmalter,jhuan}@eecs.ku.edu
2Molecular Graphics and Modeling Laboratory,

University of Kansas,Lawrence, KS, USA
2glushington@ku.edu

ABSTRACT
Structured data including sets, sequences, trees and graphs,
pose significant challenges to fundamental aspects of data
management such as efficient storage, indexing, and similar-
ity search. With the fast accumulation of graph databases,
similarity search in graph databases has emerged as an im-
portant research topic. Graph similarity search has applica-
tions in a wide range of domains including cheminformatics,
bioinformatics, sensor network management, social network
management, and XML documents, among others.

Most of the current graph indexing methods focus on sub-
graph query processing, i.e. determining the set of database
graphs that contains the query graph and hence do not di-
rectly support similarity search. In data mining and machine
learning, various graph kernel functions have been designed
to capture the intrinsic similarity of graphs. Though suc-
cessful in constructing accurate predictive and classification
models for supervised learning, graph kernel functions have
(i) high computational complexity and (ii) non-trivial diffi-
culty to be indexed in a graph database.

Our objective is to bridge graph kernel function and sim-
ilarity search in graph databases by proposing (i) a novel
kernel-based similarity measurement and (ii) an efficient in-
dexing structure for graph data management. Our method
of similarity measurement builds upon local features ex-
tracted from each node and their neighboring nodes in graphs.
A hash table is utilized to support efficient storage and fast
search of the extracted local features. Using the hash table,
a graph kernel function is defined to capture the intrinsic
similarity of graphs and for fast similarity query processing.
We have implemented our method, which we have named
G-hash, and have demonstrated its utility on large chem-
ical graph databases. Our results show that the G-hash
method achieves state-of-the-art performance for k-nearest
neighbor (k-NN) classification. Most importantly, the new
similarity measurement and the index structure is scalable

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

to large database with smaller indexing size, faster indexing
construction time, and faster query processing time as com-
pared to state-of-the-art indexing methods such as C-tree,
gIndex, and GraphGrep.

Keywords
graph similarity query, graph classification, hashing, graph
kernels, k-NNs search.

1. INTRODUCTION
Structured data including sets, sequences, trees and graphs,

pose significant challenges to fundamental aspects of data
management such as efficient storage, indexing, component
search (e.g.subgraph/supergraph search) and similarity search.
With the fast accumulation of graph databases, similarity
search in graph databases has emerged as an important re-
search topic. Graph similarity search has applications in a
wide range of domains including cheminformatics, bioinfor-
matics, sensor network management, social network man-
agement, and XML documents, among others. For exam-
ple, in chemistry and pharmacy, there is a fast accumula-
tion of chemical molecule data. Once a new chemical is
synthesized, the properties of the chemical may be revealed
through querying existing chemicals with known properties.
Fast similarity search in large graph databases enable scien-
tists and data engineers to build accurate models for graphs,
identify the intrinsic connections between graph data, and
reduce the computational cost of processing large databases.

Graph queries can be classified into two categories: (i)
subgraph query and (ii) similarity query. Subgraph query
aims to identify a set of graphs that contain a query graph
[12]. Similarity query aims to identify similar graphs in a
graph database to a query, according to a distance metric.
There are two types of similarity query, i.e. k-NNs query
and range query. In k-NNs query, the k most similar graphs
are reported. In range query, all graphs within a predefined
distance to the query graph are reported. In this paper
we address the problem of k-NN similarity search in large
databases of graphs.

Similarity search on graphs is challenging. We argue that
an ideal design of fast similarity search should achieve the
following three related (sometimes contradicting) objectives:
accurate, running-time efficient, space efficient. By accu-
rate, we emphasize that the similarity measurement should
capture the intrinsic similarity of objects. By running-time

472

efficient, it is well-known that operations on graphs, such as
subgraph isomorphism, are NP-complete problems [6] which
require us to design efficient algorithms to avoid exhaustive
search as much as possible. By space efficient, the index
structure should not add a significant storage overhead to
graph databases.

The most straightforward approach for similarity mea-
surement is to embed a graph in a high dimensional Euclid-
ian space, known as the feature space, and use spatial index-
ing techniques for similarity search. Current feature extrac-
tion methods operate in two different ways: (i) enumeration
of substructures in each graph separately (e.g. generating a
set of random walks from a graph) [15], and (ii) enumera-
tion of substructures from a set of graphs (e.g. mining fre-
quent patterns) [30, 4, 32, 29]. Though widely used, there
are several limitations of adapting the feature extraction
and feature indexing strategy for similarity search. First,
the feature extraction process is computational intensive,
especially for mining large graph databases. Second, fea-
ture extraction may produce many features that occupy a
large amount of memory. Different feature selection meth-
ods have been devised to identify “discriminative” features
[30]. However features that are efficient for database search
may not be equally good for similarity search and a trade-off
is needed.

Here we explore a new way of graph similarity search
where similarity is defined using graph kernel functions. Rather
than extracting features explicitly, a kernel function maps
data objects to a high-dimensional functional space and mea-
sure the similarity of objects by computing the inner prod-
uct of the objects in the functional space. The advantage of
kernel function based similarity measurement is that kernel
function usually have high statistical power, i.e. affording
high classification accuracy. The major difficulty of applying
kernel function for database search is that (i) kernel func-
tions for graphs are expensive to compute and (ii) there is
no clear way to index the kernel function computation over
a large graph database.

