
Scalable Stream Join Processing with Expensive
Predicates: Workload Distribution and Adaptation by

Time-Slicing∗

Song Wang
†

Hewlett-Packard Laboratories
songw@hp.com

Elke Rundensteiner
Worcester Polytechnic Institute

Worcester, MA, USA
rundenst@cs.wpi.edu

ABSTRACT
Multi-way stream joins with expensive join predicates lead
to great challenge for real-time (or close to real-time) stream
processing. Given the memory- and CPU-intensive nature
of such stream join queries, scalable processing on a cluster
must be employed. This paper proposes a novel scheme for
distributed processing of generic multi-way joins with win-
dow constraints, called Pipelined State Partitioning (PSP).
We target generic joins with arbitrarily join conditions, which
are used in non-trivial stream applications such as image
matching and biometric recognizing. The PSP scheme par-
titions the states into disjoint slices in the time domain, and
then distributes the fine-grained states in the cluster, form-
ing a virtual computation ring. Compared to replication-
based distribution of non-equi-joins, PSP scheme is supe-
rior since: (1) zero state duplication and thus no repeated
computations, (2) pipelined processing of every input tu-
ple on multiple nodes to achieve low response time, and
(3) cost-based adaptive workload distribution. We have
implemented the proposed PSP schemes within the CAPE
DSMS. Our experimental study demonstrates the significant
performance improvements compared to the state-of-the-art
generic distributed stream join algorithms.

1. INTRODUCTION
Recent years have witnessed an increasing interest in data

stream management systems (DSMS). Stream applications
such as scientific sensor network infrastructures, require pro-
cessing high-volume streams in a timely manner. The data
streams can include text data, multimedia data and other
complex objects. Multi-way window-based Join operations
(MJ) are commonly used to explore the correlation among

∗This work was partly supported by NSF under grants IIS
0414567, SGER 0633930 and CRI 0551584.
†Work done when studying in Worcester Polytechnic Insti-
tute.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

multiple stream tuples in scientific and engineering domains [3,
10, 13, 15]. For example, environmental monitoring systems
use streams from sensors for possibly complex pattern match-
ing methodologies [3, 15]. Network monitoring systems use
deep packet inspection queries to evaluate network traffic
flows with content-based analysis methods [13]. These multi-
way joins usually have complex and thus expensive joins. We
first present three applications below with generic MJs over
streams.
Example 1: In a real-time business intelligence frame-
work, analytic models may be continuously validated against
incoming business data to produce short-term predictions.
Online evaluation of the effectiveness of analytic models is
essential for adaptively choosing the best one from a set of
candidates at runtime. One simple metric could be the count
of close predictions (which is defined by a user defined func-
tion (UDF) that calculates the distance of the predicted value
and the real value) within a sliding window. When each vec-
tor of parameters, either predicted or real, is treated as a
stream tuple, a window-based MJ operator with a UDF, i.e.
the join predicate, and a count can be used to calculate the
metric. When the vector is long, the number of tuples in the
window is large and the UDF is complex, the evaluation of
the metric can be very time consuming.
Example 2: Multimedia objects, such as camera images
of sensitive areas, can be collected in real-time as stream
tuples. One common operation for monitoring is calculat-
ing the correlation of two or more such image streams to
find matching objects. Such correlation can be captured by a
similarity matrix with distances between any pair of images.
A window-based MJ operator with a UDF, which calculates
the difference between two images, can be used to achieve
this. When the image is large, the UDF (e.g. pixel based
matching algorithm) can be very expensive to evaluate.
Example 3: On the Internet, files with similar content yet
with distinct descriptions and meta-data are frequent. Some
examples are: forwarded identical hot posts/news with differ-
ent titles and authors, redundant files with different names
sent from malicious clients, duplicated copies of hot down-
loads with different URLs. A publish/subscribe system that
wants to detect and then remove these duplications can em-
ploy a window-based MJ operator with a UDF, which com-
pares two files, as the join predicate. Since the files could be
large and the time interval (i.e. the window) might be large,
such MJ operator can be resource intensive.

These stateful MJs tend to dominate critical resources
such as memory and CPU. When facing high-volume in-

299

put streams, the in-memory processing may at times be
beyond the capacity of a single machine [9]. Resorting to
a shared-nothing cluster has been recognized as one of the
most practical solutions [1], without violating either the re-
sult accuracy or the real-time response requirements.

In this paper, we focus on distributed processing of generic
MJs with arbitrary join predicates, especially for MJs with
expensive join probing cost over large window constraints.

The basic distribution techniques used in database sys-
tems can be classified as pipelined and partitioned paral-
lelism [11]. By streaming the output of one operator into the
next operator, the two operators can work in series, termed
pipelined parallelism. By partitioning the input data among
multiple processors, an operator can be instantiated as many
independent instances each working on a part of the data,
termed partitioned parallelism. However direct application
of these distribution methods is not effective for distributing
MJs with arbitrary join conditions.

For pipelined parallelism, the MJ operator must fit into a
single machine, which is not always feasible with large win-
dow constraints and high volume input streams. Though,
we could translate an MJ operator into a join tree com-
posed of a sequence of smaller binary join operators, such
method would lose the flexibility of join orderings, which
is extremely needed for MJ processing in dynamic environ-
ments [22]. Moreover such join tree distribution will scale
to at most k − 1 machines for a k-way MJ operator, while
machines available may be much more than k.

Partitioned parallelism only supports equi-joins, since it
requires some hash function for disjoint partitioning of tu-
ples. For non-equi-joins, value-based data partitioning can-
not be applied without potentially huge data duplication [9],
which may abuse memory and cause increased data shipping
and processing costs. Moreover, data partitioning [16] as-
sumes that every partition is small enough to be processed
by one single machine. This assumption may not always
be valid or could rapidly be violated at run-time, especially
when processing skewed data.
Our Approach: We propose a novel MJ operator distribu-
tion scheme called Pipelined State Partitioning (PSP). PSP
separates a macro MJ operator into a series of smaller MJ
operators by time-slicing of the states. The sliced MJ oper-
ators are connected in a virtual ring architecture. It slices
the states into disjoint slices in the time domain, and then
distributes these fine-grained state slices among processing
nodes in the cluster. Also, due to pipelining, the workload
to process every input tuple is distributed to multiple nodes.
Thus not only the throughput is increased, but also (which is
more important) that the processing time of each input tu-
ple is reduced with more processing power involved. Differ-
ent from traditional plan-based pipelined parallelism, whose
parallelism is bounded by the longest sequence of operators
in the query plan, PSP instead enables the optimizer to split
the MJ to any number of state-sliced MJ operators.

In this paper, a cost-based optimizer is developed to achieve
the optimal state slicing and allocation in terms of query re-
sponse latency. Runtime adaptive state relocation is also
proposed for achieving load balancing and re-optimization
in a fluctuating environment.

Compared to existing work on distributed generic MJ pro-
cessing in [9], the PSP scheme has the following benefits:
1) no state duplication and thus no repeated computations
during PSP distribution; 2) pipelined processing in a cluster

to achieve not only high throughput but also low response
time; 3) arbitrary number of sliced operators at the opti-
mizer’s will to achieve optimality with given statistics; and
4) controllable adaptive state partitioning and allocation in
the time domain.
Our Contributions:

• We introduce the novel ring-based MJ time-slicing ar-
chitecture with a proof of correctness.

• The basic PSP model and its extension are discussed
in detail.

• The PSP ring is analytically evaluated and tuned based
on a cost model.

• The runtime slice allocation and relocation are pro-
posed for adaptive load diffusion.

