
AlphaSum: Size-Constrained Table Summarization using
Value Lattices ∗

K. Selçuk Candan, Huiping Cao, Yan Qi
Arizona State Univ.

Tempe, AZ 85283, USA
{candan,hcao11,yan.qi}@asu.edu

Maria Luisa Sapino
Univ. di Torino

Torino, Italy
mlsapino@di.unito.it

ABSTRACT
Consider a scientist who wants to explore multiple data sets
to select the relevant ones for further analysis. Since the vi-
sualization real estate may put a stringent constraint on how
much detail can be presented to this user in a single page, ef-
fective table summarization techniques are needed to create
summaries that are both sufficiently small and effective in
communicating the available content. In this paper, we first
argue that table summarization can benefit from knowledge
about acceptable value clustering alternatives for clustering
the values in the database. We formulate the problem of
table summarization with the help of value lattices. We
then provide a framework to express alternative clustering
strategies and to account for various utility measures (such
as information loss) in assessing different summarization al-
ternatives. Based on this interpretation, we introduce three
preference criteria, max-min-util (cautious), max-sum-util
(cumulative), and pareto-util, for the problem of table sum-
marization. To tackle with the inherent complexity, we rely
on the properties of the fuzzy interpretation to further de-
velop a novel ranked set cover based evaluation mechanism
(RSC). These are brought together in an AlphaSum, table
summarization system. Experimental evaluations showed
that RSC improves both execution times and the summary
qualities in AlphaSum, by pruning the search space more
effectively than the existing solutions.

1. INTRODUCTION
Summarization of large data tables is required in many

scenarios where it is hard to display complete data sets. [17,
32], for example, leverages table summarization for mobile
commerce applications over PDAs, which cannot effectively
present a large table of results with their small screens. Ta-
ble summarization is also useful in various other scenarios,
where it is hard or highly-impractical to visualize large data

∗Authors are listed in the alphabetical order; Supported by
NSF Grant “Archaeological Data Integration for the Study
of Long-Term Human and Social Dynamics” (0624341)

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

Name Age Location

John 12 Phoenix
Sharon 19 Los Angeles
Mary 19 San Diego
Peter 22 Baltimore
James 22 Frederick
Alice 27 Baltimore

(a) Data table

Name Age Location

- 1* Southwest
- 2* Maryland

(b) Data table after 3-summarization on 〈Age, Location〉 using hi-

erarchies in Figure 1

Table 1: (a) A database and (b) A 3-summarized
version on the 〈Age, Location〉 attribute pair

*

1* 2*

12 19 22 27

U.S.

Arizona
MarylandCalifornia

Southwest

Phoenix Los Angeles Baltimore FrederickSan Diego

(a) Hierarchy for Age (b) Hierarchy for Location

Figure 1: Hierarchy-based value clustering for at-
tribute Age (a) and Location (b). The directed edges
denote the clustering/summarization direction.

sets. Consider, for example, a scientist exploring the Digi-
tal Archaeologial Record (tDAR/FICSR) [26, 27], a digital
library which archives and provides access to a large number
of (and diverse) data sets, collected by different researchers
within the context of different projects and deposited to
tDAR for sharing. When this scientist poses a search query
through FICSR, her query might match many potentially
relevant databases and data tables. For this scientist to be
able to explore the multitude of candidate data resources
identified by tDAR as quickly and effectively as possible,
novel data reduction techniques (such as table summariza-
tion) are needed.

In this paper, we first note that visualization process can
leverage knowledge about available screen real estate. For
example, Table 1 (a) shows a data table consisting of 6 rows.
If the user is interested in summarizing the given table based
on the attribute pair, 〈Age, Location〉 in such a way that,
the summarized table can be visualized in a space that can
hold at most 2 tuples, this can be achieved by clustering rows
such that each row in the summary corresponds to at least
3 (= ⌈6/2⌉) rows in the original table – we refer to this as

96

……… Summarization

α , summary
attributes (SA)

A1 A2 A3 A1

Exploration
………

………
………

………
………

………

Figure 2: α-summarization helps reduce the table
size for quick exploration and enable the user ex-
plore the summary as in OLAP

(a) A 3-summarization of Table 1(a) on attribute pair

〈Age, Location〉 using the hierarchies in Figure 1

(b) First level expansion: from

(a), expand Southwest of the

record (-,1*,Southwest) for at-

tribute Location

(c) Second level expansion: from

(b), expand California of the

record (-,1*,California) for at-

tribute Location

Figure 3: (a) a 3-summarized version on the
〈Age, Location〉 attribute pair, and (b)-(c) expand dif-
ferent clustering values for the attribute Location.

3-summarization. Furthermore, this clustering can be best
achieved if additional domain knowledge, which can help
choose how to cluster the values, is available. For example,
given the value hierarchies in Figure 1(a) for attribute Age
and Figure 1(b) for attribute Location, one can 3-summarize
this table as shown in Table 1(b).

1.1 Motivating Example: Exploration of Data
Sets

Value hierarchies (such as the one in Figure 1(a)) are com-
monly used for user-driven data exploration within large
data sets. For example, OLAP operators (such as drill-
down, navigating from less specific to more detailed data
by stepping down on a given hierarchy, and roll-up, which
performs aggregation on by climbing up a hierarchy of con-
cepts) commonly assume value hierarchies are given [6].

OLAP-based navigation (using drill-down and roll-up op-
erations), on the other hand, does not take into account the
visualization real estate (e.g., the number of tuples to be dis-
played) available for exploration. For instance, when a user
poses a source location query to tDAR to identify potential

Figure 4: Lattice-based value clustering graphs for
the attribute Age.

data sets for further study, the system would return mul-
tiple candidate tables to be further explored for relevance.
Displaying multiple tables (or even a single large table) on
a single result page imposes limits on how many tuples can
be presented to the user for each table. As in web search
interfaces which provide snippets for each candidate result
to help users choose which link to follow, summarization of
the candidate tables can help them fit onto the user screen.
Thus, if we can create summaries leveraging an underlying
value clustering hierarchy, these summaries can be used for
exploring data sets by refining the relevant portions of the
summary results by moving up-down on the hierarchy as in
OLAP’s drill-down and roll-up (Figure 2).

Consider, for example, the data table in Table 1(a) and the
value clustering hierarchies for attributes Age and Location,
shown in Figure 1. Figure 3(a) shows a 3-summarization
of this table (on attribute pair 〈Age, Location〉) visual-
ized through our AlphaSumExplorer interface. AlphaSumEx-
plorer lets users expand on specific attributes or summarized
values to explore the table to further examine selected de-
tails. Figure 3(b) and 3(c) show a sample sequence of expan-
sions (similar to drill-down in OLAP), first on the clustered
value “Southwest” and then on the clustered value “Califor-
nia.” In tDAR, we are using an efficient α-summarization
system (AlphaSum described in this paper) and the Alpha-
SumExplorer interface for navigating through large data sets
obtained through queries over heterogeneous archaeological
data sets.

1.2 AlphaSum: Size-Constrained Summa-
rization of Tables

As described above, the main goal of AlphaSum is to ob-
tain OLAP-like navigable summaries from large tables. Its
goals, however, differ from OLAP in two significant ways:

• First of all, unlike traditional OLAP, AlphaSum takes
the visualization real estate into account. Given a ta-
ble with n tuples, the maximum number, m (= ⌈n/α⌉)
of tuples to be visualized to the user as a highest level
summary is an input parameters to AlphaSum.

• Secondly, AlphaSum recognizes that in many applica-
tions (even in OLAP [28]), systems may need to take
into account the existence of multiple acceptable value
clustering alternatives. For example, the value lattice
shown in Figure 4 provides more clustering alternatives
than the simpler hierarchy in Figure 1(a), potentially
enabling the applications to be more precise and infor-
mative.

When there are alternative clustering strategies for the val-
ues in a database, however, not all alternatives might be
equally desirable. Let us reconsider Figure 4:

• Clustering the value “12” under “preteen” (which cor-
responds to values 0 ≤ age < 13) versus “1*” (which

97

animals

mammals fishes

sharks

bull s. tiger s.

canidea

dogs wolves

Figure 5: A partial taxonomy of animals

corresponds to values 10 ≤ age ≤ 19) may be less de-
sirable because the range of possible values (i.e, the
precision lost by the replacement) in the former case
is larger than in the latter.

• If the nodes of the lattice do not represent concrete
sets, but concepts in an ontology or a concept tax-
onomy, then the semantic difference between terms
can be estimated using structural and/or information-
based approaches.

