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ABSTRACT
Due to the existence of uncertain data in a wide spectrum of real
applications, uncertain query processing has become increasingly
important, which dramatically differs from handling certain data
in a traditional database. In this paper, we formulate and tackle
an important query, namely probabilistic top-k dominating (PTD)
query, in the uncertain database. In particular, a PTD query re-
trieves k uncertain objects that are expected to dynamically domi-
nate the largest number of uncertain objects. We propose an effec-
tive pruning approach to reduce the PTD search space, and present
an efficient query procedure to answer PTD queries. Furthermore,
approximate PTD query processing and the case where the PTD
query is issued from an uncertain query object are also discussed.
Extensive experiments have demonstrated the efficiency and effec-
tiveness of our proposed PTD query processing approaches.

1. INTRODUCTION
Uncertain data exist in many real-world applications such as sensor
networks [10, 16], object identification [2], location-based services
(LBS) [21], and moving object tracking [5, 4, 19]. Uncertain data
objects are usually modeled as uncertainty regions [5, 29], in which
objects can reside with any data distribution. In some applications,
the probabilistic density function (pdf) of each object is known [6,
2]. In other cases, the pdf is practically not explicitly available [23].
Therefore, a number of instances are collected to mimic such pdf.
For example, in sensor networks, sensory data collected at a spe-
cific timestamp often contain noises due to environmental factors
or device failure. In this case, samples obtained within a short pe-
riod around that timestamp can be used to represent the distribution
of its possible values.

Table 1 depicts an example of uncertain database, which consists of
3 uncertain objects u, v, and w. Each uncertain object t may have
one or more instances, ti, with appearance probability ti.p ∈ [0, 1]
(i.e. the probability that an instance appears at a position). For in-
stance, object u has one instance u1 residing at location 〈6, 2〉 with
probability u1.p = 1. Similarly, object v has two instances v1 and
v2, with probabilities v1.p = 0.3 and v2.p = 0.7, respectively.
Furthermore, object w contains two instances w1 and w2 with ap-
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uncertain object t instance ti appearance probability ti.p

u u1〈6, 2〉 1

v v1〈6, 4〉 0.3
v2〈4, 3〉 0.7

w w1〈3, 3〉 0.5
w2〈2, 2〉 0.5

Table 1: An Example of Uncertain Database

pearance probabilities w1.p = 0.5 and w2.p = 0.5, respectively.

Query processing over uncertain database has played an increas-
ingly important role in applications like multi-criteria decision mak-
ing, data cleansing, and so on. One important query type in the un-
certain database is called probabilistic ranked (PRank) query [18],
which retrieves uncertain objects that are expected to have the i-
th rank with the highest probability, for 1 ≤ i ≤ k, where k is a
user-specified integer and the rank of each object is determined by
score computed with a linear function. A clear advantage for the
PRank query is that users can control the size of the PRank answer
set through parameter k. On the other hand, however, it might not
be convenient for users to specify an appropriate ranking function,
since ranking scores are sensitive to different scales in different di-
mensions and moreover there are no explicit guidelines to select
ranking functions.

In literature, Pei et al. [23] proposed the probabilistic skyline query,
which retrieves all the uncertain objects that have the expected
probability of being skyline greater than a threshold. The skyline
query has one nice property in the sense that its query processing
does not require users to specify a ranking function. Furthermore,
its query result is invariable to scales in different dimensions. How-
ever, one problem with the skyline definition is that the size of the
skyline answer set cannot be flexibly controlled by users. That is,
users might be overwhelmed by too many returned skyline objects.

Motivated by the shortcomings of both queries above, in this pa-
per, we formulate an important query, namely probabilistic top-
k dominating (PTD) query, in the context of uncertain databases.
Specifically, a PTD query obtains k uncertain objects in an uncer-
tain database that are expected to be better than (called dynamically
dominate) the largest number of objects with respect to a query
point. Note that, the PTD query has the advantages of both prob-
abilistic ranked and skyline queries, that is, invariable to scales in
different dimensions, without users’ efforts to specify ranking func-
tions, and with the control on the size of the answer set.

The PTD query has many practical applications. For example, in
a coal mine surveillance application [33, 16], sensors are deployed
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in the mine to collect sensory data (i.e. samples) such as density of
oxygen, gas, and dust, as well as temperature and humidity. Dan-
gerous events like fires or gas leakage in the coal mine usually fol-
low some patterns (a.k.a. contour maps [33]) in the data. Thus,
once such a dangerous event is detected, workers should evacu-
ate from the mine. For the sake of environmental factors, device
failure, or transmission delay, the collected samples from sensors
inherently contain noises. It is therefore important for coal man-
ager to accurately detect dangerous patterns on such uncertain data
(note: false alarms may lead to loss of millions of dollars for each
evacuation [33]). Here, samples collected from each sensor within
a period can be considered as instances of an uncertain object (with
attributes like temperature and oxygen density) in the uncertain
database. Given a query pattern (e.g. a fire pattern with temper-
ature and oxygen density thresholds), a coal manager can conduct
a PTD query to obtain k sensors that are most likely to encounter
fire events among all the monitored places. Intuitively, a place has
high chance to be on fire, if sensor data reported in many other
places are farther away from a fire pattern than data collected in
this place on all attributes.

To our best knowledge, no previous work has studied the PTD prob-
lem in the uncertain database. Yiu and Mamoulis [34] explored
the top-k dominating query in the “certain” database with a static
setting, which is however not directly applicable to uncertain data
(otherwise, inaccuracy or even errors may be introduced due to the
data uncertainty).

Basically, the complexity and challenges of our PTD query pro-
cessing are twofold. First, rather than static skyline where attribute
values of each object are fixed (in the definition of [34, 23]), in
this paper, we consider dynamic skyline [22, 9] such that each at-
tribute of objects is dynamically computed with respect to an ad-
hoc query point. Second, given an uncertain database, our PTD
query is equivalent to processing a top-k dominating query over
each combination of instances from uncertain objects and then ag-
gregating (condensing) the query results in all combinations to ob-
tain answers with the highest ranks. However, it is inefficient and
even infeasible to materialize every possible combinations (due to
the exponential size) to conduct queries, which results in our ef-
ficiency concerns of PTD query processing. Thus, specific tech-
niques should be designed for efficiently answering PTD queries
without materializing all the instance combinations.

Therefore, in the sequel, we first formalize the PTD query in the un-
certain database. Then, to efficiently answer PTD queries, we pro-
pose effective pruning methods to reduce the PTD search space and
seamlessly integrate them into an efficient query procedure. More-
over, by further trading the accuracy for efficiency, we propose an
approximate approach which utilizes a probabilistic FM-sketch to
facilitate the PTD query processing. In addition, the PTD query
processing with uncertain query object is also discussed.

In particular, we make the following contributions.

1. We formulate and tackle the problem of probabilistic top-k
dominating (PTD) query in the context of uncertain databases
in Section 3 .

2. We present heuristics of our pruning methods and propose an
efficient approach to retrieve the exact answer to PTD queries
in Section 4.

3. We propose an efficient approach to obtain approximate PTD
query answers in Section 5, trading accuracy for efficiency.

4. We extend the proposed techniques to the case where query
point is also uncertain in Section 6.

In addition, Section 2 briefly overviews the top-k dominating query
processing over precise data and previous works on query process-
ing in uncertain databases. Section 7 demonstrates the performance
of PTD query processing through extensive experiments. Section 8
concludes this paper.

