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ABSTRACT
Publishing microdata raises concerns of individual privacy.
When there exist outlier records in the microdata, the dis-
tinguishability of the outliers enables their privacy to be
easier to be compromised than that of regular ones. How-
ever, none of the existing anonymization techniques can pro-
vide sufficient protection to the privacy of the outliers. In
this paper, we study the problem of anonymizing the micro-
data that contains outliers. We define the distinguishability-
based attack by which the adversary can infer the existence
of outliers as well as their private information from the
anonymized microdata. To defend against the distinguishability-
based attack, we define the plain k-anonymity as the privacy
principle. Based on the definition, we categorize the outliers
into two types, the ones that cannot be hidden by any plain
k-anonymous group (called global outliers) and the ones that
can (called local outliers). We propose the algorithm to ef-
ficiently anonymize local outliers with low information loss.
Our experiments demonstrate the efficiency and effective-
ness of our approach.

1. INTRODUCTION
Recent years have witnessed increasing volume of released

microdata (i.e., data in raw, non-aggregated format). The
release of microdata offers significant advantages in terms of
information availability, which make it particularly suitable
for ad hoc analysis in a variety of domains such as public
health and population studies. However, the release of mi-
crodata raises concerns of revealing private information of
individuals.

There are two kinds of privacy that must be protected:
presence privacy, which is the fact that the record of a spe-
cific individual is present in the released microdata [19], and
association privacy, which is the association between the
individual and his/her sensitive values. Simply removing
explicit identifiers, e.g., name and SSN, has been shown to
be insufficient to protect either kind of privacy [25]. The
existence of quasi-identifiers (QI) attributes, e.g., combina-
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Quasi-identifiers Sensitive
tuple ID Name Age Gender Zipcode Income
1 Alice 20 F 06006 20K
2 Bob 20 M 06011 25K
3 Justin 20 M 06013 120K

4 Carol 30 F 06001 30K
5 Allan 30 M 06010 50K
6 Bill 30 M 06022 2 Billion

7 Ben 40 M 06004 100K
8 Susan 40 F 06002 110K
9 David 40 M 06003 130K

Figure 1: An Example of Microdata; Justin and Bill

are two outliers.

tion of zipcode, gender and date of birth, that can uniquely
identify individuals, enables to reveal the identity of individ-
uals when the released dataset is joined with external public
datasets (e.g., voting registration list). This is called record
linkage attack [25, 23].

Various techniques have been proposed recently to defend
against the record linkage attack. Generalization [25, 23] is
a popular methodology. The idea is that the QI values are
generalized in the way that there are at least k individuals of
the same QI values [23, 24, 25]. An anonymized microdata
table is considered sufficiently protected if it conforms the
defined privacy principle. The existing privacy principles
include k-anonymity [25, 23], l-diversity [17], t-closeness [16],
(α, k)-anonymity [26], (c, k)-safety [18], etc.. Most of them
assume that there is no outlier in the microdata.

1.1 Motivation: Impact of Outliers to Privacy
It is possible that the microdata contains outliers, i.e., in-

dividuals that do not comply with the general pattern of the
population. For example, the microdata in Figure 1 contains
two outliers: Bill, whose income is 2 billion, and Justin, who
is a young pop star with income 120k. In fact, as [4] showed,
many publicly released real datasets do contain outliers 1.
Assume all records are free of input error. Then these out-
liers represent the distinguished individuals in our society.
In practice, the adversary may have better knowledge of
these distinguished people than regular ones (e.g., we know
more about Bill Gates’ wealth than our neighbors’). Indeed,
even with the simplest knowledge as whether a specific in-

1A list of outliers in US Census data is available on
http://www.isle.org/∼sbay/papers/kdd03/
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Age Gender Zipcode Income
20 * [06006, 06013] 20K
20 * [06006, 06013] 25K
20 * [06006, 06013] 120K

30 * [06001, 06022] 30K
30 * [06001, 06022] 50K
30 * [06001, 06022] 2 Billion
40 * [06002, 06004] 100K
40 * [06002, 06004] 110K
40 * [06002, 06004] 130K

Age Gender Zipcode Income
[20, 30] * [06001, 06011] 20K
[20, 30] * [06001, 06011] 25K
[20, 30] * [06001, 06011] 30K
[20, 30] * [06001, 06011] 50K
[20, 40] * [06002, 06013] 100K
[20, 40] * [06002, 06013] 110K
[20, 40] * [06002, 06013] 120K

[20, 40] * [06002, 06013] 130K

(a) A bad anonymization scheme that (b) A bad anonymization scheme that
shows requiring lowerbound of income range shows requiring upperbound of income range

cannot hide the outlier Justin. cannot hide the outlier Justin.
Bill’s record is removed.

Figure 2: Examples of Bad Anonymization.

dividual is an outlier or not, the adversary may be able to
re-identify him/her from the k-anonymous datasets. For ex-
ample, in Figure 2 (a), from the first group that contains
income [20K, 120K] for people of age 20, the adversary can
easily infer that there must exist a young person whose in-
come is unusually high compared with other young people,
i.e., there must exist an outlier. If he/she knows that Justin
is an outlier and he is the only candidate whose informa-
tion matches the quasi-identifier values of this group (i.e.,
age=20, male, Zipcode∈[06006, 06013]), he/she can explic-
itly re-identify Justin with his income 120k. This example
shows that with the outlierness as a bit of additional ex-
ternal knowledge, both the presence and association privacy
of the outliers are easier to be attacked compared with the
regulars. Unfortunately simply removing these outliers may
cause high information loss (as shown in Section 8). Thus
it is necessary to protect the peculiarity of outliers so that
they can be safely hidden in the crowd. Unfortunately, none
of the existing privacy-preserving data publishing work ever
considered outliers and the possible threats to their privacy
due to their distinguishability.

In this paper, we consider numerical sensitive values (e.g.,
income). We assume the “abnormality” of the outliers in-
volves these sensitive values. Recently some privacy preserv-
ing work has been done on numerical sensitive values (e.g.,
[30], [15]). Most of them define a lowerbound of the range
size for the sensitive values in the same group (i.e., the group
that contains the tuples of identical quasi-identifier values),
so that the adversary cannot conclude with high probability
that the sensitive values fall into a small interval. However,
requiring the lowerbound of the range of the sensitive val-
ues alone is not sufficient to protect the privacy of outliers.
For instance, in Figure 2 (a), the range of income for peo-
ple of age 20 is [20K, 120K], which definitely conforms the
“large range” requirement by both [30] and [15]. However,
we have shown above that the adversary still can disclose
Justin’s record. Indeed, since outliers are far from the regu-
lars, anonymizing outliers together with normal tuples will
likely result in the sensitive values in the same groups are of
the range size that is too large, which may catch the adver-
sary’s attention.

