
The C-ND Tree: A Multidimensional Index for Hybrid
Continuous and Non-ordered Discrete Data Spaces

Changqing Chen
Department of Computer
Science and Engineering
Michigan State University

East Lansing, MI 48824, USA
chencha3@msu.edu

Sakti Pramanik
Department of Computer
Science and Engineering
Michigan State University

East Lansing, MI 48824, USA
pramanik@cse.msu.edu

Qiang Zhu
Department of Computer and

Information Science
The University of

Michigan-Dearborn
Dearborn, MI 48128, USA

qzhu@umich.edu

Watve Alok
Department of Computer
Science and Engineering
Michigan State University

East Lansing, MI 48824, USA
watvealo@msu.edu

Gang Qian
Department of Computer

Science
University of Central

Oklahoma
Edmond, OK 73034, USA

gqian@uco.edu

ABSTRACT
Contemporary database applications often perform queries
in hybrid data spaces (HDS) where vectors can have a mix
of continuous valued and non-ordered discrete valued dimen-
sions. To support efficient query processing for an HDS, a
robust indexing method is required. Existing indexing tech-
niques to process queries efficiently either apply to contin-
uous data spaces (e.g., the R-tree) or non-ordered discrete
data spaces (e.g., the ND-tree). No techniques directly in-
dexing vectors in HDSs have been reported in the literature.
In this paper, we propose a new multidimensional indexing
technique, called the C-ND tree, to directly index vectors in
an HDS. To build such an index, we first introduce some es-
sential geometric concepts (e.g., hybrid bounding rectangle)
in HDSs. The C-ND tree structure and the relevant tree
building and query processing algorithms based on these ge-
ometric concepts in HDSs are then presented. Strategies
have been suggested to make the values in continuous dimen-
sions and non-ordered discrete dimensions comparable and
controllable. Novel node splitting heuristics which exploit
characteristics of both continuous and discrete dimensions
are proposed. Performance of the C-ND tree is compared
with that of linear scan, R*-tree and ND-tree using range
queries on hybrid data. Experimental results demonstrate
that the C-ND tree is quite promising in supporting range
queries in HDSs.

1. INTRODUCTION

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

In many contemporary application areas like machine learn-
ing, information retrieval, and data mining, people often
need to deal with hybrid data, where vectors can have both
discrete and continuous attributes. For example, the feature
vectors used to retrieve/analyze images from World Wide
Web typically contain both continuous and discrete features:
the text describing them could be regarded as discrete val-
ued features while the statistics like pixel frequencies could
be treated as continuous valued features. Another applica-
tion domain which may deal with hybrid vectors is Intrusion
Detection. One of the main objectives of an Intrusion De-
tection System is to classify a user as a malicious or a nor-
mal user. Such a judgment should be based on information
about the users’ behavioral statistics, such as the physical
location, the time-frame within which specific commands
are executed and the amount of time the user remains con-
nected to a server. Clearly, some of the information like the
time for which user remains connected is continuous, while
other information like the physical location can be discrete.
To support efficient queries on vectors in an HDS, a multidi-
mensional indexing scheme is required. However, to the best
of our knowledge, no indexing scheme that directly indexes
vectors in an HDS has been reported in the literature.

Most multidimensional indexing schemes proposed in the
literature are for continuous data spaces (CDS), where val-
ues along each dimension are continuous (ordered). These
techniques are either based on data-partitioning, such as
R-tree [9], R*-tree [2], R+-tree [17], SS-tree [22], SR-tree
[11] and X-tree [3], or based on space-partitioning, such as
K-D-B-tree [16] and LSDh-tree [10]. The data-partitioning
based techniques split an overflow node by dividing the set
of its indexed vectors according to the data distribution,
while the space-partitioning based methods split an overflow
node by partitioning its corresponding data space. However,
these indexing techniques cannot be directly applied to non-
ordered discrete data spaces (NDDS) since they rely on the
ordering property of data values in each dimension. If these
techniques are used for a hybrid data space (HDS), they can

462



only index the continuous subspace of the HDS.

The vectors in an NDDS can be considered as fixed length
strings when the alphabet for every dimension of an NDDS is
the same. In this case, the string indexing methods, such as
Tries [6], Prefix B-tree [1] and String B-tree [7], can be uti-
lized. To deal with more general cases and overcome the lim-
itations of string indexing methods, two multidimensional
indexing techniques specially designed for NDDSs, i.e., the
ND-tree [13, 14] and the NSP-tree [15], have been recently
proposed. The ND-tree is based on data-partitioning, while
the NSP-tree is based on space-partitioning. Both tech-
niques exploit the unique characteristics of an NDDS. If they
are used for an HDS, they can only index the discrete sub-
space of the given HDS.

Issues in processing hybrid data in various application ar-
eas have also been studied in the literature. A number of
discretization methods were suggested to convert continuous
data to discrete data [4, 8, 12]. Indexing methods are pre-
sented in [20, 21] to search for images and videos with both
discrete and continuous features. However, these indexes
can not support queries on discrete and continuous dimen-
sions simultaneously. The Multi-scale Similarity Indexing
(MSI) method was introduced in [18, 19] to index multi-
ple text and visual features for images. This method first
partitions each feature space into clusters, then uses the sim-
ilarity of each image to its corresponding cluster’s center as
an indexing key, and applies a mapping function to keep the
keys for each cluster distinct in different scale levels. After
the multiple features are transformed into a one-dimensional
key space, the standard B+-tree is employed to index these
keys.