2. RELATED WORK
In this section, we briefly overview previous works on the top-k
dominating query in the “certain” database and query processing in
the context of uncertain databases.

Yiu and Mamoulis [34] recently proposed the top-k dominating
query in the spatial database that contains precise data points, which
ranks data points by the number of dominating points in the database.
As mentioned in Section 1, the top-k dominating query has the ad-
vantages of both top-k and skyline queries. In contrast, our proba-
bilistic top-k dominating (PTD) query aims to handle this query
type over uncertain data, which is more complex and challeng-
ing due to the handling of exponential number of possible instance
combinations. Furthermore, we consider the dynamic dominance
relationship between pairs of instances with respect to an ad-hoc
query point, rather than the static dominance in [34], which is more
general in many real applications like image retrieval or sensor data
monitoring.

Uncertain query processing has received an increasing attention in
many applications. For example, the Orion system [7] manages un-
certain data in applications like sensor data monitoring; the TRIO
system [1] proposes working models to capture data uncertainty
on different levels. In the context of uncertain databases, vari-
ous queries have been proposed, including range query [6, 29, 3],
nearest neighbor query [5, 6, 14], skyline query [23], reverse sky-
line query [17], ranked query [18], and similarity join [13, 20].
In particular, Lian and Chen [18] illustrated the ranked query pro-
cessing over uncertain data, where the rank of each object is deter-
mined by a user-specified linear function. Pei et al. [23] proposed a
probabilistic skyline query over uncertain objects which have static
attributes. As mentioned earlier, the specification of the ranking
function in the ranked query requires users’ efforts, and for sky-
line query, we cannot control the size of the resulting answer set
(in [23], although a probabilistic threshold can be specified, users
still have to guess which threshold to use). In contrast, users do not
need to specify ranking functions in the PTD query, and the size
(i.e. k) of the PTD answer set can be controlled by users.

In literature of probabilistic databases [25, 28, 12, 27, 24, 26, 11],
the probability that an object belongs to the database might be
smaller than 1 (in contrast, uncertain objects must exist in the un-
certain database). There are some existing works on top-k query
processing [28, 12, 24, 11], which ranks probabilistic data by ag-
gregating query results under possible worlds semantics. In order
to retrieve semantically meaningful results, different aggregation
methods have been proposed. Similar to the ranked query in the
uncertain database, the top-k query processing in the probabilis-
tic database requires users to specify a ranking function, which is
highly sensitive to scales of dimensions (given that ranking func-
tion is fixed). In our work, we focus on the PTD query in the uncer-
tain database where uncertain objects must belong to the database,
and users do not need to give ranking functions.
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3. PROBLEM DEFINITION
3.1 Dynamic Dominance Relationship
First, we give the definition of dynamic dominance between two
points u and v with respect to a query point q.

DEFINITION 3.1. (Dynamic Dominance [9]) Given a query point
q and two points X and Y , point X dynamically dominates point
Y with respect to q (denoted as X ≺q Y ), iff 1) |X.Ai − q.Ai| ≤
|Y.Ai − q.Ai| for all dimensions 1 ≤ i ≤ d, and 2) |X.Aj −
q.Aj | < |Y.Aj − q.Aj | for at least one dimension 1 ≤ j ≤ d,
where X.Ai is the coordinate of point X on the i-th dimension.

Example 1. Fig. 1 illustrates a 2D example of dynamic dominance
relationship between points. In particular, we have |u.Ai−q.Ai| <
|v.Ai − q.Ai| for i = 1, 2 (i.e. point v is in the shaded regions of
the figure). Thus, according to Definition 3.1, point u dynamically
dominates v with respect to q (i.e. u ≺q v). Similarly, we have
point u dynamically dominates point w (i.e. u ≺q w).

Figure 1: Illustration of Dynamic Dominance Relationship

Since the attributes of objects are calculated as the absolute differ-
ences of coordinates from objects to query point q, in Fig. 1, we
can symmetrically map u to points u′, u′′, and u′′′, with respect to
lines y = q.A2, x = q.A1, and point q, respectively. This way,
we can obtain totally four shaded regions (with corner points u, u′,
u′′, and u′′′, respectively), which are called dynamic dominance
regions, denoted as DDR(u). Obviously, any object that falls into
the shaded regions is dynamically dominated by point u.

3.2 PTD Query in Uncertain Databases
In the above example of Fig. 1, a top-k dominating query with
dynamic dominance in a “certain” database [34] is to find k points
in the data space such that their dynamic dominance regions cover
the largest number of data points. In the sequel, we will define
probabilistic top-k dominating query in the uncertain database.

DEFINITION 3.2. (Uncertain Database [5, 23]) An uncertain
database D contains N uncertain objects. Each object t can be
represented by a set {t1, t2, ..., t|t|}, where ti (1 ≤ i ≤ |t|) are
instances of t which contain d numerical attributes A1, A2, ...,
and Ad, as well as their appearance probabilities ti.p satisfying∑|t|

i=1 ti.p = 1.

Following the convention [6, 5, 23], we assume that objects in the
uncertain database D are independent of each other. The instance
combinations over D are defined as follows.

DEFINITION 3.3. (Instance Combination, ICl) Given an un-
certain database D, an instance combination ICl inD is a combi-
nation of instances obtained from all uncertain objects inD (for ev-
ery combination, each object contributes one instance), which has
the existence probability Pr(ICl) =

∏
∀t∈D∧∃ti∈ICl ti.p, where

l is the index of instance combinations.

In Definition 3.3, each uncertain object t has one and only one in-
stance ti that appears in each instance combination ICl. Thus, the
existence probability Pr(ICl) of ICl is given by the multiplica-
tion of appearance probabilities for all instances ti in ICl. Note
that, the concept of instance combination here is similar to that of
possible world in the probabilistic database [26]. The difference
is that in the probabilistic database, each uncertain object (i.e. x-
tuple) may not contribute any instance (i.e. alternative) to the in-
stance combination (i.e. possible world) [1, 23].

Next, we consider the dominance probability, Pr{t ≺q s}, of two
uncertain objects t and s in an uncertain database D, which is the
probability that t dynamically dominates s with respect to q. With-
out loss of generality, assuming uncertain objects t and s have in-
stance sets {t1, t2, ..., t|t|} and {s1, s2, ..., s|s|}, respectively, we
have:

Pr{t ≺q s} =
∑

∀l,ti∈ICl∧sj∈ICl∧ti≺qsj

Pr(IC
l
). (1)

Intuitively, the probability that an uncertain object t dynamically
dominates another uncertain object s is given by aggregating (sum-
ming up) the existence probabilities of those instance combinations
ICl (containing instances ti ∈ t and sj ∈ s), in which instance ti

dynamically dominates sj .

Figure 2: Example of Probabilistic Top-k Dominating Query

Example 2. As illustrated in Fig. 2, assume an uncertain object
u has two instances u1 and u2 (both with appearance probabili-
ties 1/2), and uncertain object v has three instances v1, v2, and
v3 (with 1/3 probability each). Each instance has two attributes
A1 and A2, corresponding to a point in a 2D space shown in the
figure. From Definition 3.1, we know that instance u1 dynamically
dominates instances v1 and v2, and instance u2 dynamically dom-
inates instance v2. Therefore, the probability that uncertain object
u dynamically dominates v is given by u1.p × (v1.p + v2.p) +
u2.p× v2.p = 1

2
× ( 1

3
+ 1

3
) + 1

2
× 1

3
= 1

2
.