In structure-based methods [23, 25], the distance be-
tween two nodes is measured as the sum of the dis-
tance weights of edges between them: the weight of an
edge between a parent concept and a child is measured
based on the structural clues available in the lattice,
such as depth (the deeper the edge in the lattice, the
less information loss associated to the edge; e.g., in
Figure 5, dogs are more related to wolves than mam-
mals are to fishes) and local density of the concepts
(the denser the lattice, the smaller the semantic dis-
tance between concepts in that neighborhood of the
lattice).

Information-based methods leverage available corpora
to measure potential information loss. For exam-
ple, knowledge about term-occurrence frequencies may
help measure information-loss in an information theo-
retic manner [24] (information content is measured as
the negative logarithm of the probability of encounter-
ing an instance of the concept in the corpus).

Therefore, when creating an α-summary (where each row
corresponds to at least α rows in the original table, as in
Table 1(b)) by clustering data values according to the given
lattice, we need to account for the loss of precision.

1.3 Contributions
In this paper, we first formulate the problem of α-

summarization under weighted value clusterings. Instead of
solving a special case of the problem (e.g., assuming a hier-
archy instead of a lattice or assuming a specific information
loss measure), we introduce a general utility-weighted value
clustering lattice representation to capture alternatives and
choices over these alternatives, we also introduce the concept
of utility of a clustering strategy, and formalize the problem
of α-summarization, which is the core of the AlphaSum sys-
tem (Section 3). Relying on this, we also introduce three
solution preference criteria, max-min-util, max-sum-util,
and pareto-util for the problem of α-summarization. We
then rephrase the summarization problem into a set cover
problem and present a novel ranked set cover algorithm that
is able to prune the search space significantly to reduce the
execution time for α-summarization task (Section 5). In Sec-
tion 6, we evaluate the proposed approach and show that the

proposed ranked set cover algorithm improves both execu-
tion time and result quality.

2. RELATED WORK
In [2], Alfred et al. present an approach to data summa-

rization by aggregating data over a relational dataset. A
good survey of the database summarization can be found
in [29], where an online linguistic table summarization sys-
tem, SaintEtiQ, is also presented. SaintEtiQ [29, 30] com-
putes and incrementally maintains a hierarchically arranged
set of summaries of the input table. In such a hierarchical
structure, any non-leaf summary generalizes the content of
its children nodes. TabSum [17] summarizes tables through
row and column reduction. To reduce the number of rows, it
first partitions the original table into groups based on one or
more attribute values of the table, and then collapses each
group of rows into a single row relying on the available meta-
data, such as the concept hierarchy. For column reduction,
it simplifies the value representation and/or merges multi-
ple columns into one column. [32] discusses a related ap-
proach for refinement of table summaries. Neither of these
approaches, however, considers the impact of the imprecision
of metadata and the information loss during summarization.

Data compression techniques, like Huffman or Lempel-
Ziv, can also be used to reduce the size of the table. A
database compression technique is designed in [20] based on
vector quantization. Buchsbaum et al. [4, 5] address the
problem of compressing massive tables through a partition-
training paradigm. These methods are not directly appli-
cable, since the compressed tables are not human readable.
Histograms can be also exploited to summarize information
into a compressed structure. Following this idea, Bucca-
furri et al. [3] introduce a quad-tree based partition schema
for summarizing two-dimensional data. Range queries can
be estimated over the quad-tree since the summarization is
a lossy compression. Leveraging the quad-tree structure,
[8, 9] proposes approaches to processing OLAP operations
over the summary. [9] first generates a 2-dimensional OLAP
view from the input multidimensional data and then com-
presses the 2-dimensional OLAP view by means of an ex-
tended quad-tree structure. In fact, any multidimensional
clustering algorithm can be used to summarize a table. Such
methods, however, cannot take into account specific domain
knowledge (e.g. “what are acceptable summarizations, how
do they rank?”) that hierarchies and lattices would provide.

OLAP operations, drill-down and roll -up, which help
users navigate between more general and more specific views
of the data with the help of given value hierarchies, are
also related to table summarization. The concept of im-
precision in OLAP dimensions is discussed in [22]. In that
framework, a fact (e.g., a tuple in the table) with imprecise
data is associated with dimension values of coarser granular-
ities, resulting in the dimensional imprecision. In schema de-
sign for traditional relational-OLAP systems, issues around
heterogeneous dimensions have been discussed in [14, 13].
A dimension is called heterogeneous if two members in a
given category are allowed to have ancestors in different
categories. Given a heterogeneous dimension, an aggregate
view for a category may not be correctly derived from views
for its sub-categories (a summarizability 1 problem). In

1Summarizability is a notation to denote the conditions un-
der which a value or object can be summarized correctly
from a more detailed value or object, based on the given

98

[28], we supported OLAP operations over imperfectly inte-
grated taxonomies. We proposed a re-classification strategy
which eliminates conflicts by introducing minimal impreci-
sion. This approach is complementary to the work presented
here: the obtained navigable taxonomy can be taken as the
input for table summarization.

The table summarization task is also related to k-
anonymization problem, introduced as a technique against
linkage attacks on private data [31, 16]. The k-
anonymization approach eliminates possibility of such at-
tacks by ensuring that, in the disseminated table, each value
combination of attributes is matched to k others. To achieve
this, k-anonymization techniques rely on a-priori knowledge
about acceptable value generalizations. Cell generalization
schemes [1] treat each cell in the data table independently.
Thus, different cells for the same attribute (even if they have
the same values) may be generalized in a different way. This
provides significant flexibility in anonymization, while the
problem remains extremely hard (NP-hard [18]) and only
approximation algorithms are applicable under realistic us-
age scenarios [1]. Attribute generalization schemes [31, 16]
treat all values for a given attribute collectively; i.e., all
values are generalized using the same unique domain gener-
alization strategy. While the problem remains NP-hard [18]
(in the number of attributes), this approach saves significant
amount of time in processing and may eliminate the need for
using approximation solutions, since it does not need to con-
sider the individual values. Most of these schemes, such as
Samarati’s original algorithm [31], however, rely on the fact
that, for a given attribute, applicable generalizations are in
total order and that each generalization step in this total
order have the same cost. [31] leverages this to develop a
binary search scheme to achieve savings in time. [16] re-
lies on the same observation to develop an algorithm which
achieves attribute-based k-anonymization one attribute at
a time, while pruning unproductive attribute generalization
strategies.

Unlike these solutions to k-anonymization, the summa-
rization algorithm presented in the paper does not rely on
any constraints imposed on the shape and weights of the
value clustering lattice and, instead, owes its efficiency to a
novel ranked set cover based evaluation mechanism (RSC)
that is able to prune the search space effectively.

3. PROBLEM FORMULATION
Let us consider a data table, T , and a set, SA, of

summarization-attributes. Roughly speaking, our purpose
is to find another relation T ′ which clusters the values in T
such that T ′ satisfies the α-summarization property (where
each row in T ′ clusters at least α rows in T) with respect to
the summarization-attributes. In what follows, we first for-
malize the concept of weighted clustering lattices. Based on
this, we then specify the problem of α-summarization over
weighted clustering lattices.

3.1 Value Clustering Lattices
We model a value clustering lattice as an acyclic graph

M(V, E) where V encodes values and clustering-identifiers
(e.g., high-level concepts or cluster labels, such as “1*” in
Figure 1(a) and Figure 4 and E contains acceptable value
clustering relationships.

summarization rules (e.g., value mappings, value lattices,
etc.). It has been defined in [33] and used in the context of
OLAP.

Figure 6: A weighted lattice for the attribute Age

Definition 3.1 (Value Clustering Lattice).
A value clustering lattice L is a directed acyclic graph
M(V, E):

• v = (id : value) ∈ V where v.id is the node id in the
lattice and v.value is either a value in the database or
a value clustering encoded by the node.

• e = vi → vj ∈ E is a directed edge denoting that the
value encoded by the node vi can be clustered under
the value encoded by the node vj.

Those nodes in V which correspond to the attribute
values that are originally in the database do not have
any incoming edges in E. There is only one root (i.e.,
node without any outgoing edge) in the lattice.

The value clustering lattice describes a partial order that
reflects acceptable clustering strategies for each value (e.g.,
Figure 4 and Figure 5).

3.2 Value Clustering
Given an attribute value in the data table T and a

weighted value clustering lattice corresponding to that at-
tribute, we can define alternative clusterings as paths on the
corresponding lattice:

Definition 3.2 (Value Clustering). Given a
weighted value clustering lattice L, a lattice node vj is
a clustering of a lattice node vi, denoted by vi � vj, if
∃path p=vi vj in L. We also say that vj covers vi. Note
that p may also be empty.