• The proposed techniques are implemented and evalu-
ated in the CAPE DSMS. Results of performance com-
parison of our proposed techniques with state-of-the-
art strategies are reported, confirming the superiority
of PSP.

Organization of Paper: The rest of the paper is organized
as follows. Sections 2 and 3 define the problem tackled. Sec-
tion 4 introduces the PSP distribution scheme. Sections 5
and 6 present the cost based analysis and cost based run-
time adaptive optimization. Section 7 compares PSP with
other generic join distribution schemes. Section 8 reports
the experimental results. Section 9 contains related work
while Section 10 concludes the paper.

2. PROBLEM DEFINITION
In this paper we tackle the problem of scalable processing

of multi-way joins (MJ) having expensive join predicates
(usually UDFs) in a share-nothing cluster with a Gigabit
network. The objective is to minimize the response time
and reduce state memory costs even when faced with high-
volume streams with huge windows. We present our ap-
proach using time-based windows. Our techniques can be
applied to count-based window as well.

We assume that the timestamps of stream tuples are glob-
ally ordered [6]. Sliding windows [4] define the scope of the
otherwise infinite streams for stateful operators. The out-
put of an MJ on data streams S1, S2, ..., Sm with window
constraints W1, W2, ..., Wm and join predicate θ consists of
all joined tuples (s1, s2, ..., sm), such that T − Tsi < Wi

(∀i ∈ [1, m]) and θ(s1, s2, ..., sm) hold [5]. Here Tsi denotes
the timestamp of tuple si and T denotes max(Tsi),i ∈ [1, m].
The timestamp assigned to the joined tuple is T .

In [5, 22] the non-blocking multi-way symmetric join al-
gorithms with flexible join orderings are introduced. Our
proposed approach inherits this flexibility of customized join
orderings to assure high performance. Clearly, selection of
efficient join orderings is orthogonal to our focus, and any
algorithms in [5,22] could be used for this purpose.

3. STATE-SLICING FOR MULTI-WAY JOINS
Similar to slicing the window states along the time di-

mension for sharing the computation of aggregates [12] and
binary joins [23], we now slice the states for pipelined exe-
cution of a multi-way join in the time domain.

300

Our work is related to the state-slicing concept presented
in [23]. In [23], the state-slice concept is used for efficientsharing
of binary join queries with different window lengths in a cen-
tralized query engine. The correctness of rewriting a binary
sliding window join into a state-slice join chain is guaranteed
by the pipelined execution of the input tuples. We propose
to explore this property for distributed processing of MJs in
a cluster, which is asynchronous in nature.

Applying state-slicing concept for MJ operator faces new
challenges since the optimal join orderings must be pre-
served. Intuitively, by first converting an MJ operator into a
binary join tree, the binary state-slice method can be reused
in a naive way to process MJs. A binary join tree implies
a fixed join ordering for all input stream tuples, which may
be sub-optimal compared to the flexible join orderings in a
holistic MJ operator [5]. Also, a binary join tree is rather
rigid for runtime join ordering re-optimization, when the
stream characteristics have changed.

Alternatively, directly applying the binary state-slicing
method to MJ operators faces several problems, as explained
below with an example. Assume that the MJ to be processed
is a 4-way join A ./ B ./ C ./ D and n state-sliced join op-
erators, J1 to Jn, are connected in a chain structure. The
state for each stream in the MJ is partitioned into n parts,
denoted as (A1, ...An), (B1, ..., Bn) and so on. Thus sliced
join Ji (1 ≤ i ≤ n) will hold the sliced states Ai, Bi, Ci and
Di. For one incoming tuple a from stream A, all the sub-join
tasks a ./ Bi ./ Cj ./ Dk, (1 ≤ i, j, k ≤ n) must be con-
ducted to generate the complete joined results. Without loss
of generalization, consider one sub-join task with k ≤ j ≤ i,
then first a ./ Dk must be conducted at Jk, since the sliced
state Dk is held only at Jk, which is ahead of Ji and Jj in
the chain. Similarly, (a ./ Dk) ./ Cj then is conducted at Jj

and so on. That is, the join ordering (A → D → C → B) is
determined here by the ordering of the i, j, k in each sub-join
task, but not by the plan optimizer. Actually every possible
join ordering is used to process certain sub-join tasks, since
the order of i, j, k is arbitrary. Such join orderings certainly
are not optimal. The benefit of holistic MJ processing is lost
and the join performance may be significantly decreased.

ssss

Node1 Node2 Nodei Noden

……
1 2 i

……
n

S Data Source

BA C

…… ……

State A: [wi-1,wi]

State B: [wi-1,wi]

State C: [wi-1,wi]

A[wn] B[wn] C[wn]

The Ring

U Data Sink

Figure 1: Ring-based Query Plan with Multi-way
State-slice Joins.

To inherit the merit of holistic MJ processing with optimal
join orderings, we propose a ring-based query plan execution
framework for multi-way state sliced join processing. Fig. 1
shows the logical ring-based query plan with an example of
n (3-way) state sliced joins. Intuitively, selection of the join
orderings is independent from the locations of corresponding
sliced states for a sub-join task, since the ring structure can
bring tuples back to the entry. In the rest of this paper we

will use M or m to denote the number of input streams and
N or n to denote the number of sliced joins.

PSP is designed to distribute the potentially huge state
of the MJ operator to all the processing nodes and conse-
quently render balanced CPU load diffusion. The adaptive
workload balance is achieved by dynamic setting the win-
dow ranges of the sliced joins at runtime. We discuss the
runtime ring plan adaptation in Section 6.

4. THE PSP EXECUTION MODEL
Naturally the time-based operator partitioning provides

a novel scheme for distributed processing of expensive join
operators. The logical pipelined state partitioning (PSP)
model is introduced here while cost-based deployment of the
scheme in a cluster is discussed in Section 5.

4.1 State-Slice Ring with Life Control
The logic ring model of PSP in Figure 1 corresponds to

a series of multi-way state-sliced join operators connected
in a ring structure. Besides stream inputs and output of
joined results, each state-sliced join also has special input
and output for pipelined propagation of intermediate results.

Definition 1. A multi-way state-slice join operator Jm

on data streams S1, S2, ..., Sm is denoted as S1[W
s
1 , W e

1]
m
./

S2[W
s
2 , W e

2]
m
./ ...

m
./ Sm[W s

m, W e
m], where the superscripts s

and e denote the start and end of the window constraints.
The joined results of Jm for arrival tuple si consist of all
tuples (s1, s2, ..., sm), such that W s

j ≤ Tsi − Tsj < W e
j , for

all j ∈ [1, m], j 6= i.

A pipelined state-slice join ring is composed of multiple
state-slice join operators on the same data streams. The
states of the connected joins have abutting window ranges
for each input stream. The slice join having the W s = 0 in
the ring is called the head of the ring and the one having the
largest end window is called the tail of the ring. Since the
window ranges of sliced joins in the ring are non-overlapping,
the whole states are partitioned disjointly.

Stream A
Window =18

Stream B
Window = 12

Stream C
Window = 20

…

…

…

Current Timestamp Window Sliding Direction

Node 1 Node 2 Node 3 Node 4 Node 5

Figure 2: Snapshot of Runtime State Deployment
in the Ring-based PSP.

Figure 2 shows a snapshot of the state partitioning and
physical deployment for an example 3-way join on stream
A, B and C in a 5-node cluster. Each stream has unique
window size and the current sliding windows are illustrated
with colors. The state of each stream is partitioned disjointly
and deployed to nodes 1 to 5. The state deployment can be
very flexible: the ring connections and thus the ring lengths
could be different from each other.

