
On Keys, Foreign Keys and Nullable Attributes in
Relational Mapping Systems

Luca Cabibbo
Università Roma Tre

cabibbo@dia.uniroma3.it

ABSTRACT
We consider the following scenario for a mapping system:
given a source schema, a target schema, and a set of value
correspondences between these two schemas, generate an ex-
ecutable transformation (i.e., a set of queries) to compute
target instances from source instances. We base this compu-
tation on two main components: (i) a schema mapping gen-
eration algorithm, to compute a declarative schema mapping
from the correspondences, and (ii) a query generation algo-
rithm, to compute a transformation from the schema map-
ping. In this paper, we introduce novel schema mapping and
query generation algorithms for mappings between relational
schemas with keys, foreign keys and nullable attributes. We
extend current relational mapping algorithms (e.g., those
proposed in the Clio framework), which are able to deal only
in a more limited way with such integrity constraints. As a
further contribution, we propose referenced-attribute corre-
spondences, which permit to specify more precise mappings
than traditional attribute correspondences, while retaining
a simple and intuitive semantics.

1. INTRODUCTION
A common need in many application contexts is to trans-

form and exchange data stored under different representa-
tions or schemas [2, 6]. A mapping is a precise specifica-
tion that describes the relationship between two database
schemas, a source and a target schemas. Recently, many
mapping systems have been developed to cope with the diffi-
culties of designing mappings [2, 17], including both research
prototypes, such as Clio [13, 15], and commercial industry
tools, such as Altova MapForce, IBM Rational Data Archi-
tect, Microsoft BizTalk Mapper, and Stylus Studio Mapper.

We consider the following main scenario for a mapping
system: Given a source schema and a target schema, and
a high-level specification of the value correspondences be-
tween elements of these two schemas (correspondences can
be depicted as lines in a visual interface), compute an exe-
cutable transformation from the source to the target schema

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

(e.g., a set of queries to compute target instances from source
instances). This computation can be performed using an in-
termediate step, as in Clio [15]: first, a schema mapping is
computed from the value correspondences; then, a transfor-
mation is computed from the schema mapping. A schema
mapping is a declarative specification of the mapping, which
can be expressed using, in particular, source-to-target tuple-
generating dependencies [4]. This way, we have identified
the two main components of a mapping system we are inter-
ested in: the schema mapping generation algorithm and the
query generation algorithm. (A mapping system may have
further components, e.g., a matching algorithm to automat-
ically discover correspondences between the source and tar-
get schemas. However, the focus of this paper is only on
schema mapping and query generation algorithms.)

Schema mapping and query generation algorithms, ini-
tially developed to cope with relational schemas [13], have
then been extended to deal also with XML nested data [15].
Further research has then mainly focused on improving the
translation between XML data (e.g., [5, 17]). Many results
in the nested setting can be applied to the flat relational
case as well. However, the relational context has not been
fully explored yet. In particular, many proposals take into
account, separately, different integrity constraints that are
common in the relational context, such as keys (e.g., [18]),
foreign keys (e.g., as inclusion dependencies [13, 15]), and
nullable attributes (e.g., [15, 18]) but, to the best of our
knowledge, a comprehensive approach to deal with all these
constraints together has not been proposed yet.

The main contribution of this paper is the definition of
a novel schema mapping generation algorithm and a novel
query generation algorithm for relational mapping systems,
for managing keys, foreign keys and nullable attributes in a
comprehensive way. Intuitively, our schema mapping gen-
erator takes into account nullable attributes, by generating
a rich set of logical mappings with null and non-null con-
ditions. Then, our query generator deals with target key
constraints, by rewriting and combining logical mappings
intended to propagate data over a same target relation. We
show, by mean of examples, that our algorithms compute
“more desirable” mappings and transformations than cur-
rent algorithms; by “more desirable” we mean with a more
natural semantics (closer to the canonical universal instance
semantics of [18, 4]) and with fewer useless tuples in target
instances (i.e., partially duplicate tuples or tuples containing
only null or invented values).