Based on this, in the following, we formalize the concept
of utility of value clusterings.

3.2.1 Utility of a Value Clustering Strategy
As described earlier, the utility value of a clustering step

is domain specific and may represent different reasons one
may prefer one clustering alternative over the other. A high
utility value indicates a clustering step with low informa-
tion loss and high precision (utility value 1.0 indicates zero
information loss and uncertainty due to clustering; thus is
excluded from the model). Any utility below 1.0 denotes a
certain degree of knowledge relaxation. For example, under
one interpretation, the edge in Figure 4 from “12” to “pre-
teen” would have utility 1/13 (“12” is one out of 13 values
the label “preteen” captures). Similarly, the edge from “12”
to “1*” has utility 1/10 (Figure 6).

Given the utilities of clustering edges in the lattice, we
can also compute the utility of a value clustering strategy,
util(vi � vj), between vi and any of its ancestors vj , by
considering all paths between vi and vj .

The value clustering utility function used for combining
utilities of alternative ways vi can be re-written into vj may
differ depending on the semantics of the lattice. In the case
when precision is defined in terms of set membership, all

99

Figure 7: An imprecise taxonomy of animals: there
is a disagreement among users of the taxonomy as
to whether dogs should be classified under small or
medium mammals

path utilities are identical, thus the combination function
would simply return the utility of any path. For example,
in Figure 6, all paths from value, 19, to the clustering value,
∗, would return the same path utility, 1/121, since 19 is one
out of 121 values covered by ∗.

If different paths between vi and vj have different utili-
ties, on the other hand, these may need to be combined using
other combination functions. For example, in Figure 7, there
are two different paths between“dogs”and“mammals”repre-
senting different views of the scientists using the taxonomy.
In this case, replacement of dogs with mammals needs to
consider all interpretations and combine the corresponding
utilities. Candidate combination functions include, mini-
mum, maximum, and sum. For example, in Figure 7, sum
may be suitable: independently of whether “dogs” are small
or medium mammals, they are mammals. Thus, the impreci-
sion at the lower levels of the lattice should not matter when
considering the utility of replacing “dogs” with “mammals.

3.2.2 Computing the Value Clustering Utilities
Given a value clustering lattice, L, which provides a par-

tial order of value clusterings, there may be exponentially
many paths between a given pair of values, vi and vj . Thus,
computing the value clustering utilities on the given lattice
may be costly, if performed naively. We note, however, that
in many practical cases, value clustering utilities between
all pairs of values in the value hierarchy can be computed in
polynomial time. Especially in the special case where any
replacement path between a given pair of values return the
same precision loss, the cost of the computation is simply
quadratic in the number of nodes.

The challenge is dealing with the exponential growth
in the number of summarization-tuple clustering strategies
when the number of summarization-attributes increases.

3.3 Summarization-Tuple Clustering
So far we have focused on the clustering of the value of

single summarization-attribute; i.e., the case where the size
of the set, SA, of summarization-attributes is one and there
is only one clustering domain. However, in general, the size
of the summarization-attribute set of a data table can be
greater than one. Thus, we first need to define clusterings
involving non-singleton summarization-attributes:

Definition 3.3 (Summarization-Tuple Clustering).
Let t be a tuple on attributes SA= {Q1, · · · , Qq}. t′ is said
to be a clustering of the summarization-tuple (SA-tuple), t,
(on attributes SA) iff ∀i∈ [1, q]

• t′[Qi] = t[Qi] , or

• ∃path pi = t[Qi] t′[Qi] in the corresponding cluster-
ing lattice Li.

We use t� t′ as shorthand.

3.3.1 Utility of a SA-Tuple Clustering Strategy
Given the above definition, we can define the utility of a

summarization-tuple clustering strategy:

Definition 3.4 (Utility of a SA-Tuple Clustering.).
Let t and t′ be two tuples on attributes SA= {Q1, · · · , Qq},
such that t� t′. Then the utility of the corresponding clus-
tering strategy is defined through a monotonic combination
function, ⊗, of the utilities of the clustering along each
individual summarization-attribute:

util(t� t′)=
⊗

1≤i≤q

utili,

where
• utili = 1, if t′[Qi] = t[Qi]

• utili = util(t[Qi]� t′[Qi]), otherwise.

When q=1 (i.e., there is only one summarization-attribute),
util(t� t′) is simply the utility of the corresponding single
attribute value clustering strategy. In general, ⊗ can be any
monotonically increasing function; for example, minimum,
multiplication, or summation.

3.4 α-Summarization Problem
Having defined utilities of tuple clusterings, we can now

define the problem of α-summarization with lattices:

Definition 3.5 (α-summarized clustering). Given
two data tables T and T ′ (with the same schema), and
the summarization-attribute set SA, T ′ is said to be a
α-summarized clustering of T (T �α T ′ for short) iff

• ∀t′ ∈ T ′[SA], |{t′′|t′′ ∈ T ′[SA] ∧ t′′[SA] = t′}|≥α
(i.e., t′ appears at least α times in T ′),

• there is a one-to-one and onto2 mapping, µ, from
T ′[SA] to T [SA], such that

– ∀t′ ∈ T ′[SA], µ(t′)� t′.

Here, T [SA] and T ′[SA] are projections of the data tables T
and T ′ on summarization-attributes. T [SA] and T ′[SA] are
multi-sets; i.e., they may contain multiple instances of the
same summarization-tuple.

Given a data table T , there can be multiple such α-
summarized clustering alternatives of T . We thus define
the utility of a α-summarized clustering as follows:

Definition 3.6 (Table Clustering Utility). Let
T be a table and T ′ be its α-summarized clustering (i.e.,
T �α T ′). The utility of T ′ is defined using a monotonic
merge function, ⊎, as follows:

util(T ′) =
⊎

t′∈T ′[SA]

util(µ(t′)� t′).

Since there can be more than one alternative clustering, our
goal is to find one that maximizes the utilities of the under-
lying clustering.

Problem 1 (Utility Maximizing α-summarization).
Given T , SA, L, α, ⊗, and ⊎, where

2It is possible to relax the onto requirement and allow for
some limited number of tuples which are hard to cluster
with others, due to outlier values, to remain unsummarized.
In this paper, we do not explicitly consider this situation,
though it is possible to account for these tuples by represent-
ing them through a special form of clustering alternative,
with 0 utility value.

100

• T is a data table with n tuples to be published,

• SA = {Q1, · · · , Qq} is the set of summarization-
attributes,

• L= {L1, · · · , Lq} is the set of weighted clustering lat-
tices for the attributes in SA,

• α is the summarization parameter, and

• ⊗ and ⊎ are the appropriate utility merge functions,

find another data table T ′ (and the corresponding mapping µ
from T ′[SA] to T [SA]) which is a α-summarized clustering
of T , such that there exists no other α-summarized data table
T ′′ (and the corresponding mapping µ2), such that T ′′ is
preferable over T ′.

3.5 α-Summarization Preference Criteria
In this paper, we consider the following preference criteria.

Definition 3.7 (Max-Min-Util, Cautious, Criterion).
Let T be a data table and let T ′ and T ′′ be two α-summarized
clusterings. T ′′ is max-min-util preferable (cautiously
preferable) over T ′ iff

(

min
t′∈T ′

util(µ1(t
′)� t′)

)

<

(

min
t′′∈T ′′

util(µ2(t
′′)� t′′)

)

.

Definition 3.8 (Max-Sum-Util, Cumulative, Criterion).
Let T be a data table and let T ′ and T ′′ be two α-summarized
clusterings. T ′′ is max-sum-util preferable (cumulatively
preferable) over T ′ iff

(

∑

t′∈T ′

util(µ(t′)� t′)

)

<

(

∑

t′′∈T ′′

util(µ2(t
′′)� t′′)

)

.

Example 3.1. The following example illustrates how the
Max-sum-util and Max-min-util preference criteria work for
the same summarization requirement. Suppose we have a
table with six tuples (t1 to t6) shown in Figure 8 and we
want to obtain a 2-summarization for it.

Let Figure 8(a) show the possible clustering options for
these tuples. Figure 8(b)-(d) show three different summa-
rizations where the solid directed line from a tuple to a tuple
clustering denotes the summarization selection, whereas the
dashed lines represent the discarded clustering options. For
example, in Figure 8(b), tc7 is selected to cluster t5 (with
utility 0.7) and t6 (with utility 0.1). Although t4 can be
clustered to tc7, this summarization strategy clusters it to
tc4 with utility 0.4. So, the lines from t5, t6 to tc7 are solid,
but the line from t4 to tc7 is dashed.