In this paper, we present a new indexing technique, inspired
by the R*-tree [2] and the ND-tree [13], to directly index
vectors (without conversion/transformation) in an HDS. We
first define some essential geometric concepts such as rect-
angle, area, edge length, and overlap in an HDS. Based on
these concepts, a multidimensional hybrid tree, called the
C-ND tree, and the relevant algorithms are developed. To
deal with the unique characteristics of an HDS, a novel node-
splitting strategy called the hybrid split, which combines
two splits (one on a non-ordered discrete dimension and the
other on a continuous dimension) into one, is proposed. We
conducted extensive experiments to compare the query per-
formance of the C-ND tree with that of the ND-tree and
the R*-tree. We also compared the C-ND tree performance
with the 10% linear scan for the given HDS. Our experimen-
tal results demonstrate that the C-ND tree is generally more
efficient than the other three existing methods.

The rest of the paper is organized as follows. Section 2
introduces the relevant concepts and notations. Section 3
presents the C-ND tree, including its tree structure and rel-
evant algorithms. Section 4 reports our experimental results.
Section 5 summarizes the conclusions and future work.

2. CONCEPTS AND NOTATIONS FOR THE
HDS

An HDS is a multidimensional vector data space which con-
tains both (ordered) continuous and non-ordered discrete
dimensions. In the past, many indexing techniques were de-

veloped for the CDS. An NDDS, as opposed to the CDS, is
a data space in which all elements/values along each dimen-
sion are discrete and have no natural ordering among them.
An example of non-ordered discrete data could be the colors
like red, green and blue. Every color is unique but there is
no natural ordering among them.

To develop an indexing technique, like the R*-tree for CDSs
and the ND-tree for NDDSs, for HDSs, some essential geo-
metric concepts such as rectangles in CDSs need to be ex-
tended to an HDS. The rest of this section will introduce
and define such extended geometric concepts to be used in
our C-ND tree.

Let d be the total number of dimensions and let Di(1 ≤ i ≤
d) be the domain for the ith dimension in an HDS, which can
be either continuous or non-ordered discrete. For a continu-
ous dimension, Di is an interval/range of real numbers. Let
min(Di) and max(Di) denote the smallest and the largest
numbers in the range such that Di = [min(Di), max(Di)].
We define domain size (or length) of a continuous dimen-
sion as Length(Di) = max(Di) − min(Di). For a discrete
dimension, its domain Di is a set of non-ordered discrete
values/elements/letters. The domain size (or length) of a
discrete dimension is defined as the alphabet size of the
ith dimension. Thus, for a discrete dimension, we have,
Length(Di) = |Di|. A d-dimensional HDS Ωd is defined
as the Cartesian product of the d domains: Ωd = D1 ×
D2 × ... × Dd. α = (α1, α2, ..., αd) is a vector in Ωd if
αi ∈ Di(1 ≤ i ≤ d). For simplicity, in the rest of this
paper, we assume that all the discrete domains are identical
and that all the continuous domains are identical. Similar
to [14], the discussion can be easily extended to a space with
domains of various sizes.

A hybrid (hyper-)rectangle R in Ωd is defined as the Carte-
sian product R = S1 × S2 × . . . × Sd, where Si is called the
component-set or range of R on the ith dimension. If the
ith dimension is discrete (i.e., Di is a discrete domain) then
Si is a set of discrete elements such that Si ⊆ Di. On the
other hand, if the ith dimension is continuous (i.e., Di is a
continuous domain), Si is a set [min(Si), max(Si)] such that
min(Di) ≤ min(Si) ≤ max(Si) ≤ max(Di).

The area of a hybrid rectangle R = S1 × S2 × . . . × Sd, is
defined as the product of lengths of all the component sets.
Mathematically, Area(R) =

∏d

i=1
Length(Si). The perime-

ter of R is defined as, Perimeter(R) =
∑d

i=1
Length(Si).

Given two hybrid rectangles R = S1 × S2 × . . . × Sd and
R′ = S′

1×S′

2× . . .×S′

d, the overlap of R and R′ is Area(R∩
R′) = Area((S1 ∩ S′

1) × (S2 ∩ S′

2) × . . . × (Sd ∩ S′

d)).

Given a set of hybrid rectangles {R1, R2, . . . , Rn} where,
R1 = S1,1 × S1,2 × . . . × S1,d, R2 = S2,1 × S2,2 × . . . ×
S2,d, . . . , Rn = Sn,1 × Sn,2 × . . . × Sn,d, the hybrid min-
imum bounding rectangle (HMBR) of {R1, R2, . . . , Rn} is
defined as the Cartesian product:

⋃n

i=1
Si,1 ×

⋃n

i=1
Si,2 ×

. . . ×
⋃n

i=1
Si,d. The component set of the HMBR on the

ith dimension is S1,i ∪ S2,i ∪ . . . ∪ Sn,i. The edge length
Length(HMBR, i) of the HMBR on the ith dimension is
|S1,i ∪ S2,i ∪ . . .∪ Sn,i| if the dimension is discrete, and it is
max{max(S1,i), max(S2,i), . . . max(Sn,i)} − min{min(S1,i),
min(S2,i), . . . min(Sn,i)} if the dimension is continuous.

463



Example 2.1. Consider an HDS Ω2 with one discrete
dimension with domain D1 and one continuous dimension
with domain D2. D1 has letters {a, b, c, . . . , j}, D2 has range
[0, 10]. Two data points (vectors) in Ω2 are P1 = (a, 2.5)
and P2 = (e, 9.0). Two rectangles in Ω2 are R1 = {a, c} ×
[1.0, 5.5] and R2 = {c, h} × [1.5, 8.5]. The edge lengths of
R1 for the discrete and continuous dimensions are 2 and
(5.5− 1.0) = 4.5, respectively. The area of R1 is 2 ∗ 4.5 = 9.
The overlap of R1 and R2 is 1 ∗ (5.5− 1.5) = 4. The area of
the HMBR of R1 and R2 is 3 ∗ (8.5 − 1.0) = 22.5.

