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ABSTRACT
Existing hierarchical summarization techniques fail to pro-
vide synopses good in terms of relative-error metrics. This
paper introduces multiplicative synopses: a summarization
paradigm tailored for effective relative-error summarization.
This paradigm is inspired from previous hierarchical index-
based summarization schemes, but goes beyond them by
altering their underlying data representation mechanism.
Existing schemes have decomposed the summarized data
based on sums and differences of values, resulting in what
we call additive synopses. We argue that the incapacity
of these models to handle relative-error metrics stems ex-
actly from this additive nature of their representation mech-
anism. We substitute this additive nature by a multiplicative
one. We argue that this is more appropriate for achiev-
ing low-relative-error data approximations. We develop an
efficient linear-time dynamic programming scheme for one-
dimensional multiplicative synopsis construction under gen-
eral relative-error-based metrics, and a special scheme for
the case of maximum relative error. We generalize
our schemes to higher data dimensionality and we show a
surprising additional benefit gained by our special scheme
for maximum relative error in this case. In our experimental
study, we verify the higher efficacy of our model on relative-
error-oriented summarization problems.

1. INTRODUCTION
A data synopsis aims to quickly and efficiently reduce a very
large data set into a compact approximate representation
that captures its basic features. Synopsis construction algo-
rithms and related index structures provide a basic tool in
a wide spectrum of applications, such as query optimization
[24, 34], approximate query answering [42, 4], OLAP/DSS
systems [50], time-series indexing [5], and distributed stream
monitoring [46].
In all applications, the task is to construct a summary of
the given data, stored within bounded space, while mini-
mizing an appropriate error function. Given a point query
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that asks for a data value di, an estimate of di, say d̂i, is con-
structed and returned as an answer [22]. Previous research
has tackled the problem in two principal ways: histogram-
based techniques [24, 44, 43, 26, 42, 12, 13, 22, 40, 19, 48],
and techniques based on hierarchical index structures such
as that provided by the Haar wavelet transform [34, 50, 4, 8,
18, 10, 11, 36, 7, 16], the GenHist method [23], the compact
hierarchical histogram [46] and the Haar+ tree [28].
Many techniques achieve satisfactory results when the tar-
get error metric is a function of absolute point-wise errors
[46, 28]. Still, error metrics of this class are not the most de-
sirable ones; relative error-based metrics are arguably more
important for most data approximation tasks [50, 10, 22, 11].
Given that individual values in a given data set may vary
by orders of magnitude, it is rather desirable to approximate
each of them within a good relative error, than to estimate
all of them within a uniformly good absolute error, which
may entail huge relative-error variations. For example, the
value xi = 10 estimated as x̂i = 30 entails the same absolute
error as the value xj = 1010 estimated as x̂j = 990, but the
relative error is 200% in the former case but only 2% in the
latter. Still, although much of related work, as [10, 11, 16],
has considered relative-error metrics as an objective of op-
timization among others, only histogram construction [22]
has been specialized with regard to this highly desirable class
of error metrics. Thus, [22] treats the case of relative-error
metrics sufficiently from the histograms’ point of view. Such
a dedicated treatment from the point of view of hierarchical
summarization is pending. Unfortunately, the two most re-
cently proposed hierarchical summarization techniques did
not pay full attention to this important class of error met-
rics. The methods of [46] did not tailor their approximate
values per bucket for such metrics (as [22] did), hence did not
achieve good results with them; [28] did not examine such
metrics in its evaluation. Besides, none of the recent hier-
archical synopsis studies that included relative-error metrics
in their evaluations [11, 16, 46] assessed its performance in
comparison to [22]. Hence, research on hierarchical summa-
rization has still not satisfied one of its central desiderata.
In this paper, we argue that the data reconstruction mecha-
nism of a synopsis structure can be fruitfully specialized for
the error metric at hand, contrary to the “one model fits all”
approach of [10, 11, 16, 46, 28]. We introduce multiplicative
synopses: a summarization model for relative-error-oriented
problems. We develop linear-time algorithms for multiplica-
tive synopsis construction, and a faster, indirect technique
for maximum relative error. We generalize our model to
higher dimensionality, showing that the benefit gained by
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the indirect technique grows with it. Last, we experimentally
verify the advantage of our approach over other methods.

2. BACKGROUND AND RELATED WORK
Given an n-sized data vector D = 〈d0, d1, . . . , dn−1〉, the

problem is to devise an n-length representation D̂ of D us-
ing at most B space units, so that a given relative-error met-
ric in the approximation is minimized. A Minkowski-norm
function:

Lrel
p

(
D̂,D

)
=

(
1

n

∑
i

(
|d̂i − di|

max{|di|, S}

)p) 1
p

(1)

covers most practically interesting point-wise relative-error
functions; d̂i is the reconstructed value for di; S > 0 is a san-
ity bound that prevents small values from unnaturally dom-
inating the result [10, 11]. This sanity bound is set based
on the needs of the application at hand; to be meaningful,
it has to be larger than the smallest value in the data set.
Past research on summarization can be divided in two broad
categories: The former, single-value summarization, approx-
imates the given data by dividing it into buckets. Typically
these buckets contain consecutive values; alternatively, one
bucket may contain another, forming a hierarchical struc-
ture, as in [3, 46]. An estimated data item is reconstructed
as the value representing the bucket to which it belongs. The
latter category, additive summarization, represents the data
in terms of distinct elements that are added to each other,
typically utilizing a hierarchical index structure. An esti-
mated data item is reconstructed by adding an appropriate
series of terms.

2.1 Single-value Summarization
2.1.1 Plain Histograms

The classical case of one-dimensional single-value summa-
rization is a plain histogram; it divides the data vector D
into B � n disjoint intervals1 [bi, ei], 1 ≤ i ≤ B called
buckets or segments, and attributes to each of them a single
value vi that approximates all consecutive values therein, dj ,
j ∈ [bi, ei]. A single bucket (segment) can be expressed by
the triplet si = {bi, ei, vi}. Given a target metric, the opti-
mal value of vi is defined as a function [26, 48] of the data
in [bi, ei]; such functions for several relative-error metrics
are defined in [22]. An O(n2B)-time dynamic-programming
scheme that builds Euclidean-error-optimal histograms was
offered in [26]. For an arbitrary error metric, it takesO(n3B)
time. Its key observation is that the b-optimal histogram
of D can be recursively derived from the space of (b−1)-
optimal partitionings of its prefix vectors. A suite of effi-
cient histogram construction algorithms for several relative-
error-based metrics was delivered in [22]. Several works have
proposed approximation and streaming algorithms for his-
togram construction [12, 13, 45, 17, 19, 48]; [25] suggested
algorithms that identify the optimal set of histograms for a
set of attributes under an expected workload, as opposed to
independently optimizing the histogram for each attribute;
other approaches have provided histogram algorithms for
workload-based [39] and range-query [31, 14, 20, 38] opti-
mization.

2.1.2 Compact Hierarchical Histograms
The Compact Hierarchical Histogram (CHH) [46] defines a
binary hierarchy of intervals and selects a subset of nodes to
1The bounds bi and ei are indices, not data values.

represent a data set. A data item is approximated by the
value of its lowest non-zero ancestor node in the CHH hier-
archy (see Figure 7 that follows). Hence, the CHH is a case
of single-value summarization. It can be easily shown that
a binary CHH is equivalent to the additive hierarchical sum-
marization structure proposed in [2]. Besides, it also forms
a simplified variant of the more general (additive) Haar+

model [28] (Section 2.2.2). [46] proposed exact solutions
for limited versions of the CHH construction problem, and
heuristics for the most general, longest-prefix-match CHH
problem. The best-performing CHH algorithm is a greedy
heuristic that improves upon an optimal overlapping parti-
tioning; in such a partitioning, the value assigned at a CHH
node is the optimal value for the whole data interval under
its scope (as in a plain histogram bucket [26, 22, 48]), but
not for the value set it actually approximates. The heuris-
tic uses the occupied node positions computed for such an
overlapping partitioning, but adjusts their values so as to
fit the actually approximated data set (i.e., a subset of the
data under the node’s scope). Still, [46] did not customize
its approach for the case of relative-error metrics, as [22] did
with plain histograms.