Our approach, called G-hash, aims to devise a kernel func-
tion that can be efficiently computed over a large graph
database. In our model, graphs are reduced to point sets
that are compared directly via a kernel function. Typically
such an approach would lose a great deal of information in
the rich graph structure, but we avoid this by compressing
much of the topological information into feature vectors de-
scribing each graph vertex. This approach provides a com-
pact graph representation that is information rich, yet easy
to compare. We then hash graph objects using the com-
pressed set representation. The hash keys are based these
sets and hence similar objects in the hash table are posi-
tioned in the same or nearby cells. Once we have hashed
graphs in a database into the table, we can find all similar
nodes and then calculate the distances between the query
graph and the graphs in the database based on them and
kernel function to obtain the k-NNs of the query graph.

In summary, our contributions in this papers are:

• Devised a graph kernel function and related index struc-
ture for fast graph similarity search

• Our index has linear time to compute (in terms of to-
tal number of nodes in a graph database) and may be
constructed on-line with dynamic insertion and dele-
tion

• We have proved that the new graph kernel function
and its related index structure achieved a better trade-
off between capturing the intrinsic similarity of graphs
and fast computation for large graph databases.

This paper is organized as follows. We review related work
in the areas of hashing, indexing, and kernels for graphs
in section 2. Next, we formally define graphs and graph
similarity search in section 3. We discuss the details of our
index structure and kernel function in section 4. Finally
we present a comprehensive experimental study using our
methods and competing methods, and conclude with a few
remarks on the study and future work.

2. RELATED WORK
In this section we discuss related work, starting from in-

dexing in graph databases in general, including subgraph
search, approximate subgraph search, and graph similarity
search, and move to graph kernel functions.

2.1 Subgraph Search
Many of the recent methods for subgraph search adopt a

similar framework, decomposing graphs into a set of smaller
pieces, treating each piece as a feature, and building a feature-
based index structure for subgraph query. Methods that be-
long to this category include GraphGrep [21], gIndex [30],
FG-Index [4], Tree+Delta [32], and GDIndex [29].

The simplest type of feature in use for graph indexing
is walks (including path as special cases) as pioneered in
GraphGrep [21]. Path are easy to retrieve and easy to work
with. The simplicity of paths limit their expressiveness. For
example, using paths, we could not distinguish the topology
of a ring and a chain (where all paths from the two graphs
are paths with different sizes).

Recognizing the limitation of paths, gIndex [30] and FG-
Index [4] build indices using general subgraphs, which can
easily distinguish between paths and cycles in graphs and
hence are more powerful. The limitation of subgraph fea-
tures is that subgraph enumeration and matching are com-
putational intensive procedures. In order to manage these
obstacles, these methods extract only frequent subgraph fea-
tures. Similar methods, Tree+Delta [32] and TreePI [31] use
frequent tree patterns (as well as some discriminative graph
features) instead of frequent subgraph patterns.

The method GDIndex [29] also uses subgraphs as the ba-
sic index feature, but does not restrict itself to frequent sub-
graph features. In addition to a subgraph-based index, this
method incorporates a hash table of subgraphs for fast iso-
morphism lookup. While this method’s focus is subgraph
search, it supports similarity search as well.

2.2 Approximate Subgraph Search
Besides strict subgraph search, some methods relax the

isomorphism matching constraint and allow partial or ap-
proximate matches. This is a relatively new direction, and
hence not many methods currently address the problem.
One such method, SAGA [24], was designed for biological
pathway analysis. First, it builds an index based on graph
fragments. It then uses a graph distance measure to allow
for vertex mismatches and gaps when when matching can-
didate graphs to a query.

Another method gApprox [3] is similar to the gIndex [30]
method, in spirit and name, as well as authors. This ap-
proach seeks to mine frequent approximate patterns from a

473

graph database and use these for indexing. They also ex-
plore the notion of approximately frequent.

The method TALE [25] is also designed for approximate
graph matching. It’s focus, however, is on handling large
graphs with thousands of vertices and edges.

2.3 Graph Similarity Search
There are three commonly used ways to measure graph

similarity. The first is edit distance. That is, given a set of
operations on graph vertices and edges (such as insertion,
deletion, relabeling), how many many such operations are
required to transform graph G into another graph, G′. We
can parameterize the method by assigning different costs
to different operations and summing over the total cost of
all operations. Edit distance is an intuitively attractive ap-
proach to graph similarity, but unfortunately in practice it
is costly to compute (NP-hard). C-Tree [12] is a widely
used graph indexing scheme that also does not use graph
pieces as features. Instead, it organizes database graphs
in tree based structure, where interior nodes are graph clo-
sures, and leaf nodes are database graphs. Importantly, C-
Tree also supports similarity queries where the previous two
methods,GraphGrep and gIndex, do not.

One method, GString [13] is a subgraph similarity query
method and uses graph fragments as features as well. The
approach is somewhat different than the previous two feature-
based subgraph search methods. Complex graphs are first
reduced into connected graphs of fewer nodes, each of which
represents a specific fragment. Canonical node numbering
is used to create a string representation for each graph in
a database. An index that supports similarity search is
then constructed in the form of a suffix tree. This method
combines the expressive power of subgraphs and simplified
graphs with the speed of string querying and matching.

In addition, maximal common subgraph [2] and graph
alignment [9, 27] are used to measure graph similarity. Un-
fortunately, there is no easy way to index both measure-
ments for large graph databases.