Figure 8(b) and 8(c) show the Max-sum-util summariza-
tion and Max-min-util summarization, respectively. The
summarization in Figure 8(d), on the other hand, satisfies
neither the Max-sum-util criterion nor the Max-min-util cri-
terion.

Max-min-util criterion is a cautious standard which guar-
antees that the worst of the tuple summarizations has high
value by maximizing the lowest of the tuple utilities. In
other words, ⊎ is the minimum function.
Max-sum-util criterion is a cumulative standard which

considers the table summarization as a whole and requires
that the total tuple utility of the resulting table is maxi-
mized. In other words, ⊎ is summation.

tc
1

tc
2

tc
3

tc
4

tc
5

tc
6

tc
7

tc
8

t
1

t
2

t
3

t
4

t
5

t
6

(a) The possible tuple summarizations where the directed line from
ti to tcj represents that tuple ti can be clustered to tuple cluster-
ing tcj . Numbers labeling the tuple clusterings denote the related
clustering utilities. E.g., tc1 can cluster t1 and t2 with utilities 0.2
and 0.4 respectively; tc2 can cluster t1 with utility 0.31, cluster t2
with utility 0.25, and cluster t3 with utility 0.3; etc.

tc
1

tc
2

tc
3

tc
4

tc
5

tc
6

tc
7

tc
8

Sum: 0.8=0.4+0.4 Sum: 0.8 = 0.7+0.1Sum: 0.6=0.2+0.4

t
1

t
2

t
3

t
4

t
5

t
6

(b) A summarization satisfying Max-sum-util criterion. The se-
lected tuple clusterings are tc1 (to cluster t1 and t2), tc4 (to cover
t3 and t4), and tc7 (to cover t5 and t6). The edge labels correspond
to the clustering utilities from tuples to tuple clusterings. So, the
sum utility is 2.2 (=0.6+0.8+0.8).

tc
1

tc
2

tc
3

tc
4

tc
5

tc
6

tc
7

tc
8

Min: 0.3

= min(0.31,0.3)

Min: 0.3

= min(0.4, 0.3)

Min: 0.3

=min(0.3, 0.35)

t
1

t
2

t
3

t
4

t
5

t
6

(c) A summarization satisfying Max-min-util criterion. The se-
lected tuple clusterings are tc2 (to cluster t1 and t3), tc3 (to cover
t2 and t6), and tc6 (to cover t4 and t5). The edge labels correspond
to the clustering utilities from tuples to tuple clusterings. So, the
min utility is 0.3 (=min(0.3,0.3,0.3)).

tc
1

tc
2

tc
3

tc
4

tc tc
6

tc tc
8

Sum: 0.55=0.25+0.3

Min: 0.25=min(0.25, 0.3)

Sum: 0.55=0.2+0.35

Min: 0.2=min(0.2, 0.35)

Sum: 0.3=0.2+0.1

Min: 0.1=min(0.2,0.1)

tc
1

tc
2

tc
3

tc
4

tc
5

tc
6

tc
7

tc
8

t
1

t
2

t
3

t
4

t
5

t
6

(d) A summarization alternative satisfying neither Max-sum-util
nor Max-min-util criteria. The selected tuple clusterings are tc2

(to cluster t2 and t3), tc6 (to cover t1 and t5), and tc7 (to cover t4
and t6). The edge labels correspond to the clustering utilities from
tuples to tuple clusterings. The sum utility is 1.4 (=0.55 + 0.55 +
0.3), which is smaller than the sum utility in (b). The min utility
is 0.1 (=min(0.25, 0.2, 0.1)), which is smaller than the min utility
in (c).

Figure 8: Summarization example with different
summarization criteria

4. EXHAUSTIVE FORMULATIONS
We first present exhaustive formulations to the α-

summarization problem with weighted lattices. Despite be-
ing inefficient, this outlines the overall framework, enables
us to study sources for the complexity of the problem, and
highlights opportunities for ranked executions. In Section
5, then, we present a novel ranked algorithm that is able to
prune the search space significantly to reduce the time for
identifying solutions.

4.1 Outline of the Exhaustive Approach
In this subsection, we outline the four steps of an ex-

haustive approach to the problem. Let us be given a data

101

table, T , with n tuples, summarization-attributes, SA =
{Q1, · · · , Qq}, the set, L = {L1, · · · , Lq}, of clustering lat-
tices for the attributes in SA, and the summarization pa-
rameter, α.
Step 1. Computation of the value clusterings: The
exhaustive algorithm first considers each value vali for every
attribute Qj ∈SA. Let vi be the lattice node for vali in the
clustering lattice Lj . The clusterings are sorted according
to their utility values. Since this step requires at most |SA|
all pairs computations, for most practical situations, it is
polynomial in time complexity.
Step 2. Computation of the tuple clusterings: For
each tuple t in T [SA], the basic algorithm computes the
corresponding tuple clusterings and clustering utilities by
combining all value clusterings for values t[Q1], · · · , t[Qq].
Since this step computes the tuple clusterings by combin-
ing all possible value clusterings, its worst case space and

time complexity is O(
∑n

i=1

∏|SA|
j=1 gen num(ti, Qj)), where

gen num(ti, Qj) represents the number of clusterings of
value ti for summarization-attribute Qj . The complexity
term can be approximated as O(n · vg|SA|), where vg is the
average number of clusterings of the attribute values: the
complexity is linear in the number of tuples n, but is expo-
nential in |SA|.
Step 3. Preliminary Filtering: In its third step, for
each tuple clustering obtained in Step 2, the exhaustive al-
gorithm computes the number of tuples that can be gen-
eralized to it. Those tuple clusterings covering less than α
tuples are simply removed, as they cannot be involved in any
α-summarized result. To identify tuple clusterings covering
at least α tuples, the basic algorithm maintains a hash table
to keep track of the distinct tuple clusterings. Each item in
the hash table is a 〈tc, cnt〉 pair, where cnt is the number of
tuples that tc can cover. While scanning the list of possible
clusterings for each tuple, if the clustering has already been
recorded (for another tuple), the corresponding count in the
hash table is incremented. The space complexity of this step
is O(dist gen count) where dist gen count is the total num-
ber of distinct tuple clusterings (which is in the worst case

exponential in |SA|). The time complexity is O(n · vg|SA|);
i.e., the time used to scan the tuple clusterings.
Step 4. Once the above three preparatory steps are com-
pleted, in its final step the algorithm computes the best
α-summarized clustering.

4.2 Set-Covering Formulation
The set-covering problem can be stated as follows: given

a finite set S, and a collection, C, of subsets of S, one aims
to find a subset, C′, of C, where every element of S belongs
to at least one subset in C′ and where some objective crite-
rion (such as the cardinality of the set cover or the sum of
cardinalities of the subsets in the set cover) is optimized.

We note that, the requirements of the Step 4 of the ex-
haustive algorithm can be represented as a set covering prob-
lem: by treating (a) each tuple clustering tci as a set, (b)
each tuple ti as an element, and (c) every clustering rela-
tion ti � tcj as the set membership relationship ti ∈ tcj , we
can formulate the α-summarization problem with weighted
clustering hierarchies as a k-set-cover problem (for k = α).

While the k-set-cover problem is known to be NP-
complete, there are various approximation algorithms [7,
21]. Thus the problem under max-sum-util preference cri-
terion can be solved through a k-set-cover approximation

Input : Sorted tuple clustering streams (TCStris) for each tuple
in T , and summarization parameter α.
Any tuple clustering not covering at least α tuples are dropped from
the stream.
Output : TC′ such that clustering rules are satisfied

1. TCcombined = ∅;
2. PQ = ∅; /*priority queue of tuple clusterings at the bound-

ary*/
3. Get the first tuple clusterings from each TCStri;
4. Insert into TCcombined;
5. initPQ(PQ);

6. repeat
(a) if TCcombined covers all tuples in T

i. TC′=construct and solve(TCcombined, α);

ii. if TC′ 6= ∅,
return (TC′, extract mapping(TC′)) and stop;

(b) tcnextbest = getFromPQ() /*get from the priority queue
the tuple clustering with the next best utility value*/

(c) TCcombined = TCcombined ∪ {tcnextbest}

until tcnextbest = null

initPQ(PQ)
1. Get the next tuple clusterings from each TCStri;
2. Insert them into PQ;

getFromPQ(PQ)
1. tch =dequeue(PQ);
2. Let TCStri be the stream from which tch was originally

pulled from
3. Get the next tuple clustering, tcj from TCStri

4. enqueue(PQ, tcj)
5. return (tch)

Figure 9: Pseudo-code of the ranked algorithm

algorithm. In fact, in the next section, we will show that
it is possible to leverage set-covering based formulation of
the problem within an incremental framework which pro-
duces results more efficiently and effectively than a naive
set-covering formulation.