After introducing the probability of dynamic dominance between
two uncertain objects, we are now ready to define the PTD query
below.
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Symbol Description
D an uncertain database containing N uncertain objects
t, s, u, v, w the uncertain objects
ti, sj , ui, vi, wi the instances of uncertain object
|t| the number of instances in uncertain object t
q the query object
Pr{t ≺q s} the probability that uncertain object t dynamically

dominates s with respect to q
Tmin (Tmax) the point in the minimum bounding rectangle

of t nearest to (farthest from) query object q

Table 2: Meanings of Notations

DEFINITION 3.4. (Probabilistic Top-k Dominating Query, PTD)
Given an uncertain databaseD and a query point q, a probabilistic
top-k dominating query (PTD) retrieves k uncertain objects t ∈ D
that are expected to dynamically dominate the largest number of
uncertain objects (with respect to q) for all instance combinations.
That is, a PTD query obtains k objects, t, such that they have
the highest scores score(t) =

∑
∀s∈D∧s6=t Pr{t ≺q s}, where

Pr{t ≺q s} is given by Eq. (1).

Definition 3.4 gives a natural ranking on uncertain objects in the
uncertain database, that is, the more the uncertain object t dynam-
ically dominates, the higher rank t would achieve. Table 3.2 sum-
marizes the commonly-used symbols in this paper.

4. PROBABILISTIC TOP-K DOMINATING
SEARCH

After formalizing the PTD problem, in this section, we study the ef-
ficiency issues of answering the PTD query in an uncertain database
D. Naturally, one straightforward way to obtain the PTD answer is
as follows. For each uncertain object t ∈ D, we sequentially scan
instances sj in the entire database and check the dominance rela-
tionship between instances ti and sj for each instance combination
in the database, meanwhile evaluate the score, score(t), defined
in Definition 3.4. Clearly, this nested loop method is very costly,
which requires quadratic cost with respect to the database size |D|,
in terms of both CPU time and I/O’s.

Therefore, in order to enable fast PTD query processing, we con-
struct a multidimensional index, like aggregate R-tree (aR-tree)
[15], over d-dimensional instances (each of the d numerical at-
tributes corresponds to one dimension) in the database, which can
provide fast access to uncertain data rather than the sequential scan.

In particular, we first divide each uncertain object t ∈ D (= {t1, t2,
..., t|t|}) into m(t) groups (clusters) G1(t), G2(t), ..., and Gm(t)(t)
of approximately the same size via either space- or data-partitioning
method. Note that, here the number of groups, m(t), for each un-
certain object t is chosen such that group Gi(t) is small enough
to fit in one disk page. Then, we bound each of these groups,
Gi(t), using a minimum bounding rectangle (MBR), and insert
them into an aR-tree index (using standard insertion operator of
aR-tree), together with its object id and an aggregate, (Gi(t)).agg,
defined as the total appearance probability of instances in Gi(t)
(i.e. Gi(t).agg =

∑
tj∈Gi(t)

tj .p). The instance groups are re-
cursively bounded by MBRs until finally one root node is obtained.
We use sum as the aggregate function in each intermediate node,
which sums up all the aggregate values in its children.

Fig. 3 illustrates an example of aR-tree, where the leftmost leaf
node (pointed to by N3) contains groups G3(t) and G2(u), with
aggregates G3(t).agg = 0.2 and G2(u).agg = 0.4, respectively.

Thus, the aggregate of this node is given by 0.2 + 0.4 = 0.6.
Similarly, the second leaf node from left (pointed to by N4) has
aggregate 0.3 + 0.6 + 0.5 = 1.4. In the parent of these two leaf
nodes (pointed to by N1), we store one aggregate which is sum of
aggregates in its children (i.e. 2 = 0.6 + 1.4).

Figure 3: Illustration of aR-tree

In the following subsections, we first present the basic pruning
heuristics of our PTD approach. Then, we illustrate the detailed
PTD query processing on the constructed index.

4.1 Preliminary
Since our PTD query aims to find k uncertain objects in the un-
certain database with the highest scores, we first investigate the
formula of the score (defined in Definition 3.4). In particular, the
score score(t) of an uncertain object t is given by the summation of
probabilities Pr{t ≺q s} that t dynamically dominates other un-
certain objects s, where Pr{t ≺q s} is the aggregated (summed)
probabilities for all instance combinations defined in Eq. (1). Note,
however, that the computation of Pr{t ≺q s} needs to consider ex-
ponential number of instance combinations, which is in practically
inefficient or even infeasible to calculate directly.

Alternatively, in the sequel, we equivalently consider each individ-
ual instance ti ∈ t, obtain the expected number of instances in the
database that ti dynamically dominates, among all instance com-
binations, and finally aggregate the expected numbers for all ti.
Formally, we can rewrite the definition of score(t) in Definition
3.4, and obtain the lemma below.

LEMMA 4.1. The probability Pr{t ≺q s} in score, score(t),
of uncertain object t in the uncertain database D is given by:

Pr{t ≺q s} =

|t|∑

i=1


ti.p ·




∑

j∈[1,|s|]∧ti≺qsj

sj .p





 . (2)

Proof. Derived from Definition 3.4 and Eq. (1). 2

Intuitively, in Eq. (2), the probability
∑

j∈[1,|s|]∧ti≺qsj
sj .p is the

summed appearance probability of instance sj such that ti dynam-
ically dominates sj in the d-dimensional space. This way, our PTD
problem of finding k uncertain objects with the highest scores de-
fined with exponential number of instance combinations can be
now reduced to the one that answers spatial aggregate queries (i.e.
summing up appearance probabilities of instances) in a d-dimen-
sional space for each instance ti of uncertain object t.

As mentioned earlier, based on the score definition, we can use the
straightforward nested loop approach to obtain the PTD answers.
However, even by using the rewritten formula, Eq. (2), the direct
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calculation is still not efficient due to its complexity O(N2) in the
worst case, where N is the data size. Thus, instead, we target at
obtaining the lower and upper bounds of score at a low cost, which
can help reduce the PTD search space effectively.

4.2 Bounding Scores of Uncertain Objects
In this subsection, we illustrate how to obtain lower and bounds
of score(t) using a 2D example in Fig. 4, where we are given a
PTD query point q and an uncertain object t in a 2D space. For
the sake of clear illustration, we assume each uncertain object t is
represented by one group (i.e. t = G1(t) for m(t) = 1). At the
end of this subsection, we will extend our solution to the case of
dealing with arbitrary number (i.e. m(t) > 1) of groups.

In Fig. 4, let Tmin and Tmax be two points in the bounding rectan-
gle of t that are the nearest to and farthest from q, respectively. Fig.
4(a) and Fig. 4(b) show the dynamic dominance regions (shaded
areas) DDR(Tmin) and DDR(Tmax) of points Tmin and Tmax, re-
spectively, with respect to query point q. Clearly, for any instance
ti ∈ t, its dominance region DDR(ti) always satisfies the contain-
ment relationship below:

DDR(Tmax) ⊆ DDR(ti) ⊆ DDR(Tmin). (3)

In other words, if we sum up appearance probabilities for all the
instances falling into region DDR(Tmax) (DDR(Tmin)), then we
can obtain a lower (upper) bound of probability

∑
j∈[1,|s|]∧ti≺qsj

sj .p in Eq. (2). From this interesting observation, we give the
lower/upper bounds of score(t) below.