A further contribution of this paper is the introduction of
referenced-attribute correspondences, which generalize tra-

263

ditional attribute correspondences [13, 15]. They permit to
express more precise mappings, while retaining a simple and
intuitive semantics.

Our algorithms can be applied to mapping problems in-
volving relational schemas with primary keys, foreign keys
(used to reference simple keys and forming a weakly acyclic
set [4]), and nullable attributes. As output, our algorithms
generate transformations expressed as non-recursive Data-
log queries, with Skolem functors and safe (stratified) nega-
tion [1, 7].

Motivating Examples. Our first example shows bene-
fits that can be gained by managing keys, foreign keys and
nullable attributes in relational mappings.

Example 1. Consider the mapping problem graphically
depicted in Figure 1. The schemas comprise keys (shown un-
derlined), foreign keys (shown by means of dashed arrows),
and nullable attributes (shown using the null superscript).
The mapping is specified as a set of attribute correspon-
dences, visually depicted as solid arrows. It involves two car
registration databases: CARS3, the source schema, shown
on the left, and CARS2, the target schema, shown on the
right. Attributes person and car represent person and car
identifiers, respectively.

Person[2]

Car[3]

Owner[3]

person
name
email

car
model

car
person

p1

p2

p3

c1

c2

o1

o2

person
name
email

Car[2]
car
model
person

Person[3]

null

Figure 1: A sample mapping problem

For this mapping problem, basic schema mapping gener-
ation algorithms [13, 15] (which do not fully consider nul-
lable attributes) compute the following schema mapping (for
space reasons, we denote relation and attribute names only
by their initial letters):

P3(p, n, e) → P2(p, n, e)

O3(c, p), C3(c,m), P3(p, n, e) → C2(c,m, p), P2(p, n, e)

C3(c,m) → C2(c,m, p
′), P2(p

′, n′, e′)

The third of these logical mappings is undesirable, since it
intuitively states that each car has an owner, while in both
schemas there can be cars without an owner.

Furthermore, basic query generation algorithms [13, 15]
(which don’t consider key constraints) compute the following
transformation from CARS3 to CARS2 (expressed as a non-
recursive Datalog program with Skolem functors):

P2(p, n, e) ← P3(p, n, e)

C2(c,m, p) ← O3(c, p), C3(c,m),

P3(p, n, e)

C2(c,m, fP (c,m)) ← C3(c,m)

P2(fP (c,m), fN (c,m), fE(c,m)) ← C3(c,m)

P3
p n e
p21 John j@. . .
p22 MJ mj@. . .

C3
c m
c85 Ferrari
c86 Ford

O3
c p
c85 p22

P2
p n e
p21 John j@. . .
p22 MJ mj@. . .
π01 η01 ε01
π02 η02 ε02

C2
c m p
c85 Ferrari p22
c85 Ferrari π01
c86 Ford π02

Figure 2: A data transformation for Example 1

While the first two rules correctly deal with persons and cars
having an owner, the last two rules incorrectly deal with all
cars, by “inventing” a new owner (a person) for each car,
even for cars already having a known owner.

Figure 2 shows a data transformation computed by the
queries above. (The source and target instances are shown,
respectively, at top and bottom of the figure. Symbols πi,
ηj , and εk denote invented values.) Overall, the above trans-
formation has the following drawbacks: First, for each car
having an owner, the program generates in relation C2 a tu-
ple for the car with its correct owner, plus a further tuple
for the same car with an invented owner. This additional
tuple is not required; it also leads to a violation of the key
constraint on C2. The invented person is represented by an
additional tuple in P2; this tuple is also undesirable. Second,
for each car not having an owner, the program generates in
C2 a tuple for the car with an invented owner. However,
for a car without an owner, a better (and admissible) solu-
tion would consist in generating just a tuple in C2 in which
attribute person is set to null.

The above example suggests the need for schema mapping
and query generation algorithms that take into account a
wider set of integrity constraints than current solutions.