2.1.3 Multidimensional Extensions
Several pieces of work have strived to extend the histogram
idea to multiple dimensions, with a view at approximating
the joint data distribution of a multi-attribute data set. [35]
introduced a multidimensional version of the equi-depth his-
togram of [41]. [43] proposed MHist, a multidimensional
histogram generalizing the MaxDiff heuristic of [44]. [1]
presented STGrid, an algorithm that maintains multidimen-
sional histograms by analyzing query results; [3] extended
this work with STHoles, which allows a bucket to contain
another; [47] provided ISOMER, a both consistent and ef-
ficient development of feedback-driven histogram mainte-
nance. Still, heuristics based on query feedback are sus-
ceptible to errors for unseen data regions. Besides, even
in the two-dimensional case, constructing an optimal his-
togram of arbitrary non-overlapping rectangular buckets is
NP-hard [37]. Algorithms with approximation guarantees
have been provided for limited versions of the problem, with
non-arbitrary buckets [30, 40]. A suggestion for overcoming
this difficulty is to identify the critical areas of dependence
among dimensions in multidimensional data and capture
them with a statistical interaction model, which can form
the basis for lower-dimensional histograms to approximate
the overall joint data distribution [9]. The technique of [49]
maintains a sketch on the joint data distribution of a contin-
uous stream, from which it can extract a multidimensional
histogram on demand.

2.2 Additive Summarization
2.2.1 Transformation-based Additive Synopses

Another influential summarization technique compresses the
data into a set of significant terms in a mathematical trans-
formation (decomposition) [34, 32], and reconstructs them
via the respective inverse transformation. The Discrete Co-
sine Transform (DCT) was proposed for that purpose in
[32]. However, [32] chooses the set of DCT coefficients in
the synopsis a priori, independently of the data, by means
of static geometrical zonal sampling. This may not be the
most appropriate set of coefficients, resulting in low-quality
synopses. Still, in the Discrete Haar Wavelet Transform
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(DHWT) method, introduced in [34], synopsis terms are
chosen with respect to the initial data set. The DHWT can
be visualized by a complete binary tree, the Haar tree. The
coefficient in the Haar tree root node contains the overall av-
erage value; each other coefficient value ci adds +ci to data
cells (leaves) in its left sub-tree and −ci to those in its right
sub-tree. A data value is reconstructed by adding/subtracting
the (signed) terms along a root-to-leaf path.

315.31

+ −5.13

+ − + −
5− 8

+ − + − + − 0+ −300 24

40 40 80 20 50 2 10 10

Figure 1: Full Haar Wavelet Decomposition

Figure 1 shows the Haar tree representing the complete
DHWT for the vector D = {40, 40, 80, 20, 50, 2, 10, 10}. Two
out of eight obtained coefficients are 0, which is the neutral
element of addition. Such zero-valued coefficients do not
have to be stored; a data set is represented by the non-zero
terms. A synopsis construction algorithm aims to specify
an appropriate set of B non-zero terms to maintain. For
example, coefficients −5 and 8 in Figure 1 can be set to 0,
while the values of others may be adjusted so as to enhance
the accuracy of approximation. Past research [10, 11, 16]
has built upon [34], resulting, most recently, to the Haar+

model.

2.2.2 The Haar+ Model
The Haar+ model [28] extended the model based on the
DHWT by inserting extra coefficient nodes in the hierar-
chy; each of these coefficients contributes its (signed) value
to a single dyadic interval alone. Therefore, the data re-
construction by a Haar+ tree does not correspond to an
inverse DHWT. Figure 2 depicts a simple one-dimensional
Haar+ tree that may approximate a four-element data set
{d0, d1, d2, d3}; it contains a single root coefficient node c0
that adds its value to all approximated data values, followed
by a binary tree of triads (C1, C2 and C3), which substitute
the single non-root coefficients of the classical Haar tree. In
each triad (e.g., C1), the head coefficient (e.g., c1) behaves
as a classical Haar wavelet coefficient: it adds its (signed)
value for the reconstruction of data cells in its left sub-tree
and subtracts it for the reconstruction of those in its right
sub-tree. The supplementary coefficients (e.g., c2 and c3)
add their (signed) values only in the single subinterval that
they affect (e.g., c2 adds to d0 and d1). Haar+ increases the
accuracy of approximation in relation to the DHWT-based
models and allows for faster synopsis construction as well
[28].

+

co

d3d2d1

-+
c1c2 c3

+ +

C1

-+
c4c5 c6

+ +
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c7c8 c9
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Figure 2: An One-Dimensional Haar+ Tree

2.2.3 The GenHist Heuristic
[23] proposed GenHist, a generalized multidimensional his-
togram. GenHist defines multidimensional buckets of vari-
able size, with unrestricted overlap among them. Such buck-
ets are extracted from progressively coarser grids over the
data set. The overlap among buckets allows for a more com-
pact approximation of data distributions. Data regions that
fall in the domain of more than one overlapping buckets are
reconstructed by adding the contributions from all. Still, the
GenHist heuristic, as it is designed for the hard multidimen-
sional case, does not attempt to calculate optimal bucket
values and/or positions for a given data set.

3. MOTIVATION
Both [10] and [11] concluded by questioning the “general
suitability of the [then-used] Haar-wavelet transform as a
data-summarization and approximate query processing tool”,
and inquired whether another model would be better suited
for optimizing relative-error metrics in the data approxima-
tion. This paper presents our proposal for answering this
question.
A data summarization mechanism suitable for relative-error
metrics should naturally give more emphasis on achieving
low absolute errors for small absolute values; hence, it can
sacrifice the absolute approximation accuracy at data cells of
larger absolute value for the sake of smaller ones. We argue
that additive (and single-value) summarization is not suit-
able for that purpose. A more suitable approach would be
to use multiplication as the basic data reconstruction mecha-
nism. In the next section we proceed to do so by introducing
the multiplicative transform.

a b

ab

b
a

∗ ÷
a b

2
ba −

+ −

2
ba +

(i) (ii)

Figure 3: Multiplicative transform (i), and Haar
wavelet transform (ii)

4. THE MULTIPLICATIVE TRANSFORM
The multiplicative transform analyzes a data set in hierar-
chical levels of detail based on pairwise products and ratios.
Figure 3(i) depicts the basic decomposition step for a given
pair of (positive) values {a, b}. The data are decomposed

to the root of their product
√
ab and the root of their ratio√

a
b
. They can be reconstructed by multiplying (dividing)

the former by the latter. The figure depicts, along arrows,
the operations that have to be performed between the in-
coming value to a decomposition node and the stored coeffi-
cient in it, in order to reconstruct the data. For comparison,
the basic step of a Haar wavelet transform [34] is depicted
in Figure 3(ii). In this case, the data are decomposed to
their average a+b

2
and their semi-difference a−b

2
, and can be

reconstructed by adding (subtracting) the latter to (from)
the former. The operators of multiplication, division and
root now play the role that addition, subtraction and aver-
age play in the Haar wavelet transform. Hence, in fact, the
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multiplicative transform is equivalent to an additive trans-
form in the logarithmic domain.
An example of a complete multiplicative decomposition for
the data vector D = {40, 40, 80, 20, 50, 2, 10, 10} is depicted
in Figure 4. Four out of eight obtained coefficients are equal
to 1, which is the neutral element of multiplication. Such
unit coefficients do not have to be stored. Hence, an eight-
element data set has been compressed to a four-term de-
composition. Further compression is possible by setting fur-
ther non-unit coefficients to the value 1, while adjusting the
values of retained non-unit coefficients so as to obtain the
highest possible accuracy in data approximation.