301

The PSP execution model includes three closely coupled
components to produce complete but not redundant join re-
sults, according to the semantics of the multi-way sliding
window join. They are: (1) coordinated state maintenance
among the sliced join operators in the ring to ensure state
consistency; (2) propagation and processing of the interme-
diate results for correct and complete join results; (3) exe-
cution control to avoid infinite looping of tuples in the ring.

The join processing among multiple nodes needs coordina-
tion to ensure data consistency. However synchronization in
a large cluster is expensive, especially when synchronization
needs to be invoked for every input stream tuple in our case.
In our PSP model, we make a special design that achieves
implicit synchronization based on the FIFO network trans-
mission model. The execution process of each node is solely
driven by the tuples in the input network connection. Thus
each node can run independently without other synchroniza-
tion mechanism.

We first discuss the coordination among multiple nodes
for processing single input stream tuple. Then we will show
how the head node “knows” the end of processing cycle for
each current input tuple. Thus the sequential processing of
the input tuples can be synchronized and pipelined in the
ring. PSP with interleaved processing is discussed later in
Section 4.4.
Coordinated State Maintenance.

In [23] two representatives for each input tuple, build tuple
and probe tuple, are used with distinct assigned responsibil-
ities. Build tuples will be inserted into the states of the join
operators and will stay there until being purged. The probe
tuple instead will be propagated for probing corresponding
states. In the ring structure, the build tuples will “move”
from the head node towards the tail node steadily. The cor-
responding probe tuple will be used for state purging and
join probing. The following example shows how each node
processes state insertion and purging.

Example: Suppose at time t, tuple at arrives and then
two copies ab

t (build) and ap
t (probe) are made. Tuple ab

t

is inserted into the current state (ab
t , ab

j, ..., ab
i+1, ab

i ,a
b
i−1),

ordered decreasingly by the timestamps. Suppose ab
i and ab

i−1

are the only tuples out of the current window range, the state
will be (ab

t , ab
j, ..., ab

i+1) after purging by ap
t and the output

queue now is (ap
t ,a

b
i ,a

b
i−1). Consequently, ab

i−1 and ab
i will

then be inserted into the state of the next join operator and
then ap

t will purge and probe them in the next node.

Property 1. For any node with a state sliced window
[W s

i , W e
i] on input stream i, before a probing tuple p with

timestamp Tp is processed at this node, all build tuples from
stream i with timestamp Ti satisfying W s

i ≤ Tp−Ti have been
inserted into the state of stream i at this node. After purging
by tuple p, only tuples with timestamp W s

i ≤ Tp − Ti < W e
i

stay in the state.

The proof of Property 1 is straight-forward since the prob-
ing tuple is placed behind all purged tuples in the input
queue. Property 1 is guaranteed with the FIFO property
of the network connections between processing nodes. The
state maintenance at each node is coordinated with every
probing tuple. Thus even the state maintenance processes
will not happen at the same time in all the nodes, the state
can still be consistent in terms of join probing process after
finishing of the state purging by the probing tuple.

Coordinated state maintenance achieves maximum loose
synchronization in the cluster. That is, the state synchro-
nization is postponed as long as possible until right before
the join probing process. Also this coordination involves no
extra network messages since the probing tuples have to be
propagated for join probing purposes anyway. Compared to
brute force broadcasting, the probing tuples are propagated
step-by-step along the ring. Extra delay comes from the
purging of the state tuples in each node. However since the
states are in memory and sorted (or indexed) by timestamps,
such cost is very small.
Intermediate Result Propagation and Processing.

Intermediate results are propagated along the ring to probe
the next state in the join orderings. We use only one rep-
resentative, the probing tuple, for the intermediate result
tuples since there is no state holding intermediate result.

For an M -way sliding join, the number of types of possible
intermediate results is O(2M). We cannot afford a distinct
network connection for each type of intermediate result when
M is large. Instead, all intermediate results are transmitted
in one connection and the intermediate result schema (piggy-
backed) is used to identify the types. Also the schema is used
to determine the next state to join with the intermediate
result.

An intermediate join result schema is denoted as (I1, I2, ...,
IM), where Ii can be a stream “Si” or null “−”. Given a set
of optimal join orderings, exactly one state exists for each
input tuple and intermediate result to probe. We show how
the intermediate result is propagated and how the joined
result is generated using an example below.

Example: Consider a 4-way join A ./ B ./ C ./ D with
the join ordering C → B → A → D for the tuples from
stream C. The join result (ai,bj,c,dk), where i, j, and k
(without loss of generality, assume i < j < k) denotes the
serial number of nodes (1 to N) in the ring holding the cor-
responding state, is formed as follows. Tuple c is propagated
to Jj first to probe the B state, and it generates the inter-
mediate result (−,bj ,c,−). Then the intermediate result is
propagated along the ring to join with all the sliced A states.
Thus (ai,bj,c,−) is generated when the intermediate result
reaches Ji. Since i < j, this propagation passes through the
ring head. Then the newly generated intermediate result will
be propagated to Jk to finish the join probing. No passing
through the ring head is needed since i < k.

In the worst case, (M − 1)N hops of intermediate prop-
agations are needed for an M -way join evaluation using a
sliced join ring of length N . This, potentially causing long
response time, motivates the cost-based PSP optimization
(see Section 5).
Life Span Control in the Ring.

The purpose of life span control is: (1) dropping the input
stream tuples and intermediate result tuples out of the ring
at the right time to avoid generating incomplete or redun-
dant join results; and (2) identifying the end of the process-
ing cycle of current input stream tuple at the head node.

Since at any time the states are disjunctively sliced among
the processing nodes, then each probing tuple (either input
stream tuple or intermediate result) needs to be propagated
along the ring exactly one round. To achieve this, every
sliced join operator assigns its unique node ID to the inter-
mediate result tuples it generates. When the tuple reached
the same operator again after one round propagation along
the ring, the tuple is dropped from the system.

302

Since the processing of the next stream tuple at the head
node may cause state shifting along the ring (see 4.4 for
interleaved PSP), to ensure the correctness the head node
needs to know when the current processing at all nodes is
finished. We design a special scheme to synchronize the
sequential processing of stream tuples in the cluster.

A special END flag is used to mark the last intermediate
result tuple with a certain schema generated at the head
node. Initially, the END flag is set on the last intermedi-
ate result tuple generated by probing with the input stream
tuple. A future END flag is set on the last intermediate
result tuple generated by probing the previous END tuple.
The previous END tuple is dropped according to life span
control. Thus at any time, there is one and only one END
tuple in the ring. Refer to Figure 3 for detailed steps.

Property 2. The END tuple of a certain schema Schi is
the last intermediate result tuple processed at the head node
having the schema Schi.

Proof: Proof by induction.
(1)Base Case: Without loss of generality, assume state of

stream S is the first one in the join ordering for input tuple
t. The state of S is sliced and distributed in the PSP ring
as S1, S2, ..., Sn. The first END tuple e1 is the last tuple in
the output of t ./ S1. At any node i (1 < i ≤ n) in the
ring, tuple t is processed before e1, since propagation of t is
before probing with t at all the nodes. Thus t ./ Si (if any)
will appear before e1 in the input queue of the head node.

(2) Induction: Since ej is the last one processed by the
head node having a certain schema, the next END tuple ej+1

will be processed after all other intermediate result tuples
of the same schema as ej+1. This is ensured by the FIFO
processing sequence along the ring.