3. THE C-ND TREE
In this section, we discuss the C-ND tree structure and the
algorithms used to construct it. We also present an algo-
rithm that processes range queries using the C-ND tree.

3.1 The Tree Structure
A leaf node of the C-ND tree has entries which keep the in-
formation on indexed vectors (i.e., database keys) and their
associated data in the underlying database. Hence each leaf
node entry stores the discrete and continuous components
of an indexed vector on all dimensions and keeps a pointer
pointing to the actual data associated with the vector in
the database. Each entry of a non-leaf node stores its child
node’s HMBR as well as a pointer to that child node. The
discrete subspace information and continuous subspace in-
formation are recorded differently in non-leaf entries. Infor-
mation for discrete dimensions is represented using a bitmap
representation while information for a continuous dimension
is stored by recording the lower and upper bounds of that
dimension.

Like the ND-tree [13] and the R*-tree [2], a C-ND tree is a
balanced tree which meets the following requirements: (1)
the root node has at least two children unless it is a leaf;
(2) every node has between m and M children unless it is a
root, where 2 < m ≤ M/2; (3) all leaves appear at the same
level. Figure 1 is an example of the C-ND tree, which shows
the actual tree structure and the HMBRs of the tree.

{ A, G, T } x [ -10, 10 ] { A, T, C } x [ -1, 9 ]… …

… … …{ A, G, T } x  [ -3, 5 ]… … { T, C } x [ 0, 8 ]… …

…

( A, 1 ) ( G, 2 ) … ( T, 0 ) ( T, 2 ) …… …

root node

leaf node

Figure 1: An example of the C-ND tree in a 2-

dimensional HDS with discrete domain {A, G, T, C}
and continuous domain [−10, 10].

The C-ND tree is a dynamic indexing structure which allows
insertion, deletion and query operations . When inserting a
new vector V into a C-ND tree, a proper insertion path
is selected from root note R down to a leaf node L. V is

stored in L, and if L overflows, a hybrid splitting procedure
is invoked to split L into two new leaf nodes. Splitting might
propagate to nodes at higher levels along the insertion path
until R is reached, in which case R is split into two and
the C-ND tree grows one more level higher. In the rest of
this section we will focus on insertion and query algorithms
of the C-ND tree. The delete operation on the C-ND tree
could be simply implemented as follows. When a vector is
removed from a leaf node L, its HMBR is recalculated based
on rest of vectors inside L, and parent nodes’ HMBRs are
updated if necessary. If the removal operation causes an
underflow on node L, all remaining vectors in L are deleted
then reinserted.

3.2 Normalized Geometric Measures
To obtain an efficient C-ND tree, we adopt a number of
heuristics which utilize the geometric concepts such as hy-
brid rectangles and their areas introduced in Section 2. One
issue in applying these heuristics is to make sure both dis-
crete and continuous subspaces contribute their information
fairly for the geometric concepts in the HDS space. For ex-
ample, consider an HMBR in a two dimensional HDS (one
discrete dimension D and one continuous dimension C). As-
sume the edge length on dimension D is 5 (i.e., the discrete
component set contains 5 letters/elements), and the edge
length for dimension C is 100 (i.e., the continuous compo-
nent set/interval has a length/size of 100). Thus the perime-
ter value is calculated as 5+100 = 105, which is clearly dom-
inated by the absolute value of the continuous edge length
and treats the discrete dimension unfairly.

To solve this problem, we adopt normalized measures. Specif-
ically, when we calculate the edge length of an HMBR on
a discrete dimension, we divide the number of elements of
the HMBR on that dimension by the size of the domain
on that dimension; when we calculate a continuous edge
length of the HMBR, we divide the (total) length of the
interval(s) of the HMBR on this dimension by the length
of the corresponding domain. When using the normalized
measures, edge lengths are the relative lengths with respect
to the domain size, which are between 0 and 1. This nor-
malized edge length is then used to calculate other relevant
geometric measures such as areas and perimeters. Suppose
in the above example the domain of discrete dimension D
contains 10 letters/elements, and the domain of dimension
C has range length 1000. The normalized edge length for
the discrete component set with 5 letters/elements is calcu-
lated as 5/10 = 0.5, and the normalized edge length of the
continuous component set/interval with a length/size of 100
is calculated as 100/1000 = 0.1. The normalized perime-
ter value is 0.5 + 0.1 = 0.6, which reflects information from
discrete and continuous subspaces fairly.

In the rest discussion of this paper, we always use the nor-
malized measures unless stated otherwise.

3.3 Choose Leaf Node for Insertion
Given a new data point/vector P to be inserted into a C-
ND tree, a leaf node L needs to be found to accommodate
P . Node L is found in a top down manner, i.e., starting
from the root node, descending in the tree until a leaf node
is picked. All the nodes picked during this procedure con-
stitute the insertion path, and the leaf node L at the end

464



of the insertion path is the one for accommodating P . If a
non-leaf node N on the insertion path has one or more child
nodes whose HMBRs containing P , the child node with the
smallest HMBR area is chosen for the insertion. If P does
not belong to any of N ′s child nodes’ HMBRs, the following
two heuristics are applied.

HC-1: Minimum Overlap Enlargement
As we know, a large overlap among nodes at the same level
would increase the chance to search multiple paths in the C-
ND tree during query processing. To avoid the large overlap,
the child node that yields the least overlap enlargement after
insertion is selected to accommodate P . If there is a tie, the
following heuristic is applied.

HC-2: Minimum Area Enlargement
The child node that yields the least area enlargement after
insertion is chosen to accommodate P . If there is a tie again,
a child is randomly chosen from the tied ones.