40
∗ ÷

40 80
∗ ÷

20 50
∗ ÷

2 10

1∗ ÷

10

∗ ÷ ∗ ÷

∗ ÷

21

1 1

5

2

20

Figure 4: Full Multiplicative Decomposition

We argue that the multiplicative transform is naturally well-
suited for relative-error-based metrics. We justify our ar-
gument with the following theorem, which shows that the
multiplicative transform behaves for relative-error-metrics
as the DHWT behaves for absolute-error-based metrics.

Theorem 1. Let z be a Haar wavelet coefficient that needs
to approximate a data pair {di, dj} with incoming value v.
Then, for any v and any Minkowski-norm absolute-error-
based metric Lp, the optimal value to be used is the DHWT

semi-difference itself, z =
di−dj

2
. Similarly, if z is a mul-

tiplicative transform coefficient approximating {di, dj} with
incoming value v, then for any v and any Minkowski-norm
relative-error-based metric Lrel

p , the optimal value to be used

is the multiplicative transform root-of-ratio itself, z =
√

di
dj

.

Proof. In both cases, the value z equalizes the errors at
di and dj and hence minimizes the error function. In the
DHWT case, the absolute errors

∣∣v + z − di
∣∣ and

∣∣v − z −
dj
∣∣ are equalized at

∣∣v − di+dj

2

∣∣. In the multiplicative case,

the relative errors
∣∣ vz
di
− 1
∣∣ and

∣∣ v
zdj
− 1
∣∣ are equalized at∣∣ v√

didj
− 1
∣∣.

Having introduced the multiplicative transform, we can com-
bine it with any synopsis construction algorithm developed
for its additive counterpart, the Haar wavelet transform.
Thus, we can build a dynamic-programming algorithm that
identifies an optimal subset of coefficients to retain for a
given error metric; this approach would result into restricted
multiplicative synopses, by analogy to the restricted Haar
wavelet synopses [11]. Besides, we could also create multi-
plicative variants of workload-oriented restricted Haar wavelet
synopsis algorithms such as those of [36, 33, 6, 21]. How-
ever, all these models have been outdated by the unrestricted
model [16], which effectively increases the accuracy in syn-
opsis construction both in the general and the workload-
oriented case (a relative-error-based problem can be seen as
a case of workload-oriented problem). Thus, we can design
an unrestricted multiplicative synopsis algorithm that iden-
tifies appropriate coefficient positions and values for a given

error metric (and workload). Still, the unrestricted model
itself has been surpassed by the Haar+ model [28], which
improves it both on accuracy of approximation and algorith-
mic complexity. Thus, we are in a position to directly offer
a state-of-the-art multiplicative synopsis algorithm, inspired
from [28], without considering the multiplicative analogues
of [11, 36, 33, 6, 21, 16]. The next section proceeds to do so
by introducing the multiplicative synopsis tree.

5. THE MS-TREE
Figure 5 depicts a simple one-dimensional Multiplicative
Synopsis tree (MS-Tree) that may summarize a four-element
data set {a, b, c, d}. The root coefficient node c0 is a factor
of all reconstructed data values. A binary tree of coefficient
nodes follows. These coefficients are grouped in triplets.
Each triplet C includes a main coefficient, such as c1, c2,
and c3, which behaves as a multiplicative transform coeffi-
cient: it is a factor of data values in the interval of its left
subtree, and an inverse factor of data values in the interval
of its right subtree. Furthermore, each main coefficient is
augmented by two (left and right) escort coefficients, such
as c1L and c1R, c2L and c2R, c3L and c3R; each of them is
a factor of the data values under its scope. For example, c2
is a factor of a, while c−1

2 is a factor of b; c1R is a factor of
both c and d.

c d

∗ ÷

∗ ∗

a b

∗ ÷

∗ ∗

∗ ÷

∗ ∗

0c

1c

L1c R1c

2c

R2c
3c

R3cL3c
L2c

Figure 5: An MS-Tree

An optimal synopsis of space budget B for a given error met-
ric E places B (positive) non-unit coefficient values at any
positions in the MS-Tree tree so that E is minimized; un-
occupied coefficients implicitly assume the neutral value 1.
For example, a 2-term MS-Tree synopsis for the four-element
data set {50, 2, 9, 11} consists of the coefficients {c0 = 10, c2 =
5} and produces the approximation {50, 2, 10, 10} with relative-
error values

{
0, 0, 1

9
, 1

11

}
. Such quality of approximation is

not achievable with existing single-value and additive sum-
marization techniques. For example, a 2-bucket histogram
for the same data set would approximate it as {50, 2, 2, 2}
with relative-error values

{
0, 0, 7

9
, 9

11

}
. This example shows

the power of the MS-Tree to achieve good approximation in
relative-error terms. By default, an MS-Tree approximates
absolute magnitudes. Data sets including negative values
can be accommodated by storing a bitmap of signs and sum-
marizing magnitudes. In fact, most real-world applications
(e.g., selectivity estimation, stock exchange indices, inter-
net traffic monitoring, etc.) concern data of positive value.
Besides, in its default form, an MS-Tree approximates data
vectors of binary (i.e., power of 2) length. Other lengths can
be accommodated by filling in (padding) the missing parts
with unit values, as with DHWT methods [34, 27].
We introduce some convenient notation for the discussion
that follows: a ∈ path(b) denotes that node a lies on the
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path from the root of the tree to leaf node b. A data
item dj of the represented data vector D is reconstructed

as dj =
∏
ci∈path(dj) c

δij

i ciDij , where ci is a main coefficient

and, if dj lies in its left subtree, δij = +1 and Dij = L,
otherwise δij = −1 and Dij = R. The state of a given
triplet Ci = {ci, ciL, ciR} is a four-element vector [v, a, b, c],
where v is the incoming value at ci, that is, the value re-
constructed from the root of the MS-Tree to the node of ci,
v =

∏
ck∈path(ci) c

δki
k ckDki , while a, b, c are respectively the

values at ci, ciL and ciR. A state of a triplet Ci creates the
outgoing pair

[
vba, vc

a

]
; that is, the incoming value to the

child of ciL (node c2i) is vba, while that to the child of ciR
(node c2i+1) is vc

a
. The number of non-unit coefficients in an

MS-Tree M is denoted as ‖M‖. We now offer a redundancy
theorem about MS-Tree-based data representations.

Theorem 2. Any MS-Tree M, in which at least one triplet
contains more than one non-unit coefficients, is equivalent
to (i.e., produces the same data approximation as) an MS-
Tree M′, such that every triplet C ∈ M′ contains at most
one non-unit coefficient, and ‖M′‖ ≤ ‖M‖.

The proof, omitted due to space constrains, is similar in
spirit to that of the analogous theorem for a Haar+ tree
[28]. The intuitive basis of this proof is a reduction of a
triplet with two non-unit escort coefficients q 6= 1, r 6= 1
to one with only one non-unit main coefficient, with the
appropriate change at its parent node, is shown in Figure 6.

vq
∗ ∗

ic

Ric

vr

∗ ÷

∗
Rjc

Lic∗ ÷

z qrz

r
q

1 1

qrv

vq
∗ ∗

ic

Ric

vr

∗
Rjc

Lic
q r

1

v

Figure 6: Triplet’s Reduction Step

Corollary 1. A B-term MS-Tree M that approximates
a data vector D while minimizing an error metric E does
not need to contain more than one non-unit coefficient value
per triplet.