5. RANKED PROCESSING
In the previous section, we have seen that exhaustive solu-

tions to the proposed problem has three sources of complex-
ity: (a) the number of summarization-attributes increases
the number, m, of tuple clusterings exponentially, (b) the
set-covering formulation of the problem has an exponentially
increasing cost as a function of m. Also, (c) the max-min-

util preference criterion leads to a non-linear (i.e., more
expensive) problem formulation. In this section, we first
present a generic ranked algorithm which significantly re-
duces the number, m, of tuple clusterings which need to be
considered. We then develop a novel ranked set-covering al-
gorithm that performs efficiently and more effectively than
non-ranked set-covering solutions.

5.1 Ranked Algorithm
The algorithm, outlined in Figures 9 and 10, takes as input

(a) a stream of clusterings for each tuple in T [SA] and (b)
the summarization parameter α. Tuple clustering streams
are taken as input streams in decreasing order according to
their util values. The algorithm merges the n sorted tuple
clustering streams by considering first those tuple clusterings
with the highest util values (Step 3). Any tuple clustering
that is not covering at least α input tuples are eliminated
from consideration. To identify tuple clusterings covering
at least α tuples, we maintain a hash table of clusterings,
which keeps the count of the input streams in which a given
clustering is seen. Once we obtain a proper set of clusterings,

102

Figure 10: Outline of the ranked set cover algorithm

TCcombined, which covers all the tuples in the data table,
we convert this set into set-covering problem (Step 6(a)i).
If this step returns a solution, then the ranked algorithm
stops (Step 6(a)ii). Otherwise, it continues incrementally
considering other tuple clusterings in their utility order. The
algorithm uses a priority queue to keep track of the next best
clusterings of the tuples in the database (Steps 5 and 6b).
This process continues until either all tuple clusterings have
been checked or a solution is found.

The correctness of the above ranked algorithm depends
on the objective function used. Thus, we need to consider
each preference criterion independently. Before we do so,
however, we state a fundamental lemma:

Lemma 5.1 (Monotonicity). If the set of tuple clus-
terings, TCcombined, contains a (not necessarily optimal)
α-summarized table clustering (i.e., satisfying the α con-
straint), then any superset of TCcombined also contains the
same α-summarized table clustering.
Max-min-util Criterion.

Theorem 5.1. The ranked algorithm is correct w.r.t. the
preference criterion, max-min-util.
Proof sketch A direct corollary of Lemma 5.1 and of the fact
that tuple clusterings are considered in decreasing order of
utility is that the first solution satisfying the α constraint
is also the one which has the largest minimum utility. Any
further solution will need to include at least one tuple clus-
tering with a lower utility3, thus cannot improve on this
objective function. 2

In fact, since the input streams are sorted in decreasing
order of utilities of tuple clusterings, the first α-summarized
solution enumerated using ranked processing will also be
the one with the maximum minimum utility; i.e., it will
implicitly satisfy the max-min-util criterion.
Max-sum-util Criterion. Secondly, let us consider the
max-sum-util preference criterion. Figure 11 provides a
counter-example illustrating that the above ranked algo-
rithm does not provide an optimal solution for this objec-
tive function. In this example, the weights on the edges are
the corresponding tuple clustering utilities, thus the order
in which clustering will be considered is tc1, tc2, tc3 and tc4.
The ranked algorithm will provide a 2-summarized solution
(using tc2 and tc3) with total utility 1.6, after tc1, tc2, and
tc3 are seen. However, there is a better solution (using tc1

and tc4), with overall utility 1.8.
So, we define another preference criterion.

3For simplicity, we assume utilities are distinct. It is trivial
to extend the argument to the cases where there can be
multiple clusterings with identical utilities.

tc
4

tc
1

0.3 0.3

tc
2

tc
3

0.6 0.6

0.4 0.40.4 0.4

t
1 t

2
t
3

t
4

Figure 11: An example tuple clustering lattice for
which the ranked approach is sub-optimal under
max-sum-util criterion

Definition 5.1 (Pareto-Util). Let T be a data table
and let T ′ and T ′′ be two α-summarized clusterings. T ′′ is
pareto-util preferable over T ′ iff

∀µ(t′)≡µ2(t′′)

(

util(µ(t′)� t′) ≤ util(µ2(t
′′)� t′′)

)

∧

∃µ(t′)≡µ2(t′′)

(

util(µ(t′)� t′) < util(µ2(t
′′)� t′′)

)

.

Pareto-util criterion prefers solutions where (for any
monotonic merge function, ⊎, e.g., minimum or summation)
it is not possible to obtain any further improvements without
having to make any single tuple worse in utility. The ranked
set cover algorithm finds summarizations with Pareto-util.

Pareto-optimal Criterion. The ranked algorithm returns
a pareto-optimal solution (i.e., a solution where it is not pos-
sible to obtain any improvements without rendering any sin-
gle contributor worse off).

Theorem 5.2. The ranked algorithm is correct w.r.t. the
preference criterion pareto-util.

Proof sketch The theorem follows from the fact that, once a
solution is found, any future results that will be discovered
will use at least one tuple clustering with a lower utility. 2

Example 5.1. Let α = 2, the objective function be sum-
mation and the preference criterion be Preto-util. We il-
lustrate the ranked algorithm using the tuples and tuple
clusterings in Example 3.1. By removing the tuple clus-
terings which cover less than 2 tuples and sorting the re-
maining ones, we get the sorted tuple clustering streams in
Figure 12(a). Figure 12(b)-(d) show how the ranked ap-
proach run to get the TCcombined which can cover all tuples
in T . Then the tuples and tuple clusterings are fed to the
construct and solve function.

Given the input TCcombined = {tc2, tc3, tc4, tc6} (see Fig-
ure 12(d)), the resulting summarization is the same to that
in Figure 8(c). We note that the sum utility (Pareto-util)
of this summarization is 1.85, which is not the Max-Sum-
Util solution. In Section 6.2, we show that the Pareto-Util
is a very close approximation of the Max-Sum-Util through
experiments.

5.2 Ranked Set Cover
In [21], Park and Shim proposed a set cover based approxi-

mation algorithm, APPROX-FQ, for cell-based k-anonymity
through value suppressions4. In particular, [21] shows that
it is possible to obtain a 2(1 + ln2k)-approximation on the

4Note that a value suppression can be seen as an extreme
degree of generalization, where the value is replaced with
the root of the corresponding hierarchy.

103

TCStr
1

tc
2
(0.31)

tc
6
(0.2)

t (0 2)

TCStr
2

tc
1
(0.4)

tc
3
(0.4)

t (0 25)

TCStr
3

tc
4
(0.4)

tc
2
(0.3)

TCStr
4

tc
7
(0.6)

tc
4
(0.4)

t (0 3)

TCStr
5

tc
6
(0.35)

tc
7
(0.2)

TCStr
6

tc
3
(0.3)

tc
7
(0.1)

tc
1
(0.2) tc

2
(0.25) tc

6
(0.3)

(a) Initially, each TCStri is sorted in the ascending order of their
clustering utilities.

TCStr
1

tc
2
(0.31)

(0 2)

TCStr
2

tc
1
(0.4)

(0 4)

TCStr
3

tc
4
(0.4)

(0 3)

TCStr
4

tc
7
(0.6)

(0 4)

TCStr
5

tc
6
(0.35)

(0 2)

TCStr
6

tc
3
(0.3)

(0 1)tc
6
(0.2)

tc
1
(0.2)

tc
3
(0.4)

tc
2
(0.25)

tc
2
(0.3) tc

4
(0.4)

tc
6
(0.3)

tc
7
(0.2) tc

7
(0.1)

(b)After Step 3 and 4, TCcombined = {tc1, tc2, tc3, tc4, tc6, tc7}.
No tuple clustering can cover more at least 2 tuples.

TCStr
1

tc (0 31)

TCStr
2

tc (0 4)

TCStr
3

tc (0 4)

TCStr
4

tc (0 6)

TCStr
5

tc (0 35)

TCStr
6

tc (0 3)tc
2
(0.31)

tc
6
(0.2)

tc
1
(0.2)

tc
1
(0.4)

tc
3
(0.4)

tc
2
(0.25)

tc
4
(0.4)

tc
2
(0.3)

tc
7
(0.6)

tc
4
(0.4)

tc
6
(0.3)

tc
6
(0.35)

tc
7
(0.2)

tc
3
(0.3)

tc
7
(0.1)

(c) The algorithm gets the tuple clustering with the next best util-
ity value (0.4). The tuple clusterings that can summarize more
than 2 tuples are tc3 (for t2 and t6) and tc4 (for t3 and t4). But
not all tuples are covered by such tuple clusterings.