3.4 Splitting an Overflow Node of the C-ND
Tree

In this subsection, we discuss the steps and heuristics used to
split an overflowing C-ND tree node. Splitting a node is ac-
complished in three steps: Generating candidate partitions
from each subspace of the HDS, finding the best combina-
tion of candidate partitions, and redistributing uncommon
entries.

One straightforward way to generate candidate partitions is
to permute all (M +1) entries, then for each permutation (of
(M +1)! ones ) we put splitting points between the entries to
separate the entries into two groups. However, even for small
values of M it is computationally expensive to generate all
possible splits. We propose a novel concept called the “hy-
brid split” for generating candidate partitions. As the C-ND
tree indexes vectors involving both discrete and continuous
component values, it is important that the splitting proce-
dure considers both the subspaces for the optimized split. In
the proposed splitting algorithm, we first generate discrete
and continuous candidate partitions for the M + 1 entries
from discrete subspace and continuous subspace separately,
as described below. Then we find the combination of discrete
and continuous candidate partitions which agrees the most
on how to distribute entries in their respective subspaces,
this step is to be described in Section 3.4.2. As the last step
in hybrid split, common entries in both partitions are put
into N1 and N2 directly and uncommon entries are redis-
tributed using heuristics to be discussed in Section 3.4.3.

3.4.1 Generating Candidate Partitions for Subspaces
As the first step for the hybrid split, we generate candidate
partitions for the discrete and continuous subspaces, respec-
tively. In fact, each dimension in a subspace is considered
when generating candidate partitions. If the current dimen-
sion is discrete, we sort the entries in the splitting node
using the auxiliary tree as described in [13]. If the current
dimension is continuous, the entries in the splitting node are
first sorted by the lower bound of the continuous component
set/interval on that dimension and then by the upper bound
of the continuous component set/interval on that dimension
(if there are ties according to the first sort), resulting in

< E1E1 E2E2 E3E3 E4E4 E5E5 E6E6 E7E7 E8E8 E9E9 E10 E11 E12 >

S1S1 S2S2 S3S3 S4S4 S5S5

Figure 2: An example of generating candidate par-

titions in the C-ND tree.

a complete sorted entry list. Positions where a split point
can be placed are constrained by the minimum space uti-
lization. Consider the example shown in Figure 2. Suppose
we have an overflowing node with twelve entries and one
sorted entry list of these entries is E1, E2, E3, . . . , E12.
Let the minimum utilization constraint require at least four
entries per node. We then have five possible candidate par-
titions S1, S2, S3, S4 and S5. Each candidate partition
Si (1 ≤ i ≤ 5) divides entries in two groups: the first group
is < E1, . . . , Ei+3 > and the second is < Ei+4, . . . , E12 >.

To efficiently choose a set of good partitions among all can-
didate ones for a given overflow node, some heuristics are
needed. From extensive experiments, we have found that
the following heuristics (named HS-1 through HS-3) are ef-
fective in choosing good candidate partitions for splitting an
overflow node in the C-ND tree. Note that since candidate
partitions are generated from discrete subspace and contin-
uous subspace separately, MBRs in HS-1 ∼ HS-3 should be
treated as only the discrete part or continuous part of the
whole HMBR, depending on the subspace under considera-
tion.

HS-1: Minimum Overlap
Among all the candidate partitions, the one yielding the
least overlap is most preferred for the subspace under con-
sideration. If there is a tie, the following heuristic is applied.

HS-2: Maximum Span
Among all the candidate partitions that are tied for HS-
1, the one with the maximum span is chosen. Here the
span means the length/size of the discrete component set
on a discrete dimension (or the continuous set/interval on
a continuous dimension) of the overflow node’s MBR before
splitting. If there is still a tie, the following heuristic is
applied.

HS-3: Maximum Balance
Among all the candidate partitions that are tied for HS-
1 and HS-2, the one with the maximum balance is picked.
Here we measure the balance by the difference between the
lengths/sizes of the corresponding discrete component sets
on the discrete dimension (or the corresponding continuous
sets/intervals on the continuous dimension) of the two new
nodes’ MBRs after splitting the overflow node using the can-
didate partition under consideration. This heuristic tries to
balance the lengths of the two new nodes’ MBRs on the split-
ting dimension. In other words, the smaller the difference,
the more balance the partition is.

When generating candidate partitions at a non-leaf level in
the discrete subspace, we noticed that it is very hard to
group entries in a non-leaf node based on the discrete com-
ponent sets’ information due to the fact that each entry in a

465



non-leaf node may have multiple elements on a given discrete
dimension, and those sets vary in cardinality and members
largely. The more distinct sets we have, the harder it would
be to separate them into two groups. This suggests picking
a discrete dimension which has fewer distinct discrete com-
ponent sets. Thus at a non-leaf level when generating can-
didate partitions from the discrete subspace, we choose the
dimension on which the splitting node’s entries have fewer
distinct discrete component sets.

After applying HS-1 ∼ HS-3, there may still be ties. Hence,
in general, we get two sets of partitions CPd and CPc, rep-
resenting candidate partitions generated from discrete and
continuous subspaces, respectively.

3.4.2 Choosing the Best Combination of Discrete and
Continuous Partitions

The next step of the hybrid split is to find the best combi-
nation of candidate partitions from CPd and CPc generated
in Section 3.4.1. That is, suppose CPd has candidate par-
titions D1, D2, . . . , Di and CPc has candidate partitions
C1, C2, . . . , Cj , for all combinations of {Dm, Cn}, where
1 ≤ m ≤ i, and 1 ≤ n ≤ j, the following heuristic HS-4 is
applied to pick the best combination.