2.4 Graph Kernel Functions
Several graph kernel functions have been studied. The

pioneering work was done by Haussler in his work on R-
convolution kernel, providing a framework for many current
graph kernel functions to follow [11]. The R-convolution ker-
nel is based on the notion of decomposing a discrete struc-
ture (e.g. a graph) into a set of component objects (e.g.
subgraphs). We can define many such decompositions, as
well as kernels between pairs of component objects. The R-
convolution framework ensures that no matter the choice of
decompositions or component kernels, the result is always a
symmetric, positive semi-definite function, or a kernel func-
tion between compound objects. This key insight allows the
problem of finding kernel functions for discrete structures
to be reduced to those of finding decompositions and kernel
functions between component objects. The R-convolution
kernel can be extended to allow weighting of the kernel be-
tween various components, via the Weighted Decomposition
Kernel [18].

Recent progresses of graph kernel functions could be roughly
divided into two categories. The first group of kernel func-
tions consider all possible components in a graph (e.g. all
possible paths) and hence measure the global similarity of
two graphs. These include product graph kernels [10], ran-

dom walk based kernels [15], and kernels based on shortest
paths between pair of nodes [1]. The second group of kernel
functions try to capture the local similarity of two graphs
by specifying a (finite) subset of components and counting
the shared components only according to the finite subset
of components. These include a large class of graph kernels
called spectrum kernels [8] and recently frequent subgraph
kernels [23]. The most efficient kernel function that we no-
tice is proposed by Vishwanathan [28] for global similarity
measurement with complexity O(n3) where n is the maximal
number of nodes in graphs. Different from global similarity
measure, local similarity capturing is known to be expensive
since subcomponent matching (e.g. subgraph isomorphism)
is an NP-hard operation.

We adopt a recently develop graph wavelet matching ker-
nel and make it scalable for large databases.

3. BACKGROUND
Before we proceed to discuss the algorithmic details, we

present some general background regarding a computational
analysis of graphs which includes (i) graph kernel functions,
and (ii) graph wavelet analysis.

3.1 Graphs
A labeled graph G is described by a finite set of nodes V

and a finite set of edges E ⊂ V × V . In most applications,
a graph is labeled, where labels draw from a label set λ. A
labeling function λ : V ∪ E → Σ assigns labels to nodes
and edges. In node-labeled graphs, labels are assigned to
nodes only and in edge-labeled graphs, labels are assigned
to edges only. In fully-labeled graphs, labels are assigned to
nodes and edges. We may use a special symbol to represent
missing labels. If we do that, node-labeled graphs, edge-
labeled graphs, and graphs without labels are special cases
of fully-labeled graphs. Without loss of generality, we deal
with fully-labeled graphs only in this paper. For the label
set Σ we do not assume any structure of Σ now; it may be
a field, a vector space, or simply a set.

Following convention, we denote a graph as a quadruple
G = (V, E, Σ, λ) where V, E, Σ, λ are explained before. A
graph G = (V, E, Σ, λ) is a subgraph of another graph G′ =
(V ′, E′, Σ′, λ′), denoted by G ⊆ G′, if there exists a 1-1
mapping f : V → V ′ such that

• for all v ∈ V, λ(v) = λ′(f(v))

• for all (u, v) ∈ E, (f(u), f(v)) ∈ E′

• for all (u, v) ∈ E, λ(u, v) = λ′(f(u), f(v))

In other words, a graph is a subgraph of another graph if
it preserve the node labels, edge relations, and edge labels.

A walk of a graph is a list of node v1, v2, . . . , vn such that
vi and vi+1 is connected for all i ∈ [1, n − 1]. A path is a
walk which contains no repeated nodes, i.e. for all i 6= j we
have vi 6= vj

3.2 Reproducing Kernel Hilbert Space
Kernel functions are powerful computational tools to an-

alyze large volumes of graph data [11]. The advantage of
kernel functions is due to their capability to map a set of
data to a high dimensional Hilbert space without explicitly
computing the coordinates of the data. This is done through
a special function called a kernel function.

474

A binary function K : X × X → R is a positive semi-
definite function if

m∑
i,j=1

cicjK(xi, xj) ≥ 0 (1)

for any m ∈ N, any selection of samples xi ∈ X (i =
[1, n]), and any set of coefficients ci ∈ R (i = [1, n]). In ad-
dition, a binary function is symmetric if K(x, y) = K(y, x)
for all x, y ∈ X. A symmetric, positive semi-definite func-
tion ensures the existence of a Hilbert space H and a map
Φ : X →H such that

k(x, x′) = 〈Φ(x), Φ(x′)〉 (2)

for all x, x′ ∈ X. 〈x, y〉 denotes an inner product between
two objects x and y. The result is known as the Mercer’s
theorem and a symmetric, positive semi-definite function
is also known as a Mercer kernel function [19], or kernel
function for simplicity.

By projecting the data space to a Hilbert space, kernel
functions provide a uniformed analytical environment for
various data types including graphs, regardless of the fact
that the original data space may not look like a vector space
at all. This strategy is known as the “kernel trick”and it has
been applied to various data analysis tasks including clas-
sification [26], regression [5] and feature extraction through
principle component analysis [20], among others.

3.3 Graph Wavelets Analysis
Wavelet functions are commonly used as a means for de-

composing and representing a function or signal as its con-
stituent parts, across various resolutions or scales. Wavelets
are usually applied to numerically valued data such as com-
munication signals or mathematical functions, as well as
to some regularly structured numeric data such as matri-
ces and images. Graphs, however, are arbitrarily structured
and may represent innumerable relationships and topologies
between data elements. Recent work has established the suc-
cessful application of wavelet functions to graphs for multi-
resolution analysis. Two examples of wavelet functions are
the Haar and the Mexican hat.