TCSt TCSt TCSt TCSt TCSt TCStTCStr
1

tc
2
(0.31)

tc
6
(0.2)

tc
1
(0.2)

TCStr
2

tc
1
(0.4)

tc
3
(0.4)

tc
2
(0.25)

TCStr
3

tc
4
(0.4)

tc
2
(0.3)

TCStr
4

tc
7
(0.6)

tc
4
(0.4)

tc
6
(0.3)

TCStr
5

tc
6
(0.35)

tc
7
(0.2)

TCStr
6

tc
3
(0.3)

tc
7
(0.1)

(d) The algorithm gets the tuple clusterings with the next best
utility value (0.3). So far, the tuple clusterings that can summarize
more than 2 tuples are tc2 (for t1 and t3), tc3 (for t2 and t6), tc4

(for t3 and t4), and tc6 (for t4 and t5). These tuple clusterings
satisfy the condition in Step 6a.

Figure 12: Running example for the ranked algo-
rithm

amount of cell-suppressions by first generating a (k, 2k− 1)-
cover (where the sizes of the sets are between k and 2k − 1)
whose suppression length sum is at most (1 + ln2k) times
that of the optimal solution and then converting the result-
ing (k, 2k − 1)-cover into a (k, 2k − 1)-partition where all
the sets are disjoint. While generating the (k, 2k − 1)-cover
for a given table, [21] selects the sets to be processed in the
increasing order of suppression-length per uncovered records.
To further speed up the cover generation, APPROX-FQ re-
stricts processing to only those itemsets with at least k sup-
port.

The approach underlying the k-anonymization algorithm
in [21] is not directly applicable to our problem: in particu-
lar, [21] does not consider a lattice (values are either taken
as given or simply suppressed) or take into account utilities.
In order to be applicable for α-summarization with lattices,

• instead of simply suppressing (values in the cells), the
(k, 2k − 1)-cover should generalize (tuples) based on
the available lattice information, and

• instead of picking sets based on their suppression
length sum, we need to pick sets (tuple clusterings)
based on their utilities per uncovered tuple.

The first item above cannot be directly achieved in the sup-
pression based APPROX-FQ framework: to merge two sets,
APPROX-FQ simply unions the corresponding suppression
lists. Thus, while APPROX-FQ can always return a k-
anonymous solution simply increasing the amount of sup-
pression, when generalizations are fed in an incremental
manner, the set cover approximation may simply fail. Thus,
the set cover may need to be called multiple times, once for
each execution of Step 6a). If done in a naive way, this may
cause significant overhead in terms of subproblems that are
repeatedly re-evaluated as the set grows incrementally.

Input:
• A set TC = {tc1, · · · , tcm} of tuple clusterings for all tuples

T = t1, · · · , tn,
• Set of tuples tuples(tci) for ∀tci ∈ TC,
• Summarization parameter α,
• TCStri-s, tuple clustering streams (TCStris) sorted in the de-

scending order of utilities for each tuple in T (see Figure 9).

Output: A cover set CSet such that
• ∀t ∈ T , t ∈ Ci.tuples where Ci ∈ CSet. (i.e., every tuple is

covered).
• ∀Ci ∈ CSet, α ≤ |Ci.tuples| ≤ 2α − 1. (i.e., satisfy a loose

version of α-summarization).
• ∀(Ci, Cj)|Ci ∈ CSet, Cj ∈ CSet, Ci.tuples ∩ Cj .tuples = ∅.

(i.e., no tuple is covered by two sets).

ranked-set-cover(TC, tuples(tci)−s, α, TCStri-s)
1. CSet′ = split-cover(TC, tuples(tci)-s, α, T);

/*Get tuple covers such that for ∀C ∈ CSet′, α ≤ |C.tuples| ≤
2α − 1, but each pair (Ci, Cj) in CSet′, Ci.tuples ∩ Cj .tuples
may not be empty.*/

2. CSet = cover-to-Partition (CSet′, α, T , TCstri);
/*Get tuple covers such that for ∀C ∈ CSet, α ≤ |C.tuples| ≤
2α−1, and each pair (Ci, Cj) in CSet, Ci.tuples∩Cj .tuples =
∅*/

3. /*From the set CSet, compute the final combined utilities*/
For (each C ∈ Cset)

(a) Generalize every t ∈ C.tuples to C.tc with related utility
C.utilt;

/* C represents a set cover. C.tc is the corresponding tuple clustering,
and C.tuples is a set of tuples in T covered by C.tc, C.util is the
combined utility for generalizating tuple t ∈ C.tuples to C.tc.*/

Figure 13: The main body of ranked-set-cover, called
by Step 6a in Figure 9

split-cover(TC, tuples(tci)-s, α, T);
1. CSet′ = ∅; Tcovered = ∅;
2. while(Tcovered 6= T)

(a) Let tuples(tci)uncovered = tuples(tci) ∩ (T − Tcovered);
(i.e., tuples(tci)uncovered contains tuples that are not
covered by any cover in CSet′)

(b) Choose tci such that
util(tci)

min{|tuples(tci)uncovered|,2α−1}
is

minimized (or maximized);
/*minimized/maximized means choosing the mini-
mum/maximum ratio; util(tci) is the combined utility
that tuples in tuples(tci) are generalized to tci. */

(c) if |tuples(tci)| ≤ 2α − 1 (i.e., tci covers less than 2α − 1
tuples)

i. Let T = tuples(tci);

(d) else if(tuples(tci)uncovered > 2α − 1)
i. Choose a subset T of tuples(tci)uncovered s.t. |T | =

2α − 1

(e) else

i. Choose a subset T of tuples(tci) s.t. |T | =
max{α, tuples(tci)uncovered}
and tuples(tci)uncovered ⊆ T ;

(f) Let U be the related utilities that tuples in T are gener-
alized to tci;

(g) Tcovered = Tcovered ∪ T ;
(h) Cnew = 〈tci, T ,U〉;
(i) CSet′ = CSet′ ∪ Cnew;

Figure 14: The split-cover procedure

On the other hand, we see that it is possible to leverage the
algorithmic structure of the set cover solutions to focus the
ranked processing to only those parts of the problem which
require further evaluation and avoid repeated calls to set
cover algorithm. Figures 13 through 16 provide the pseudo-
codes for the ranked set cover (RSC) algorithm to replace
the optimization steps (Step 6a) of the ranked algorithm
in Figure 9. Figure 13 provides the main body of the set
cover algorithm. As in [21], the algorithm first creates a
(α, 2α− 1)-cover (but using tuple clusterings instead of cell-
suppressions), then converts this cover into a partition by
eliminating overlaps to create a α-summarized table.

104

cover-to-partition(CSet, α, T , TCstri)
1. for(t ∈ T)

(a) Let P contain all the Ci-s s.t. t ∈ Ci.tuples and Ci ∈
CSet;

(b) while |P | ≥ 2

i. Randomly pick two covers Ci and Cj from P ;
ii. if |Ci.tuples| > α or |Cj .tuples| > α

A. Remove t from the larger C.tuples
B. update C.util;
C. Remove C from P ;

iii. else
A. Cnew = get-best-common-tc(Ci, Cj , TCstris);

B. Remove Ci and Cj from P ;
C. Insert Cnew to P ;

2. return CSet;

Figure 15: The cover-to-partition procedure

get-best-common-tc(Ci, Cj , TCstris)
1. Cnew.tuples = Ci.tuples ∪ Cj .tuples;
2. for(each t ∈ Cnew.tuples)

(a) Let TCStrt be the tuple clustering stream for t;
(b) TCstrPointer(t) = min{position of Ci.tc in TCstr(t),

position of Cj .tc in TCstr(t)};
/*the position of a tc in TCStr(t) is the end of TCStr(t)
if tc is not in TCStr(t)*/

Let TCStr′
t = tuple clusterings appear after

TCstrPointer(t) in TCStrt;
3. Identify tuple clustering tci whose combined utility computed

from utils(tci) is maximal;
4. Cnew.tc = tc;
5. Cnew.utils = utils(tci);
6. return Cnew;

Figure 16: The get-best-common-tc procedure

Figure 14 describes how a (α, 2α−1)-cover of the given set
of tuples is created by iteratively picking those tuple clus-
terings with minimum or maximum utilities per uncovered
tuples for merging. While this step reflects the outline of the
(k, 2k−1)-cover algorithm in [21], there are two fundamental
differences: (a) First of all instead of amount of suppression
being used as a measure to select the sets to be merged, the
algorithm in Figure 14 selects the tuple clusterings based
on their degrees of utilities (Step 2b). (b) Secondly, as we
will show in Section 6, instead of always picking sets in a
way to minimize the suppression ratio per uncovered tuples
(as in [21]), under different conditions, in Step 2b it may be
preferable to maximize or minimize the utility ratio.