Example 1. (cont.) A more natural and desirable data
transformation for the mapping problem of Example 1 is
shown in Figure 3. For the same mapping problem, our novel
schema generation algorithm (which also considers nullable
attributes) computes the following schema mapping:

P3(p, n, e) → P2(p, n, e)

O3(c, p), C3(c,m), P3(p, n, e) → C2(c,m, p), P2(p, n, e)

C3(c,m) → C2(c,m, p
′)

Here, the third logical mapping deals with all cars, with or
without an owner. As we shortly see, a null value for the
owner will be assigned to each car without an owner. Indeed,
our novel query generation algorithms (which also considers
keys) is then able to compute the following transformation

P3
p n e
p21 John j@. . .
p22 MJ mj@. . .

C3
c m
c85 Ferrari
c86 Ford

O3
c p
c85 p22

P2
p n e
p21 John j@. . .
p22 MJ mj@. . .

C2
c m p
c85 Ferrari p22
c86 Ford null

Figure 3: A better data transformation for the map-
ping problem of Example 1

264

from CARS3 to CARS2 (expressed as a non-recursive Dat-
alog program with stratified negation):

P2(p, n, e) ← P3(p, n, e)

C2(c,m, p) ← O3(c, p), C3(c,m), P3(p, n, e)

OCtmp(c) ← O3(c, p), C3(c,m), P3(p, n, e)

C2(c,m, null) ← C3(c,m),¬OCtmp(c)

Here, the second rule deals only with cars having an owner;
the third rule defines an intermediate relation OCtmp (for
Owned Cars) and the fourth rule deals only with cars with-
out an owner (it assigns to them a null value for the owner).

Figure 3 shows a data transformation computed by the
queries above. This transformation is indeed more desirable
than the one shown in Figure 2, as it avoids the disadvan-
tages shown by current schema mapping and query genera-
tion algorithms.

Intuitively, our algorithm for schema mapping generation
takes care of nullable attributes, to avoid the generation of
useless tuples made of invented and null values only. Fur-
thermore, our query generation algorithm takes into account
key constraints, to avoid the generation of multiple tuples
in a same relation having the same key; a resolution proce-
dure is adopted to give preference to already existing values
rather than to either null values or invented values.

Our second example motivates the need for a mechanism
to express more specific value correspondences.

Example 2. Consider the mapping problem shown in Fig-
ure 4. The source schema CARS3 is as in Example 1. The
target schema CARS1 consists of just a single relation, in-
tended to store a tuple for each car, possibly with the name
of its owner (or null, otherwise).

Car[3]

Owner[3]

person
name
email

car
model

car
person

cn

cc

cm

Person[3]

Car[1]
car
model
namenull

Figure 4: Another sample mapping problem

For this mapping problem, even our mapping algorithms
generate the following (uncorrect) transformation:

C1(c,m, n) ← O3(c, p), C3(c,m), P3(p, n, e)

OCtmp ← O3(c, p), C3(c,m), P3(p, n, e)

C1(c,m, null) ← C3(c,m),¬OCtmp(c)

C1(fC(p), fM (p), n) ← P3(p, n, e)

Figure 5 shows a data transformation computed by the
queries above. The problem is in the fourth rule, that speci-
fies the generation of a new invented car for each person.

The problem outlined in the above Example 2 is not caused
by available mapping algorithms. Rather, the traditional no-
tion of“attribute correspondence”does not permit to express

P3
p n e
p21 John j@. . .
p22 MJ mj@. . .

C3
c m
c85 Ferrari
c86 Ford

O3
c p
c85 p22

C1
c m n
c85 Ferrari MJ
c86 Ford null
γ01 μ01 John
γ02 μ02 MJ

Figure 5: A data transformation for Example 2

the intended mapping. Indeed, attribute correspondence la-
beled cn in Figure 4 specifies that each value occurring in at-
tribute name in the source should occur as well in attribute
name in the target database. However, in the desired map-
ping, we would like that only names of car owners occur in
attribute name in the target database.

The desired mapping can be expressed by using referenced-
attribute correspondences, where the scope of an attribute
correspondence can be bounded to values occurring in tu-
ples that can be reached by traversing a path of foreign keys.