Crovella et al. [7] have developed a multi-scale method
for network traffic data analysis. For this application, they
are attempting to determine the scale at which certain traffic
phenomena occur. They represent traffic networks as graphs
labeled with some measurement such as bytes carried per
unit time.

Maggioni et al. [17] demonstrate a general-purpose biorthog-
onal wavelet for graph analysis. In their method, they use
the dyadic powers of an diffusion operator to induce a mul-
tiresolution analysis. While their method applies to a large
class of spaces, such as manifolds and graphs, the applicabil-
ity of their method to attributed chemical structures is not
clear. The major technical difficulty is how to incorporate
node labels in a multiresolution analysis.

4. FAST GRAPH SIMILARITY SEARCH WITH
HASH FUNCTIONS

As discussed above, current graph query methods pro-
vide fast query time but not good similarity measurements.
Kernel functions can provide better similarity measurement

but the kernel matrix calculation is time-consuming so it is
hard to build index structure by using them directly. To
address this problem, we propose a new method, G-hash.
Current methods usually focus on either accuracy or speed.
Our proposed method defines similarity based on Wavelet
Graph matching kernels (WA) and uses hash table as index
structure to speed up graph similarity query. Below we first
give an introduction to WA method.

4.1 Introduction to Wavelet Graph matching
kernels

The idea behind WA method is to first convert the graph
into sets by compressing property information in the neigh-
borhood around each vertex, and then apply non-recursive
alignment kernel to compute similarity between graphs. This
method contains two important concepts: h-hop neighbor-
hood and discrete wavelet functions. The h-hop neighbor-
hoodof one node v, denoted by Nh(v) , refers to a set of
nodes which are h hops away from the node v according to
the shortest path. Discrete wavelet functions refer to the
defined wavelet functions, shown in equation 3, applying to
h-hop neighborhood.

ψj,k =
1

h + 1

∫ (j+1)/(k+1)

j/(k+1)

ϕ(x)dx (3)

where ϕ(x) is Haar or Mexican Hat wavelet function and
h is the hth partition after ϕ(x) is partitioned into h+1
intervals on the domain [0,1) and j is between 0 and h.

Based on the above two definitions, we can now apply
wavelet analysis to graphs. Wavelet functions are used to
create a measurement summarizing the local topology of a
node. Equation 4 shows such a wavelet measurement, de-
noted by Γh(v), for a node v in a graph G.

Γh(v) = Ch,v ×
k∑

j=0

ψj,k × f j(v) (4)

where Ch,v is a normalization factor with

Ch,v = (

h∑
j=0

ψ2
j,h

|Nh(v)|)
−1/2, (5)

and f j(v) is the average feature vector value of atoms that
are at most j-hop away from v with

fj(v) =
1

|Nj(v)|
∑

u∈Nj(v)

fu. (6)

and fu denotes the feature vector value of the node v.
Such feature vector value can be one of the following four
types:nominal, ordinal, internal and ratio. For ratio and in-
ternal node features, we directly apply the above wavelet
analysis to get local features. For nominal and ordinal node
features, we could first build a histogram and then use wavelet
analysis to extract local features. After the node v is ana-
lyzed, a list of vectors Γh(v) = {Γ1(v), Γ2(v), · · · , Γh(v)},
called wavelet measurement matrix, can be obtained. In
this way, a graph can be decomposed into a set of node vec-
tors. Since the wavelet has strongly positive and strongly
negative regions, these wavelet-compressed properties rep-
resent a comparison between the local and distant vertex

475

neighborhood. Structural information of a graph has there-
fore been compressed into the vertex properties through
wavelets. Hence, we can now ignore the topology and fo-
cus on matching vertices. The kernel function is defined on
these sets. Given two graphs G and G′ for example, the
graph matching kernel is

km(G, G′) =
∑

(u,v)∈V (G)×V (G′)

K
(
Γh(u), Γh(v)

)
, (7)

K(X, Y) = e
−‖X−Y ‖22

2 . (8)

The WA methods shows a good definition of similarity
between graphs through kernel functions, as validated in
the experimental part [22]. One issue, however, is that the
overall time complexity of the wavelet-matching kernel is
O(m2), and that of the kernel matrix is O(n2×m2), where n
is the size of the database and m is the average node number
of all graphs. When the size of the database increases, the
kernel matrix calculation time grows very quickly.

4.2 Fast graph similarity search with hash func-
tions

Following the idea of using a function to map each node in
a graph to a feature space, we may design a kernel function
for fast similarity search. Specifically, we have the following
two observations.

• When the node vector of the node u in the graph G is
dramatically different from that of the node v in the
graph G′, the RBF kernel value between the node u
and node v is small and has little contribution to the
graph kernel. So if we just count those pairs of nodes
which have similar node vectors, the kernel matrix will
reflect the similar similarity measurement between two
graphs to that of WA method and the time will be
saved.

• Similar objects in the hash table are positioned closer
if the hash keys are based on the node vectors. So
the hash table can help us to find similar node pairs
rapidly. In addition, if all graphs in the database are
hashed into the table, one cell may contain many simi-
lar nodes which belong to different graphs. Since these
nodes are all similar, only one time RBF kernel calcu-
lation using two nodes of them is enough. Node overlay
provides another chance to save time.

Based on the above two observations, we introduce our
method, called hash table based k-NNs query (G-hash). G-
hash is based on WA method to provide an accurate simi-
larity measurement and use hashing to improve time com-
plexity. The entire process is described as follows.