A seemingly straightforward approach to hide the distin-
guishability of outliers is to further define an upperbound
of the range size for the sensitive values in the same group.

Age Gender Zipcode Income
[20, 40] * [06002, 06010] 20K
[20, 40] * [06002, 06010] 50K
[20, 40] * [06002, 06010] 100K
[20, 40] * [06002, 06010] 110K
[20, 40] * [06001, 06013] 25K
[20, 40] * [06001, 06013] 30K
[20, 40] * [06001, 06013] 120K

[20, 40] * [06001, 06013] 130K

Figure 3: A good anonymization scheme that hides

Justin’s record; Bill’s record is removed.

For instance, with the requirement that the range size of the
sensitive values in the same group must be in the range [30k,
60K], instead of grouping with people of similar age (shown
in Figure 2 (a)), Justin’s record is grouped together with
those of similar income (Figure 2 (b)2). The income range
[100K, 130K] is of size 30K, which satisfies the size require-
ment. However, with the age range [20, 40] for this income
range, the scheme still reveals the fact that there must exist
a young outlier who has abnormally higher income (at least
100K) than the other young people. Therefore, the “good-
ness” of the anonymization cannot be achieved by simply
controlling the lowerbound/upperbound of the range size of
the sensitive values in the same group.

Both anonymization schemes in Figure 2 (a) and Figure 2
(b) fail to protect the privacy of Justin because they reveal
some “abnormality”. Such abnormality of the anonymiza-
tion groups is mostly likely caused by the presence of out-
liers in the groups. Based on this, from the anonymized
groups that bear irregularity, the adversary may be able
to infer the existence of outliers in the anonymized groups,
and further disclose the privacy of outliers. Therefore, a
good anonymization scheme that can hide outliers must be
the one that behaves “normally”. Figure 3 shows such an
example. The group that matches Justin’s quasi-identifier
values does not infer that there must exist a young person
who has abnormally high income than the other peers, thus
the outlier Justin’s record is successfully hidden.

2Bill’s record is removed from Figure 2 (b) since any group
that includes it will fail the range size constraint
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1.2 Contributions
In this paper, we study the problem of how to publish the

microdata that contains the outliers so that the privacy of
the outliers are adequately protected. We have the following
contributions.

First, to the best of our knowledge, we are the first to
study privacy-preserving publishing of data that contains
outliers. We define the distinguishability-based attack, by
which the adversary can identify the outliers as well as their
private information as long as he/she can confirm the pres-
ence of outliers in the original microdata. We formally study
how the adversary can infer the existence of outliers in the
original microdata from the released anonymized dataset.

Second, to defend against the distinguishability-based at-
tack, we propose a robust privacy criteria, plain k-anonymity.
Besides requiring every individual tuple is included in a QI-
group that contains at least k distinct sensitive values, plain
k-anonymity further requires that by applying the
distinguishability-based attack, there is no privacy leakage
of either the presence of the outliers in the original micro-
data or their associated sensitive values.

Third, we categorize outliers into two types, namely global
outliers that cannot be hidden in any plain k-anonymous
group, and local outliers that can. To apply the appropriate
anonymization actions on these two types of outliers, we
characterize them and discuss how to efficiently distinguish
them.

Fourth, we design an efficient algorithm to construct plain,
k-anonymous QI-groups that effectively anonymize the lo-
cal outliers. Our anonymization algorithm efficiently builds
the anonymization scheme without expensive pre-checking
of outliers.

Last but not least, we demonstrate the efficacy of our
approach with an extensive set of experiments. Our ex-
perimental results show that our approach can efficiently
anonymize the microdata that contains outliers with low in-
formation loss.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 introduces the preliminar-
ies including anonymization framework. Section 4 defines
the distinguishability-based attack on outliers. To defend
against the distinguishability-based attack, Section 5 defines
the privacy principle, namely plain k-anonymity. Section 6
studies both global and local outliers. Section 7 proposes
the algorithm that efficiently construct plain, k-anonymity
anonymization scheme. Section 8 presents the experimen-
tal results. Section 9 concludes the paper and discusses the
future work.

2. RELATED WORK
Privacy-preserving data publishing has received consid-

erable attention in recent years. K-anonymity is the first
anonymization principle in the literature [23, 24, 25]. It
requires that in the published data, every combination of
quasi-identifiers can be indistinctly matched to at least k
tuples. However, it may result in that all tuples possess
exactly the same sensitive value. To address this defect, l-
diversity [17] is proposed recently. It ensures that every QI-
group contains at least l “well-represented” sensitive values.
Other variants of k-anonymity, e.g., (α, k)-anonymity[26],
(c, k)-safety[18], etc., are defined to address different privacy
requirements. Most of the above work focuses on categori-

cal sensitive values. None of them assume the existences of
outliers in the microdata.

Recently some attention has been shifted to numerical
sensitive values. Zhang et al. [30] discussed the information
leakage when the numerical sensitive values fall into a narrow
range. For example, salaries in the range [20k, 21k] enables
the adversary to estimate the salary of attacked target with
a high probability. To defend against the attack, it proposed
(k, e)-anonymous model, which requires that each QI-group
must have at least k different sensitive values, while the
range of the group must be at least e. Li et al. [15] pointed
out the possibility of the proximity breach, i.e., the adver-
sary can conclude with high confidence that some sensitive
value must fall in a small interval. They proposed (ǫ, m)-
anonymity to defend against proximity breach. Specifically,
(ǫ, m)-anonymity requires that for every sensitive value x,
at most 1/m of the tuples in its QI-group can have sensitive
values “similar” to x, i.e., its difference from x should be no
greater than ǫ. Both techniques focus on the lowerbound of
the range of all sensitive values in the same QI-group and
require it should be large enough so that the adversary can-
not conclude with high probability that the sensitive values
fall into a small interval. However, the ranges that are too
large may still incur privacy breach when outliers exist in
the microdata. Section 1 has given an example. Therefore,
(k, e)-anonymous and (ǫ, m)-anonymity models cannot pro-
vide sufficient protection to the privacy of outliers. Besides
the above work, Li et al. proposed t-closeness, which re-
quired that the distribution of the sensitive values in the
released microdata should be close to that of the original
[16]. However, if the outliers exist in the original microdata,
to satisfy t-closeness, they must be outstanding in the distri-
bution of both the original and released microdata. As the
result, the outliers can be easily identified by investigating
the distribution alone. Therefore, t-closeness fails to defend
against the attack on outliers as well.

3. PRELIMINARIES
In this section, we introduce the preliminaries.

3.1 Distance-based Outliers
There are a few definitions of outliers in the literature,

for example, distance-based outliers [3, 20, 22] and density-
based outliers [8]. In this paper, we consider distance-based
outliers as defined in [20].