Given a partition Dm, the whole entry set of the overflow
node is separated into subsets Dm1 and Dm2. Similarly,
Cn is divided into two subsets Cn1 and Cn2. When com-
bining Dm and Cn, the whole entry set is divided into 4
subsets:Dm1 ∩Cn1, Dm1 ∩ Cn2, Dm2 ∩Cn1 and Dm2 ∩Cn2,
as illustrated in Figure 3. Note that these four subsets have
common entries between partitions Dm and Cn. Since each
partition has to include its two subsets, we have the fol-
lowing two combined common sets between Dm and Cn:
(Dm1 ∩Cn1)∪ (Dm2∩Cn2), and (Dm1∩Cn2)∪ (Dm2∩Cn1).

Dm2

Cn1

Cn2

Cn1

Cn2

Dm1 ∩ Cn1

Dm1 ∩ Cn2

Dm2 ∩ Cn1

Dm2 ∩ Cn2

Partition Dm on discrete 

dimension x

Partition Cn on continuous 

dimension y

Dimension x

D
im

e
n

s
io

n
 y

Combination of Dm and Cn

Dm1

Figure 3: A combination of discrete and continuous

candidate partitions.

HS-4: Maximum Number of Common Entries
Given a combination of candidate partitions Dm and Cn,
let M11 be the number of entries in Dm1 ∩ Cn1 and M12

be the number of entries in Dm2 ∩ Cn2. Similarly, let M21

be the number of entries in Dm2 ∩ Cn1 and M22 be the
number of entries in Dm1 ∩ Cn2. Let M1 = M11 + M12,

M2 = M21 + M22, the maximum number of common entries
Mmn from the combination of Dm and Cn is defined as:

Mmn = max{M1, M2}.

Among all combinations of candidate partitions, the one
with maximum Mmn is picked as the best combination of
candidate partitions. If there is a tie, a random one is picked.

Note that during the hybrid split we are looking for a com-
bination of splits which has as many common entries as pos-
sible, and the lower bound of the number of common entries
is guaranteed by the following theorem:

Theorem 3.1. The number of common entries Mmn is
at least 50% of the total number of entries to be distributed.

Proof. Suppose a splitting overflow node contains P en-
tries, let:

S1 = (Dm1 ∩ Cn1) ∪ (Dm2 ∩ Cn2),

S2 = (Dm1 ∩ Cn2) ∪ (Dm2 ∩ Cn1).

Here S1 has M1 entries and S2 has M2 entries. Since S1∪S2

is the set of all entries in this splitting node and S1∩S2 = ∅,
we have M1 + M2 = P , (M1 ≥ 0, M2 ≥ 0). If M2(M1)
is smaller than or equal to bP/2c, M1(M2) must be larger
than or equal to dP/2e.

The characteristic proved above shows that the hybrid split
will have a combination of candidate partitions which agree
on at least 50% of total entries’ distribution. This ensures
that our split algorithm could always take advantage of both
the discrete and continuous candidate partitions.

For the chosen combination of candidate partitions, we place
the common entries as suggested by S1 or S2, depending on
which one is larger. The following subsection describes how
to place uncommon entries.

3.4.3 Redistributing Uncommon Entries
Once a best combination of candidate partitions from CPd

and CPc is determined and their common entries are placed,
the next step of the hybrid split is to redistribute the un-
common entries into the two common groups.

Given a combination of candidate partitions Dm and Cn,
without loss of generality, suppose the common groups picked
are CG1 = Dm1 ∩ Cn1 and CG2 = Dm2 ∩ Cn2; the uncom-
mon groups are UG1 = Dm1 ∩ Cn2 and UG2 = Dm2 ∩ Cn1.
For all the entries remained in UG1 or UG2 and not within
HMBR of CG1 or CG2, they are put into a common group
CG1 or CG2 using the following heuristics. After all the
entries are distributed, the node splitting is determined.

Heuristics HS-5 and HS-6 are used to decide whether an
uncommon entry Ei (1 ≤ i ≤ n) in UG1 and UG2 should
go to CG1 or CG2. Let x represent the dimension from
which Dm is generated and let y be the dimension for Cn.

466



In HS-5 and HS-6, the geometry concept is restricted to
the 2-dimensional space composed of x and y. Let CGi

1 =
CG1 ∪ {Ei} and CGi

2 = CG2 ∪ {Ei}, (1 ≤ i ≤ n). First we
apply HS-5 to Ei:

HS-5: Minimum Overlap of Common Groups
An entry Ei (1 ≤ i ≤ n) is put into CG1 or CG2 tentatively,
then the common group which yields a less overlap after ac-
commodating Ei is chosen. Let:

Oi
1 = Area((HMBR of CGi

1) ∩ (HMBR of CG2)),

Oi
2 = Area((HMBR of CGi

2) ∩ (HMBR of CG1)).

If Oi
1 < Oi

2, Ei is put into group CG1; if Oi
1 > Oi

2, Ei is put
into group CG2. Heuristic HS-6 is applied if Oi

1 equals Oi
2.

HS-6: Minimum Ratio of Perimeter Enlargement and Area
Enlargement
Similar to HS-5, Ei (1 ≤ i ≤ n) is tentatively put into CG1

or CG2. Both the perimeter and area are considered in this
heuristic because we want to keep the area enlargement as
large as possible and at the same time keep the perime-
ter enlargement as small as possible, which could improve
the pruning power of the C-ND tree. The perimeter and
area are two important geometry measurements in optimiz-
ing tree performance. By taking ratio of the two, we have
both of them considered when redistributing uncommon en-
tries. Let:

A1 = Area(HMBR of CG1) ,
A2 = Area(HMBR of CG2) ,
P1 = Perimeter(HMBR of CG1) ,
P2 = Perimeter(HMBR of CG2) ,
and
Ai

1 = Area(HMBR of CGi
1) ,

Ai
2 = Area(HMBR of CGi

2) ,
P i

1 = Perimeter(HMBR of CGi
1) ,

P i
2 = Perimeter(HMBR of CGi

2) ,
where 1 ≤ i ≤ n.