(a) DDR(Tmin) (b) DDR(Tmax)

Figure 4: Bounding the Score score(t)

Formally, in a d-dimensional uncertain databaseD, the nearest and
farthest points in t to q are given by: Tmin = 〈min

|t|
i=1{|ti.A1 −

q.A1|}, min
|t|
i=1{|ti.A2 − q.A2|}, ..., min

|t|
i=1{|ti.Ad − q.Ad|}〉

and Tmax = 〈max
|t|
i=1{|ti.A1−q.A1|}, max

|t|
i=1{|ti.A2−q.A2|},

..., max
|t|
i=1{|ti.Ad−q.Ad|}〉, respectively, where X.Ai is the i-th

coordinate of point X . We have the following lemma:

LEMMA 4.2. (Lower and Upper Bounds of Score score(t)) Let
score(Tmin) =

∑
∀sj∈DDR(Tmin) sj .p =

∑
∀s∈D∧s6=t∧Tmin≺qsj

sj .p, and similarly score(Tmax) =
∑
∀sj∈DDR(Tmax) sj .p

=
∑
∀s∈D∧s6=t∧Tmax≺qsj

sj .p. Then, we have:

score(Tmax) ≤ score(t) ≤ score(Tmin). (4)

Proof Sketch. From the definitions of points Tmin and Tmax, for
any instance ti ∈ t, we have the dynamic dominance relationship
ti ≺q Tmax and Tmin ≺q ti.

For any uncertain object s, if we have Tmax ≺q sj for some sj ∈ s,
then it holds that ti ≺q Tmax ≺q sj (due to the transitive property

of the dynamic dominance). Thus, we have
∑
∀s∈D∧s6=t∧Tmax≺qsj

sj .p ≤
∑
∀s∈D∧s6=t∧ti≺qsj

sj .p. Therefore, by Eq. (2), we ob-

tain: score(Tmax) = (
∑|t|

i=1 ti.p) · score(Tmax) =
∑|t|

i=1(ti.p ·
(
∑
∀s∈D∧s6=t∧Tmax≺qsj

sj .p))≤ ∑|t|
i=1(ti.p·(

∑
∀s∈D∧s6=t∧ti≺qsj

sj .p)) = score(t). Hence, the first part of Inequality (4) is correct.
The proof of score(t) ≤ score(Tmin) is similar and thus omitted.
2

Next, we consider the general case where instances in each uncer-
tain object t are divided into m(t) (≥ 1) groups, G1(t), G2(t), ...,
and Gm(t)(t). Similar to the case with single group, we can com-
pute the lower and upper bounds for score score(Gi(t)) as follows.
Let Gi(t)min and Gi(t)max be points in the MBR of group Gi(t)
nearest to and farther from query point q, respectively. For each
group Gi(t), we can find its lower and upper bounds with respect
to Gi(t)max and Gi(t)min, respectively, by using Lemma 4.2. We
have the following lemma for score bounds with multiple groups.

LEMMA 4.3. Assume an uncertain object t has m(t) groups of
instances, G1(t), G2(t), ..., and Gm(t)(t). Then, we have:

m(t)∑

i=1







∑

∀tj∈Gi(t)

tj .p


 · score(Gi(t)max)


 ≤ score(t)

≤
m(t)∑

i=1







∑

∀tj∈Gi(t)

tj .p


 · score(Gi(t)min)


 . (5)

Proof. For each group Gi(U), by Lemma 4.2, we have:




∑

∀tj∈Gi(t)

tj .p


 · score(Gi(t)max) ≤ score(Gi(t))

≤




∑

∀tj∈Gi(t)

tj .p


 · score(Gi(t)min) (6)

Moreover, based on Lemma 4.1, it holds that:

score(Gi(t)) =
∑

∀ti∈Gi(t)


ti.p ·

∑

s∈D∧s6=t∧ti≺qsj

sj .p


 .

Thus, we have:

score(t) =

m(t)∑

i=1

score(Gi(t)). (7)

Therefore, by combining Inequality (6) and Eq. (7), we obtain In-
equality (5), which completes our proof. 2

For brevity, in the sequel, we denote the lower and upper bound of
score(t) as LB_score(t) and UB_score(t), respectively, which
are given in Inequality (5).

4.3 Pruning Heuristics
After providing the score bounds for uncertain objects, we are now
ready to illustrate the intuition of our pruning method for reducing
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the PTD search space. Fig. 5 illustrates a 2D object-score space,
where the horizontal axis indicates the uncertain objects (e.g. t,
s, or u), and the vertical axis represents the scores of the corre-
sponding uncertain objects. As discussed above, instead of ex-
pensively computing the exact scores of uncertain objects, we can
obtain score intervals at a lower cost, into which the actual scores
fall. For example, for uncertain object t, we have its score score(t)
within interval [LB_score(t), UB_score(t)].

Now we consider a probabilistic top-1 dominating query (i.e. k =
1) in the example of Fig. 5, which retrieves an uncertain object
that has the highest score (defined in Eq. (2)). The rationale be-
hind our pruning method is as follows. First, we find the largest
(i.e. 1st largest) lower bound of score for all uncertain objects in
the database. In the example, this largest lower bound is given by
LB_score(t), which can be used as a threshold for pruning. In
particular, for uncertain object u, since its upper bound score has
already been smaller than LB_score(t), that is, UB_score(u) <
LB_score(t), u cannot be a qualified answer to our PTD query.
Thus, uncertain object u can be safely pruned, without calculat-
ing its exact score score(u). On the other hand, uncertain object
s cannot be pruned, since its upper bound UB_score(s) is above
threshold LB_score(t) (i.e. s still has chance to have the highest
score in the database).

Figure 5: Illustration of Pruning Heuristics

We summarize the pruning condition in the example above in the
following lemma.

LEMMA 4.4. (Pruning Condition) Let k_lb_score be the k-th
largest lower bound of score for any k uncertain objects in the
database. Any uncertain object s can be safely pruned if it holds
that UB_score(s) < k_lb_score.

Proof. Since k_lb_score is the k-th largest lower bound of score of
k uncertain objects (considered as threshold), it indicates that there
are at least k uncertain objects whose exact scores are above thresh-
old k_lb_score. Moreover, since UB_score(s) < k_lb_score,
we have inequality score(s)≤UB_score(s) < k_lb_score. There-
fore, uncertain object s has its exact score lower than k_lb_score
(in other words, there are at least k uncertain objects having scores
higher than s). From the PTD definition (in Definition 3.4), s can-
not be the query answer, and thus it can be safely pruned. 2

From the pruning condition in Lemma 4.4, only those uncertain
objects that have their score upper bounds greater than threshold
k_lb_score are the PTD candidates.

4.4 PTD Query Processing
In this subsection, we present the detailed procedure for PTD query
processing. In particular, we first give the baseline method, namely
PTD_Baseline, in Fig. 6 to answer PTD queries.

4.4.1 PTD Baseline Algorithm
Specifically, procedure PTD_Baseline scans each uncertain object
t in the database D and computes the lower and upper bounds of
its score (LB_score(t) and UB_score(t), respectively; lines 1-3).
Moreover, we also keep a threshold k_lb_score, which is defined
as the k-th largest lower bound of score in the PTD candidate set
Scand. When Scand has fewer than k uncertain objects, we add
any uncertain object t we encounter to the set Scand (lines 4-5).
When the size of Scand reaches or exceeds k, we insert an uncertain
object t into Scand only if UB_score(t) > k_lb_score holds,
which is guided by our pruning condition in Lemma 4.4. Since
threshold k_lb_score may become larger due to the inclusion of
t in Scand, we can remove some uncertain objects s from Scand,
which satisfy the pruning condition UB_score(s) < k_lb_score
(lines 6-8). Finally, we refine the remaining candidates in Scand by
computing their actual scores and return k uncertain objects with
the highest scores as the PTD query results (line 9).