Definition 3.1. [Distance-based Outlier] [20] A tu-
ple o ∈ D is a (p, d)-distance outlier if at least p% of the
tuples in D lie at a distance greater than d from o.

We consider Euclidean distance between tuples. To avoid
scaling problems, all distances are standardized. In par-
ticular, we standardized values x of attribute A = (x −
min(A))/(max(A)−min(A)).

In general, the outlierness can lie on a single attribute
(e.g., income) or multiple attributes (e.g., age together with
income). Since we assume the outlierness always involve
sensitive values, for outliers on single attribute, they are
outstanding on the sensitive attribute. We call these outliers
sensitive-attribute outliers. Specifically,

Definition 3.2. [Sensitive-attribute Outliers and Multi-

attribute Outliers] An outlier tuple o is a sensitive-
attribute (p, d)-outlier if there exists at least p% tuples T
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CanadaBrazil Peru IranTurkeyUSA Japan

*

[1, 4]
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[5, 8]

[7, 8][5, 6]
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China

* [1, 2]

(a) (b) 
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[1, 1] [2, 2]
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Figure 4: Examples: (a) Taxonomy Tree of Country, (b) Taxonomy Tree of Gender

such that ∀t ∈ T , | t[S]− o[S] |≥ d, where S is the sensitive
attribute. Otherwise, o is a multi-attribute outlier.

Bill’s record in Figure 1 is an example of sensitive-attribute
outlier due to its extremely high income 2 billion, while
Justin’s record in Figure 1 is an example of multi-attribute
outlier; It is not outstanding on the income value alone, but
very notable if Justin’s age is also taken into consideration.

3.2 Anonymization Framework
Let D be a microdata table that stores private information

of a set of individuals. There are three types of attributes
in D: identifiers (ID), quasi-identifiers QI {QI1, . . . , QIm}
and sensitive attributes S {S1, . . . , Sn}. For simplicity, we
assume there is only one sensitive attribute S in D, and
focus on numeric sensitive attributes. Our techniques can
be easily adapted to multiple sensitive attributes and cat-
egorical sensitive attributes. For each tuple t ∈ D, we use
t[QIi] (1 ≤ i ≤ m) and t[S] to denote the value of the i-th
QI-attribute and the sensitive attribute of t.

We first have the following definition of QI-groups adopted
from [28].

Definition 3.3. [QI-group] [28] Given a microdata
D, a partition consists of several subsets of D, such that
each tuple in D belongs to exactly one subset. Further, all
tuples in the same subset have identical (generalized) QI-
values. We refer to these subsets as QI-groups, and denote
them as G1, . . . , Gm. Namely, ∪m

j=1Gj = D, and for any
1 ≤ i 6= j ≤ m, Gi ∩Gj = ⊘.

For the categorical attributes, we assume that every do-
main has semantic relationships among the values. Such
relationships can be be easily captured by a taxonomy tree.
For example, Figure 4 (a) illustrates a natural taxonomy tree
for the Country attribute. For the attributes that do not
have any semantic relationship, for example, the attribute
Gender, their values still can be classified under a common
value in a taxonomy tree (Figure 4 (b)). We assign all the
leaf nodes in the taxonomy tree with an integer as their
topological order. Based on this order, every node in the
taxonomy tree, including leaf nodes and non-leaf nodes, can
be represented as an interval. We have:

Definition 3.4. [Intervals in Taxonomy Trees] In a
taxonomy tree T with all leaf nodes assigned an integer as its
order, each node n corresponds to an interval [l, u] such that:
(1) If n is a leaf node, then l = u = i, where i is the order
assigned to n. (2) Otherwise, l = min(c1.l, . . . , cm.l), and u
= max(c1.u, . . . , cm.u), where c1, . . . , cm are the children of
node n in T .

Figure 4 illustrates the examples of intervals on the tax-
onomy tree nodes. We say the interval I1[l1, u1] � I2[l2, u2]
if l1 ≥ l2 and u1 ≤ u2.

A popular anonymization technique is generalization. In
particular, in the released microdata, numerical QI-values
will be recoded as an interval (e.g., age 20 is recorded as [20,
40]). The categorical QI-values will be replaced with the
domain values on higher level in the taxonomy tree, which
can be represented as an interval too. Based on this, we
formally define anonymization.

Definition 3.5. [Generalization] Generalization is a
one-to-one mapping function f from a microdata D to an
anonymized table D∗, such that for any tuple t ∈ D and any
attribute A of t, It[A] � If(t[A]), where It[A] and If(t[A]) are
the intervals of t[A] and the f(t[A]).

For instance, generalizing Female in Figure 4 (b) to * is
equivalent to replacing its interval [2, 2] with [1, 2]. Note
that the sensitive values are always unchanged. Therefore,
every anonymized QI-group consists of a set of generalized
QI-values and a set of original sensitive values. Based on
this, we define the anonymized QI-group. We use Gi[S] to
denote the sensitive value of the i-th tuple in the QI-group
G.

Definition 3.6. [Anonymized QI-group] Given a
microdata D of m QI-attributes and the sensitive attribute
S, let G ⊆ D be a QI-group. Then the anonymized QI-
group G∗ = QI∗ ∪ S∗, where QI∗ = {[li, ui] | 1 ≤ i ≤ m},
with [li, ui] as the interval of the i-th QI-attribute of G, and
S∗ = {Gi[S] | 1 ≤ i ≤| G |}. We say QI-value q matches G∗

if ∀i(1 ≤ i ≤ m), qi ∈ [li, ui].

Justin’s QI-group in Figure 3 is {[20, 40], [1, 2], [06001,

06013]} ∪ {25K, 30k, 120K, 130K}. The interval [1, 2]
comes from the taxonomy tree of Gender in Figure 4 (b).

When a table D is anonymized to a more generalized ta-
ble D∗, it is important to measure the incurred information
loss. A variety of metrics to measure the information loss
by generalization have been proposed recently. The ones
that are defined based on taxonomy trees are the General-
ized Loss Metric [12] and the similar Normalized Certainty
Penalty (NCP) [29]. For both metrics, the information loss
is measured as a ratio. We adapt these two information loss
models to our paper. Specifically,

Definition 3.7. [Information Loss]

• For any categorical QI-attribute A, let T be its tax-
onomy tree. Let v and v′ be a data value of A before
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Figure 5: (3, 4) QI-hypercube group of Justin’s QI-group in Figure 3

and after generalization. Let P be the corresponding
node of v′ in T . Then the information loss of v is:

ILv = (MP − 1)/(M − 1),

where M is the total number of leaf nodes in T , and
MP is the number of leaf nodes in the subtree rooted
at node P .

• For any numerical QI-attribute A, let Min and Max
be the minimum and maximum of the values of the
attribute A. For any value v of A that is generalized
to an interval [li, ui], the information loss of v

ILv = (ui − li + 1)/(Max−Min + 1).