Example 2. (cont.) For the same mapping problem of
Example 2, we would like to let attribute name in the tar-
get database correspond to names of car owners, that is,
to those values occurring in the source database as name
in tuples of relation P3 that can be reached by navigating
the foreign key from O3.person to P3. This can be specified
by using, instead of the traditional attribute correspondence
cn, the following referenced-attribute correspondence (sym-
bol � denotes, intuitively, the “traversal” of a foreign key):

cn′ : (O3.person � P3.name , C1.name)

Using these correspondences, our algorithms are indeed
able to generate the following correct transformation:

C1(c,m, n) ← O3(c, p), C3(c,m), P3(p, n, e)

OCtmp ← O3(c, p), C3(c,m), P3(p, n, e)

C1(c,m,null) ← C3(c,m),¬OCtmp(c)

Figure 6 shows a data transformation computed by the
queries above; it is indeed the natural and desired transfor-
mation.

P3
p n e
p21 John j@. . .
p22 MJ mj@. . .

C3
c m
c85 Ferrari
c86 Ford

O3
c p
c85 p22

C1
c m n
c85 Ferrari MJ
c86 Ford null

Figure 6: A better data transformation for the map-
ping problem of Example 2

Organization of the Paper. Section 2 recalls preliminary
notions, including known basic schema mapping and query
generation algorithms. We introduce referenced-attribute
correspondences in Section 3. We then present our novel

265

schema mapping and query generation algorithms in Sec-
tions 4 and 5, respectively. Finally, Sections 6 and 7 are
devoted to related work and conclusions, respectively.

For space reasons, a number of detailed definitions, proce-
dures, and examples have been omitted; they are available
in the full version of this paper [3].

2. PRELIMINARIES

2.1 Relational Model
A relation schema R(A1, . . . , Ak) is a named set of at-

tributes. A relational schema R = {R1, . . . , Rn} is a set of
relation schemas, together with a set ΓR of integrity con-
straints (described next). At the instance level, a relation is
a set of tuples over the attributes of the relation; a relational
database is a set of relations.

We consider the following integrity constraints. Attributes
of relations can either be nullable or non nullable (i.e., man-
datory). By default we assume that attributes are manda-
tory, and show nullable attributes with a null superscript.
Each relation has a primary key (or, simply, a key), com-
prising one or more non nullable attributes. A key is simple
if it consists just of a single attribute; otherwise, it is com-
posite. A key attribute is an attribute that belongs to a key;
otherwise, it is a non-key attribute. As it is customary, we
will underline key attributes. A foreign key (or referential
constraint) is an attribute of a relation used to reference (the
key attribute of) another relation. We show foreign keys by
means of dashed arrows. In this paper, we consider foreign
keys used to reference simple keys only.

Applicability of our results is related to termination of a
(modified) chase procedure, that can be guaranteed, in this
framework, by considering relational schemas in which for-
eign key constraints form a weakly acyclic set [4], something
that we will assume in the remainder of the paper.

2.2 Basic Relational Mapping Systems
We now briefly recall basic mapping algorithms. Specifi-

cally, as our baseline, we refer here to the schema mapping
and query generation algorithms defined in the context of
the Clio project, as originally proposed in [13] and then re-
fined in [15, 5], but limited to the flat relational case. Please
note that such proposals do consider foreign keys (as inclu-
sion dependencies), nullable attributes (but only in a rather
limited way), and do not consider key constraints. To sim-
plify the presentation, we describe here algorithms that do
not consider nullable attributes and keys at all. In this sec-
tion, we refer to the mapping problem depicted in Figure 7.

In a mapping problem, we are given a source schema S, a
target schema T, and a set C of attribute correspondences
between these schemas. The goal is deriving a set Q of
queries to compute target database instances from source
database instances, comprising a query (i.e., view) qi : S→
Ri for each target relation Ri.