In other words, it may be beneficial to use an escort coeffi-
cient instead of a main, but never more than one per triplet.
An MS-Tree synopsis can stored non-unit coefficients suc-
cinctly, along with their indexes, grouped in three sets, one
for each coefficient type; hence, the synopsis storage requires
no extra bits to separately signify the type of each coefficient.
In the next section, we present a dynamic-programming ap-
proximation scheme for MS-Tree summarization based on
Corollary 1. Before we proceed, we provide the following
theorem that proves the equivalence of a Compact Hierar-
chical Histogram, in its default binary-tree form [46], to an
MS-Tree in which only escort coefficients (and the root) may
assume non-unit values.

Theorem 3. A binary CHH (i.e., one in the default binary-
tree form) with B non-zero nodes (bucket nodes) is equiva-
lent to (i.e., achieves the same approximation as) an MS-
Tree tree of B non-unit escort (or root) coefficients. In re-
verse, an MS-Tree with only B non-unit escort (or root)
coefficients is equivalent to a B-term binary CHH.

Proof. Let C be a B-term binary CHH. For each non-
zero term ci in node i, let vi be the value of the lowest
occupied non-zero ancestor node. An MS-Tree M in which
the escort coefficient corresponding to the position of each
non-zero term ci is assigned the value ci

vi
is equivalent to C.

The reverse equivalence follows with similar reasoning.

da b

0c
a

4c
b

6c
d

3c
1

5c
1

1
1c 2c

c

c c d

∗ ÷

∗ ∗

a b

∗ ÷

∗ ∗

∗ ÷

∗ ∗

0c

1c

L1c R1c

2c

R2c
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R3cL3c
L2c

a

a
b

a
c

c
d1

1

1

1

1

1

(a) CHH (b) MS-Tree

Figure 7: CHH and equivalent MS-Tree

Figures 7 depicts an examples of the CHH/MS-Tree trans-
formation used in Theorem 3. From Theorem 3 it follows
that, as long as appropriate values can be assigned to MS-
Tree nodes as coefficients, the MS-Tree can match the qual-
ity of a CHH. Moreover, an MS-Tree that uses main coeffi-
cients as well as the CHH-like escort ones should be able to
achieve higher accuracy than a CHH under the same space
budget.

6. MS-TREE SYNOPSIS CONSTRUCTION
Problem 1. Given a data vector D and a relative-error-

based error function E, construct an MS-Tree representation
M of D with at most B non-unit coefficients that produces

an approximation D̂ of minimal error fE
(∥∥∥D− D̂

∥∥∥).

To solve this problem, we have to determine the optimal
positions and values of the B non-unit coefficients. Since a
triplet Ci needs to contain at most one non-unit coefficient,
there are four available options in each of them. The follow-
ing section provides a value delimitation framework for our
solution.

6.1 Value Delimitation
Let v be an incoming value at the main node ci of a triplet
Ci, b be an amount of available synopsis space budget allo-
cated to Ci and the subtree rooted in it and E(i, v, b) the
minimum achievable error, by a relative-error metric Lrel

p ,
in the subtree of Ci in that case. The overall minimum
error can be derived in a bottom-up process that calcu-
lates E(i, v, b) on each node, for each possible v and each
amount of allocated space b. Let `i denote the layer in
which Ci resides, counting from the bottom. Then the sub-
tree of Ci contains 2`i data leaves, hence needs no more
than that synopsis space; thus, the domain of b for ci is
Di =

{
0, 1, . . . ,min

{
B, 2`i

}}
. The delimitation of possible

incoming values v, as well as non-unit values assigned to
the coefficients in Ci, is less straightforward. The examined
values of v at Ci should match the possible outgoing values
created by its parent triplet in the hierarchy. In order to
maintain all such possible values within a finite domain, we
need to work with the powers of a (small) base 1+δ, δ > 0.

Hence, the values we examine, v ∈
{

(1+δ)k , k ∈ Z
}

, be-

come progressively more distant from each other. This dis-
position renders our multiplicative synopsis approach appro-
priate for relative-error summarization, as more emphasis is
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paid on the accuracy of approximation for smaller absolute
data values as opposed to larger ones. Moreover, instead
of storing the actual real-valued coefficients, we need only
store the integer logarithm k of a coefficient’s value, render-
ing our synopses significantly more compact. We proceed
to set upper and lower bounds on this domain of examined
values, using the notation in Table 1.

Notation Denotation

D Approximated data vector
M MS-Tree approximation of D
Ci Triplet of three coefficients (ci, ciL, ciR) in M
v Incoming value to Ci

zM Value assigned to main coefficient of Ci

zL (zR) Value assigned to ciL (ciR)
z0 Value assigned to root coefficient of M

mi (Mi) Minimum (maximum) absolute value under Ci

mL (mR) Minimum absolute value in left (right) subtree of Ci

ML (MR) Maximum absolute value in left (right) subtree of Ci

m (M) Global minimum (maximum) absolute value in D
Λ Ratio M

m
Di Domain of allocated space values b at Ci

S Set of potential incoming values v
Sv

i,M Set of pot. assigned values at the main coefficient of Ci

Sv
i,L Set of pot. assigned values at the left escort coeff. of Ci

Sv
i,R Set of pot. assigned values at the right escort coeff. of Ci

Table 1: Employed Notation

We start out with the following lemma, omitting its proof
due to space constraints.

Lemma 1. For any incoming value v > 0 at a triplet Ci,
there exist reconstructed values d̂k and d̂l in Ci’s subtree such
that

∣∣d̂k∣∣ ≤ v and
∣∣d̂l∣∣ ≥ v.

The following lemma defines the condition under which it
may be useful to used a non-unit main coefficient.

Lemma 2. If the incoming value v at a triplet Ci is v /∈(
mi,Mi

)
, then the main coefficient ci can be set to the unit

value, i.e. zM = 1, without deteriorating the quality of the
approximation. Equivalently, zM 6= 1⇒ v ∈

(
mi,Mi

)
.

The proof, omitted due to space constraints, follows in lines
similar to those used in the case of the Haar+ tree in [28].
The following lemma derives from Lemma 2.

Lemma 3. An incoming value v ∈
[
mi,Mi

]
at Ci results

in at least as good approximation quality as an incoming
value v /∈

[
mi,Mi

]
, with the number of non-unit coefficients

in the subtree of Ci being equal.

The next theorem constrains the possible values assigned to
a triplet’s main coefficient ci.

Theorem 4. Let v ∈
(
mi,Mi

)
be the incoming value to

Ci in M. Then a non-unit value zM 6= 1 assigned to ci satis-

fies the inequality min
{

v
MR

, mL
v

}
≤ zM ≤ max

{
ML
v
, v
mR

}
.

Proof. Ci creates the outgoing pair
[
vzM ,

v
zM

]
. We first

examine how small the (positive) magnitude of zM can be.
If vzM < mL and v

zM
> MR, then Lemma 3 implies that

we can increase zM so as to allow the outgoing value vzM
to reach mL, or v

zM
to reach MR, or both, without deterio-

rating the quality of approximation. Hence, it should be:

vzM ≥ mL ∨ v
zM
≤MR ⇔ zM ≥ min

{
v
MR

, mL
v

}

Likewise, if vzM > ML and v
zM

< mR, then, by Lemma 3,

we can decrease zM so as to allow vzM to reach ML, or v
zM

to reach mR, or both. Hence:

vzM ≤ML ∨ v
zM
≥ mR ⇔ zM ≤ max

{
ML
v
, v
mR

}
In conclusion, zM ∈

[
min

{
v
MR

, mL
v

}
,max

{
ML
v
, v
mR

}]
.