Given the microdata D, the average information loss ILt =
P

t∈D

P

vi∈t
ILvi

|D|
.

For instance, in Figure 4, assume the value USA is gener-
alized to America, the information loss is 4/8.

3.3 QI-hypercube
Given a microdata D of m QI-attributes, we can con-

sider it as an m-dimension space. Then for any anonymized
QI-group, their generalized intervals can be illustrated as a
hypercube in the m-dimension space. Formally, we have:

Definition 3.8. [QI-hypercube] Given a microdata
D of m QI-attributes, let G ∈ D be a QI-group, and G∗ =
QI∗ ∪ S∗ be the anonymization group of G. Let c (c ≤ m)
be the number of QI-attributes whose values are general-
ized in QI∗. Then QI∗ corresponds to a hypercube H of
c dimensions, i.e., an c-cube, in which the edge on the i-th
dimension corresponds to the interval on the i-th attribute
(1 ≤ i ≤ c) in G∗. We call H the QI-hypercube of G∗.

Figure 5 illustrates four QI-hypercubes, each of them is of
the same QI-values {[20, 40], [1, 2], [06001, 06013]}
(Justin’s QI-group in Figure 3). Each QI-hypercube consists
of three dimensions, corresponding to generalization on the
attributes Age, Zipcode, and Gender respectively. The inter-
val [1, 2] comes from the taxonomy tree of Gender in Figure
4 (b).

Each QI-group that consists of n distinct sensitive val-
ues can be represented as a group of n QI-hypercubes, with
each QI-hypercube corresponding to the same QI-values but
different sensitive value si (1 ≤ i ≤ n). Formally,

Definition 3.9. [(c, n) QI-hypercube Group] Given
an anonymized QI-group G∗ = QI∗∪S∗, let c be the number
of QI-attributes whose values are generalized in QI∗, and n
be the number of unique sensitive values in S∗. Then G∗

corresponds to a (c, n) QI-hypercube group that consists
of n c-dimension QI-hypercubes, each corresponding to a
sensitive value s ∈ S∗.

Nodes: Given a (c, n) QI-hypercube group, each c-dimension
hypercube in the group consists of 2c nodes. Thus the group
consists of n ∗ 2c nodes. Each node corresponds to a tuple
that may or may not exist in the original microdata. We
define the lowerbound and upperbound of the values of the
attribute QIi in G∗ as t1[QIi] and t2[QIi], where t1 and
t2 correspond to two nodes on an edge on dimension QIi

that only differ the values on QIi. Figure 5 illustrates the
QI-hypercube group of Justin’s QI-group in Figure 3. It
consists of four QI-hypercubes, corresponding to four sensi-
tive values on Income. In this group, node A corresponds to
the tuple (Age=40, Gender=F, Zipcode = 06013, Salary

= 25k). The lowerbound and upperbound of the Age in this
group is 20 and 40.
Edges: We consider two types of edges in the QI-hypercube
group, intra-hypercube and inter-hypercube edges. Intra-
hypercube edges connect the nodes in the same hypercube
whose corresponding tuples only differ on one QI-attribute,
while inter-hypercube edges connect the nodes in different
hypercubes whose corresponding tuples are of the same QI-
values. Figure 5 illustrates all intra-hypercube edges (in
solid lines) and a subset of the inter-hypercube edges (in
dotted lines).

4. DISTINGUISHABILITY-BASED ATTACK
In this section, we define the distinguishability-based at-

tack on the outliers. We assume the adversary has the QI-
values of all individuals from the external public dataset,
e.g., voter lists. We also assume that the adversary knows
which individuals are outliers. This piece of adversary knowl-
edge can be expressed as a set of entries in the form of
(QI, outlierness), where QI is the QI-value of an indi-
vidual, and outlierness is valued “true” or “false”. For sim-
plicity, in the following, we use (o, ‘T’) to denote the ad-
versary knowledge that (QI=o, outlierness=‘True’). We
call such o the outlier QI-value. It is possible that adversary
may know more than true/false of the outliers, for exam-
ple, he/she also knows the domains that the outlierness lies
(e.g., Justin stands out on the combination of his age and
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income). But in this paper, we only focus on the simplest
adversary knowledge as the true/false of outlierness. We
will show that even with this small bit of information, there
exists privacy breach.

We consider two types of privacy: presence privacy, which
is the fact that the individual’s record is present in the re-
leased microdata, and association privacy, which is the as-
sociation between the individual and the sensitive values.
Based on the adversary knowledge of outliers, both types of
privacy can be disclosed by the inference of the distinguisha-
bility of the outliers. Formally,

Definition 4.1. [Distinguishability-based Attack]

Given a microdata D and the adversary knowledge (o, ‘T ′),
let G∗ = QI∗ ∪ S∗ be the anonymized group that matches
o. If the adversary can infer that there must exist at least
an outlier in G∗, then the probability of presence privacy
leakage

Pr(o ∈ D | G∗) = 1/h,

where h is the number of outliers whose QI-values match
G∗. Further, the probability of association privacy leakage

Pr((o, s) ∈ D | G∗) = 1/l,

where l is the number of distinct sensitive values s ∈ S∗ such
that (o, s) is a (p, d)-outlier.

If the adversary cannot infer the existence of any outlier
in D, both Pr(o ∈ D | G∗) and Pr((o, s) ∈ D | G∗) equal
0. Therefore, the key to protect both the presence and asso-
ciation privacy of outliers is to prevent the adversary from
inferring the existence of outliers. To address this, we study
how the adversary can infer the existence of the outliers
from the released G∗. First, we define bad QI-hypercube
nodes and edges.

Definition 4.2. [Bad QI-hypercube Nodes and Edges]

A node of a QI-hypercube is bad if it corresponds to a (p, d)-
outlier tuple. An (intra-hypercube or inter-hypercube) edge
is bad if it connects two bad nodes.

For instance, node B in Figure 5 is a bad node, since
it corresponds to an outlier tuple (Age = 20, Gender = M,

Zipcode = 06013, Income = 120K).
Second, we define distance-constrained tuples. The intu-

ition of this definition is that such tuples can enable the
inference of existence of outliers (as shown in later Lemma
4.1).

Definition 4.3. [Distance-constrained Tuple] Given
a microdata D and an anonymization group G∗ = QI∗ ∪S∗

of D, let Hs be a QI-hypercube of G∗ on the sensitive
value s ∈ S∗. Then a tuple that matches G∗ is distance-
constrained if it satisfies that ∀ tuple t′ ∈ D and ∀ QI-
attribute QIi, either t[QIi] + li ≥ 2 ∗ t′[QIi] or t[QIi] + ui ≤
2 ∗ t′[QIi], where li and ui are the lowerbound and upper-
bound values on dimension QIi in Hs.