4.2.1 Index construction
First, we need to decompose all graphs in the library

database into node vectors by using wavelet transformation
same as that in the method of WA. Since the WA method
is relatively insensitive to small perturbation of the hop dis-
tance parameter and the use of different wavelet functions
makes little difference [22], h is picked as 2 and the Haar
wavelet is used for simplification.

After node vectors are obtained, the hash table will be
built using the graphs in the database. At this time, a hash

function needs to be constructed to make sure that similar
nodes can be hashed into the same cell. That means the
hash keys should be associated with node vectors. Since we
obtains the node vectors according to the node label and the
neighboring information, we can construct hash keys in the
same idea. We discretize each feature in the node vector to
an integer. We encode a node label directly as a n bit-string
with all zeros except a single 1 which indicate the label.
Other features are rounded to the nearest integer. After the
node vector is changed to a list of integer numbers, we then
convert a node vector to a string by represent each integer
number using its binary format and concatenate these ob-
tained bit strings delimited by underscore. Such string is
the hash key of the corresponding node. Take the graph P
shown in figure 1 for example.

Example 4.1. We pick node labels and the number of
neighboring nodes with different labels as node features. So
there are a total of four node features. The node features for
this graph just belong to one types of value: nominal. To get
the node vectors, we first obtain histogram of node features.
The histogram is shown in figure 1. Then we use wavelet
function to extract local features. Take node P3 for example,
the local obtained feature vector after using wavelet analy-
sis for h=0 is [b, 2, 0, 1]. The sample hash table is shown in
figure 1.

(P)

a

a

b

c

c

Label
 #a
 #b
 #c

1
 1
 0

1
 1
 1

2
 0
 1

0
 1
 0

1
 0
 0

a

b

a

c

c

P
2

P
1

P
5

P
4
P
3

P
1

P
2

P
3

P
4

P
5

 Local node label

histogram

a,1,1,0
 P
1

a,1,1,1
 P
2

P
3
b,2,0,1

c,0,1,0

a,1,1,1

P
4

P
5

hash key

A sample hash table for

graph P

Nodes

hash value

Figure 1: Example graph.

Notice: In this framework, we assume no information for
query graphs when we build the hash table for indexing.

4.2.2 k-NNs Query Processing
To obtain the k-NNs of a given query graph, we need

to calculate the distance between it and all graphs in the
database. Here the distance is defined using the kernel func-
tion between these two graphs.

d(G, G′) =

√
‖φ(G)− φ(G′)‖22

=
√
〈φ(G)− φ(G′), φ(G)− φ(G′)〉

=
√
〈φ(G), φ(G)〉+ 〈φ(G′), φ(G′)〉 − 2 〈φ(G), φ(G′)〉

=
√

km(G, G) + km(G′, G′)− 2km(G, G′).

(9)

476

where km(G, G) is the kernel function between the graph
G and itself, km(G′, G′) is the kernel function between the
graph G′ and itself, and km(G, G′) is the kernel function
between the graph G and G′). In the following section, we
will discuss how to calculate all of them.

Though hashing the nodes of the query graph into the
hash table, we can get the kernel function

km(G, G′) =
∑

v∈G′,u∈simi(v)

K
(
Γh(u), Γh(v)

)
, (10)

Where simi(v) are a set containing the nodes in graph
G hashed to the same cell as the node v does. We use the
following decoding to get the graph number containing these
nodes and the node number.

Clearly, the similarity of two graphs is determined only
by similar node pairs instead of all node pairs, which will
save computational time. Since similar nodes also may be
hashed into the neighboring cells, to increase the accuracy,
we also count the nodes in neighboring cells when the size
of graph is a larger (e.g. greater than 40).

Since only similar nodes are involved into the kernel cal-
culation, K

(
Γh(u), Γh(v)

) ≈ 1 if RBF kernel is used. So the
equation 10 can be written into

km(G, G′) ≈
∑

v∈G′,u∈simi(v)

1 =
∑

v∈G′
|simi(v)| , (11)

where |simi(v)| is the number of nodes contained in simi(v).
That means that we only need to count the number of sim-
ilar nodes, belonging to the graph G, of each node in the
query graph G′ and sum them to get the kernel. Similarly,
we can calculate the kernel between each graph and itself.

After the above calculations, we obtain a distance vector
with each value corresponding to the distance between the
query graph and a graph in the database. Through sorting
this distance vector, we can obtain the k-NNs of this given
query graph.

4.2.3 Dynamic insertion and deletion
To insert a new graph into the database, we hash all nodes

of the new graph into the hash table. After insertion, only
those cells associated with these nodes contain more nodes
and all other cells has no changes. In addition, since the
new graph has a limited number of nodes, insertion opera-
tions involve less time and the size of index little. Deletion
operations are similar to insertion. To delete a graph from
the database, we calculate the key corresponding to each
node in this graph and then delete each node from the cell
containing them.

5. EXPERIMENTAL STUDY
We have performed a comprehensive evaluation of our

method by evaluating its effectiveness (in classification), effi-
ciency, and scalability. We will apply our methods on chem-
ical databases. For chemical compounds, the node features
include numeric features and boolean atom features. Nu-
meric features include element type, atom partial charge,
atom electron affinity, atom free electrons count and atom
heavy valence,etc. Boolean atom features include atom in
acceptor, atom in terminal carbon, atom in ring,atom is neg-
ative, atom is axial,etc. Here, we just use a single of atomical
feature: element type.

We have compared our methods with the Wavelet Align-
ment Kernel [22], C-tree [12],GraphGrep [21] and gIndex
[30] as performance benchmarks. Our method, WA method,
GrapGrep and gIndex are developed in C++ and compiled
using g++. C-tree was developed in Java and compiled us-
ing Sun JDK1.5.0. All experiments were done on an Intel
Xeon EM64T 3.2GHz, 4G memory cluster running Linux.