Now let T i
1 = (P i

1−P1)/(A
i
1−A1), T i

2 = (P i
2−P2)/(A

i
2−A2).

If T i
1 < T i

2 , Ei is put into group CG1; if T i
1 > T i

2, Ei is put
into group CG2. If T i

1 and T i
2 equal, Ei is put into the group

with less number of entries.

Figure 4 shows an example of redistributing uncommon en-
tries to common groups.

The performance of heuristics used in the hybrid split algo-
rithm is reported in Section 4.2.

3.5 Processing Range Query Using the C-ND
Tree

In this paper, we consider range queries, which are popular
in many application domains. Given a query vector q and
a distance d, a range query retrieves all the indexed vectors
which are within d distance from q.

To perform a range query in an HDS, we need a distance
measure for the similarity between two vectors in the HDS
(note that distance measure is not needed when building

Dimension x

D
im

e
n

s
io

n
 y

Common group 

Common group

CG1

CG2

UG1

UG2

Figure 4: An example of redistributing uncommon

entries in a hybrid splitting procedure.

the C-ND tree. It is only used for range queries in comput-
ing the range). The distance measure in HDSs is still an
open issue. There is no a well-known HDS distance measure
available. In this paper, we extended the Hamming distance
measure to the HDS. The extended Hamming distance mea-
sure (EHDM) is defined as follows.

Given two data points P = (p1, p2, . . . , pn) and P ′ =
(p′

1, p′

2, . . . , p′

n) in a d-dimensional HDS, we define:

EHDM(P, P ′) =

n
∑

i=1

F (pi, p
′

i), (1)

where function F (pi, p
′

i) is defined as:

F (pi, p
′

i) =



























0 if i is a discrete dimension and
pi equals p′

i

or i is a continuous dimension and
|pi − p′

i| ≤ t

1 otherwise

As can be seen from the equation above, when ith dimension
is continuous, threshold t determines closeness of pi and p′

i.
In all our experiments we set t = 0.001.

As we mentioned above, the construction of a C-ND tree
does not rely on any distance measure, and the proposed
EHDM is only used for the purpose of testing range queries
using the indexing tree. There could be different distance
measures for HDSs besides EHDM, but the extended Ham-
ming distance provides a reasonable distance measure for an
HDS, due to its simplicity and origin from the Hamming dis-
tance. Based on the extended Hamming distance measure
on two vectors, the distance between a hybrid rectangle R
and a query vector q can be defined as follows.

Given a d-dimensional HDS Ωd, a hybrid rectangle R =
S1×S2×. . .×Sd in Ωd and a query vector q = (q1, q2, . . . , qn),
the distance between R and q is calculated as:

dist(R, q) =
n

∑

i=1

f(Si, qi) (2)

467



where

f(Si, qi) =



























0 if i is a discrete dimension and
qi ∈ Si

or i is a continuous dimension and
(min(Si) − t) ≤ qi ≤ (max(Si) + t)

1 otherwise

Using the extended Hamming distance measure, based on
equations (1) and (2) , a range query in an HDS could be
defined as {v|EHDM(v, q) ≤ r}, where v represents a vec-
tor in the result set, q represents the query vector and r
represents a search distance(range). An exact query is a
special case of a range query when r = 0.

The C-ND tree can be utilized to efficiently process range
queries based on EHDM. The query processing algorithm is
implemented by invoking the following function on the root
node of the C-ND tree:

Function RangeQuery(N ,q, r): Processing range queries
Input: node N in a given C-ND tree, query vector q and
distance r
Output: all data vectors indexed by the C-ND tree within
distance r from q
Method:

1. let S = ∅
2. if N is a leaf then

3. for each vector v in N do

4. if EHDM(v, q) ≤ r then

5. S = S ∪ {v}
6. end if

7. end for

8. else

9. for each child node N ′ of node N do

10. if dist(HMBR of N ′, q) ≤ r then

11. S = S ∪ RangeQuery(N ′, q, r)
12. end if

13. end for

14. end if

15. return S

4. EXPERIMENTAL RESULTS
Extensive experiments were conducted to evaluate perfor-
mance of the C-ND tree in comparison with some of the
known indexing schemes. In this section we present our ex-
perimental results.

4.1 Experimental Setup
The experiment programs were implemented in C++. Tests
were conducted on Sun Fire v20z servers with 2x AMD
Opteron 250 2.4GHz 64bit and 4 GB RAM running Linux
OS and Intel Xeon quad-core 5345 processors with 8 GB
ECC DDR2 RAM running SuSE Enterprise Linux 10 in a
high performance computing cluster system.

Synthetic data sets were used for our experiments. They
were generated randomly, consisting of both continuous and
discrete dimensions. Given a domain Di(1 ≤ i ≤ d), d be-
ing the number of dimensions, a random integer between 0

and |Di| − 1 is generated for each discrete dimension. For
each continuous dimension, its value is generated as a ran-
dom decimal number between min(Di) and max(Di) (refer
to Section 2). The same method is used to generate the
query vectors for range queries. The query performance is
measured by the number of I/Os (i.e., the number of tree
nodes accessed) and is computed by averaging the I/Os over
200 queries.

4.2 Performance of Heuristics Used to Split
Overflow Nodes

To determine the effectiveness of heuristics on splitting an
overflow node, we conducted a group of experiments on 10
different C-ND trees built from 10 different data sets. Each
data set contains 1 million randomly generated vectors with
8 discrete dimensions and 8 continuous dimensions, where
discrete dimensions have an alphabet size of 10 and con-
tinuous dimensions range from 0 to 1. The range query
performance for each C-ND tree is measured by the average
I/Os of 200 different queries. We take the average query
performance for these 10 C-ND trees.