By knowing all QI-values of the individuals from the ex-
ternal knowledge, the adversary can easily check whether
a tuple is distant-constrained. An important property of
distance-constrained tuple is explained in the following Lemma.

Lemma 4.1. Given a distance-constrained tuple t, ∀ tu-
ple t′ ∈ D, it must satisfy that ∀ QI-attribute QIi, either

| t[QIi] − t′[QIi] |≥| li − t′[QIi] |, or | t[QIi] − t′[QIi] |≥|
ui − t′[QIi] |, where li and ui are the lowerbound and up-
perbound values on dimension QIi of G∗ that t matches.

Proof sketch: For simplicity, let q = t[QIi] and q′ =
t′[QIi]. We have li ≤ q ≤ ui. There are two possibilities of
q′: (1) q′ 6∈ [li, ui], and (2) q′ ∈ [li, ui]. For Case (1), q′ < li
or q′ > ui. If q′ < li, then | q − q′ |≥| li − q′ |. Similarly if
q′ > ui, then | q − q′ |≥| ui − q′ |. Then for Case (2), we
prove by contraction. Assume that both | q − q′ |<| li − q′ |
and | q − q′ |<| ui − q′ |. Then we have q + li < 2 ∗ q′ and
q + ui > 2 ∗ q′, which contradicts the assumption that t is
a distance-constrained tuple. The correctness of the lemma
then follows.

Based on Lemma 4.1, we can show that single QI-hypercubes
that contain bad nodes can be used to infer the existence of
outliers. Specifically, we have:

Theorem 4.1. (Inference of Existence of Outliers

on Single QI-hypercube) : Given a microdata D and
the adversary knowledge (o, ‘T ′), let G∗ = QI∗ ∪ S∗ be the
anonymized QI-group that o matches, and Hs be the QI-
hypercube of G∗ on sensitive value s ∈ S∗. If: (1) o is
distance-constrained, and (2) Hs only contains bad nodes,
then o must exist in G∗.

Proof sketch: We prove the correctness by contradiction;
if o is a non-outlier, then Hs must contain at least a good
node. Let T = {t | ∀ node n ∈ Hs, n corresponds to t}.
It is straightforward that ∀t ∈ T , it must be true that ∀
QI-attribute QIi, t[QIi] is either the lowerbound or the up-
perbound value of QIi in G∗. From Lemma 4.1, there must
exist a tuple t ∈ T s.t. for each dimension QIi, ∀ tuple
t′ ∈ D,

| o[QIi]− t′[QIi] |≥| t[QIi]− t′[QIi] | (∗).

Since o is a non-outlier, there are more than p% tuples t′

whose dist(o, t′) < d. Thus based on (*), the tuple t must
also be a non-outlier, which contradicts the assumption that
every node in Hs corresponds to an outlier. Thus o must
exist in the microdata. The correctness of the theorem then
follows.

We assume the adversary can decide the outlierness of QI-
hypercube nodes from his/her common knowledge. Then
Theorem 4.1 shows that by combining the outlierness of
the individuals from adversary knowledge, and the distance-
constrainedness of the outlier nodes, the adversary can in-
fer the existence of outliers. The anonymization group of
Justin’s record in Figure 2 (a) is such an example. In this
example, all nodes of the QI-hypercube of sensitive value
120K are bad. Since Justin’s record is distance-constrained,
the adversary can infer that Justin’s record must exist in the
microdata. Since Justin is the only outlier whose QI-values
matches the group, the adversary’s probability of Justin’s
presence privacy is 100%. Further, since 120K is the only
sensitive value that makes Justin’s record an outlier, the ad-
versary’s probability of his association privacy is 100%. In
other words, Justin’s privacy has been completely revealed.

Next, we study how the adversary infers the existence of
outliers from multiple QI-hypercubes in the same QI-group.
We have:

Theorem 4.2. (Inference of Existence of Outliers

from Multiple QI-hypercubes) : Given a microdata
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D and the adversary knowledge (o, ‘T ′), let G∗ = QI∗ ∪ S∗

be an anonymized QI-group. Let H be the QI-hypercube
group of G∗. If there exists a node n ∈ H such that: (1) all
inter-hypercube edges that connect the nodes of the same
QI-value of n are bad, and (2) ∀t′ ∈ D, it satisfies that ∀
QI-attribute QIi, | o[QIi]−t′[QIi] ≥| t[QIi]−t′[QIi] |, where
t is the tuple that node n corresponds to, then o must exist
in G∗.

Proof Sketch: We prove that if o 6∈ G∗, then there must ex-
ist at least an inter-hypercube edge that is not bad. The con-
tradiction proof is similar to Theorem 4.1; since o is a non-
outlier, there are more than p% tuples t′ whose dist(o, t′) <
d. Since | o[QIi]− t′[QIi] ≥| t[QIi]− t′[QIi] |, t must be an
non-outlier, which violates the assumption that every node
on the inter-hypercube edges corresponds to an outlier. The
correctness of the theorem then follows.

An example for inference of existence of outliers from mul-
tiple QI-hypercubes is Justin’s record in Figure 2 (b). All
inter-hypercube edges on the nodes of the same QI-value
that contains Age=20 are bad. Thus Justin’s record must
exist in the original microdata. Consequently Justin’s pres-
ence privacy is inferred with probability 1. However, the ad-
versary’s probability of Justin’s association privacy is 1/3,
since all three income values can make outlier tuple.

5. PRIVACY MODEL
Theorem 4.1 and 4.2 have shown that the adversary can

possibly infer the presence of the outlier tuples. Conse-
quently he/she can disclose both the presence and associ-
ation privacy of the outliers by distinguishability-based at-
tack. To deal with this attack, we define plain k-anonymity.

Definition 5.1. [Plain k-anonymity] Given the mi-
crodata D and the adversary knowledge (o, ‘T ′), the anonymiza-
tion group G∗=QI∗ ∪ S∗ is plain and k-anonymous if: (1)
There are k distinct sensitive values in S∗, and (2) Pr(o ∈
D | G∗) = Pr((o, s) ∈ D | G∗) = 0.

Given the microdata D, our goal is to find the plain and
k-anonymous groups. The key is to disable the adversary to
infer the existence of outliers. As shown by both Theorem
4.1 and Theorem 4.2, the inference is always based on the
badness of QI-hypercube nodes and whether the outlier tu-
ples are distance-constrained. Since distance-constrained is
not changeable with given QI-values, what we can do is to
remove the badness of QI-hypercube nodes. We have:

Theorem 5.1. (Plain k-anonymous Groups) : Given
a QI-group G, let G∗ = QI∗ ∪S∗ be its anonymization. Let
H be the QI-hypercube group of G∗. Then G∗ is plain and
k-anonymous if ∀t ∈ G: (1) There are at least k distinct
values in S∗, (2) ∀ QI-hypercube Hs ∈ H (s ∈ S∗), there
exists at least a node n ∈ Hs that is not bad, and (3) ∀
inter-hypercube edges that connect the nodes of the same
QI-values, there exists at least one that is not bad.