When the head node sees this END tuple again, it knows
all the intermediate results with this schema have been pro-
cessed by all the nodes. Thus we have:

Theorem 1. For each input stream tuple, the processing
cycle is ended by the processing of its (M − 1)th end tuple
at the head node for an M-way join.

Using Property 2, Theorem 1 can be proved directly.
Broadcasting intermediate results to all the nodes at the

same time would be easy but needs synchronization among
nodes. Instead our pipelined propagation of the intermedi-
ate result guarantees synchronization without extra message
processing.

4.2 Execution Algorithm and Time Line
The sliced join execution algorithm is composed of four

primitives: insert, cross-purge, propagation and probe, de-
noted as in(state), cp(state), pg(op) and pb(state) respec-
tively. In an m-way sliced join of streams S1, S2, ..., Sm,
the execution steps for a newly arriving tuple t in sliced join
number opi are shown in Fig. 3. We define the ID of the
intermediate result generated by opi as the number i.

Fig. 4 illustrates the execution time line in a four node
cluster (each node holding one sliced join operator) for a
3-way join operator processing arrived A tuple. The ac-
cumulated input queue content is also shown for node M2

and M3. Assume the optimal join ordering for A tuples is
A → B → C. When tuple a arrives at node M1 at time 0,

If the tuple t is a build tuple from stream Sj ,

1-1. Insert: t.in(Sj
i).

If the tuple t is a probe tuple from stream Sj ,

2-1. Purge: t.cp(Sl
i), 1 ≤ l ≤ m. If opi is the tail op, drop purged

tuples; otherwise propagate purged tuples to opi+1.
2-2. Propagate: If opi is the tail op, drop t; otherwise t.pg(opi+1).

2-3. Probe: Ii = t.pb(Sl
i), Sl

i is the state of the next stream in
the given join ordering. Ii is the intermediate result with ID i.
For head node, mark the last tuple in the intermediate result as
the END tuple (If the probing has no output, a Null END tuple
is generated).
2-4. Propagate: Send Ii with Ii.pg(opi+1).

If the tuple t is an intermediate result tuple,
3-1. Propagate: If ID 6= i, t.pg(opi+1), otherwise drop t.

3-2. Probe: Ii = t.pb(Sl
i), Sl

i is the state of the next stream in
the given join ordering. Ii is the intermediate result with ID i.
For head node, if tuple t is marked as the END tuple and ID = i,
mark the last output tuple as the new END tuple (If the probing
has no output, a Null END tuple is generated).
3-3. Propagate: If Ii is final joined result, send out. Otherwise
send Ii with Ii.pg(opi+1).

Figure 3: Execution Steps of Sliced Join opi

Drop (a B4)

(a B4) C1

(a B1) C2

M1

M2

M3

M4

0

a B1

a B2

a B3 (a B1) C3

a B4 (a B2) C4

(a B4) C3

(a B1) C4 (a B4) C4

Drop a

(a B3) C1 (a B2) C1 (a B1) C1

(a B4) C2 (a B3) C2 (a B2) C2

Drop (a B1)

(a B3) C3(a B2) C3

Drop (a B2)

Drop (a B3)

(a B3) C4

t1 t2 t3 t4

Input Queue of M2

Input Queue of M3

a
a B1

a B4

a B3

a B2

Figure 4: Execution Time Line of the PSP

first a build tuple ab is made and ab.in(SA
1) is called. Then

the probe tuple ap is used to purge and probe state B, i.e.
ap.cp(SB

1), (ap.cp(SB
1)).pg(M2) and ap.pb(SB

1) (done at time
t2). The intermediate result is send to M2 to join with the
states of C and eventually sent back to M1 to join with SC

1 .
M2 will receive the probe tuple of a at time t1 and follow the
same execution steps as M1. The intermediate result I1 will
arrive at M2 following tuple a and will be processed next by
M2. Then same steps are followed by M3 and M4. At time

303

t4, one period of execution is finished. All the probe tuples
and intermediate results are dropped after going through the
ring. The next input stream tuple can be processed after t4.

Theorem 2. The union of the join results of the sliced
joins in the PSP ring is equivalent to the results of a regular
multi-way sliding window join.

Proof Sketch:
No missing results. From Property 1, the state slices are
maintained consistently before any join probing. From The-
orem 1, all state slices are probed before the end of pro-
cessing cycle. The pipelined probing after a full round is
guaranteed to cover all the corresponding states need to be
probed.
No extra results. Before any join probing, all the windows
boundaries of the states are maintained consistently. All the
probings are valid.
No redundant results. Property 1 guarantees that the win-
dow boundaries of the states are satisfied before probing.
Thus the states are maintained disjointly in terms of prob-
ing. No redundant probing is conducted.

4.3 Network Cost Estimation of PSP
Compared to the centralized execution of an MJ oper-

ators, our PSP may suffer from potentially huge network
transmission costs. Here, we will describe how the total net-
work cost is.

For simplicity, we first assume the join selectivities are
the same for all join probings, denoted as S./. And the
window sizes are the same for all the streams, denoted as
W . For an M -way join processed on a PSP ring, the total
number of intermediate results with unit stream arrival rate
is S./W +S2

./W 2+...+SM−1
./ W M−1 ≈ SM−1

./ W M−1 for large
S./W .

Having N hops in the PSP scheme, the total network cost
for intermediate result transmission is SM−1

./ W M−1N . In
practice, since M is usually small, the network cost may not
be huge. Put differently, the size of the join results that
have to be transmitted to the end application in any case,
is O(SM

./ W M). That is, the extra network traffic caused by
PSP for the intermediate result transmission is N

S./W
times

as that for transmitting final join results alone, which is
small for large S./W . When the join selectivities are dra-
matically different from each other, our scheme will employ
the optimal join ordering to minimize the size of intermedi-
ate results. The above claim still holds.

However, the extra network cost is high when S./W ¿ N .
There is a major tradeoff in the PSP scheme considering the
length of the ring and the extra network cost. The optimal
length of the ring is discussed in Section 5.

Also the network transmission time in the PSP scheme will
overlap with the concurrently processing time on the nodes
(see Fig. 4), which further reduces the impact of network
latency.

4.4 PSP with Interleaved Processing
In the PSP scheme shown in Fig. 3, interleaved tuple pro-

cessing is prohibited to assure consistent maintenance of the
states in the basic PSP model. Since the performance of the
ring is determined by its slowest processing node, this may
cause long idle periods. We thus extend PSP by means of a
delayed purge strategy, called PSP-I.

The processing of the next stream input tuple will cause
insertion and purging of the states. To avoid state mess-up,
every processing node maintains a list of active StateStarts
and StateEnds pairs. Each pair marks the corresponding
states for one of the currently being processed tuples in the
system. Instead of purging the states and removing purged
tuples before probing, the StateEnds are used to mark the
ends of states. The real state purging is postponed until no
further probing requires the state anymore.

Although the purged state tuples are not physically deleted
from the current node (they are just virtually marked as ex-
pired in some sense for a given tuple), they are propagated
to the next processing node. During the join probing, only
the part of the state within the appropriate StateStarts and
StateEnds range relevant to the given tuple is used to join
with the incoming tuple. The StateStart and StateEnd pair
is expired and removed from the state when the correspond-
ing END tuple is processed, because the later indicates that
the tuple has successfully already visited all its join part-
ners. The purge step 2-1 in Fig. 3 is now changed as shown
in Fig. 5.

2-1. Purge:
2-1-1. Init: Init a pair of StateStart and StateEnd.
2-1-2. Mark: Mark the states.
2-1-3. Propagate: Propagate purged tuples to opi+1 (not tail) or
drop them (tail).
2-1-4. Delete: If the StateEnd has the smallest timestamp in the
list, remove tuples older than the StateEnd.