Figure 15 shows the pseudo-code for converting a given
(α, 2α− 1)-cover into a (α, 2α− 1)-partition. The algorithm
eliminates overlaps between sets included in the (α, 2α− 1)-
cover by either removing the tuples in the intersection (if
there are sufficiently many other tuples in the sets to ensure
α-summarization or (if sets are small) merging them under
a new tuple clustering. Note that unlike [21] which simply
unions the suppression lists to merge the given two tuple sets
(each defined by a list of suppressions), in Step 1(b)iiiA, our
cover-to-partition algorithm leverages the knowledge about
available tuple clustering options to pick a high utility clus-
tering that covers both clusterings.

The pseudo-code for this process is presented in Figure 16.
Step 3 identifies a tuple clustering that covers the two sets of
tuples using the tuple clustering streams that were provided
as input to the ranked algorithm. Note that relying on the
monotonicity of the utility merge functions, this step can be
implemented using a ranked top-1 join algorithm [10, 11] on
the corresponding (utility-sorted) tuple clustering streams.

6. PERFORMANCE EVALUATION
In this section, we evaluate the proposed ranked scheme

for α-summarization. In the results presented in this section,
we used real data set (“Adults” [15, 19] and [12]). The data

(Off-line) Data Preperation Time

0

50

100

150

200

0 10000 20000 30000
of tuples

T
im

e
 (

s
e

c
) |SA|=2

|SA|=3

|SA|=5

Figure 17: Time for tuple clustering utilities

set contains around ∼30K tuples. The two Adults hierarchies
from [15] and [12] differ from each other. Thus, using these
two sources as ground truth, we have created a combined
lattice, where for any node in the lattice with two parents,
the utilities of the clustering edge to the two parents are set
to 0.25 as opposed to 0.5 for all other clustering edges. The
utility of a path is computed by multiplying the utilities of
the edges on the path. Experiments with other weighting
strategies produced similar utility optimality and execution
time behaviors. We compare the behavior of two different
algorithms: naive set cover (modified [21]), and ranked set
cover proposed in this paper. Experiments ran on a 2.9GHz
Pentium (Windows XP) with 2GB main memory.

6.1 Off-line cost
Figure 17 shows the cost of tuple utility evaluation pro-

cess. As it can be seen here, the time to compute utility eval-
uations is largely linear in the number of tuples for this data
set. As expected, the computation time increases quickly
with |SA|.

On the other hand, the tuple utility computations can be
performed either off-line (and later re-used for different α-
summarizations of the same table) or can be computed in a
non-blocking, streaming manner and can be pipelined into
the ranked algorithm in run time, without having to wait
until all tuple utilities are available.

6.2 Summary utilities
Optimal and pareto-optimal summation utilities

As shown in Theorem 5.1, the ranked algorithm gets optimal
results for the set cover formulation with respect to the min
utility. However, for the sum utility, the ranked approach
only gets a Pareto-optimal solution (Theorem 5.2). This ex-
periment compares the differences between the optimal solu-
tion and the Pareto-optimal solution for adult data set 5 with
|SA| = 3. In Figure 18, Sum-Util represents the optimal so-
lutions which are computed using the exhaustive process and
an exact set cover algorithm; Pareto-Util denotes the Pareto-
optimal solution computed using the ranked algorithm and
an exact set cover algorithm (i.e., the construct and solve
in Figure 9). We use Lingo optimizer (LINGO 9.0 solver)
as the exact set cover algorithm by formulating the problem
as Lingo script. In this experiment, the LINGO non-linear
global solver is set to return results within 5% of the op-
timal. Since the Lingo problem formulation is not in the
scope of this paper, it is omitted here.

Figure 18(a) shows the utilities of the Pareto-Util solu-
tions and the Sum-Util solutions. It is apparent that the
Pareto-optimal utility (Pareto-Util) is very close to the op-

5The results are similar for adult data set with |SA| = 2 as
well as for synthetic data with different |SA|.

105

120

140

160

180

y

Utility vs. # of Distinct SA tuples

(Adult, |SA|=3, alpha=10)

Sum Util

Pareto Util

0

20

40

60

80

100

100 200 300 400 500 600 700 800

U
ti
li
ty

of Distinct SA tuples

(a) Utility comparison

1000

10000

e
c)

Time vs. # of Distinct SA tuples

(Adult, |SA|=3, alpha=10)

Sum Util

Pareto Util

1

10

100

100 200 300 400 500 600 700 800

T
im

e
(s
e

of Distinct SA tuples

(b) Time comparison

Figure 18: Results for comparing optimal sum-utils
and pareto-optimal sum-utils. (a) Pareto-Util com-
puted using the ranked algorithm is close to the op-
timal Sum-Util. (b) Pareto-Util method is more ef-
ficient than the Optimal Sum-Util method.

timal solution (Sum-util). Thus the Pareto-optimal solution
is a good estimation of the optimal solution. On the other
hand, Figure 18(b) exhibits that the Pareto-util solutions
can be computed much more efficiently than the Sum-Util
solutions. The execution time differs more when the num-
ber of tuples increases. Based on the above observations (a)
Pareto-Util is similar to Sum-Util and (b) it is much more
efficient to get Pareto-Util solution than to compute Sum-
Util solution; thus, in the rest of the experiments, we only
consider the Pareto-optimal solutions (for sum utility). I.e.,
the Max-sum always refers to the Pareto-Util.
Native set cover and ranked set cover:

Figure 19(a) compares the ranked set cover approach against
the naive-set cover, where all tuple clusterings covering at
least α tuples are passed to a version of APPROX-FQ [21]
modified to take into account clustering lattices and utilities.

The ranked set-cover algorithm performs consistently bet-
ter than the naive set-cover algorithm, both for max-sum
and max-min utility criteria. The maximum ratio (MAXR)
heuristic (which prefers merging high-utility sets (i.e., tuple
clusterings) earlier) performs better than the minimum ratio
(MINR) heuristic which would merge low-utility sets earlier.
While this particular observation is in line with the premise
of [21], which picks clusterings with less suppressions early
on, other experiments showed that the parallels with [21]
do not always hold in the case of ranked set-cover evalua-
tion. Consider Figure 19(b) which plots the relative overall
sum-utility (maximum ratio/ minimum ratio) as a function
of |SA| and the number of distinct SA-tuples6 in the Adult
database. The naive set-cover algorithm indeed performs
better with maximum ratio heuristic. On the other hand,
especially for large |SA| the ranked algorithms performs bet-

6To eliminate any chance of ambiguity due to redundant
tuples, we focus only on the distinct SA-tuples

0

1000

2000

3000

4000

5000

6000

7000

8000

1000 5000 10000 30162

S
u

m
-u

ti
l

N

Utility vs. N (Adult, |SA|=3,alpha=10)

MINR-rsc MINR-sc-naive MAXR-rsc MAXR-sc-naive

0

0.01

0.02

0.03

0.04

1000 5000 10000 30162

M
in

-U
ti

l

N

Utility vs. N (Adult, |SA|=3,alpha=10)

MINR-rsc MINR-sc-naive MAXR-rsc MAXR-sc-naive

(a) Top: Max-sum-util criterion, Bottom: Max-min-util criterion

0.1

1

10

0 500 1000 1500 2000 2500

S
u

m
-U

ti
l
b

y
 M

a
x

R
a

ti
o

/
S

u
m

-U
ti

l
b

y
 M

in
R

a
ti

o

Distinct SA-tuples (of 30K tuples)

Effect of the Number of Summarization-Attribute Set on the
Choice of MaxRatio vs. MinRatio Heuristic

(MAXR/MINR),|SA|=5,ranked (MAXR/MINR),|SA|=2,ranked

(MAXR/MINR),|SA|=5,naïve (MAXR/MINR),|SA|=2,naïve

(b) Results with solid lines correspond to ranked set cover. Results
with dashed lines correspond to naive set cover