The first group of experiments was conducted for evaluat-
ing the effectiveness of heuristics used to generate candidate
partitions (HS-1, HS-2, and HS-3). We compared the fol-
lowing versions of different combinations:

Version 1: using HS-1 only.
Version 2: using HS-1 and HS-2.
Version 3: using HS-1, HS-2 and HS-3.

The experiment results are reported in Table 1, where rq

denotes the query range used in the experiments.

Table 1: Effectiveness of heuristics used to generate

candidate partitions.

version rq = 1 rq = 2 rq = 3 rq = 4

1 68.57 370.64 1380.08 3716.94
2 57.18 286.28 1015.75 2706.43
3 28.15 145.76 544.68 1551.17

The second group of experiments was conducted for evaluat-
ing effectiveness of heuristics used to redistribute uncommon
entries into common entry groups (HS-5 and HS-6). We con-
sidered the following versions:

Version 4: using HS-5 only.
Version 5: using both HS-5 and HS-6.

The results for the second group of experiments are shown
in Table 2.

From both groups of experiments we can see that when ad-
ditional heuristics are applied, the performance of the C-ND
tree is positively affected, which suggests the effectiveness of
heuristics being used when building the C-ND tree.

4.3 Performance Comparisons With the 10%
Linear Scan, ND-tree and R*-tree

468



Table 2: Effectiveness of heuristics used to redis-

tribute uncommon entries.

version rq = 1 rq = 2 rq = 3 rq = 4

4 34.58 224.77 1019.48 3247.12
5 28.15 145.76 544.68 1551.17

We have compared the performance of the C-ND tree with
that of the 10% linear scan, ND-tree and R*-tree. Note that
linear scan of a disk sequentially reads all the pages and,
therefore, is faster than the random access of a disk page
by a factor of about ten [5]. To have a fair comparison, we
consider only 10% of all the pages, which is termed as “the
10% linear scan”. As mentioned in Section 1, the ND-tree
and the R*-tree were not designed for indexing hybrid data.
They can index only the discrete subspace or the continuous
subspace of an HDS. We have adopted the ND-tree and R*-
tree for hybrid data by storing the whole vector only in leaf
nodes because both discrete and continuous dimensions are
required for the range computation in the HDS.

Various parameters such as the database size, range size,
alphabet size, and various mixes of discrete/continuous di-
mensions were considered in our experiments. From the re-
sults we see that in general the C-ND tree outperforms the
other three approaches.

4.3.1 Effect of Database Sizes on Performance of the
C-ND Tree

We conducted experiments using data sets of sizes ranging
from 10 million vectors to 19 million vectors, each with 8
discrete and 8 continuous dimensions. The alphabet size for
each of the discrete dimensions was 10. Figure 5 shows the
number of I/Os for each of the methods for range queries us-
ing range 2. As expected, with increasing database sizes, the
number of I/Os increases for each of the indexing schemes.
However, the C-ND tree outperforms all the other three
methods. For database size of 19 million, the C-ND tree
is three times more efficient than its nearest contender ND-
tree.

Effect of Database Size

Alphabet size 10, Range 2, 8+8

100

1000

10000

100000

10M 13M 16M 19M

Database Size

N
u

m
b

e
r 

o
f 

I/
O

C-ND tree

ND-tree

R*-tree

10% linear

Figure 5: Effect of database size.

4.3.2 Effect of Varying Mix of Discrete and Continu-
ous Dimensions

In this set of experiments, we varied the mix of discrete and
continuous dimensions while keeping the total number of
dimensions fixed at 16. The alphabet size and the database
size were set to 10 and 10 millions, respectively.

The results are shown in Figure 6. From the figure, it is
observed that the C-ND tree outperforms the R*-tree and
the 10% linear scan. When the number of discrete dimen-
sions is high, the ND-tree performance is close to the C-ND
tree. When the number of discrete dimensions is very low,
the ND-tree is even worse than the 10% linear scan for the
data sets considered. An effective ND-tree cannot be cre-
ated because the number of duplicate discrete subvectors in
the discrete subspace is very high for the given data sets.

Effect of Dimension Mix

Database size 10M, Range 2, Alphabet size 10

100

1000

10000

100000

4+12 6+10 8+8 10+6 12+4

Dimension Mix (Discrete + Continuous)

N
u

m
b

e
r 

o
f 

I/
O

C-ND tree

ND-tree

R*-tree

10% linear

Figure 6: Effect of dimension mix.

4.3.3 Effect of Alphabet Sizes
Figure 7 shows the performance of various indexing schemes
with an increasing alphabet size. Here again, the C-ND tree
is a clear winner. As the alphabet size increases, both the
C-ND tree and the ND-tree have more pruning power. This
is reflected in the decreasing number of I/Os.

Effect of Alphabet size

Database size 10M, Range 2, 8+8

100

1000

10000

100000

10 12 14 16

Alphabet Size

N
u

m
b

e
r 

o
f 

I/
O

C-ND tree

ND-tree

R*-tree

10% linear

Figure 7: Effect of alphabet size.

4.3.4 Effect of Different Range sizes for Queries
Figure 8 shows the performance effect of the query range.
From the results we see that, as the range size increases, the
number of I/Os also increases for all the indexing methods,
which is as expected. However, we also see that the C-ND
tree outperforms the others for all the ranges shown.

469



Effect of Range

Database size 10M, Alphabet size 10, 8+8

10

100

1000

10000

100000

1 2 3 4

Range

N
u

m
b

e
r 

o
f 

I/
O

C-ND tree

ND-tree

R*-tree

10% linear

Figure 8: Effect of query range.