The application of Theorem 4 is problematic in case the
minimum absolute value in a data set is zero. However,
zero values can be treated separately in the synopsis con-
struction, either by representing them by a bitmap and then
omitting them, or by assigning part of the allocated space
budget to them a priori and then solving the approximation
problem for the rest of the data. Reasoning similar to that
of Theorem 4 leads to the following theorem.

Theorem 5. A non-unit value zL 6= 1 (zR 6= 1) assigned
to the left (right) escort coefficient at Ci satisfies the con-

straint zL ∈
[
mL
v
, ML
v

] (
zR ∈

[
mR
v
, MR
v

])
. Likewise, for

a non-unit value z0 6= 1 assigned to the root coefficient,
z0 ∈

[
m,M

]
.

The next theorem constrains the incoming values to all triplets
in M in terms of the global extrema m and M .

Theorem 6. The incoming value v to a triplet Ci in M
satisfies the inequality m

Λ
< v < MΛ, where Λ = M

m
.

The proof follows using Theorem 5, Lemma 2, and Theo-
rem 4. Intuitively, Theorem 6 signifies that, in the worst
case, a non-unit main coefficient ci may need to cover the
ratio M

m
of the two global extrema for one of the two out-

going values it creates and hence replicate this ratio in the
other; for example, if ci receives (almost) the extreme value
M as incoming value, it may need to decrease it to m in

one outgoing value, hence produce (almost) M2

m
as its other

outgoing value. In effect, the ratio of the largest to the low-
est possible incoming value is Λ3. Let S ⊂ IR denote the

set of such values in
(
m2

M
, M

2

m

)
that are powers of the work-

ing base 1+ δ, S =
{(

1+δ
)k
, k ∈ Z

}
∩
(
m2

M
, M

2

m

)
. Then∣∣S∣∣ ≤ 3

⌊
log1+δ Λ

⌋
+ 1 = O

(
log1+δ Λ

)
. According to The-

orems 4 and 5, the same asymptotic bound O
(
log1+δ Λ

)
is

valid for the cardinality of the sets Svi,M ⊂ IR, Svi,L ⊂ IR,
Svi,R ⊂ IR, containing the potential assigned values at the
main, left, and right escort coefficient of a triplet Ci, respec-
tively, that are powers of 1+δ, for a given incoming value
v.

6.2 Computation of the Solution
We now develop a recursive dynamic-programming scheme
for MS-Tree synopsis construction. Our approach is akin to
those of [26, 8, 10, 22, 11, 15, 16, 36, 46, 28]. The algorithm
operates in a bottom-up fashion over the MS-Tree, comput-
ing and tabulating all values of the E(i, v, b) function. For
each allowed incoming value v and each allocated space b to
a triplet Ci, it examines all allowed distributions of b among
the subtrees of Ci and all possible value assignments in Ci,
and selects the best. To facilitate its operation, at each
triplet Ci, it computes an array A from the pre-calculated
arrays L and R of its children triplets CiL and CiR . The ar-
ray entry A[v, b] contains: (i) the best assigned value (power

761



of the base 1+δ) zM , zL, or zR to assign at one of the co-
efficients in Ci, if any; (ii) the amount of space bL out of b
to allocate to the left subtree; and (iii) the minimum error
E(i, v, b) thus achieved. The size of A is

∣∣S∣∣ · ∣∣Di∣∣. E(i, v, b)
is computed as:

E(0, 0, B) = min
z∈S0

0,M

{
E
(
1, z, B−(z 6=1)

)}
E(i, v, b) =

min



min
zM∈Sv

i,M
,b′∈Di

{
E
(
iL, vzM , b

′)+
E
(
iR,

v
zM

, b−b′−(zM 6=1)
)

min
zL∈Sv

i,L
,b′∈Di

{
E
(
iL, vzL, b

′)+
E
(
iR, v, b−b′−(zL 6=1)

)
min

zR∈Sv
i,R

,b′∈Di

{
E
(
iL, v, b

′)+
E
(
iR, vzR, b−b′−(zR 6=1)

)
(2)

The operations vzX and v
zM

are presented as such for il-

lustration purposes. In fact, the algorithm does not need
to conduct expensive multiplications and divisions, but can
suffice itself to logarithmic operations, performing additions
and subtractions in the realm of exponents k of the base 1+δ.
For the sake of simplicity, error addition is used in Equa-
tion (2); in practice, any distributive error function, such as
max, can be applied. For each of the three coefficients in
a triplet Ci, Equation (2) computes the combination of a
value assigned to that coefficient2, if any, and a distribution
of the available space b to the two subtrees rooted at Ci
that achieves the least error in the subtree of Ci. It selects
the least of these three computed minima as the value of
E(i, v, b). When a non-unit value is assigned to an exam-
ined coefficient, the remaining available space is decreased
by one unit; this reduction is succinctly expressed by the
boolean integer (zX 6= 1) in Equation (2). In the last tree
layer, the optimal coefficient values are directly established
by the data they approximate, by Theorem 1.
Complexity Analysis The size of the arrays A computed

on each triplet Ci is O
(

log1+δ Λ min
{
B, n

2blog ic

})
; besides,

the scanning through all pairs of a potential assigned value
in Svi,M , Svi,L, or Svi,R and an amount of allocated space in

Di takes O
(

log1+δ Λ min
{
B, n

2blog ic

})
time for each Ci and

each [v, b] pair. Thus, the running time is

O

(
log2

1+δ Λ
∑n
i=1 min

{
B, n

2blog ic

}2
)

= O
(
log2

1+δ ΛnB
)
.

Besides, the algorithm can compute the minimum error for
an
(
1+δ

)
-base approximation without constructing the syn-

opsis itself. As in [15], at most log n + 1 arrays need be
concurrently stored: one array for each triplet layer plus
the arrays the algorithm is operating on at any instance.

Hence the required space is O
(

log1+δ Λ
∑logn
`=1 min

{
B, n

2`

})
= O

(
log1+δ ΛB log n

B

)
, where ` is an MS-Tree triplet layer.

6.3 Options for Synopsis Construction
The construction of the actual synopsis after the minimum
error result has been derived presents a time-space tradeoff.
We may call the basic algorithm recursively for progressively
smaller subproblems, starting with the two sub-trees of the

first triplet C1. Then the runtime isO
(

log2
1+δ ΛB

∑logn
`=0 2` n

2`

)
2By Theorem 4, the main coefficient ci is examined only if
v ∈

(
mi,Mi

)
.

= O
(
log2

1+δ ΛnB logn
)
, hence a log n time factor is paid for

the sake of space-efficiency.
On the other hand, with some necessary space-consuming
book-keeping, the synopsis M can be extracted directly af-
ter the minimum error has been established. As in [28],
this time-efficient approach, capable to operate in one pass
over the data, has two variants: in case B �

√
n, it is advis-

able to keep all computed arrays in memory per se, requiring

O
(

log1+δ Λ
∑
i min

{
B, n

2blog ic

})
= O

(
log1+δ Λ

∑
` 2logn−` min

{
B, 2`

})
= O

(
log1+δ Λn logB

)
space. Otherwise, in case if B �

√
n, it is advantageous to

append to each array entry A[v, b] the list of coefficient val-
ues forming the sub-solution represented by that entry, as in

[16]. This option raises a O
(

log1+δ Λ
∑
` min

{
B, 2`

}2
)

=

O
(
log1+δ ΛB2 log n

B

)
space demand. The two options be-

come balanced when n logB = B2 log
(
n
B

)
⇔ B =

√
n.

Both cases are likely to appear in real-world applications.