The parameters for WA, G-hash, C-tree, GraphGrep and
gIndex are set in the following way. we set h = 2 and
use haar wavelet function for WA and G-hash. For C-
tree, we choose the default values, namely, setting the min-
imum number of child node m = 20, the maximum number
M = 2m − 1 and the NBM method [12] is used for graph
mapping. For GraphGrep and gIndex, we use default pa-
rameters.

5.1 Data sets
We chose a number data sets for our experiments. The

first five data sets are established data taken from Joris-
son/Gilson Data Sets[14]. The next six data sets are man-
ually extracted from BindingDB data sets [16]. The last
one is NCI/NIH AIDS Antiviral Screen data set (http:
//dtp.nci.nih.gov/.). Table 1 shows these data sets and
their statistical information.

5.1.1 Jorissen sets
The Jorissen data sets contain information about chemical-

protein binding activity. The target values are drug’s bind-
ing affinity to a particular protein. There are five proteins for
which 100 chemical structures are selected with 50 chemical
structures clearly bind to the protein(called “active” ones)
and the other 50 ones similar to the active ones but clearly
not bind to the target protein. See [14] for the further de-
tails.

5.1.2 BindingDB sets
The BindingDB database contains data for proteins and

chemicals that bind to the proteins. We manually selected
6 proteins with a wide range of known interacting chemicals
(ranging from tens to several hundreds). For the purpose
of classification, we convert the real-valued binding activity
measurements to binary class labels. This is accomplished
by dividing the data set into two equal parts according to the
median activity reading (we also deleted compounds whose
activity value is equal to zero).

5.1.3 NCI/NIH AIDS Antiviral Screen data set
NCI/NIH AIDS Antiviral Screen data set contains 42,390

chemical compounds retrieved from DTP’s Drug Informa-
tion System. There is a total 63 types of atoms in this data
set; the most frequent ones are C, O, N, and S. The data
set contains three types of bonds: single-bond, double-bond
and aromatic-bond. We selected all chemicals to build our
graph database and randomly sampled 1000 chemicals as
the query data set.

5.2 Similarity Measurement Evaluation with
Classification

we compared classification accuracy using k-NN classifier
on Jorissen sets and BindingDB sets with difference simi-
larity measurement. For the WA method, we use wavelet
matching kernel function to obtain kernel matrix, and then
calculate distance matrix to obtain k nearest neighbors. For

477

Table 1: Data sets statistics.#S:total num-
ber of compounds, #P:number of positive com-
pounds,#N:number of negative compounds,#Node:
average number of nodes, #Edge: average number
of edges.

data set #S #P #N, #Node #Edge
PDE5 100 50 50 44.7 47.2
CDK2 100 50 50 38.4 40.6
COX2 100 50 50 37.7 39.6
FXa 100 50 50 45.75 48.03
AIA 100 50 50 48.33 50.61

AChE 183 94 89 29.1 32.0
ALF 151 61 60 23.8 25.2

EGF-R 497 250 247 24.6 27.1
HIV-P 267 135 132 43.0 46.2
HSP90 109 55 54 29.84 32.44
MAPK 336 168 168 28.0 31.1
HIV-RT 482 241 241 22.18 24.39

G-hash, we compute graph kernel according to our algorith-
mic study section and then calculate the k nearest neighbors.
For C-tree, we directly retrieve the nearest neighbor. We use
standard 5-fold cross validation to obtain classification accu-
racy, which is defined as (TP +TN)/S where TP stands for
true positive, TN stands for true negative and S is the total
number of testing samples. We report the average accuracy.
In our experiments, we set k = 5.

The accuracy results are shown in figure 2. The accuracy,
precision, and recall statistical information is shown in Table
2, 3 and 4. From figure 2, we know that G-hash outperforms
C-tree on all twelve data sets, with at least 8% improvement
on all of them. The average accuracy difference between
G-hash and C-tree is about 13%. WA method outperforms
G-hash, the average difference between them is about 2% be-
cause, most likely because we adopt some simplifications on
distance matrix calculation. From what is discussed above,
it is clear that kernel based similarity measurement is better
than edit distance based similarity measurement. Since the
accuracy of k-NN classifier is associated with the value of k,
we also study the accuracy with respect to the value of k
on these data sets to test whether the parameter k has any
effect on accuracy performance comparison. Results show
that accuracy performance comparison is insensitive to the
parameter k.

Table 2: Accuracy results statistical information for
G-hash, C-tree and WA on all data sets.

method G-hash C-tree WA
average 64.55 51.64 66.23

derivation 2.68 5.95 4.83

5.3 Scalability

5.3.1 Index Construction
In this section, we apply G-hash, WA [22], C-tree [12],

GraphGrep [21] and gIndex [30] on NCI/NIH AIDS Antivi-

40

50

60

70

80

90

100

Datasets

A
cc

ur
ac

y(
%

)

C−tree
G−hash
WA

PDE5
CDK2

COX2
FXa

AIA
AChE

ALF
EGF−R

HIV−P
HSP90

MAPK
HIV−RT

Figure 2: Comparison of averaged classification ac-
curacy over cross validation trials.