The correctness of Theorem 5.1 is straightforward from
Theorm 4.1 and 4.2. Figure 3 is an example of plain k-
anonymous groups. Now our goal is to design such anonymiza-
tion scheme.

6. GLOBAL AND LOCAL OUTLIERS
Prior to studying how to design the plain k-anonymous

scheme, a fundamental question must be answered: given
an outlier, does there always exist a plain, k-anonymized
QI-group? Unfortunately it is not true. There may exist
outliers that cannot be included into any plain, k-anonymous
QI-group. One example is Bill’s record in Figure 1. Due to
his extremely high income (2 billion), including his record
into any QI-group would not help to hide the fact that the
record of someone who is super rich exists in the original mi-
crodata. Therefore, to address the impact of distinguisha-
bility of the outliers to their identification, the outliers are
categorized into two types: global and local outliers.

Definition 6.1. [Global and Local Outliers] Given
a microdata D, let o be an (p, d)-distance outlier in D. We
say o is a global outlier if 6 ∃ a plain k-anonymous QI-group
G ∈ D s.t. o ∈ G. Otherwise, o is a local outlier.

Following the definition, a naive way to find out the global
outliers is to try all possible QI-group schemes, which is
very costly. The challenge is to efficiently locate the global
outliers in the microdata. We have:

Theorem 6.1. (Global Outlierness of Sensitive-attribute

Outliers) : Any sensitive-attribute outlier o is a global
outlier.

The correctness of Theorem 6.1 is straightforward. Any
tuple that contains a (p, d)-outlier sensitive value s must be
a (p, d)-outlier. Therefore, any QI-hypercube that contains
s must only contain bad nodes, which violates the condition
(2) in Theorem 5.1.

To eliminate the global outlierness, one possible solution
is to suppress the sensitive values. However, as other tuples
publish sensitive values, such ”abnormal” suppression may
enable the attacker to infer the existence of outliers. Thus
we have no choice but to remove the global outlier tuples,
even though this may cause 100% infomraiton loss on these
tuples.

Next, we answer the question that whether a multi-attribute
outlier can be a global outlier.

We have the following theorem.

Theorem 6.2. (Local-outlierness of Multi-attribute

Outliers) : Any multi-attribute outlier o is a local out-
lier.

Proof: Assume there exists a multi-attribute outlier o that
is a global outlier. Then any QI-group that matches the
QI value QI of o cannot be plain, i.e., all nodes of the QI-
hypercubes are bad. However, there may exist the anonymized
QI-groups whose QI-hypercubes that o matches are of nodes
corresponding to non-outlier tuples, which brings contradic-
tion.

7. ANONYMIZATION ALGORITHM
Given a microdata D, our goal is to split the microdata

into partitions that correspond to plain, k-anonymized QI-
groups, so that the adversary cannot explicitly identify nei-
ther any outlier nor any regular tuple. To achieve this goal,
we propose an efficient construction mechanism. It consists
of three steps, removal of global outliers, expansion-based

630



Tuple ID Age
1 20
2 20
3 20
4 30
5 30
7 30
8 40
9 40

Tuple ID Gender
2 M
3 M
5 M
7 M
9 M
1 F
4 F
8 F

Tuple ID Zipcode
4 06001
8 06002
9 06003
7 06004
1 06006
5 06010
2 06011
3 06013

Tuple ID Income
1 20K
2 25K
4 30K
5 50K
7 100K
8 110K
3 120K
9 130K

(a) Sorted list on Age (b) Sorted list on Gender Sorted list on Zipcode (b) Sorted list on Income

Figure 6: An example of sorted lists; Bill’s record (global outlier) has been removed.

grouping, and processing of residue tuples. Next, we elab-
orate the details of these three steps. The pseudo code is
shown in Algorithm 1. Before we present the algorithm, we
must point out that finding optimal k-anonymization with
minimal information loss is NP-hard [21, 14]. Thus we focus
on efficient heuristics.

7.1 Step 1: Removal of Global Outliers
Since none of the global outliers can be included into any

plain QI-group, thus first, we remove all global outliers, i.e.,
sensitive-attribute outliers, from the microdata. Line 1 - 2
of Algorithm 1 remove the global outliers. Although the
removal operation is simple, it reduces the size of the mi-
crodata and as a result it may affect the later decision of
(p, d)-outlierness. Therefore, we record the size of the origi-
nal microdata and in the following steps, we always use this
size to check outlierness.

7.2 Step 2: Expansion-based grouping
After removal of global outliers, only local outliers remain.

The naive approach of QI-group construction is to first lo-
cate all local outliers, then for each local outlier, try all pos-
sible partition schemes until a plain, k-anonymous scheme is
reached. This approach is extremely inefficient for two rea-
sons: (1) finding all outliers in the dataset may be time
costly, and (2) the number of possible partition schemes
is exponential to the number of the tuples in the micro-
data. The time complexity of finding all outliers can be
quadratic to the size of the dataset [20, 22], sub-quadratic
to the size of the dataset [10], or linear to the size of the
dataset but exponential in the number of dimensions [20].
Although the use of spatial index structures (KD-trees [6],
R-trees [11], or X-trees [7]) may help to speed up the out-
lier detection, the index itself brings construction overhead
and maintenance cost. Therefore, to efficiently construct
a plain and k-anonymous QI-group scheme, it is desirable
to anonymize the groups without finding any local outlier
before anonymization. Indeed, as long as the constructed
QI-hypercubes satisfies Theorem 5.1, their corresponding
anonymized QI-groups must be plain and k-anonymous, no
matter whether they contain outliers. Following this prin-
ciple, we design our anonymization algorithm. The basic
idea of the algorithm is that for every tuple t, it starts it-
self as the seed group. The seed group is repeatedly ex-
panded by adding new tuples, until a plain, k-anonymized
QI-group is reached. Our experimental results show that
our expansion-based approach always achieves better per-
formance than the approaches that need to find the local

outliers before anonymization. More details can be found in
Section 8.