Procedure PTD_Baseline {
Input: aR-tree I constructed overD, and query point q
Output: the answer to the PTD query
(1) Scand = φ, k_lb_score = +∞;
(2) for each uncertain object t ∈ D
(3) [LB_score(t), UB_score(t)]=Bounding_Score (q, t, root(I))
(4) if |Scand| < k
(5) add t to Scand

(6) else if UB_score(t) > k_lb_score
(7) add t to Scand and set k_lb_score to the k-th largest lower

bound in Scand

(8) remove uncertain objects s from Scand satisfying UB_score(s)
< k_lb_score

(9) refine candidates in Scand by calculating their real scores and return
the actual PTD answer

}
Procedure Bounding_Score {

Input: query point q, uncertain object t, and a node N of aR-tree I
Output: the lower and upper bounds of score(t)
(1) let uncertain object t contain groups G1(t), G2(t), ..., Gm(t)(t)
(2) LB_score(t) = UB_score(t) = 0;
(3) if N is a leaf node
(4) for each entry Gj(s) ∈ N
(5) for each group Gi(t)
(6) if Gj(s) ⊆ DDR(Gi(t)max)
(7) LB_score(t) = LB_score(t) + Gi(t).agg ·Gj(s).agg
(8) if Gj(s)∩ DDR(Gi(t)min) 6= φ
(9) UB_score(t) = UB_score(t) + Gi(t).agg ·Gj(s).agg
(10) else // intermediate node
(11) for each entry Nj ∈ N
(12) if there exists a group Gi(t) such that Nj partially intersects with

DDR(Gi(t)max) or DDR(Gi(t)min)
(13) [lb, ub] = Bounding_Score (q, t, Nj );
(14) LB_score(t) = LB_score(t) + lb
(15) UB_score(t) = UB_score(t) + ub
(16) else for each group Gi(t)
(17) if Nj ⊆ DDR(Gi(t)max)
(18) LB_score(t) = LB_score(t) + Gi(t).agg ·Nj .agg
(19) if Nj ⊆ DDR(Gi(U)min)
(20) UB_score(t) = UB_score(t) + Gi(t).agg ·Nj .agg

}

Figure 6: PTD Baseline Algorithm

In particular, we address how to calculate the lower and upper
bounds of the score for an uncertain object t. As shown in line 3 of
procedure PTD_Baseline, we invoke procedure Bounding_Score
(also in Fig. 6) and obtain the score bounds by traversing the aR-
tree index I.

Specifically, procedure Bounding_Score starts from the root (i.e.
root(I)) of index I, and accesses its children iteratively. When
we encounter a leaf node N , for each entry Gj(s) (i.e. one group
for an uncertain object s), we check whether or not Gj(s) is fully
contained in the dynamic dominance region of group Gi(t), that is,
DDR(Gi(t)max). In case the answer is yes, we update the lower
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bound LB_score(t) by adding Gi(t).agg · Gj(s).agg (Lemma
4.3), where Gj(s).agg stores the summed appearance probabilities
of all instances in group Gj(s) in the aR-tree (lines 3-7). Simi-
larly, if Gj(s) and DDR(Gi(t)min) have non-empty intersection,
we increase UB_score(t) by Gi(t).agg ·Gj(s).agg (i.e. overesti-
mated by assuming all the instances in Gj(s) are contained within
the region DDR(Gi(t)min); lines 8-9). On the other hand, when
N is a non-leaf node, we process each entry Nj in N as follows.
If there exists a group Gi(t) such that Nj partially intersects with
DDR(Gi(t)max) or DDR(Gi(t)min), we need to recursively ac-
cess its children by invoking procedure Bounding_Score itself
with node Nj , in order to obtain accurate lower/upper bound of
scores (lines 12-13). The returned bounds lb and ub are added
to LB_score(t) and UB_score(t), respectively (lines 14-15). If
there is no partial intersection between any Gi(t) and DDR, sim-
ilar to the case of handling leaf nodes, we check the relationship
between Nj and DDR(Gi(t)max) (or DDR(Gi(t)min)) and up-
date the lower (upper) bound LB_score(t) (UB_score(t)) ac-
cordingly (lines 16-20).

4.4.2 PTD Query Procedure
Although procedure PTD_Baseline can correctly answer the PTD
query, as mentioned in the last subsection, it invokes procedure
Bounding_Score and visits the aR-tree for every uncertain ob-
ject t in the database D, which is not that efficient in terms of both
computation and I/O costs. This is because the calculation of score
bounds for all objects in D has to traverse the tree nodes multiple
times. Observing this, in the sequel, we propose a more efficient
method to process PTD queries by accessing each node of the aR-
tree at most once. Intuitively, this can be achieved by updating the
score bounds of other nodes/instances whenever a node is visited.
Thus, if a visited node is pruned, we do not need to access it some
time later to calculate the score bounds of other nodes.

Specifically, Fig. 7 illustrates the detailed query procedure, namely
PTD_Processing, which traverses the aR-tree I by maintaining a
maximum heap H accepting entries in the form (N, key), where
N is a tree node and key is defined as the upper bound of score for
any possible instance in N (line 1). We also maintain a PTD can-
didate set Scand (initially empty, line 2) for storing possible query
answers in the form 〈cur_agg, cur_lb, cur_ub〉, where cur_agg
is the summed appearance probability of instances in an uncer-
tain object t that we have seen so far, and cur_lb and cur_ub are
the score lower and upper bounds for instances in t that we have
seen. For example, assume we have seen groups G1(t), G2(t), ...,
and Gcur(t) so far. Then, according to Lemma 4.3 (Eq. (5)), we
have entry 〈∑cur

i=1 Gi(t).agg,
∑cur

i=1 Gi(t).agg·score(Gi(t)max),∑cur
i=1 Gi(t).agg ·score(Gi(U)min)〉, where aggregate Gi(t).agg

is the summed appearance probability of all instances in group
Gi(t). Note that, here the entry in Scand may not see all the in-
stances of uncertain object t. Thus, we can only obtain lower bound
score(t) by cur_lb assuming instances of t that we have not seen
would not increase the score (i.e. not dynamically dominated by
any instance of t). Similarly, score score(t) can be upper bounded
by cur_ub+(1−cur_agg) ·top(H).key, assuming those instance
of t that have not been seen have scores top(H).key, which is the
largest possible key in the current heap H (i.e. the largest score
upper bound for any node that we have not seen). As mentioned in
Section 4.3, such obtained score bounds can be used to help prune
the search space.