6.4 The Case of Maximum Relative Error
In case the target error metric is the maximum relative error,
we can employ a technique based on the dual problem, by
analogy to [29]. Thus, we can utilize an algorithm that finds
the minimum space required to satisfy a given maximum-
relative-error bound, in a binary search iteration. This iter-
ation converges to the

(
1+δ

)
-optimal error value: an error

value that cannot be possibly decreased without using more
than B space. Given that maximum relative-error values
equal to 1 can be trivially achieved by an all-zero synopsis,
the value 1 can serve as the seed of the binary search. The
binary search procedure will then converge after O

(
log 1

r

)
iterations, where 0 < r � 1 is the resolution with which
the machine represents real numbers. We emphasize that
this solution’s dependence on r does not render it less exact.
The algorithm of Section 6 that directly computes the exact(
1+δ

)
-optimal error result also computes it with a precision

of r, since this is the precision with which the machine rep-
resents it anyway. Hence this indirect binary-search-based
approach and the algorithm of Section 6 compute the

(
1+δ

)
-

optimal maximum relative error with the same precision
on any given machine. The indirect approach needs only
O
(
log2

1+δ Λn log 1
r

)
time and O

(
log1+δ Λ logn

)
space. The

B factor has been eliminated, since the algorithm for the
error-bounded problem does not feature a b parameter, as
in [29]. Still, this algorithm requires multiple passes over
the data, as the space-efficient direct algorithm does. In
case that a solution in one-pass is required, than the two
time-efficient direct options are preferable.

7. MULTIDIMENSIONAL EXTENSION
The efficient handling of multidimensional data is a major
challenge for summarization algorithms. Thus, most past hi-
erarchical summarization schemes [4, 10, 11, 16, 46] were ex-
tended to the multidimensional case. In this section, we pro-
pose a multidimensional extension of the MS-Tree and its re-
lated algorithms. Our task is to summarize a d-dimensional
data array D with maximum domain size amongst its di-
mensions m, i.e., an array of n = O(md) values.

7.1 Multidimensional Multiplicative Transform
The one-dimensional definition of the multiplicative trans-
form (Section 4) can be extended in the multi-dimensional
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domain. The basic step of the decomposition in the two-
dimensional case is shown in Figure 8(i). In this case, a
two-dimensional array of four (positive) values {a, b, c, d} is

decomposed to the fourth root of their product V = 4
√
abcd

and the three decomposition coefficients A,B,C holding the

fourth root of different value ratios: A = 4
√

ab
cd

, B = 4
√

ad
bc

,

C = 4
√

ac
bd

. The original data can be reconstructed us-
ing multiplication and division among the overall fourth
root and the three decomposition coefficients: a = V ABC,
b = V A

BC
, c = V C

AB
, d = V B

AC
. The figure depicts, along arrows,

the set of three operations that have be performed between
the incoming value V to a decomposition node and the three
stored coefficients in that node, A, B, C respectively, in order
to reconstruct the original data values. For the sake of com-
parison, the basic step of a (non-standard) two-dimensional
Haar wavelet decomposition [4] is depicted in Figure 8(ii).
In this case, the data are decomposed to their overall aver-
age value V = a+b+c+d

4
and three decomposition coefficients

A = a+b−c−d
4

, B = a−b−c+d
4

, C = a−b+c−d
4

; they can be
reconstructed using addition and subtraction between the
overall average and the three decomposition coefficients, as
the figure shows. In the general, d-dimensional case, a tree
node has at most 2d children and the height of the tree is
log2d md = logm layers. Each non-root tree node contains
at most 2d − 1 coefficients with the same support region,
hence there are O

(
n
2d

)
nodes in the tree. The full multi-

plicative decomposition of a (two-dimensional) m×m array
A is computed by recursively applying the basic decompo-
sition step at successive levels of resolution. The overall
fourth-root results V collected by quadruplets of values at
one level play the role of data values in the next resolution
level. The results of such a multiplicative transform can
be arranged in an array by analogy to the (non-standard)
DHWT [4]. The same process is extended to higher dimen-
sionality. Still, our focus rests on developing a multidimen-
sional definition of the MS-Tree, inspired by our definition
of the multidimensional multiplicative transform.

a b

4 abcd

4
cd
abA=

∗÷÷
c d

4
bc
adB= 4

bd
acC=

÷∗÷
÷÷∗∗∗∗ a b

4
dcba +++

4
dcba

A
−−+

=

+−−
c d

−+−
−−++++

4
dcba

B
+−−

=

4
dcba

C
−+−

=

(i) (ii)

Figure 8: Two-dimensional Multiplicative Decom-
position (i), and Haar wavelet decomposition (ii)

7.2 The Multidimensional MS-Tree
Figure 9 depicts a two-dimensional MS-Tree that can sum-
marize a 16-element 4 × 4 two-dimensional data set. An
MS-Tree node now has four (in general, 2d for d dimensions)
children nodes and contains three (in general, 2d − 1) main
coefficients a, b, c, as well as four (in general, 2d) escort coef-
ficients q, r, s, t. These are combined by multiplication and
division in order to create the four (in general, 2d) outgoing
values of that node, one towards each child node. Each child

node summarizes a different region of the data array, called
its support region. A node’s main coefficients play the role
of regular multiplicative transform coefficients and all share
the same support region; each of the four escort coefficients
is an additional factor on one of the four outgoing values,
and shares the same support region as the main coefficients
of its child node.

∗

∗∗∗ ÷÷∗

∗

∗

∗

v

a b c

q r s t
∗÷÷ ÷∗÷

Figure 9: A two-dimensional MS-Tree

In the two-dimensional case, the state of a given node is an
eight-element (in general, 2d+1-element) vector
[v, a, b, c, q, r, s, t] containing the incoming value v to that
node and the coefficient values a, b, c, q, r, s, t in it. A state
of a node C creates the four-element (2d-element) outgoing
vector

[
vqabc, vra

bc
, vsc
ab
, vtb
ac

]
. Then the redundancy theorem

about MS-Tree-based data representations can be extended
to the two-dimensional case as follows.

Theorem 7. Any two-dimensional MS-Tree M, in which
at least one node contains more than three non-unit coeffi-
cients, is equivalent to an MS-Tree M′, such that every node
C ∈ M′ contains at most three non-unit coefficients, and
‖M′‖ ≤ ‖M‖.

Proof. The basic idea is that an outgoing vector created
by a node Ci with more than three non-unit coefficients
can also be created by the same node in a state of at most
three non-unit coefficients, and an adjustment of the parent
node of Ci and proceeding recursively upwards. Details are
omitted due to space constraints.

Theorem 7 leads to the generalized form of Corollary 1:

Corollary 2. A B-term d-dimensional MS-Tree M ap-
proximating data array D does not need to contain more
than 2d−1 non-unit coefficients per node.

7.3 Multidimensional Value Delimitation
Lemma 1 is extended to the multidimensional case thanks
to Theorem 7. The outgoing values of a node cannot be all
greater (or less) than its incoming value v. Either v will
equal at least one of the outgoing values, or it will be de-
creased in at least one outgoing value and increased in at
least one other. Furthermore, we postulate the multidimen-
sional version of Lemma 2: if the incoming value v at a node
Ci is v /∈

(
mi,Mi

)
, then all main coefficients in Ci are set

to the unit value. In fact, we can also follow an approach
that would render it provable, but that would require the
addition of extra escort coefficients (one for each binary sub-
division of a support region), incurring computational cost
for marginal approximation benefits. We prefer to maintain
simplicity. The postulate contains the value search space
according to the following theorem.
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Theorem 8. The incoming value v to a triplet Ci in M

satisfies the inequality m2d

M2d−1
< v < M2d

m2d−1
.