Table 3: Average Precision for different data sets.
Asterisk (∗) denotes the best precision for the data
sets among WA, G-hash and C-tree methods.

dataset WA G-hash C-tree
PDE5 83.16* 75.78 31.2
CDK2 73.81* 67.42 51.82
COX2 75.88* 66.98 54.85
FXa 95.78* 91.19 29.36
AIA 98.93* 98.33 36

AChE 66.46 73.59* 62.63
ALF 72.14* 69.82 32.59

EGF-R 72.75 80* 55.41
HIV-P 56.9 64.64* 40.81
HSP90 58.19 73.63* 48.72
MAPK 66.31* 66.21 53.25
HIV-RT 69.38* 61.87 54.11

ral Screen data set.
We compare index size and average index construction

time for different methods. Towards that end, we sampled
different number of graphs ranging from 10,000 to 40,000.
Figure 3 shows the index construction time in milliseconds
with respect to the size of database for G-hash, C-tree,
GraphGrep and gIndex. The construction time for G-hash
is much lower than those for other three methods because
of the adoption of a hash table. In addition, when the data
set size increases, the construction time for C-tree, Graph-
Grep and gIndex grows faster than that for G-hash since the
construction of C-tree, GraphGrep and gIndex involve rela-
tively complicated index structure. So G-hash outperforms
C-tree, GraphGrep and gIndex on index construction time.

Figure 4 shows index size with respect to database size.
The index size of G-hash shows a steady growth with in-
creasing database size while that of C-tree increases sharply
since C-tree need to save the whole tree structure while G-
hash just need to save the hash table.

5.3.2 Query Processing Time
Figure 5 shows the query time in milliseconds with respect

to the size of database. When the size of database increases,

478

Table 4: Average recall for different data sets. As-
terisk (∗) denotes the best recall for the data sets
among WA, G-hash and C-tree methods.

dataset WA G-hash C-tree
PDE5 58.06* 56.2 46.93
CDK2 55.87* 53.54 46.7
COX2 63.57 68.06* 51.46
FXa 58.23 62.41* 42.06
AIA 64.81 66.27 55.33

AChE 63.63* 62.82 44.15
ALF 61.25 66.16* 53.83

EGF-R 79.64* 77.51 55.81
HIV-P 63.4* 61.96 47.62
HSP90 63.4* 61.96 47.62
MAPK 70.52 73.6* 72.16
HIV-RT 67.78* 66.83 56.78

G-hash scales better than C-tree. There is no direct way
that we could compare G-hash and subgraph indexing meth-
ods such as G-index and Graphgrep since G-hash search for
similar graph and G-index (and Graphgrep) searches for the
occurrences of a subgraph in a database.

In the following, we sketch one way to use subgraph in-
dexing methods for similarity search. This method contains
three steps: (i) randomly sample subgraphs from a query,
(ii) use those subgraphs as features and compute the occur-
rences of the subgraphs in graph databases, and (iii) search
for nearest neighbors in the obtained feature space. Clearly
the overall query processing time depends on (i) how many
subgraphs we use and (ii) how fast we can identify the occur-
rences of the subgraphs in a graph database. We estimate
the lower bound of the overall query processing time by ran-
domly sampling a SINGLE (one) subgraph from each of the
1000 querying graph and use subgraph indexing method to
search for the occurrence of the subgraph. We record the
average query processing time for each query. This query
processing time is clearly the lower bound since we use only
one subgraph from the query graph.

Figure 5 shows the experimental results of comparing C-
tree, GraphGrep and gIndex. When the size of database
is 40,000, the query time for C-tree, Graphgrep and gIndex
are nearly 8 times,10 times and 100 times as that for G-hash
respectively.

Finally, we compared C-tree and G-hash with varying k
values for k-NN search. the results are shown in Figure 6.
The query time of C-tree increases with the increasing k and
the running time of G-hash is insensitive to the number of
k.

6. CONCLUSIONS AND FUTURE WORKS
Graphs are a kind of general structural data have been

widely applied in many fields such as cheminformatics and
bioinformatics, among others. A lot of significant researchers
have been attracted to current data management and min-
ing technique. Proposing an efficient similarity graph query
method is a significant challenge since most existed meth-
ods focus on speed and provide poor accuracy. In order to
address this problem, we have presented a new graph query
method, G-hash. Through our experimental study, we have

5 10 15 20 25 30 35 40
10

0

10
1

10
2

10
3

10
4

10
4

10
5

10
6

10
7

10
8

10
9

Database size(x1K)

co
ns

tr
uc

tio
n

tim
e(

m
s)

C−tree
G−hash
GraphGrep
gIndex

Figure 3: Index construction time for NCI/NIH
AIDS data set.

5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

Database size(x1K)

in
de

x(
M

B
)

C−tree
G−hash
Graphgrep

Figure 4: Index size for NCI/NIH AIDS data set.

5 10 15 20 25 30 35 40
10

1

10
2

10
3

10
4

10
5

Database size(x1K)

qu
er

y
tim

e(
m

s)

C−tree
G−hash
GraphGrep
gIndex

Figure 5: Query time for NCI/NIH AIDS data set.

shown that compared to C-tree [12], G-hash provides about
a 13% improvement to accuracy. The query time for G-hash
is much less than that for C-tree [12], GraphGrep[21] and
gIndex[30] especially when the database size becomes larger.
In addition, G-hash shows a better scalability on index con-

479

0 20 40 60 80 100
0

50

100

150

200

250

300

350

k

qu
er

y
tim

e(
m

s)
C−tree
G−hash

Figure 6: Query time with respect to different k for
k-NN query.

struction time and efficiency in space usage. This means
G-hash can support large graph database search.