The query procedure PTD_Processing starts from root root(I)
of aR-tree and computes lower/upper bounds of scores for root en-

Procedure PTD_Processing {
Input: aR-tree I constructed overD, and query point q
Output: the answer to the PTD query
(1) initialize a max-heapH accepting entries in the form (N, key)
(2) Scand = φ;
(3) for each entry Ni ∈ root(I)

// LB_score(Ni) and UB_score(Ni) are initially 0
(4) for each entry Nj ∈ root(I) such that i 6= j
(5) if Nj ⊆ DDR(Ni,max)
(6) LB_score(Ni)=LB_score(Ni) + Nj .agg
(7) if Nj∩ DDR(Ni,min) 6= φ
(8) UB_score(Ni)=UB_score(Ni) + Nj .agg
(9) insert (Ni, UB_score(Ni)) into heapH
(10) let k_lb_score be the k-th largest score lower bound for Ni

∈ root(I)
(11) whileH is not empty and top(H).key ≥ k_lb_score
(12) (N, key) = de-heapH
(13) if N is a leaf node
(14) for each entry Gi(t) ∈ N
(15) update score lower/upper bounds for nodes in heapH
(16) if Gi(t) is the first group of t in Scand

(17) if score(Gi(t)min) + (1−Gi(t).agg) ·top(H).key
≥ k_lb_score

(18) create a new entry in Scand for Gi(t) in the form
〈Gi(t).agg, score(Gi(t)max), score(Gi(t)min)〉

(19) else // update entry 〈cur_agg, cur_lb, cur_ub〉 in Scand

(20) cur_agg = cur_agg + Gi(t).agg
(21) cur_lb = cur_lb + Gi(t).agg · score(Gi(t)max)
(22) cur_ub = cur_ub + Gi(t).agg · score(Gi(t)min)
(23) if cur_ub + (1− cur_agg) · top(H).key < k_lb_score
(24) mark t as a false alarm
(25) update k_lb_score
(26) else // intermediate node
(27) for each entry Ni ∈ N
(28) update score lower/upper bounds for nodes in heapH
(29) if UB_score(Ni) ≥ k_lb_score // pruning
(30) add (Ni, UB_score(Ni)) to heapH
(31) refine candidates in Scand by calculating the exact scores
(32) return k uncertain objects with the highest scores

}

Figure 7: PTD Query Processing

tries which are inserted into the heap H (lines 3-9). Let thresh-
old k_lb_score be the k-th largest lower bound of score for Ni ∈
root(I) (line 10). Each time we pop out an entry (N, key) from
heapH (lines 11-12). When N is a leaf node, for each entry Gi(t),
we update lower/upper bound of nodes in heap H and, moreover,
decide whether or not to include t in the candidate set Scand (lines
16-25). In particular, if uncertain object t does not have an entry in
Scand and the upper bound of Gi(t) (i.e. score(Gi(t))min +(1−
Gi(t).agg) · top(H).key) is greater than or equal to k_lb_score,
then t is a possible candidate and we create an entry for uncertain
object t in Scand (lines 16-18); otherwise, we update the existing
entry 〈cur_agg, cur_lb, cur_ub〉 in Scand considering instances
in Gi(U) (lines 19-22). In case the updated score upper bound is
less than threshold k_lb_score, t can be safely pruned by mark-
ing it as a false alarm (Lemma 4.4; lines 23-24). Furthermore, we
update threshold k_lb_score with the k-th largest cur_lb in Scand.

When N is a non-leaf node, for each entry Ni in N , we update
lower/upper score bounds for nodes in heap H (lines 27-28). If
the score upper bound UB_score(Ni) is greater than or equal to
k_lb_score, it indicates that Ni may contain candidates that have
their scores higher than k_lb_score. Thus, we need to add Ni

to heap H with key UB_score(Ni). Otherwise, node Ni can be
safely pruned. Note that, for any uncertain object t whose exact
upper bound is greater than k_lb_score, there must exist at least
one group Gi(t) such that its score upper bound is greater than
k_lb_score. Thus, we will not introduce false dismissals if we
prune Ni with upper bound lower than k_lb_score. Finally, the
iteration terminates until either heapH is empty or the largest upper
bound in the heap is smaller than threshold k_lb_score (line 11).
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5. APPROXIMATE PROBABILISTIC TOP-
K DOMINATING SEARCH

In this section, instead of exactly answering PTD queries, we pro-
pose an approximate approach that can achieve higher efficiency.
Section 5.1 presents the basic idea of our approximate solutions.
Section 5.2 discusses details of the approximate version of PTD.

5.1 Rationale
Recall from query procedure PTD_Processing (Fig. 7), that the
major cost of our PTD query processing is with computing the
lower/upper bounds. This is a bottleneck of the cost, since for each
expansion of the tree node, we need to update the bounds for other
nodes. Motivated by this, in the sequel we aim to efficiently esti-
mate the lower and upper bounds of scores during the PTD query
processing. This way, we can significantly reduce the computation
cost.

Figure 8: Illustration of Inverse Dynamic Dominance Region

Fig. 8 illustrates the same example as Fig. 4(a). The only differ-
ence is in the area with sloped lines, which is the inverse region
of dynamic dominance regions DDR(Tmin) (given in Fig. 4(a)).
Formally, let the entire data space beA. The inverse dynamic dom-
inance region (iDDR) of a point ti is defined as iDDR(ti) = A -
DDR(ti). In the example, we observe that instances can either fall
into regions iDDR(Tmin) or DDR(Tmin), while the total number
of instances is fixed (assuming the database is given). Therefore,
we can conceptually transform our PTD query that retrieves k un-
certain objects with the highest scores in DDR to the problem of
obtaining k uncertain objects with the lowest scores in iDDR. Note
that, such conceptual transformation can greatly help the score es-
timation during our PTD query processing.

5.2 Approximate Query Procedure
As mentioned above, after the conceptual transformation, instead
of computing lower/upper bounds of scores in DDR, now we can
aggregate the appearance probabilities of instances that fall into
iDDR. Although the computation costs for obtaining the exact PTD
answer are similar in these two cases, we can speed up the latter
case with approximations, with the help of sketches.

As shown in the 2D example of Fig. 8, region iDDR(Tmin) (filled
with sloped lines) can be considered as a union of two areas, one
between lines A1 = 3.9 and A1 = 6.1, and the other between
lines A2 = 4.2 and A2 = 7.2. In a generic d-dimensional space,
iDDR(t) can be obtained by a union of d smaller regions, that is
iDDR(t) = ∪d

i=1 iDDR(i)(t), where iDDR(i)(t) is a region such
that its i-th dimension is constrained by interval [q.Ai − |q.Ai −
Tmin.Ai|, q.Ai+|q.Ai−Tmin.Ai|]. This way, the problem of find-
ing the summed appearance probability of instances in iDDR(q, t)
can be further reduced to the one that obtains the expected number
of distinct uncertain objects (weighted by their summed appearance
probability of instances) that fall into these d regions iDDR(i)(t).

Formally, we have d sets of instances falling into d regions, that
is, iDDR(i)(t), respectively, where each instance is associated with
its appearance probability ti.p or aggregate Gi(t).agg for group
Gi(t). Now we want to estimate the summed appearance probabil-
ity of all the distinct instances (groups) in these regions.

There are many previous work on estimating distinct values using
FM-sketch, which however assumes equal importance of each value
(or id). Recently, the probabilistic FM-sketch (pFM sketch) [8] has
been proposed to estimate the distance values with different ap-
pearance probability. Specifically, the pFM algorithm maintains an
array pFM[] comprising real-valued probability entries. A family
of hash functions h : [M ] → {1, 2, ..., logM} are employed such
that any value x ∈ [M ] is hashed to the i-th position with probabil-
ity 2−i. For each incoming value t with appearance probability p,
we update pFM sketch with pFM[h(t)] = pFM[h(t)] ·(1− p) + p.
Therefore, the expected number of distinct ids in a pFM sketch is
given by

∑logM
j=1 2j · pFM[j]

∏logM
k=j+1(1− pFM[k]).