An attribute correspondence (or, simply, correspondence)
is a pair of attributes (R1.A1, R2.A2), where A1 is an at-
tribute of a source relation R1 and A2 is an attribute of
a target relation R2. When relation names are clear from
the context, we will simply write (A1, A2). Intuitively, an
attribute correspondence (A1, A2) specifies a “flow” of data
from source attribute A1 to target attribute A2, that is, the
fact that each value occurring in A1 in the source database
should occur as well in A2 in the target database. Hence,

Person[2a]
person
name
email

Car[2a]
car
model
person

Person[3]

Car[3]

Owner[3]

person
name
email

car
model

car
person

p1

p2

p3

c1

c2

o1

o2

Figure 7: A sample mapping problem

it specifies a “value correspondence.” In our visual represen-
tation attribute correspondences are shown as solid arrows,
directed from a source attribute to a target attribute.

Schema Mapping Generation. The basic schema map-
ping generation algorithm proceeds in two phases: (i) logical
relation generation and (ii) logical mapping generation.

A logical relation, also called tableau, is informally a group
of semantically related attributes or tuples in a schema, in-
tended to represents an“autonomous concept”of the schema,
such as a car or the ownership of a car by a person. (By“au-
tonomous” we mean that it does not require data in other
parts of the schema.) In practice, each logical relation is
computed by chasing an individual relation schema using
the constraints defined over its relational schema. The re-
sult of logical relation generation is a set of logical relations
or tableaux, one set in each schema.

For example, consider the mapping problem shown in Fig-
ure 7. The logical relations in the source schema are: (i)
P2a(p, n, e) and (ii) C2a(c,m, p), P2a(p, n, e). The logical re-
lations in the target schema are: (i) P3(p, n, e), (ii) C3(c,m),
and (iii) O3(c, p), C3(c,m), P3(p, n, e).

Logical mapping generation has the goal of computing
a schema mapping from the source to the target schema.
In Clio, a schema mapping Σ is a set of logical mappings
(i.e., mapping constraints), where each logical mapping is
a source-to-target tuple-generating dependency (s-t tgd) [4],
that is, a first-order formula of the following form:

(∀x)(φS(x)→ (∃y)ψT (x,y)),

where φS and ψT are (in Clio) conjunctive queries over the
source and target schemas, respectively.

Candidate logical mappings are first computed as follows:
A skeleton is a pair of tableaux (T1, T2), comprising a source
tableau T1 and a target tableau T2. A skeleton (T1, T2) cov-
ers an attribute correspondence (A1, A2) if A1 occurs in T1

and A2 occurs in T2. Let V be the set of correspondences
in C covered by a skeleton (T1, T2); if V is not empty, the
triple (T1, T2, V) defines a candidate logical mapping. Not all
candidate logical mappings contribute to the schema map-
ping; rather, subsumed and implied logical mappings should
be pruned. (See [13, 15] for details on pruning.) The re-
maining candidate logical mappings define the schema map-
ping, obtained by interpreting each candidate logical map-
ping (T1, T2, V) as a s-t tgd of the form ∀T1 → ∃T2.V , where
V denotes the conjunction of a set of conditions, compris-
ing a condition t1 = t2 for each covered correspondence
(A1, A2), where t1, t2 are the terms occurring in the posi-

266

tions respectively corresponding to attributes A1, A2.
For example, the application of the above logical mapping

generation algorithm to the mapping problem depicted in
Figure 7 leads to the following schema mapping:

P2a(p, n, e) → P3(p, n, e)

C2a(c,m, p), P2a(p, n, e) → O3(c, p), C3(c,m), P3(p, n, e)

Query Generation. Query generation is concerned with
the translation of the schema mapping (a set of logical map-
pings) into a set of queries, comprising a query for each tar-
get relation. In the simplest cases, it is sufficient to “reverse”
and unfold the various logical mappings, and interpreting
the result as a non-recursive Datalog program [1].