Acknowledgments
We thank H. He and A. K. Singh for sharing the code of C-
tree,D. Shasha, J.T.L. Wang and R. Giugno for sharing the
code of GraphGre, X. Yan, P. S. Yu and J. Han for sharing
the code of GIndex. This work was supported by the KU
Center of Excellence for Chemical Methodology and Library
Development (NIH/NIGM award #P50 GM069663)and an
NIH grant #R01 GM868665.

7. REFERENCES
[1] K. Borgwardt and H. Kriegel. Shortest-path kernels on graphs.

In Proceedings of the International Conference on Data
Mining (ICDM), 2005.

[2] Y. Cao, T. Jiang, and T. Girke. A maximum common
substructure-based algorithm for searching and predicting
drug-like compounds. Bioinformatics, 24(13):i366–74, 2008.

[3] C. Chen, X. Yan, F. Zhu, and r. Jiawei Han. gapprox: Mining
frequent approximate patterns from a massive network. In
Proc. 2007 Int. Conf. on Data Mining (ICDM’07), 2007.

[4] H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative
frequent pattern analysis for effective classification. In
Proceedings of the 23rd IEEE International Conference on
Data Engineering (ICDE), 2007.

[5] R. Collobert and S. Bengio. Svmtorch: Support vector
machines for large-scale regression problems. Journal of
Machine Learning Research, 21, 2001.

[6] S. A. Cook. The complexity of theorem-proving procedures. In
STOC, 1971.

[7] M. Crovella and E. Kolaczyk. Graph wavelets for spatial traffic
analysis. Infocom, 3:1848–1857, 2003.

[8] M. Deshpande, M. Kuramochi, and G. Karypis. Frequent
sub-structure-based approaches for classifying chemical
compounds. IEEE Transactions on Knowledge and Data
Engineering, 2005.

[9] H. Fröhlich, J. K. Wegner, F. Sieker, and A. Zell. Optimal
assignment kernels for attributed molecular graphs. In
Proceedings of the 22nd international conference on Machine
learning, 2005.

[10] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels:
Hardness results and efficient alternatives. In Sixteenth Annual
Conference on Computational Learning Theory and Seventh
Kernel Workshop, 2003.

[11] D. Haussler. Convolution kernels on discrete structures.
Technical Report UCSC-CRL099-10, Computer Science
Department, UC Santa Cruz, 1999.

[12] H. He and A. K. Singh. Closure-tree: an index structure for
graph queries. In Proc. International Conference on Data
Engineering’06 (ICDE), 2006.

[13] H. Jiang, H. Wang, P. S. Yu, and S. Zhou. Gstring: A novel
approach for efficient search in graph databases. In Proc.
International Conference on Data Engineering’07 (ICDE),
2007.

[14] R. Jorissen and M. Gilson. Virtual screening of molecular
databases using a support vector machine. J. Chem. Inf.
Model., 45(3):549–561, 2005.

[15] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels
between labeled graphs. In Proceedings of the International
Conference on Machine Learning (ICML), 2003.

[16] T. Liu, Y. Lin, X. Wen, R. N. Jorrisen, and M. Gilson.
Bindingdb: a web-accessible database of experimentally
determined protein-ligand binding affinities. Nucleic Acids
Research, 35:D198–D201, 2007.

[17] M. Maggioni, J. B. Jr, R. Coifman, and A. Szlam. Biorthogonal
diffusion wavelets for multiscale representations on manifolds
and graphs. In Proc. SPIE Wavelet XI, volume 5914, 2005.

[18] S. Menchetti, F. Costa, and P. Frasconi. Weighted
decomposition kernels. In Proceedings of the Twenty-second
International Conference on Machine Learning, pages
585–592, 2005.

[19] B. Schölkopf and A. J. Smola. Learning with Kernels. the MIT
Press, 2002.

[20] B. Schölkopf, A. J. Smola, and K.-R. Müller. Kernel principal
component analysis. Advances in kernel methods: support
vector learning, pages 327–352, 1999.

[21] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and
applications of tree and graph searching. In Proceeding of the
ACM Symposium on Principles of Database Systems
(PODS), 2002.

[22] A. Smalter, J. Huan, and G. Lushington. Graph wavelet
alignment kernels for drug virtual screening. In Proceedings of
the 7th Annual International Conference on Computational
Systems Bioinformatics, 2008.

[23] A. Smalter, J. Huan, and G. Lushington. Structure-based
pattern mining for chemical compound classification. In
Proceedings of the 6th Asia Pacific Bioinformatics
Conference, 2008.

[24] Y. Tian, R. C. McEachin, D. J. States, and J. M.Patel. SAGA:
a subgraph matching tool for biological graphs. Bioinformatics,
23(20:232–239, 2007.

[25] Y. Tian and J. Patel. TALE: a tool for approximate large graph
matching. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), 2008.

[26] V. Vapnik. Statistical Learning Theory. John Wiley, 1998.

[27] J.-P. Vert. The optimal assignment kernel is not positive
definite. Technical Report HAL-00218278, French Center for
Computational Biology, 2008.

[28] S. V. N. Vishwanathan, K. M. Borgwardt, and N. N.
Schraudolph. Fast computation of graph kernels. In In
Advances in Neural Information Processing Systems, 2006.

[29] D. Williams, J. Huan, and W. Wang. Graph database indexing
using structured graph decomposition. In Proceedings of the
23rd IEEE International Conference on Data Engineering
(ICDE), 2007.

[30] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent
structure-based approach. In SIGMOD, 2004.

[31] S. Zhang, M. Hu, and J. Yang. treepi: A new grah indexing
method. In ICDE, 2007.

[32] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: Tree + delta
≥ graph. In VLDB, 2007.

480