In our problem, for each dimension j, we divide the domain along
this dimension into l bins of equal size. For example, in Fig. 9, we
can divide the domain into 11 bins of size 1 for each dimension (i.e.
Bin[0,1], Bin[1,2], ..., and Bin[10,11]). In each bin, we maintain a
pFM sketch which summarizes all the instances (with ids t and ap-
pearance probabilities ti.p) that have their j-th dimension falling
into this bin. The basic idea of our estimation for region iDDR(t) is
as follows. Given a region iDDR(t), we can obtain all the bins that
intersect with region iDDR(i)(t) along each dimension 1 ≤ i ≤ d
(boundary effect should be considered; details are omitted due to
space limit). Then, we retrieve all the pFM sketches in these bins
combine them together into one pFM sketch, and finally estimate
the score bound, EiDDR(t), in iDDR(t). The expected score in
DDR(t) can be given by C- EiDDR(t), where C is a constant de-
fined as the summation of appearance probabilities for all instances
in the database D.

Next, one remaining issue to be addressed is how to combine two
pFM-sketches into one. We give the lemma below.

LEMMA 5.1. Given two pFM sketches pFM1 and pFM2, we
can combine them into one pFM sketch, pFM0, by letting:

pFM0[j] = 1− (1− pFM1[j]) · (1− pFM2[j]), (8)

for all 1 ≤ j ≤ logM .

Proof Sketch. In [8], we have pFM[j] = 1 − Π∀ti(1 − ti.p).
Thus, by applying this formula, the correctness of Eq. (8) is obvi-
ous. 2

In summary, by approximating the lower/upper bounds of scores
with pFM sketches, we can avoid the costly computation with pair-
wise tree nodes, which has the time complexity O(|H|·|N |), where
|H| and |N | are the numbers of entries in the heap H and node
N , respectively. In particular, in procedure PTD_Processing, the
places that need to compute bounds are replaced by our pFM sketch
estimation with only O(1) cost, with lines 4-8, 17-18, and 21-22.
Further, the costly sentences, lines 15 and 28, can be removed,
since the score bounds can be estimated directly from pFM sketch
and we do not need to maintain the score bounds by checking the
dynamic dominance relationship for each nodes in the heap.
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6. PTD QUERIES WITH UNCERTAIN
QUERY OBJECT

Up to now, we always assume that the query object for PTD is a
precise point. In this section, we consider the problem where the
PTD query object is also an uncertain object q containing instances
q1, q2, ..., and q|q|. In this case, we define the score of an uncer-
tain object as the expected score with different query instances qi.
Formally, score(t) =

∑|q|
i=1 qi.p · score(qi, t), where qi.p is the

appearance probability of query instance qi, and score(qi, t) is the
score given by Eq. (2) considering qi as static query point.

In order to answer PTD queries with uncertain query object q, our
main concern is on how to obtain the upper and lower bounds of
score, denoted as score(qi, t), for all qi ∈ q. Once the score lower
bounds are available, we can easily apply the pruning condition
given in Lemma 4.4 to prune the PTD search space and retrieve
PTD candidates.

(a) DDR(Qmin, Tmin) (b) DDR(Qmax, Tmax)

Figure 9: Bounding Scores for PTD with Uncertain Query Object

In the sequel, we use a 2D example shown in Fig. 9 to illustrate how
to bound the scores in the case of uncertain query object. With-
out loss of generality, assume instances of query object q can be
bounded by an MBR. As illustrated in Fig. 9(a), given an uncertain
object t, let Tmin and Qmin be the two closest points in MBRs of
uncertain objects t and q, respectively. The shaded regions in Fig.
9(a) correspond to (conservative) dynamic dominating regions be-
tween uncertain query object q and uncertain object t, denoted as
DDR(Qmin, Tmin), assuming query instance qi resides at Qmin.
Interestingly, we observe that the summed appearance probability
for all the instances falling into the shaded regions is exactly an
upper bound of score(qi, t). This is because, the union of regions
DDR(qi, Tmin) for different locations of query instance qi is ex-
actly the shaded region.

Similarly, as illustrated in Fig. 9(b), let Tmax and Qmax be two
farthest points in MBRs of uncertain objects t and q, respectively.
The shaded regions in the figure correspond to dynamic dominat-
ing regions DDR(Qmax, Tmax), assuming query object locates at
the position of Qmax. Similarly, we find that the intersection of
DDR(qi, Tmax) for all possible positions of q is exactly the shaded
regions, which indicates that the summed appearance probability
for all the instances falling into the shaded regions would be a lower
bound of score score(qi, t).

Based on the observation in the example above, we can calculate
the lower/upper bounds for scores and then use them to effectively
filter out false alarms of the PTD query. Finally, the remaining
candidates are refined by computing their actual scores and the ones
with k highest scores are returned.

7. EXPERIMENTAL EVALUATION
In this section, we demonstrate the efficiency and effectiveness of
our proposed approaches to answer probabilistic top-k dominat-

ing (PTD) queries. Specifically, we test the performance of PTD
queries over both real and synthetic data sets with different pa-
rameter settings. For synthetic data sets, in order to generate an
uncertain object t for a d-dimensional uncertain database, we first
determine a region (without loss of generality, we consider it as
a hypersphere) centered at location Ct and with proximity radius
rt ∈ [rmin, rmax] in a data space [0, 100]d, and then we randomly
generate instances ti of t within this region. Here, we denote as
lU (lS) the data sets having center location Ct of Uniform (Skew
with skewness 0.8) distribution; moreover, denote as rU (rG) the
data sets containing uncertain objects with radius rt of Uniform
(Gaussian with mean rmin+rmax

2
and variance rmax−rmin

5
) dis-

tribution. Thus, we can obtain 4 types of data sets, namely lUrU ,
lUrG, lSrU , and lSrG. For the real data set, we use 300K 3D
sensory data (including attributes temperature, humidity, and light)
collected from 54 sensors deployed in Intel lab, which are available
at [http://db.csail.mit.edu/labdata/labdata.html]. Similar to syn-
thetic data, we generate uncertainty regions for each data p with
radius rp ∈ [rmin, rmax] following Uniform or Gaussian distribu-
tion and obtain sensor_rU and sensor_rG data sets, respectively.
Note that, in real applications, rmin and rmax can be provided by
the uncertainty model of data. For data sets with other data distri-
butions or parameters (like skewness, mean, or variance), the ex-
perimental results are similar, and we would not present all of them
here due to space limit. We construct an aggregate R-tree (aR-tree)
[15] for each tested data set above, where the page size is set to 4K
and the number of groups for each uncertain object is about 2-4 in
our experiments.

In order to evaluate the PTD query, we produce 100 query points
(or query regions for the dynamic PTD with uncertain query ob-
ject), which follows the same distribution as center locations Ct in
the data set. To our best knowledge, no previous work has studied
the problem of the PTD query in the context of uncertain databases.
In our experiments, we compare our proposed PTD query proce-
dure, PTD_Processing (in Fig. 7), with the baseline algorithm,
PTD_Baseline (in Fig. 6). Furthermore, we also investigate the
performance of our PTD query processing in the case where query
object is also uncertain (discussed in Section 6), as well as the
approximate PTD query processing (discussed in Section 5). For
brevity, we denote the baseline algorithm, PTD method, approxi-
mate PTD, and PTD with uncertain query object as Baseline, PTD,
A-PTD, and UQ-PTD, respectively.

We measure the performance of our PTD query procedure in terms
of wall clock time, which takes into account (sums up) both CPU
time and I/O cost of the query processing. In particular, we in-
corporate the cost of each page access into the wall clock time by
penalizing 10ms (i.e. 0.01 second) [30, 31, 17]. We conduct all
the experiments on a Pentium IV 3.2GHz PC with 1G memory, and
the reported experimental results are the average of 100 queries.