Proof. Let v be an incoming value v to a node Ci out-
going from an ancestor triplet Ck of Ci, such that the in-
coming value v′ to Ck itself is v′ ∈ (m,M). In the worst
case, each of the 2d− 1 main coefficients in Ck will have the

value v′

M

(
v′

m

)
, in order to produce 2d − 1 outgoing values

of the extreme value M (m), respectively; this will be the
case as, for each of these 2d − 1 outgoing values, an even
number of coefficients cancel each other out, hence v′ is di-
vided by the odd one out in each case. Assuming the worst
case, let v be the remaining 2dth outgoing value, i.e. the
single one in which all coefficients contribute by multiplica-

tion, hence v = v′2
d

M2d−1

(
v′2

d

m2d−1

)
. Still, v′ ∈ (m,M), hence

v ∈
(

m2d

M2d−1
, M2d

m2d−1

)
.

In effect, the ratio of the largest to the lowest possible in-

coming value is Λ2d+1−1, where Λ = M
m

. Hence, in the d-

dimensional case,
∣∣S∣∣ ≤ (

2d+1−1
) ⌊

log1+δ Λ
⌋

+ 1 =

O
(
2d log1+δ Λ

)
. On the other hand, the cardinality of the

sets containing the potential assigned values at the main and
escort coefficients of a triplet Ci that are powers of 1+δ is
O
(
log1+δ Λ

)
.

7.4 General Multidimensional Algorithm
The one-dimensional algorithm of Section 6.2 can be ex-
tended to the multidimensional case. At each node Ci, it
needs to consider O

(
2d log1+δ Λ

)
incoming values; for each

of those, it has to check O
((

log1+δ Λ
)2d−1

)
combinations

of value assignments on 2d−1 main coefficients, using the
2d arrays returned from its children. For each tabulated
value of available space b at node Ci with incoming value
v, the algorithm needs to determine the optimal distribution
of these b space units among the 2d − 1 main coefficients
on Ci, its 2d escort coefficients, and its 2d children nodes.
We can treat each escort coefficient as a member of the sub-
tree at its child node. Hence, for each combination of values
assigned to the main coefficients in Ci and amount of allo-
cated space b at a child Ck of Ci rooted on escort coefficient
ce, we have to examine two cases: either b space is given
to Ck and its subtree with incoming value v, or b− 1 space
is given to Ck, with a non-unit value z assigned to ce and
modifying v accordingly. The (1+δ)-optimal value of z does
not need to be separately computed for each v. Instead, it
is computed only once for each b; thereafter, it is simply
adjusted according to the given v, so as to produce the re-
quired best incoming value to Ck for the given value of b.
The search for the optimal distribution of space b can be effi-
ciently performed by ordering the children of Ci in a binary
tree of 2d−1 subnodes and executing binary search on them,
as in [10, 11, 16]. This process takes O

(
log min

{
B, 2d`i

})
time per entry per subnode per combined value assignment,
where `i is the MS-Tree layer of node Ci. Hence, the so-

lution takes O

(
22d
(

log1+δ Λ
)2d

nB

)
time; only arrays of

children nodes in a single root-to-bottom path need to be
concurrently stored, hence, as there are at most 2d children

per node, the space is O
(

22d

d
log1+δ ΛB log n

B

)
.

7.5 The Case of Maximum Relative Error
Still, in case that the target error function is the maximum
relative error, we can do better. As in Section 6.4, we employ
the algorithm that solves the error-bounded problem. We
thus gain two advantages: First, we eschew the tabulation
of space. Second, the cardinality of the set of possible in-
coming values is only

∣∣S∣∣ = O
(
log1+δ Λ

)
. This is due to the

fact that, by Lemma 1, no examined incoming value needs to
get too distant from the extrema of the data set; otherwise
it would violate the bound on maximum relative error. The
key operation is now a tabulation only for allowed incom-
ing values at each node Ci. The algorithm determines the
(1+δ)-optimal assigned value for all main 2d−1 coefficients re-
siding on node Ci for each entry in this tabulation. We have
to consider O

(
log1+δ Λ

)
incoming values at node Ci, and,

for each of those, O
((

log1+δ Λ
)2d−1

)
combinations of value

assignments on the 2d − 1 main coefficients in Ci, scanning
through the 2d arrays returned from children nodes. Since

there are O

((
m
2

)d)
nodes in the tree, the basic runtime

becomes O

(
2d
(
log1+δ Λ

)2d(
m
2

)d)
= O

((
log1+δ Λ

)2d

n
)

,

and the space is O
(

2d

d
log1+δ Λ logn

)
. The tradeoff be-

tween time- and space-efficiency is treated as in the one-
dimensional case. We utilize this algorithm in a binary-
search iteration in order to solve the space-bounded prob-

lem. Thus we achieve O
((

log1+δ Λ
)2d

n log 1
r

)
time and

O
(

2d

d
log1+δ Λ logn

)
space complexity. Remarkably, the

benefit of this approach increases with dimensionality: a 22d

time factor and a 2d space factor are avoided. In Section 7.4,
these factors derived from the cardinality of tabulated val-
ues (affecting time and space), and the need to compute a
distribution of space units on children nodes (affecting time).

8. EXPERIMENTAL EVALUATION
This section presents our comparison of (one-dimensional)
relative-error summarization with the following algorithms:

• R-Haar The restricted Haar wavelet synopsis algo-
rithm of [11]. The Haar+ model of [28], as well as the
unrestricted Haar wavelet model of [16], can match the
quality achieved with R-Haar, subject to a sufficiently
small resolution of quantized values. Still, for practical
resolution values, R-Haar may still produce competi-
tive quality. Hence, we include this algorithm in our
experimental study in order to assess this possibility.
This algorithm provides an upper bound to the quality
achieved with the probabilistic schemes of [10] and the
streaming maximum-relative-error heuristics of [27].

• CHH The winning greedy CHH heuristic of [46]. The
MS-Tree can match the quality of a CHH with suffi-
ciently small resolution (Theorem 3), but CHH may
still achieve competitive quality for practical resolu-
tion values. Thus, we include this algorithm in our
study. Our implementation of the greedy heuristic in
[46] takes into account the analysis of optimal-histogram
bucket values for relative-error metrics in [22]. Our
experimental study incidentally evaluates the perfor-
mance of this CHH heuristic customized for relative
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error in relation to other hierarchical synopsis tech-
niques and to the optimal-relative-error-histogram al-
gorithms of [22].

• REHIST The optimal-histogram construction algo-
rithms for relative error metrics of [22]. The accuracy
achieved with them constitutes an upper bound to the
quality of approximate histogram techniques [44, 43,
5, 12, 17, 19, 13, 48].

• Haar+ The Haar+ synopsis construction model of
[28]. This model provides an upper bound to the qual-
ity achieved with its predecessor unrestricted Haar wavelet
model of [16] under the same value quantization.

• MSTree Our MS-Tree algorithms of Section 6.

All algorithms were implemented with g++ 3.4.3, and ex-
periments were run on a 2 CPU dual core Opteron 2.0GHz
machine with 16GB of main memory running a 64Bit version
of Fedora Core7. The following table summarizes the (ba-
sic) complexity requirements of these algorithms in the one-
dimensional case, for the computationally more demanding
Lrel

2 metric; the fraction ∆
δ

expresses the cardinality of the

set of examined values with the Haar+ model.