Figure 5: Purge Steps with StateStart and StateEnd
in nodei, 1 ≤ i ≤ n

The interleaved processing of stream tuples induces some
duplicated states among neighboring sliced operators due
to the postponed deletion. In our implementation, we set
a threshold to limit the number of concurrently processed
stream tuples in the ring.

5. COST ANALYSIS AND TUNING
In this section, we develop a cost model for PSP and

use it to tune the parameters for different performance ob-
jectives. Our cost model provides the necessary analytical
equations to interrelate the following key parameters of the
PSP model: (1) query parameters, including stream arrival
rates, window sizes and join selectivities; (2) PSP ring pa-
rameter, such as number of nodes in the ring; (3) perfor-
mance measurements, such as average response latency (av-
erage time difference between sending out the joined result
and reading in corresponding stream tuple) and output rate.

5.1 Cost Model
For an M -way join operation S1 ./ S2 .// SM , pa-

rameters for the cost model are given in Table 1.
We assume that the network bandwidth is sufficient here

for our workload. More discussion of network bandwidth
is postponed to Section 5.3. Then we estimate the sending
and receiving latency between processing nodes to be pro-
portional to the number of tuples transmitted. The output
rate is estimated with the assumption that all the process-
ing nodes are 100% busy during the execution. That is, the
input queues of the head operator are never empty. The
output rate under such assumption is the maximum output
rate possible.

304

Table 1: Terms Used in Cost Model
Term Meaning

λi Arrival Rate of Stream i
Wi Window Size of the Sliding Window on Stream i

S./i Join Selectivity for ith probing step
Tj Time spent to join a pair of tuples
Tp Time spent to purge one tuple from a state
Ti Time spent to insert one tuple into a state
Ts Processing latency to send & receive one tuple
Tn One hop network transmission latency
N Number of processing nodes in the ring
M Number of incoming streams
µ Service rate of the PSP ring

We first calculate the processing workload LC for the cen-
tralized join processing of one input tuple and the workload
LPSP for the processing of the same input tuple in the PSP
scheme. The workload indicates the total time needed to
process one input tuple. The workload can be calculated
by summing up the CPU join time, state maintenance time,
network transmission time. We assume an in-memory nested
loop join algorithm is employed. We also assume the opti-
mal join ordering for the input tuple from stream S1 is:
S1− > S2− > ...− > Sm and the processing nodes and the
network connections between them are homogeneous.

LC = Ti + Tp + Tj

∑

2≤k≤M

∏

1≤i≤k−1

λiWiS./i

LPSP = LC + TsN(1 +
∑

2≤k≤M−1

∏

1≤i≤k−1

λiWiS./i)
(1)

The third item for LC is the total join probing cost. The
second item for LPSP is the total transmission cost for the
input tuple and the intermediate results.

For succinctness of the analysis, we simplify the cost model
by assuming λi = λj , S./i = S./j and Wi = Wj . These as-
sumptions can be relaxed without changing the principles of
the cost analysis. Thus:

LPSP ≈ LC(1 +
TsN

λWTj
) (2)

Every LPSP seconds, PSP processes one input stream tu-
ple. Thus the service rate µ (i.e. the number of tuples
processed per second) is given as:

µ =
1

LPSP
(3)

5.2 Cost-based Tuning
Based on the cost model, we perform PSP optimization

for the following two important objectives: (1) given a fixed
stream arrival rate, maximize the system output rate by
tuning the length of the ring; and (2) given a fixed stream
arrival rate, minimize the average response latency by tun-
ing the length of the ring. In the following discussion, we
assume that we have knowledge of the stream parameters
and query parameters (i.e. all terms in Table 1 except µ).
All these parameters are straightforward to measure in an
actual implementation of PSP.
Maximize Output Rate.

In a homogeneous cluster, all processing nodes have iden-
tical CPU power. Assume the output rate for one single
processing node with workload LC is OS . Then the output
rate OPSP in the PSP model with N processing nodes is:

OPSP =
OSN

1 + TsN
λWTj

=
OS

1
N

+ Ts
λWTj

(4)

From Equation 4, as more processing nodes are deployed
in the PSP ring, the output rate increases monotonically.
That is, using more processing nodes will result in higher
output rate.
Minimize Average Response Latency.

To estimate the processing latency of the PSP model, we
consider the average latency for join results from one in-
put tuple. We estimate the latency assuming perfect load
balancing among all processing nodes. That is there is no
bottleneck processing node slowing down the flow along the
ring. Such latency is the minimal latency achievable. The
latency has mainly two parts: join probing and the network
latencies. These two latencies overlap in time during exe-
cution. For each processing node, the balanced workload is
LPSP /N on average. The join results are generated after
total of M rounds of transmission of the intermediate re-
sults along the ring. Thus processing latency τi for node
i, 1 ≤ i ≤ N is:

τi = (i− 1)Tn + max{LPSP

N
, MNTn}

Thus the average processing latency τ is:

τ =
N − 1

2
Tn + max{LC

N
+

TsLC

λWTj
, MNTn} (5)

For clarity, we omit state insertion and deletion delay since
they are one time cost for each input tuple. Such delay is
independent of the number of join results generated.

From Equations 5, we see the response latency is sensitive
to the number of the processing nodes N in the PSP ring.
Intuitively, adding more processing nodes increases the CPU
power. On the other hand, the longer the length of the ring
the higher the network transmission cost. Using standard
calculus methodology, we can find exactly the value of N
that minimizes the average response latency.

The PSP ring has the minimal processing latency when
N = min{N1, N2}, where

LC

N1
+

TsLC

λWTj
= MN1Tn, and

N2 − 1

2
Tn =

LC

N2

The processing latency for each node is decreasing with
larger N , while the network latency is increasing. Both facts
need to be considered for the optimal ring length with min-
imal processing latency.

5.3 Network Bandwidth Requirement
Here we estimate the network bandwidth needed for the

above cost-based tuning. Ideally the network should be
“fast” enough to catch the speed of join processing in each
node. The network transmission time is covered by the join
probing time when every node never waits for the arrival of
new stream tuples. That is, the network transmission time
should be shorter than the processing time of one probing
tuple. Thus the upper-bound network bandwidth Band can
be estimated as below.

305

Band ≥ Tuple Size

Tj min
1≤i≤M

{λi
Wi
N
} (6)

When insufficient network bandwidth is available, signifi-
cant network transmission cost, which is proportional to the
number of total intermediate results, will be “visible”. In
practice, Equation 6 should be kept satisfied.

5.4 Initial State Slicing
When the arrival rates and sliding window sizes are differ-

ent for each input stream, naturally the optimal ring lengths
would be different for individual stream. The problem of
achieving global optimal lengths of rings is much harder
than the simplified case discussed previously. In fact the
search space is exponential since the optimal lengths of the
PSP rings are correlated with each other. Thus searching
for the optimal initial state slicing is expensive and may not
be worthwhile, especially for stream processing in a high
dynamic environment. Instead we use following heuristic to
achieve a sub-optimal state slicing.

We first sort the streams by λiWiS./i in ascending order.
Here the S./i denotes the average join selectivity between
stream i and other streams in the join graph. Then the
optimal lengths of rings are calculated in the order of the
sorted list of streams. In the calculation, if the length of
the ring for certain stream is unknown, then current length
is assigned. For example when calculating the length for
stream i and the length for stream j is not available (i.e.
stream j is behind stream i in the sorted list), then the ring
length for stream j is assigned the same as stream i. The
intuition behind this heuristic is that the streams with larger
λiWiS./i in the sorted list have more impact on the total
cost, and should be processed later with more information
of other streams.