Expansion operation is equivalent to adding tuples into
the QI-group. The effect of expansion is to enlarge at least
one dimension in the QI-hypercube, so that the “badness” of
the nodes on these dimension will be reduced accordingly.
A fundamental question is, which tuple(s) should be chosen
for expansion? Randomly picking tuples may result in two
tuples that are far away being put into the same QI-group,
which may induce much information loss. Therefore, to re-
duce the information loss, we keep a sorted list for every
attribute. The values in the sorted list are sorted in de-
scending order. To record the association between tuples
and their values, every value is linked with its tuple ID in
the sorted list. Figure 6 shows the sorted lists of the mi-
crodata in Figure 1. Every sorted list keeps a pointer that
points to the next value that will be picked. Based on the
sorted lists, we expand the group in a greedy fashion: when-
ever the expansion is needed, for each QI-attribute QIi, we
pick the candidate tuple ti that is pointed to in the sorted
list Li. If there are multiple tuples that are of the same
value on QIi as the pointed tuple, we pick all of them. We
collect all candidates and pick the one such that including
it into the current QI-group will make the group plain and
k-anonymized. If there is no such tuple or there are multi-
ple choices, we pick the one that yields the least information
loss if it is included into the current QI-group. Line 8 - 13
of Algorithm 1 gives more details. After the added tuple is
picked, the sorted lists will be updated accordingly. To be
more specific, let t(q1, . . . , qm, s) be the picked tuple. Then
in each sorted list Li, we remove the value qi. Furthermore,
we update the pointers in the sorted list. To be specific, let
G∗ be the new anonymized QI-group after expansion with
t. For each attribute QIi, let [li, ui] ∈ G∗ be the generalized
interval. Then the pointer in the sorted list Li will be moved
to the value v right next to ui, if ui− v < v− li, or right be-
fore li otherwise. In other words, the pointer always points
to the value that is the closest to the current QI-group. The
updates of the sorted lists are implemented by Line 14 - 16 of
Algorithm 1. When we reach a plain, k-anonymized group,
we return the group, pick the next ungrouped tuple, and
repeat the above procedure until all tuples are traversed.

It may be possible that at some stage of expansion, the
QI-group includes a tuple that makes the bad nodes of the
QI-hypercube. More seriously, further expansion of this QI-
group may not be able to remove the badness of the nodes.
As a result, keep expanding such QI-groups will never ter-
minate and produce plain, k-anonymity groups. To avoid
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this situation, we keep track of the number of steps that the
groups have been expanded. If it exceeds a given thresh-
old δ (Line 19), we look for a unpicked non-outlier tuple t
such that including t into the group will incur that a node
of the QI-hypercube corresponds to t (Line 20 - 23). In
other words, the QI-hypercube consists of at least a good
node and consequently construct a plain and k-anonymous
QI-group. If no such tuple t exists in the microdata, to re-
duce the ”badness”of the QI-hypercube nodes, we adjust the
current QI-hypercube such that at least one QI-hypercube
node whose corresponding tuple is changed. To achieve this
goal, we remove a tuple in the current group (Line 25). The
criteria is to pick the tuple t that contributes the most to
the QI-hypercube nodes, i.e., the number of attributes on
which t has either the minimum value (contributing to the
lowerbound) or the maximum value (contributing to the up-
perbound). After the removal, we repeat the whole grouping
procedure.

Example 7.1. [Expansion]

Assume we consider 3-anonymity. Assume we have picked
the tuple 1, 2 and 3, which will result in the QI-group as
Age=20, Gender=[M, F], Zipcode=[06006, 06013], income
={20K, 25K, 120K}. This QI-group is not plain. Then we
pick tuple 4 from the sorted list of the attribute age, tuple
5, 7 and 9 from the sorted list of Gender (they are of the
same value M), and tuple 7 from the sorted list of Zipcode
(06004 is the closest value to [06006, 06013]). Both tuple 5
and 7 can make the QI-group as a plain 3-anonymity group.
However, since tuple 7 induces less information loss, tuple 7
is chosen for expansion. 2

7.3 Step 3: Processing of Residue Tuples
Since Step 2 only considers unanonymized tuples for ex-

pansion, it is possible that some tuples cannot be grouped if
their group members are anonymized already. For each such
residue tuple t, first, we pick the anonymization group that
produces the minimal information loss by including t as the
seed group. We repeatedly merge the seed group with the
other groups if the merge causes the minimal information
loss, until we reach a plain and k-anonymity group. Line 19
- 24 of Algorithm 1 process the residue tuples.

7.4 Discussion
The performance of Algorithm 1 is dominated by Step 2.

In this step, the time complexity of checking plain and k-
anonymous group (Line 7) is O(kn2m), where k is the given
threshold for k-anonymity, m is the number of QI-attributes,
and n is the size of the microdata. The time complexity of
each greedy expansion is O(m). For the worst case it will
be expanded n times. Thus the total cost of expansion is
o(mn). The sorted lists are updated with O(m) complexity.
Thus the complexity of Algorithm 1 is O(kn2m).

8. EXPERIMENTS
We ran a battery of experiments to measure the perfor-

mance of our anonymization algorithm and explored various
factors that impact the anonymization performance. Fur-
ther, we investigated the information loss by our anonymiza-
tion approach. In this section, we describe our experiments
and provide an analysis of our observations.

Algorithm 1 Algorithm ExpC(): Construct the plain k-
anonymous scheme based on expansion

Require: Microdata D;
Ensure: A generalized version D∗ that is good;
{Step 1: Remove global outliers}

1: for all tuple t that is sensitive-attribute outlier do

2: remove t;
{Step 2: Expansion-based grouping}

3: QGroup← {};
4: repeat

5: Pick a ungrouped tuple t;
6: G = {t};
7: Num← 0;
8: while G is not a plain k-anonymity group do

9: CandidateSet={};
10: for all Sorted list Li do

11: Pick the tuple t′ that is pointed in Li;
12: CandidateSet = CandidateSet ∪{t′};
13: Let t ∈CandidateSet be the one that makes G∪{t}

of the minimum information loss;
14: G← G ∪ {t};
15: for all Sorted list Li do

16: move the pointer to the closest value to the in-
terval of attribute Ai in G ∪ {t};

17: remove the value ai of the tuple t from Li;
18: Num← Num + 1;
19: if Num ≥ δ then

20: maxi ← the maximum value of all tuples in G on
attribute QIi;

21: mini ← the minimum value of all tuples in G on
attribute QIi; {Expand too much; Choose a non-
outlier tuple to be the node of the QI-hypercube;}

22: if ∃ a unpicked non-outlier tuple t s.t., ∀ QI-
attribute QIi, t[QIi] > maxi or t[QIi] < mini

then

23: G← G ∪ {t};
24: else

25: Remove a tuple t′ from G s.t. it has the max-
imum number of the attributes on which t′

equals either maxi or mini;
26: QGroup← QGroup ∪G;
27: until The sorted lists are empty;
{Step 3: Processing of Residue Tuples}

28: for all Residue tuple t do

29: pick G s.t. the information loss of G∪ {t} is minimal
30: while G is not a plain k-anonymity group do

31: for all G′ 6= G do

32: if G ∪G′ is of minimal information loss then

33: G← G ∪G′;

8.1 Experimental Setup
Setup We use a PC machine with one processor having a
speed of 2GHz and 1GB of RAM. We implement the algo-
rithms in C++. Datasets We use the Census dataset that
contains personal information of 500,000 American adults3.
The details of the dataset are summarized in Figure 7. We
construct test datasets of different sizes by picking various
subsets from the Adults data.
Anonymization approaches We mainly compare the per-
formance and information loss of three anonymization ap-

3http://www.ipums.org/
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Attribute Number of distinct values
Age 78
Gender 2
Education 17
Marital 6
Race 9
Work Class 10
Country 83
Occupation 50
Salary-class 50

Figure 7: Summary of Attributes

Figure 8: Performance Comparison of ExpC, GNOF,

and GOF Approaches; p=0.8, d=0.85, k=15

proaches:

1. ExpC approach: our anonymization algorithm ExpC
(Algorithm 1 in Section 7) that anonymizes the micro-
data by expansion-based grouping without finding any
local outlier beforehand.