0

1

2

3

4

10 100 1000 10000 100000

S
u

m
-U

ti
l
b

y
 R

a
n

k
e
d

-s
e
t-

c
o

v
e
r/

S

u
m

-U
ti

l
b

y
 N

a
ïv

e
-s

e
t-

c
o

v
e
r

SA-tuples

The Relative Quality of the Results (alpha=10)
(ranked set-cover / naïve set-cover)

|SA|=2(MAXR/MAXR) |SA|=3(MAXR/MAXR) |SA|=5(MAXR/MAXR)

|SA|=2d(MAXR/MAXR) |SA|=3d(MINR/MAXR) |SA|=5d(MINR/MAXR)

(c) Results with solid lines correspond to cases with distinct SA-
tuples. To be fair, for each case, the combination that provides the
best results (according to (b)) is chosen

Figure 19: Utilities: Naive vs. ranked set cover

ter when sets to be merged are selected based on minimum
ratio heuristic. This is because the ranked algorithm has not
one, but two sources of clusterings: the first one is during
split-cover (governed by utility-based set selection heuristic)
and the second during cover-to-partition, where small-sized
overlapping covers are merged into partitions through clus-
terings. Since MINR selects the tuple clusterings with small
utilities, clusterings passed to cover-to-partition likely have
low utilities, but are more general. Thus, at the second
step, there is less need for significant clusterings. MAXR
optimistically selects high utility covers, but these covers re-
quire significant adjustments during the cover-to-partition
transition. This is more obvious when |SA| is large (i.e.,
clusterings in second step may involve more loss).

106

0.01

0.1

1

10

100

1000

10000

1000 5000 10000 30162

T
im

e
 (

s
e

c
)

tuples

Time vs. #tuples vs. |SA| & alpha(A)
(ranked set-cover)

SA5-A10

SA5-A100

SA3-A10

SA3-A100

SA2-A10

SA2-A100

(a)

0.1

1

10

100

10 100 1000 10000 100000

N
a

iv
e

T
im

e
 /
 I
n

c
T

im
e

SA-tuples

Rel. Time vs. #tuples vs. |SA| & Alpha
(naive set-cover/ranked set cover)

SA3-A100 SA3-A10 SA3 (distinct)-A10 SA5 (distinct)-A10

(b)
(in naive set cover, SA5-A10, SA5-A100 failed to complete in 3hours)

Figure 20: Time: Naive vs. ranked set cover

Finally, Figure 19(c) compares the result qualities of the
ranked set cover and naive set cover algorithms. The ranked
set-cover algorithm provides significantly better results, es-
pecially when the input summarization-tuples are distinct.
When the tuples have large degrees of duplicates, the rela-
tive qualities returned by the two algorithms become com-
parable. However, as we will see next, even in this case, the
ranked set cover will pay off in terms of gains in execution
time and result utilities.

6.3 Run-time cost
We have seen that the result qualities of the proposed

ranked set-cover method can surpass those of naive set-cover
algorithms. Figure 20 shows that this benefit does not come
with any execution time overhead. The execution time of the
ranked set cover algorithm is largely linear in the number of
|SA|-tuples (Figure 20(a)), while (especially when α is low
and the input contains distinct summarization-tuples) the
naive set cover algorithm quickly becomes multiple orders
slower (upto 100X in these experiments).

7. CONCLUSIONS
In this paper, we formulated the problem of value

clustering-based α-summarization of data in the presence of
weighted value clustering hierarchies. We provided a mech-
anism to express alternative strategies and to account for
various utility measures in summarization alternatives. We
presented a novel ranked set cover based algorithm which
reduces the complexity of the problem. Experiment results
showed significant gains in execution time when the pro-
posed ranked approach is used. We note that the utility
measure considered here reflects the information loss due to
the generalizations on the given value lattices. Our future
work will also consider other measures of summarization
effectiveness, including loss in the information theoretical
sense as well as the diversity of the tuples in the summary.

8. REFERENCES
[1] G. Aggarwal, K. K. Tomas Feder, R. Motwani, R. Panigrahy,

D. Thomas, and A. Zhu. Approximation algorithms for
k-anonymity. Journal of Privacy Technology, 2005.

[2] R. Alfred and D. Kazakov. Data summarization approach to
relational domain learning based on frequent pattern to
support the development of decision making. ADMA, 2006.

[3] F. Buccafurri, F. Furfaro, D. Sacca, and C. Sirangelo. A
quad-tree based multiresolution approach for two-dimensional
summary data. In SSDBM’2003.

[4] A. L. Buchsbaum, D. F. Caldwell, K. W. Church, G. S. Fowler,
and S. Muthukrishnan. Engineering the compression of massive
tables: an experimental approach. In SODA, 2000.

[5] A. L. Buchsbaum, G. S. Fowler, and R. Giancarlo. Improving
table compression with combinatorial optimization. J. ACM,
50(6):825–851, 2003.

[6] S. Chaudhuri and U. Dayal. An overview of data warehousing
and olap technology. SIGMOD Record, 26(1):65–74, 1997.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. The MIT Press, 2001.

[8] A. Cuzzocrea, F. Furfaro, and D. Saccà. Hand-olap: A system
for delivering olap services on handheld devices. In ISADS ’03

[9] A. Cuzzocrea, D. Saccà, and P. Serafino. A hierarchy-driven
compression technique for advanced olap visualization of
multidimensional data cubes. In DaWaK, pages 106–119, 2006.

[10] R. Fagin. Combining fuzzy information from multiple systems.
In PODS, 1996.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. J. Comput. Syst. Sci., 2003.

[12] B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization
for information and privacy preservation. In ICDE, 2005.

[13] C. A. Hurtado, C. Gutierrez, and A.O.Mendelzon. Capturing
summarizability with integrity constraints in olap. ACM Trans.
Database Syst., 30(3):854–886, 2005.

[14] C.Hurtado and A.Mendelzon. Reasoning about summarizability
in heterogeneous multidimensional schemas. ICDT 2001.

[15] V. S. Iyengar. Transforming data to satisfy privacy constraints.
In Proc. of ACM SIG-KDD, pages 279–288, 2002.

[16] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito:
Efficient full-domain k-anonymity. SIGMOD 2005.

[17] M.-L. Lo, K.-L. Wu, and P. S. Yu. Tabsum: A flexible and
dynamic table summarization approach. ICDCS, 00:628, 2000.

[18] A. Meyerson and R. Williams. On the complexity of optimal
k-anonymity. PODS 2004.

[19] M. E. Nergiz and C. Clifton. Thoughts on k-anonymization.
Data Knowl. Eng., 63(3):622–645, 2007.

[20] W. K. Ng and C. V. Ravishankar. Relational database
compression using augmented vector quantization. ICDE 1995.

[21] H. Park and K. Shim. Approximate algorithms for k-anonymity.
In SIGMOD ’07, pages 67–78, 2007.

[22] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson. Supporting
imprecision in multidimensional databases using granularities.
In SSDBM, pages 90–101, 1999.

[23] R. Rada, H. Mili, E.Bicknell, and M. Blettner. Development
and application of a metric on semantic nets. IEEE
Transactions on Systems, Man and Cybernetics, 19(1), 1989.

[24] P. Resnik. Semantic Similarity in a Taxonomy: An
Information-Based Measure and its Application to Problems of
Ambiguity in Natural Language. JAIR, Vol.11, 1999.

[25] R. Richardson and A.F. Smeaton. Using WordNet in an
Knowledge-Based Approach to Information Retrieval. Working
paper CA-1294, Dublin City Univ., Dublin, 1994.

[26] Y. Qi, K.S. Candan, and M.L. Sapino. Feedback-based
InConsistency Resolution and Query Processing on Misaligned
Data Sources, SIGMOD 2007

[27] Y. Qi, K.S. Candan, M.L. Sapino, and K.W. Kintigh.
Integrating and Querying Taxonomies with QUEST in the
Presence of Conflicts. SIGMOD 2007.

[28] Y. Qi, K. S. Candan, J. Tatemura, S. Chen, and F. Liao.
Supporting olap operations over imperfectly integrated
taxonomies. In Proc. of ACM SIGMOD, 2008.

[29] R. Saint-Paul, G. Raschia, and N. Mouaddib. General purpose
database summarization. VLDB 2005.

[30] R. Saint-Paul, G. Raschia, and N. Mouaddib. Database
summarization: The saintetiq system. ICDE 2007.

[31] P. Samarati. Protecting respondents’ identities in microdata
release. TKDE, 13(6):1010–1027, 2001.

[32] K.-L. Wu, S.-K. Chen, and P. S. Yu. Dynamic refinement of
table summarization for m-commerce. WECWIS 2002.

[33] M. Rafanelli, A. Shoshani. STORM: A Statistical object
representation model. SSDBM90.

107