5.5 Workload Balancing
In Figure 2 we indicate that the deployment of state sliced

windows may not be even among all the nodes. Since the
PSP is a pipelined execution model, the performance of the
PSP ring is determined by the busiest node in the ring. To
avoid bottleneck node, workload balance must be achieved
for optimal performance.

From Equation 1, the dominant CPU cost for each node is
the join probing cost, which is proportional to the total size
of the sliced states in the node. To balance the workload of
each node, we instead balance the number of state tuples in
every node. Since the state slicing boundaries between adja-
cent join nodes can be performed arbitrarily at optimizer’s
will, the balanced state distribution can be achieved.

6. ADAPTIVE PSP LOAD DIFFUSION
Adaptive workload diffusion is critical for realistic long

running query processing, when stream arrival rates, join
selectivities and etc. change at runtime. In PSP, adap-
tive workload diffusion is achieved by state relocation among
the nodes by setting the corresponding window ranges. We
tackle two major load re-balancing scenarios: workload smooth-
ing among same amount of nodes and state relocation with
more/less nodes. Both adaptations are rather straightfor-
ward and inexpensive to implement.
Workload Smoothing

The runtime stream arrival rates may always fluctuate,
while the overall system is not overloaded. In a homoge-
neous cluster, we initially slice the time-based window ranges
evenly among all the nodes, aiming for balanced workload.
However fluctuating arrival rates will make the workload on
each node unbalanced given fixed window ranges. System
performance is slowed-down by the overloaded node in the
ring. Here we propose that instead a count-based state slic-
ing can be employed to smooth workload. Each sliced join,
except the last one hold by the tail node, has an upper bound
of state size and a count-based state purge is employed when
the state size grows over the threshold. The upper bound is
set periodically according to the given statistics. The cor-
rect semantics of the sliding window join is ensured by the
tail node since it still uses time based state purging.

Such count-based workload smoothing is effective when
the window constraint is large. For small window to be
close to the statistic sampling intervals, the statistics may
not be precise enough.
State Relocation

Adding/removing of nodes is needed when system is over-
loading or ring length is not optimal for response time. Two
approaches for adaptive optimization are proposed: passive
adjustment of the window range and aggressive adjustment
by state relocation.

Passive adjustment aims to relocate the state by setting
the window ranges. Consider an example of adding one node
to a ring has 3 nodes. We assume the states are sliced equally
among the processing nodes N1 to N3 (N4 finally). That is,
the states in each processing node will be changed from W/3
to W/4, with W denoting the window constraint. The state
slices in the original processing nodes N1 to N3 are step-by-
step replaced and shrunk. Finally the new state allocation
with one additional processing node is achieved. Similarly,
node removal can be conducted. The graceful state adjust-
ment induces no extra migration cost. However a long ad-
justment latency may occur for large window size.

Aggressive state slice adjustment migrates part of the
states along the PSP-D ring. Such state relocation needs
to suspend the execution and resume afterward.

To maintain the ring structure, the state slice movement
happens only between adjacent processing nodes. Intuitively,
a new processing node should be inserted into the ring at the
position where the shifted state slice can fill the new node.
That is, assume the ring has N nodes originally and another
M nodes need to be added into the ring, the i−th processing
node from the head node need to move ∆Si = M

N
i − bM

N
ic

state tuples to the next nodes towards the tail node. The
new processing node Nj , 1 ≤ j ≤ M , needs to be inserted
after the processing node Nk, such that k is the minimal
number with M

N
k > j. Fig. 6 illustrates the addition of a

new processing nodes. Similarly, removal of processing node
can be conducted.

The aggressive state relocation involves execution breaks
and state migration during the adjustment. Frequent ag-
gressive adjustment should be avoided.

7. DISCUSSION
[9] proposed two state replication based distributions for

generic MJ operators: aligned tuple routing (ATR) and co-
ordinated tuple routing (CTR). We briefly review these two
approaches and compare them with PSP below.

ATR picks one input stream as the master stream and

306

Head 2nd Node

W/(N+M)

W/N

…

3rd Node ≥W/(N+M)

New Inserted Node 1

<W/(N+M)

…

Tail

New Inserted Node M

…

Figure 6: Aggressive State Relocation.

partitions the master stream among the processing nodes.
All the other slave input streams are distributed to the pro-
cessing nodes with some overlaps, to ensure the semantics
of the window constraints.

CTR is a multi-hop semantics preserving tuple routing
where intermediate join results are transferred among nodes
during each hop. A weighted minimum set covering is uti-
lized to identify the optimal routing for each tuple to “find”
all correlated states.
Memory: The distribution strategies of both ATR and
CTR are based on state (partial) duplication among the
processing nodes. Compared to them, our proposed PSP
approach does not have any duplicated states at any time.

In ATR the segment length T is an important parameter
for the load diffusion. However, the ATR approach works
under the condition that the window constraint W ¿ T .
When W is comparable with T , the memory waste and re-
dundant computation can be significant.

In CTR the number of redundant state is determined by
the minimum set covering at runtime. CTR faces the fol-
lowing dilemma. The more redundant states, the smaller
set covering may exist. Then the incoming tuples will be
stored in fewer nodes, which may make future set covering
large. More seriously, the states in CTR may converge to
one (or a small subset of) node if sometime only one copy
of the input tuples is stored in the cluster, since the future
set covering will direct all later tuples to that node. Then
no distribution is achieved. Unless an optimal insertion al-
gorithm is employed (missing in [9]), which can magically
predict future workload diffusion, the CTR is uncontrollable
and instable.
Synchronization: ATR results in a set of independent
join operators without synchronization. However, CTR does
need synchronization among nodes in different hops for main-
tenance of the states and processing of intermediate results.
The synchronization is missed in [9].
CPU: CPU cost comparison is summarized in Fig. 7. Here
we list only the main factors affecting CPU cost.

Item ATR CTR PSP
Routing Cost Low High Low
Per Segment Metadata No Yes No
Duplication Removal No Yes No
Load Balancing Granularity Large Small Small
State Management Cost High High Low
Adaptation Cost Unknown Unknown Low
Network Transmission Low Middle High

Figure 7: CPU Consumption Comparison

The CTR employs a complex routing algorithm to deter-
mine the optimal routes for each segment of input streams.
Such routing cost is per segment cost and may be signifi-

cant with fine-grained segments. On the contrary ATR and
PSP do not require routing by using one hop computation
and fixed routing respectively. The routing information and
other metadata must be attached to each segment to ensure
the correctness in CTR, while no such requirement exists
for ATR and PSP-D. Similarly the CTR needs extra work
to avoid generating duplicated results while the other two
will not generate duplication in the first place. ATR and
CTR approaches have duplicated states and thus the state
management costs are much higher than PSP.

The disadvantage of PSP is that the network transmission
cost may be larger than ATR and CTR, since all input tuples
and intermediate results need to be sent along the ring.

8. PERFORMANCE STUDY

8.1 Experimental Settings
Distributed Join Algorithms. We have implemented the
proposed PSP in a real distributed DSMS system. Exper-
iments have been conducted to thoroughly test the ability
of the proposed solution under various system settings. Our
DSMS is implemented in Java. The PSP ring-based query
plan is formed first and then deployed in the cluster using
the regular pipelined parallelism of the DSMS.