2. GNOF approach: The local outliers are located first.
When constructing the anonymization groups, non-
outlier tuples are grouped first. The outliers are added
into the groups of non-outliers.

3. GOF approach: Similar to GNOF approach, the local
outliers are located first. Then the construction of the
anonymization groups start from outliers. The group is
constructed by using the same expansion-based group-
ing approach. The non-outliers are added into the
groups by expansion.

We also implemented the Incognito generalization approach
in [13] for comparison of the performance.
Information loss measurement We use the information
loss measurement defined in Section 3, i.e., the average in-

formation loss IL =
P

t∈D

P

vi∈t
ILvi

|D|
.

8.2 Performance

8.2.1 Comparison of Four Anonymization Approaches
The first part of performance experiments is to compare

the performance of four anonymization approaches, ExpC,
GNOF, GOF, and Incognito [13]. Figure 8 shows the re-
sult. First, Incognito always wins, since it never checks the
goodness of the anonymization groups. Second, our ExpC
approach gets better performance than GNOF and GOF.
The performance gain increases when the size of databases
grows. When the dataset is of 50K, our ExpC approach is

Figure 9: Performance of Four Components of ExpC,

GNOF, and GOF Approaches; p=0.8, d=0.85, k=15

Figure 10: Performance of Expansion of ExpC,

GNOF, and GOF Approaches

around twice faster than GNOF and GOF. This is because
compared with GNOF and GOF approaches, our approach
avoids outlier detection, which takes considerable amounts
of time.

To further study more details of the performance, we mea-
sure the performance of four major components of each ap-
proach. These major components are: finding global out-
liers, finding local outliers, expansion-based grouping, and
residue processing. Figure 9 shows the results. We observed
that for all three approaches, the time cost of expansion-
based grouping is dominant. This proves that it is necessary
to avoid finding the local outliers before anonymization, as
what we have did in the ExpC approach. Further, the cost
of residue processing is always negligible. This is because
the number of residue tuples are always very small com-
pared with the size of the microdata. We also compare the
cost of the expansion-based grouping of ExpC with both the
GNOF and GOF approaches (Figure 10). The observation
is that the cost of expansion-based grouping of the ExpC
approach is always less than that of both GNOF and GOF
approaches, which proves that anonymization without dis-
tinguishing outliers is efficient.

Furthermore, we compare the average size of QI-groups
for these three approaches. The results are in Figure 11.
It shows that our ExpC approach always produces the QI-
groups of the smallest average sizes, which results in smaller
information loss, as shown in Section 8.3.
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Figure 11: Average size of QI-groups

8.2.2 Performance Study of Our ExpC Approach
The second part of performance experiments is to study

the impact of various configurations to the performance of
our ExpC approach. First, we measure the performance of
ExpC algorithm for datasets of various sizes. The result
is shown in Figure 9. Unsurprisingly, the performance de-
grades with databases of increasing sizes. Then we change
the setup of p, d values for the definition of (p, d)-outliers,
and k value for k-anonymity. First, we fix the value p and
change d value. The results are shown in Figure 12 (a).
We observed that for most of the cases, the performance
gets better with increasing d values. The reason is that the
larger d value is, the less likely that the nodes of the QI-
hypercubes are the outliers, and thus the fewer expansions
are needed. Further, we observed that increasing k values
improve performance. The reason for this is that smaller
k values will result in smaller QI-groups and possibly more
necessary expansions.

We also fix the value d and change p value. The result
is shown in Figure 12 (b). We observed the similar phe-
nomenon as fixing p value case.

8.3 Information Loss

8.3.1 Comparison of Four Approaches
We compare the information loss of the three approaches,

as well as the approach that simply removing all outliers (in-
cluding both global and local ones). The results are shown
in Figure 13. We observed that our ExpC approach always
achieves the best information loss. Further, removing out-
liers incurs the worst information loss, which proves that our
original statement that simply removing outlier tuples is not
a good solution regarding the utility of the anonymized data.

8.3.2 Information Loss of Our ExpC Approach
We evaluate the information loss of our ExpC approach

for various configurations of p, d, and k values. We start
from fixed d values. The result is shown in Figure 13 (b).
The first observation is that the information loss is always
small (less than 1). This proves that our algorithm can
achieve anonymization with small information loss. Second,
the information loss increases with increasing k values. The
result is straightforward: with bigger k values, the QI-groups
must be larger, which incurs greater information loss. Third,
it shows that the information loss is always the same with
larger p values. This is because the non-outlier for (p, d1)
configuration must be non-outlier for (p, d2), where d1 ≤
d2. Consequently any plain, k-anonymous group with (p, d1)
configuration must be plain and k-anonymous for (p, d2). We

also measure the information loss for fixed p values and show
the result in Figure 13 (c) and observe the similar results.

8.4 Summary of Experiments
The experimental results demonstrates that our ExpC ap-

proach can efficiently anonymize the microdata that con-
tains outliers with low information loss. The key to achieve
good performance is that we avoid finding outliers before
anonymization.

9. CONCLUSION
In this paper, we studied the k-anonymization problem

with presence of outliers. We defined the novel concept of
plain k-anonymity so that the distinguishability of outliers
are adequately protected by anonymization. We character-
ized outliers into two types, global outliers and local outliers,
and studied anonymization technique for each type. We de-
signed an efficient algorithm to produce plain k-anonymity
schemes.

There are many interesting issues to be explored in the fu-
ture. In particular, we aim at extending our model to richer
external knowledge, for example, the adversary not only
knows that Justin is an outlier but also his outlierness lies on
the combination of age and income. Then the attack can be
more sophisticated than the current distinguishability-based
attack. We plan to continue on this theme. We are also
interested in studying possible optimization techniques on
the expansion-based approach. Extending the framework to
support database updates is another interesting issue. Fur-
ther, we plan to work on density-based outliers.
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