7.1 PTD Queries with Precise Query Point
In the first set of experiments, we evaluate the PTD query perfor-
mance with precise query point over both real and synthetic data
sets, by varying parameters (e.g. radius range [rmin, rmax], pa-
rameter k, dimensionality d, and data size N ).

7.1.1 Performance vs. Radius Range [rmin, rmax]
Fig. 10 and Fig. 11 illustrate the experimental results of PTD
query processing with different radius range [rmin, rmax], over
real and synthetic data sets, respectively. In particular, we vary
[rmin, rmax] with intervals [1, 5], [1, 10], [1, 15], [1, 20], and [1, 25],

668



(a) sensor_rU (b) sensor_rG

Figure 10: Performance vs. Radius Range [rmin, rmax] (Real Data)

(a) lUrU (b) lUrG

(c) lSrU (d) lSrG

Figure 11: Performance vs. Radius Range [rmin, rmax] (Synthetic
Data)

where other parameters of real/synthetic data sets are fixed, that is,
parameter k = 10, dimensionality d = 3, and data size N =
300K. Note that, when the uncertainty size (rmax − rmin) of ob-
jects becomes large, the overlap of score intervals is expected to
be heavy (i.e., lower/upper score bounds are loose), which indi-
cates that many objects are comparable to each other. Thus, higher
cost is needed to obtain the PTD candidates, in terms of wall clock
time, which is confirmed in figures. For all the data sets, our PTD
query processing approach always shows better performance than
the baseline algorithm by orders of magnitude, which confirms the
effectiveness of our pruning method via score bounds, as well as
the efficiency of our PTD query procedure.

7.1.2 Performance vs. Parameter k
In this subsection, we evaluate the wall clock time of the two ap-
proaches, PTD and Baseline, with different values of query param-
eter k, as illustrated in Fig. 12. Note that, since the trends of real
data sets are similar to that of synthetic data, in this and subsequent
experiments, we will only present the experimental results on syn-
thetic data due to space limit. Specifically, we vary k from 3 to 20,
where we fix radius range [rmin, rmax] = [1, 15], dimensionality
d = 3, and data size N = 300K. The wall clock time of both

(a) lUrU (b) lUrG

(c) lSrU (d) lSrG

Figure 12: Performance vs. PTD Query Parameter k

methods is not very sensitive to the k values, when k varies. Simi-
lar to the previous results, our PTD approach outperforms Baseline
by orders of magnitude.

7.1.3 Performance vs. Dimensionality d
Fig. 13 studies the effect of dimensionality on the performance of
our PTD query processing. In particular, we vary the dimension-
ality d of each type of data sets from 2 to 5, where PTD query
parameter k = 10, radius range [rmin, rmax] = [1, 15], and data
size N = 300K. In figures, the required wall clock time for an-
swering PTD queries increases with the increasing dimensionality
d. We do not show the case where d > 5, but the performance is ex-
pected to degrade, since the query efficiency over the multidimen-
sional index (including aR-tree) usually degrades with the increase
of dimensionality [32]. However, we can see that our PTD method
performs better than Baseline algorithm by order of magnitude.

7.1.4 Performance vs. Data Size N
Fig. 14 conducts a scalability test of the two proposed methods with
respect to the data size N . Specifically, we vary the data size N
ranging from 100K to 500K, and set radius range [rmin, rmax] =
[1, 15], parameter k = 10, and dimensionality d = 3. For all
the tested data sets, the wall clock time increases when the data
size N increases. This is due to the larger PTD candidate set with
large data size. Furthermore, similar to previous results, wall clock
time of our PTD method is by orders of magnitude better than the
Baseline approach, which indicates a nice scalability of our PTD
query procedure over large data set.

7.1.5 Approximate PTD Query Processing
Fig. 15 shows the efficiency and effectiveness of our approximate
PTD query processing, A-PTD, over different types of data sets,
compared with exact PTD approaches, PTD and Baseline, where
radius range [rmin, rmax] = [1, 15], parameter k = 10, dimen-
sionality d = 3, and data size N = 300K. Specifically, the ef-
ficiency of A-PTD is measured by wall clock time, whereas the
effectiveness of A-PTD is measured by the recall ratio, which is
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(a) lUrU (b) lUrG

(c) lSrU (d) lSrG

Figure 13: Performance vs. Dimensionality d

(a) lUrU (b) lUrG

(c) lSrU (d) lSrG

Figure 14: Performance vs. Data Size N

Figure 15: A-PTD Query Performance vs. Data Sets

(a) radius range [rmin, rmax] (b) parameter k

(c) dimensionality d (d) data size N

Figure 16: Performance vs. Parameters [rmin, rmax], k, d, and N

(UQ-PTD)

defined as the number of actual PTD answers returned by A-PTD
divided by the actual number of answers. In figures, the numbers
over columns indicate the recall ratio of A-PTD, which is around
70%. However, A-PTD trades accuracy for efficiency. As con-
firmed by figures, the wall clock time of A-PTD is much smaller
than both PTD and Baseline.

7.2 PTD Queries with Uncertain Query
Object

Next, we consider the PTD query processing with uncertain query
object. In particular, we generate the region for uncertain query
object by first selecting a random point in the data space and then
expand this point to a hyperrectangle with an extent (100 ·λ) along
each dimension, where 100 is the data domain of the data space
on each dimension. The experimental results on both real and syn-
thetic data sets are similar, and we will only report those on syn-
thetic data due to space limit.

7.2.1 Performance vs. Parameters [rmin, rmax], k, d,
and N

In this subsection, we show the experimental results with the same
settings as those in Section 7.1 (i.e. PTD queries with precise query
point), by varying parameters [rmin, rmax], k, d, and N , where the
parameter λ for uncertain query object is set to 0.1 (shown in Fig.
16). Due to the uncertain region for query object, as mentioned in
Section 6, the resulting score lower/upper bounds would be loose
compared with the case of precise query point (since we need to
overestimate the upper bound and underestimate the lower bound).
Therefore, the wall clock time in this set of experiments is higher
than that in the case with precise query point. However, the trends
of these experiments are similar.

7.2.2 Performance vs. Parameter λ
Fig. 17 illustrates the effect of parameter λ on the performance
of PTD query with uncertain query object. Since larger λ results
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Figure 17: Performance vs. Parameter λ (UQ-PTD)

in large uncertain region of the query object, the score bounds be-
come loose. Thus, the wall clock time of the PTD query process-
ing increases with the increasing λ. In summary, we have demon-
strated extensive experiments to show the effectiveness of the prun-
ing methods, and verified the efficiency of our proposed PTD query
processing, in terms of wall clock time.

8. CONCLUSIONS
Query processing in the uncertain database has become very hot re-
cently due to the wide existence of uncertain data in many real ap-
plications. In this paper, we formulate and tackle the probabilistic
top-k dominating (PTD) query in the uncertain database. In partic-
ular, we formalize the PTD query, which retrieves k uncertain ob-
jects in the database that dynamically dominate the highest number
of instances for all possible instance combinations. Then, we pro-
pose an effective method to reduce the PTD search space, and avoid
considering exponential number of instance combinations. Further-
more, approximate PTD query processing and the PTD query pro-
cessing with uncertain query object are also discussed. Finally, ex-
tensive experiments have demonstrated the query performance of
our proposed PTD query procedures, in terms of wall clock time.
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