5. CONCLUSIONS
There are numerous applications that require processing of
large data sets in a hybrid data space with both continuous
and discrete dimensions. To support efficient query pro-
cessing for such hybrid data, a robust indexing method is
required. In this paper, we present a new index technique,
the C-ND tree, to directly index vectors in a hybrid data
space.

To develop the C-ND tree, we first introduce some essen-
tial geometric concepts such as hybrid bounding (hyper-
)rectangles in a hybrid data space. The tree structure and
the relevant construction and querying algorithms are then
presented based on some heuristics that we find to be ef-
fective in an HDS. The concept on length normalization is
employed to make the measures on continuous and discrete
dimensions comparable and controllable.

We conducted extensive experiments to evaluate the per-
formance of the C-ND trees on hybrid data with various
database sizes, mixes of continuous and discrete dimensions
and different alphabet sizes. Our experimental results demon-
strate that the C-ND tree is generally more efficient than the
linear scan, the R*-tree and the ND-tree. As expected, when
the number of continuous dimensions in an HDS increases,
the performance of the C-ND tree is closer to that of an R*-
tree; when the number of discrete dimensions increases, the
performance of the C-ND tree becomes closer to that of an
ND-tree. The reason why the C-ND tree generally outper-
forms the R*-tree and the ND-tree is that it can make use
of the given query conditions on additional dimensions that
the latter two methods cannot utilize to prune unnecessary
search paths in the tree.

Our future work includes developing more effective indexing
strategies/heuristics for HDSs.

6. ACKNOWLEDGMENTS
Research supported by the US National Science Foundation
(under grants # IIS-0414576 and # IIS-0414594), Michigan
State University and the University of Michigan.

7. REFERENCES
[1] R. Bayer and K. Unterauer. Prefix B-trees. ACM

Transactions on Database Systems, pages 11–26, 1977.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: an efficient and robust access
method for points and rectangles. Proceedings of ACM
SIGMOD, pages 322–331, 1990.

[3] S. Berchtold, D. Keim, and H.-P. Kriegel. The X-tree:
an index structure for high-dimensional data.
Proceedings of the 22nd International Conference on
VLDB, pages 28–39, 1996.

[4] J. Catlett. On changing continuous attributes into
ordered discrete attributes. Proceedings of the
European Working Session on Machine Learning,
pages 164–178, 1991.

[5] K. Chakrabarti and S. Mehrotra. The hybrid tree: an
index structure for high dimensional feature spaces.
Proceedings of the 15th International Conference on
Data Engineering, pages 440–447, 1999.

[6] J. Clement, P. Flajolet, and B. Vallee. Dynamic
sources in information theory: a general analysis of
trie structures. In Algorithmica, 29(1/2), pages
307–369, 2001.

[7] P. Ferragina and R. Grossi. The string B-tree: a new
data structure for string search in external memory
and its applications. Journal of the ACM, pages
236–280, 1998.

[8] A. Freitas. A survey of evolutionary algorithms for
data mining and knowledge discovery. Advances in
Evolutionary Computing: Theory and Applications,
pages 819–845, 2003.

[9] A. Guttman. R-trees: a dynamic index structure for
spatial searching. Proceedings of ACM SIGMOD,
pages 47–57, 1984.

[10] A. Henrich. The LSDh-tree: an access structure for
feature vectors. Proceedings of the 14th International
Conference on Data Engineering, pages 362–369, 1998.

[11] N. Katayama and S. Satoh. The SR-tree: an index
structure for high-dimensional nearest neighbor
queries. Proceedings of ACM SIGMOD, pages
369–380, 1997.

[12] S. Macskassy, H. Hirsh, A. Banerjee, and A. Dayanik.
Converting numerical classification into text
classification. Artificial Intelligence, 143(1), pages
51–77, 2003.

[13] G. Qian, Q. Zhu, Q. Xue, and S. Pramanik. The
ND-tree: a dynamic indexing technique for
multidimensional non-ordered discrete data spaces.
Proceedings of the 29th International Conference on
VLDB, pages 620–631, 2003.

[14] G. Qian, Q. Zhu, Q. Xue, and S. Pramanik. Dynamic
indexing for multidimensional non-ordered discrete
data spaces using a data-partitioning approach.
Proceedings of ACM Transactions on Database
Systems, 31(2), pages 439–484, 2006.

[15] G. Qian, Q. Zhu, Q. Xue, and S. Pramanik. A
space-partitioning-based indexing method for
multidimensional non-ordered discrete data spaces.
ACM Trans. on Information Syst, 23(1), pages
79–110, 2006.

[16] J. Robinson. The K-D-B-tree: a search structure for
large multidimensional dynamic indexes. Proceedings
of ACM SIGMOD, pages 10 –18, 1981.

[17] T. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-tree: a dynamic index for multi-dimensional

470



objects. Proceedings of the 13th International
Conference on VLDB, pages 507–518, 1987.

[18] H. Shen, X. Zhou, and B. Cui. Indexing text and
visual features for WWW images. Springer Berlin /
Heidelberg, 2005.

[19] H. Shen, X. Zhou, and B. Cui. Indexing and
integrating multiple features for www images. World
Wide Web, 9(3), pages 343–364, 2006.

[20] J. Smith, S. Basu, C. Lin, M. Naphade, and B. Tseng.
Integrating features, models, and semantics for
content-based retrieval. the 10th Text REtrieval
Conference (TREC10), 2001.

[21] J. Smith and S.-f. Chang. Searching for images and
videos on the world-wide-web. Technical Report
459-96-25, Columbia University, 1996.

[22] D. White and R. Jain. Similarity indexing with the
SS-tree. Proceedings of the 12th International
Conference on Data Engineering, pages 516–523, 1996.

471