To compare the performance of PSP with other approaches,
we also implement the ATR and the CTR proposed in [9].
For ATR, a special stream data diffusion operator is im-
plemented, who is in charge of generating segments for all
input streams. The data diffusion operator in our ATR im-
plementation has an important parameter, segment length,
for performance tuning. For CTR, the data diffusion op-
erator has a routing table and can calculate routing path
for each input stream tuple. To avoid the uncertainty of the
minimum set cover algorithm, we add one parameter for our
CTR implementation, to enforce the number of copies of the
state tuples in the cluster (this number is set to 2 in [9]).
We also implemented the synchronization of the multi-hop
execution in CTR. That is, no interleaved processing of mul-
tiple input segments is allowed to avoid state shifting caused
by processing a new segment. To avoid the data diffusion
operator to be the bottleneck, it is deployed separately in
one node of the cluster without other join operators.
Query Sets. The MJ operator is used to identify similar
images from different data sources for movement detection.
The join predicate is a UDF which calculates the similar-
ity of two images by comparing their RGB values for each
pixel. The evaluation cost of the UDF is proportional to
the number of pixels of the images. Our experiments use
three different images: small, middle, large corresponding
to images with 5k, 10k and 20k pixels.

Our pixel based UDF for matching images is just one of
many possible image comparison functions. Indeed other

307

more sophisticated functions exist in the image processing
domain. However design of particular functions is beyond
the scope of this paper. Instead, expensive join predicates
are our focus.

A symmetric nested loop join algorithm is used in the
experiments. Each tuple is a byte array having the RGB
values of every pixel in an image. The tuple arrival follows
the Poisson distribution. The stream input rate is changed
by setting the mean inter-arrival time between two tuples.
Evaluation Metrics. We use two measurements in the
experimental study. We measure the runtime memory usage
in terms of the number of tuples in the states of the joins.
We measure the output of the query plan in terms of the
average response latency for the join results.
Platform. All experiments are conducted on a cluster hav-
ing 20 processing nodes and one master node. Each host
has two AMD 2.6GHz Dual Core Opteron CPUs and 1GB
memory. All the hosts are connected by Gigabit private net-
works. Each processing node runs an instance of out DSMS
query processing engine executing one multi-way sliced join
operator. The master node acts as the stream data sender,
which runs a stream generator and diffuses generated tu-
ples to the processing node holding the head operator in the
ring. The master node also collects the join results from
each sliced join as a data sink. Each query processor has
a monitor thread collecting the runtime statistics. All the
experiments start with empty states in operators.

8.2 Experiment 1: Sensitivity Analysis for PSP
In Section 5, we give an analytical cost model showing

the impact of the parameters of the PSP model. In the cost
model, the most interesting part is the relationship between
the length of the ring and the response time. In this exper-
iment, we show the existence of this relationship by vary-
ing the system parameters, including (1) number of ways of
joins as: 3-way, 5-way, 7-way and 9-way; (2) join cost as:
small, middle and large; (3) join selectivity as: 0.05, 0.1 and
0.5; (4) number of processing nodes: 4-19. Here we use a
probabilistic join probing that enables us to control the join
selectivities. The sliding window size is set to be 10 seconds
for all the streams. The input rate is set to 50 tuples/sec
per stream. In all the experiments, the system will run for
600 seconds.

Figures 8(a) and 8(b) show the results for 3-way join with
different join selectivities and number of nodes.

The PSP scheme does not have any duplicated states,
thus the memory consumptions are pretty stable among all
the experiments. The query response latency is sensitive to
the join selectivities and the cluster size, which affect the
number of intermediate join results and join probing respec-
tively. We observe that the average response time increases
for larger join selectivities, since the workload is increased
accordingly. When the cluster size increases, the response
time will not always decrease. Instead, it may even increase
when the size of cluster is too large. In Figure 8(a), the
response time increases after having 14 nodes in the ring
when join selectivity is 0.5. Also this number is sensitive to
the join selectivities since different number of intermediate
result will be generated and transmitted along the ring. For
smaller join selectivities, we expect a large number of nodes
to be optimal in the ring. This is consistent with the cost
analysis of the optimal ring length discussed in Section 5.

8.3 Experiment 2: PSP vs. ATR and CTR
The next set of experiments compare the PSP scheme with

the ATR and CTR solutions. Note that our implementations
of ATR and CTR are on our own code base to assure a com-
parable platform. We aimed to meticulously recreate those
prior methods as described in [9]. Comparison of absolute
performance numbers is not intended, given the different
code base, language, and hardware. Instead, the trends in
the figures are our interest.

Figures 8(c) and 8(d) show the experimental results run-
ning the ATR approach. The join selectivity is set to be 0.1.
We vary the segment size for ATR from 10 seconds, which is
the sliding window size, to 50 seconds. In ATR, correspond-
ing segments of stream tuples are processed at each node.
Thus all the workload to process a single input stream tu-
ple is done by a single node only. The result is that the
average response time will not decrease when adding more
nodes to the system, although the system throughput may
increase. The state memory consumption for ATR is in-
creasing steadily with the number of nodes in the system,
since more duplicated segments are generated and stored in
the states.

Figures 8(e) and 8(f) show the experimental results run-
ning the CTR approach. The join selectivity is set to 0.1.
We vary the number of copies in the CTR approach from 2
to 9. The number of processing nodes is at least 2 times of
the number of copies.

The response time is decreasing when a large number of
nodes are used. This result is consistent with the analysis
in [9] since the CTR is also a multi-hop join scheme. More
nodes in the system will increase the CPU power and de-
crease the processing time. We also observe that more copies
of the states result in larger response time, when the number
of nodes is fixed. This is due to the minimal set cover algo-
rithm. When more copies exist, less nodes will participate
in processing the input tuple and the response time will in-
crease accordingly. The state memory usage is fairly stable
when the number of processing nodes is increased. Also the
memory usage will increase with the number of copies used.

8.4 Experiment 3: Runtime Adaptation of PSP
In these experiments, we compare the response time when

runtime adaptation is turn on and off in the PSP model.
In the middle of the processing, the arrival rate increases
from 50 tuples/sec to 100 tuples/sec. Figures 8(g) and 8(h)
compare the performance of PSP under this change. Clearly
runtime adaptation can make the system much more stable
and robust to the changes.

9. RELATED WORK
Parallel and distributed query processing have been the

focuses of both academia and industry for a long time [7,
8, 11, 21]. Two main categories of parallelism are employed
in the literature: pipelined parallelism and partitioned paral-
lelism. The proposed PSP scheme belongs to the pipelined
parallelism. Superior to the traditional query plan based
pipelining, the PSP scheme has the advantage of employing
an optimal length pipelining at the optimizer’s will.