Method Time (Lrel
2 ) Space Ref

R-Haar O(n2 logB) O(n) [11, 15]

REHIST O(n2B) O(n) [22, 15]

CHH O(nB2 logn) O(B log2 n) [46]

Haar+ O
((

∆
δ

)2
nB
)

O
(

∆
δ
B log n

B

)
[28]

MS-Tree O(log2
1+δ ΛnB) O

(
log1+δ ΛB log n

B

)
this

Table 2: Complexity for one-dimensional synopsis
construction

We have used two real-world data sets with hard to approxi-
mate bursts and discontinuities. The first data set (Aspect),
also used in the studies of [10, 22, 28], is extracted from a
relation of 581,012 tuples describing the forest cover type
for 30 x 30 meter cells, obtained from US Forest Service.
Aspect contains the frequencies of the distinct values of at-
tribute aspect in the relation. The frequencies feature spikes
of large values (min value: 499, max value: 6308). We have
used a 256-value prefix of this data set. The second data
set (Corel), also used in the performance study in [11], is a
color histogram extracted from a Corel photo image collec-
tion. This histogram describes each Corel image in terms
of 32 attributes corresponding to individual color densities
(ranging from 10−6 to 1) for an 8×4 partitioning of the HSV
color space. We made use of a 16384-value prefix of the first
attribute from the color histogram feature (zero values were
omitted). The data were downloaded from the UCI KDD
Archive3. Our methods apply to much larger data sets too,
but we confine ourselves to sizes with which all competitor
methods can run in reasonable time.

8.1 Maximum Relative Error
In our first set of experiments, we present quality measure-
ments for the maximum relative-error (MRE) metric, Lrel

∞.
Figure 10 shows the results with the Aspect data set for in-
creasing space budget B. A special sanity bound was not
required with this data set, given that the minimum value in

3Available at http://kdd.ics.uci.edu/
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Figure 10: Quality comparison: Aspect, Lrel
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it is sufficiently large. In order to render the quality achieved
with the MSTree directly and fairly comparable to that of
the Haar+ technique, we have defined the resolution of ex-
amined values with both of them in terms of the cardinality
S of the arrays that contain such values. Hence both tech-
niques require the same time and space resources. We show
the results for S = 50 and S = 100. MSTree achieves consis-
tently higher accuracy than all other models. Interestingly,
Haar+50 fails to preserve an advantage over REHIST, and
is eventually outperformed by R-Haar as well. In fact, the
increase of the space budget from B = 40 to B = 60 does
not affect the quality with Haar+50. This result is due to
the coarse value resolution this algorithm works with; a sim-
ilar behavior, in which the increasing space budget was not
improving the quality of the synopsis measured in relative-
error terms, was observed in the experimental study of [16]
with the predecessor unrestricted Haar wavelet model. How-
ever, MSTree50 does not face such a problem, thanks to the
logarithmic nature of that resolution and the multiplicative
nature of the synopsis structure. Haar+100 performs better,
outperforming both REHIST and CHH, but fails to match
its MSTree counterpart. CHH outperforms both R-Haar and
REHIST with this dataset.
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Figure 11: Quality comparison: Corel, Lrel
∞, S = 10−6

Figure 11 shows the error results, with respect to the space
budget B, with the Corel data set and the sanity bound set
to the smallest value in the data set, S = 10−6. Again, dif-
ferent value set cardinalities were tested with both MSTree
and Haar+ techniques, namely S = 100, 200, 500. In this
case, due to the hardness of approximation under the given
sanity bound, both R-Haar and Haar+ fail to achieve MRE
values smaller than the worst-case value of 1, achieved by an
all-zero synopsis. In contrast, the MSTree technique man-
ages to extract synopses of non-trivial MRE values with all
three tested cardinalities, and consistently outperforms both
CHH and REHIST at that. A result of independent interest
is that REHIST outperforms CHH with this data set; the
flexibility of histogram buckets allowed for by REHIST en-
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ables this method to focus on regions of the data vulnerable
to high relative error in a way that the binary-hierarchy-
based CHH model cannot. Although MSTree is also based
on a fixed binary hierarchy, it has higher compression power
thanks to its multiplicative nature.
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Figure 12 shows the error results for the same Corel data
set with the sanity bound set at a higher value of S = 0.01.
Now Haar+500 manages to produce better-than-trivial syn-
opses, outperforming both CHH and REHIST, thanks to the
tolerance to errors for small values that the sanity bound
implies. Still, Haar+ with smaller cardinalities and R-Haar
fail to produce better than worst-case accuracy. The picture
with the other methods is similar to that of Figure 11, with
all achieving smaller error values thanks to the higher sanity
bound. MSTree is the best performer again.

8.2 RMS Relative Error
In our second set of experiments, we repeat our evaluation
with the root-mean-squared relative-error (RMSRE) met-
ric, Lrel

2 . Figure 13 presents the results with the Aspect data
set. MSTree achieves the highest accuracy again. Likewise,
Haar+50 is matched by and eventually outperformed by R-
Haar, while Haar+100 fares better, outperforming both RE-
HIST and CHH, but still does not match its MSTree coun-
terpart. Interestingly, CHH can again outperform REHIST
with this dataset, and stands between the two Haar+ vari-
ants.

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 15  20  25  30  35  40  45  50  55  60

R
M

S
 R

el
at

iv
e 

E
rro

r

Space B

R-Haar
REHIST
CHH
Haar+50
Haar+100
MSTree50
MSTree100

Figure 13: Quality comparison: Aspect, Lrel
2

Figure 14 depicts the results with the Corel data set and
sanity bound S=10−6; results for S=500 are not presented
for the sake of readability. Despite the aggregate nature of
the RMSRE metric, as opposed to MRE, R-Haar produces
worst-case accuracy. The two Haar+ variants fare better,
but are still outperformed by all other methods except R-
Haar. REHIST outperforms CHH, but MSTree is the best
performer.
Figure 15 shows the results with S = 0.01. R-Haar just over-
comes worst-case performance. Haar+ is second worst, while
the gap between REHIST and CHH is narrowed. MSTree
achieves the highest accuracy again.
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8.3 Time Comparison
Table 2 indicates that MS-Tree performs at least as well or
better than its competitor hierarchical techniques in terms of
time for synopsis construction; besides, they are all based on
the same type of structure. Thus, it is mostly interesting to
compare the MS-Tree to the structurally and algorithmically
different REHIST method in terms of time for synopsis con-
struction. We have done so with the more computationally
demanding RMS relative-error minimization algorithms on
different-sized collections of attribute values from the Corel
data set, while setting the value set cardinality for MSTree
at S = 50 and S = 100, and the space budget at B = 100.
Figure 16 shows the results on logarithmic axes. Expectedly,
the time for MS-Tree synopsis construction grows linearly in
n, while REHIST has quadratic growth.
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9. CONCLUSIONS
In this paper we have introduced multiplicative summa-
rization: a novel data reduction technique that addresses
the needs for effective relative-error oriented summarization.
This method inherits from past hierarchical synopsis tech-
niques but alters their basic mechanism, using multiplica-
tion as the basic data reconstruction tool. We have shown
that this approach allows for proportional attention to be
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paid to those parts of the data which are more susceptible
to high relative errors, that is data of small absolute value.
We proposed the MS-Tree as a multiplicative summarization
structure and developed efficient dynamic programming al-
gorithms for synopsis construction based on it. We gener-
alized our results to any data dimensionality, and we have
shown how to efficiently minimize the maximum relative er-
ror in the multidimensional case. We have conducted the
first, to our knowledge, experimental comparison of state-of-
the-art hierarchical and optimal-histogram summarization
techniques for relative-error-based metrics. Therewith, we
demonstrated that the MS-Tree outperforms previous mod-
els at hard relative-error summarization problems. Besides,
MS-Tree synopsis construction runs in time linear in the size
of the data and can be performed in one pass. In conclu-
sion, our solutions provide a mostly recommendable option
for the high quality and time-efficient relative-error summa-
rization of very large discontinuous data sets. In the future,
we intend to examine how the multiplicative paradigm can
be applied to other models, such as the GenHist model.
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