Distributed stream processing has been considered in re-
cent years for distributed Eddies [19], Borealis [1, 2], Sys-
tem S [10], and DCAPE [14]. For distributed processing of
stateful stream queries, state partitioning [16] has been pro-
posed. State partitioning has the major limitation of only

308

 0

 10

 20

 30

 40

 50

 60

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

(m
s)

Number of Nodes

3Way-PSP-0.05-Small
3Way-PSP-0.1-Small
3Way-PSP-0.5-Small

(a) PSP, Response Time

 0

 200

 400

 600

 800

 1000

 1200

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ta

te
 S

iz
e

Number of Nodes

3Way-PSP-0.05-Small
3Way-PSP-0.1-Small
3Way-PSP-0.5-Small

(b) PSP, State Size

 0

 20

 40

 60

 80

 100

 120

 140

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

(m
s)

Number of Nodes

3Way-ATR-0.1-Middle-10000
3Way-ATR-0.1-Middle-20000
3Way-ATR-0.1-Middle-30000
3Way-ATR-0.1-Middle-40000
3Way-ATR-0.1-Middle-50000

(c) ATR, Response Time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
S

ta
te

 S
iz

e

Number of Nodes

3Way-ATR-0.1-Middle-10000
3Way-ATR-0.1-Middle-20000
3Way-ATR-0.1-Middle-30000
3Way-ATR-0.1-Middle-40000
3Way-ATR-0.1-Middle-50000

(d) ATR, State Size

 0

 100

 200

 300

 400

 500

 600

 700

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

(m
s)

Number of Nodes

3Way-CTR-0.1-Middle-2
3Way-CTR-0.1-Middle-3
3Way-CTR-0.1-Middle-4
3Way-CTR-0.1-Middle-5
3Way-CTR-0.1-Middle-6
3Way-CTR-0.1-Middle-7
3Way-CTR-0.1-Middle-8
3Way-CTR-0.1-Middle-9

(e) CTR, Response Time

 0

 500

 1000

 1500

 2000

 2500

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ta

te
 S

iz
e

Number of Nodes

3Way-CTR-0.1-Middle-2
3Way-CTR-0.1-Middle-3
3Way-CTR-0.1-Middle-4
3Way-CTR-0.1-Middle-5
3Way-CTR-0.1-Middle-6
3Way-CTR-0.1-Middle-7
3Way-CTR-0.1-Middle-8
3Way-CTR-0.1-Middle-9

(f) CTR, State Size

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000

R
es

po
ns

e
T

im
e

(m
s)

Number of Output

(g) PSP with Adaptation

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000

R
es

po
ns

e
T

im
e

(m
s)

Number of Output

(h) PSP without Adaptation

Figure 8: Experiments Results

309

supporting equi-joins, while our target instead is generic
joins. For generic joins, duplicated data partitions in multi-
ple machines are required for hash-based solution.

For distributed processing of generic joins with arbitrary
join predicates, a recent project [9] has proposed two state
replication based approaches. As indicated in Section 7,
such state duplication may abuse large amounts of memory
resources, possibly also causing increased data shipping and
processing costs. Section 7 provides a detailed comparison
between our PSP scheme and their solutions.

The work in this paper is related to the binary state-
slicing concept first presented in [23]. Different from the
chain structure used to connect sliced binary join operators,
all the sliced MJ operators are connected in a virtual ring
architecture. Issues related to the proposed ring based exe-
cution are now tackled in this new work.

There are several existing works for finding optimal join
orderings for multi-way join operators [5, 22]. Our PSP
scheme is clearly orthogonal to this issue. The optimal
join orderings identified by such algorithms can thus be di-
rectly utilized for processing in our proposed PSP distribu-
tion schemes.

Load-shedding [18], approximated query processing [17]
and spilling data to disk [20] are alternate solutions for tack-
ling continuous query processing with insufficient resources.
Approximated query processing [17] is another general di-
rection for handling such situation. Different from these,
we aim to guarantee accurate high-performance processing
and thus focus on distributed processing in a cluster. Those
works are clearly orthogonal to our work, and can be ap-
plied on our solution if the total computation resources of
the cluster are found to be insufficient.

10. CONCLUSION
We present a novel scheme PSP for the distributed execu-

tion of window-based joins with expensive join predicates.
A cost-based analysis of the PSP schemes is conducted con-
sidering response time and memory usage. The experimen-
tal study demonstrates the significant performance improve-
ments achieved by our solution.
Acknowledgements

We would like to thank our anonymous reviewers for their
insightful comments. We are grateful to all the members of
the CAPE team and other DSRG members for their support
and collaboration.

11. REFERENCES
[1] Y. Ahmad, B. Berg, U. Çetintemel, and et. al.

Distributed operation in the borealis stream
processing engine. In SIGMOD, pages 882–884, 2005.

[2] Y. Ahmad and U. Çetintemel. Network-aware query
processing for stream-based applications. In VLDB,
pages 456–467, 2004.

[3] M. H. Ali, W. G. Aref, R. Bose, A. K. Elmagarmid,
A. Helal, I. Kamel, and M. F. Mokbel. Nile-pdt: A
phenomenon detection and tracking framework for
data stream management systems. In VLDB, pages
1295–1298, 2005.

[4] B. Babcock, S. Babu, R. Motwani, and J. Widom.
Models and issues in data streams. In PODS, pages
1–16, June 2002.

[5] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and
J. Widom. Adaptive ordering of pipelined stream
filters. In SIGMOD, pages 407–418, 2004.

[6] S. Babu, K. Munagala, J. Widom, and R. Motwani.
Adaptive caching for continuous queries. In ICDE,
pages 118–129, 2005.

[7] D. DeWitt and J. Gray. Parallel database systems:
the future of high performance database systems.
Communications of the ACM, 35(6):85–98, 1992.

[8] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query
optimization for parallel execution. In Proceedings of
ACM SIGMOD, pages 9–18. ACM Press, 1992.

[9] X. Gu, P. S. Yu, and H. Wang. Adaptive load diffusion
for multiway windowed stream joins. In ICDE, pages
146–155, 2007.

[10] N. Jain, L. Amini, H. Andrade, R. King, Y. Park,
P. Selo, and C. Venkatramani. Design,
implementation, and evaluation of the linear road
benchmark on the stream processing core. In
SIGMOD, pages 431–442, 2006.

[11] D. Kossmann. The state of the art in distributed query
processing. ACM Comput. Surv., 32(4):422–469, 2000.

[12] S. Krishnamurthy, C. Wu, and M. J. Franklin.
On-the-fly sharing for streamed aggregation. In
SIGMOD, pages 623–634, 2006.

[13] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and
J. Turner. Algorithms to accelerate multiple regular
expressions matching for deep packet inspection. In
SIGCOMM, pages 339–350, 2006.

[14] B. Liu, Y. Zhu, M. Jbantova, B. Momberger, and
E. A. Rundensteiner. A dynamically adaptive
distributed system for processing complex continuous
queries. In VLDB, pages 1338–1341, 2005.

[15] V. Raghavan, E. A. Rundensteiner, J. P. Woycheese,
and A. Mukherji. Firestream: Sensor stream
processing for monitoring fire. In ICDE, 2007.

[16] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and
M. J. Franklin. Flux: An adaptive partitioning
operator for continuous query systmes. In Proceedings
of ICDE, pages 25–36, 2003.

[17] U. Srivastava and J. Widom. Memory-limited
execution of windowed stream joins. In VLDB, pages
324–335, 2004.

[18] N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack,
and M. Stonebraker. Load shedding in a data stream
manager. In VLDB, pages 309–320, 2003.

[19] F. Tian and D. J. DeWitt. Tuple routing strategies for
distributed eddies. In VLDB, pages 333–344, 2003.

[20] T. Urhan and M. Franklin. XJoin: A reactively
scheduled pipelined join operator. IEEE Data
Engineering Bulletin, 23(2):27–33, 2000.

[21] P. Valduriez. Parallel database systems: Open
problems and new issues. Distributed and Parallel
Databases, 1(2):137–165, 1993.

[22] S. Viglas, J. Naughton, and J. Burger. Maximizing the
output rate of multi-way join queries over streaming
information. In VLDB, pages 285–296, Sep 2003.

[23] S. Wang, E. A. Rundensteiner, S. Ganguly, and
S. Bhatnagar. State-slice: New paradigm of
multi-query optimization of window-based stream
queries. In VLDB, pages 619–630, 2006.

310