For example, for the mapping problem depicted in Fig-
ure 7, we obtain the following transformation:

P3(p, n, e) ← P2a(p, n, e)

P3(p, n, e) ← C2a(c,m, p), P2a(p, n, e)

C3(c,m) ← C2a(c,m, p), P2a(p, n, e)

O3(c, p) ← C2a(c,m, p), P2a(p, n, e)

In more complex cases, logical mappings may comprise
existentially quantified variables (i.e., variables that occur
in the right-hand side of an implication but not in its left-
hand side). In this case, existentially quantified variables
are skolemized, by replacing each such variable by a dif-
ferent Skolem functor that depends on all the universally
quantified variables that occur in the right-hand side of the
logical mapping [15]. Because of this, the resulting trans-
formations are, in general, non-recursive Datalog programs
with Skolem functors, where Skolem functors are the mech-
anism used to specify “invented values” that should occur in
the target instance [7].

3. REFERENCED-ATTRIBUTE
CORRESPONDENCES

Recall [13, 15] that an attribute correspondence (A,B)
specifies, intuitively, that each value occurring in source at-
tribute A should occur in target attribute B as well. Some-
times, this is a too strong specification. Indeed, it is some-
times the case that only a subset of the values occurring in
A should appear in B. For instance, in Example 2, A are
names of persons, while B are names of car owners, where
the latter are a subset of the former. To the best of our
understanding, it is not possible to specify such a corre-
spondence using a traditional value correspondences, even
resorting to filters [13]. Rather, in our example, we would
like to “filter” values with respect to a join condition in-
volving a foreign key defined in the schema. To this end, we
introduce a novel type of correspondences, called referenced-
attribute correspondences, which generalize attribute corre-
spondences.

A referenced attribute is an expression R1.A1 � . . . �

Rn.An, where: (i) each Ai is an attribute of relation Ri,
for 1 ≤ i ≤ n, and (ii) in each relation Ri, attribute Ai

references, via a foreign key, the key Ki+1 of relation Ri+1,
for 1 ≤ i < n. Intuitively, symbol � denotes the traversal
of a foreign key. The referenced attribute is the last (i.e.,
the rightmost) in the path (e.g., Rn.An in the above exam-
ple). Thus, a referenced attribute is an attribute prefixed
by a path of foreign keys. The set of values associated with

a referenced attribute comprises only a subset of the val-
ues occurring in that attribute, and specifically those values
occurring in tuples that can be retrieved by traversing the
whole path of foreign keys. For example, in schema CARS3

of Example 2, referenced attribute O3.person � P3.name
denotes the names of car owners.

A referenced-attribute correspondence (or r-a correspon-
dence) is a pair (π1, π2), where π1, π2 are, respectively, refer-
enced attributes over the source and target schema. For ex-
ample, (O3.person � P3.name, C1.name). Intuitively, such
r-a correspondence specifies that all values occurring in the
source referenced attribute π1 should occur in the target
referenced attribute π2 as well.

The management of r-a correspondences in mapping algo-
rithms is as follows. We first need to define notions related
to coverage. To this end, a referenced attribute R1.A1 �

. . . � Rn.An is covered by a tableau T if the following
conditions are satisfied: (i) T contains relation atoms for
R1, . . . , Rn, and (ii) T contains, for 1 ≤ i < n, equality
conditions t(Ri.Ai) = t(Ri+1.Ki+1), where t(R.A) denotes
the term occurring in the relation atom for R in the posi-
tion for attribute A and Ki+1 denotes the key attribute of
relation Ri+1. Then, a r-a correspondence (π1, π2) is cov-
ered by a skeleton (T1, T2) if referenced attributes π1, π2 are
respectively covered by tableaux T1, T2.

Then, each candidate logical mapping is defined as a triple
(T1, T2, V), where V is the (non-empty) set of correspon-
dences covered by skeleton (T1, T2). If a candidate logical
mapping (T1, T2, V) is not pruned, then it contributes to a
logical mapping in the schema mapping, a s-t tgd of the
form ∀T1 → ∃T2.V , where V denotes the conjunction of a
set of conditions, comprising, for each covered referenced-
attribute correspondence (R1.A1 � . . . � Rn.An, R

′
1.A

′
1 �

. . . � R′
m.A

′
m), a condition tn = t′m, where tn, t

′
m are the

terms occurring in the positions respectively corresponding
to referenced attributes An, A

′
m.

Example 3. Figure 8 shows a mapping problem involving
a referenced-attribute correspondence. This is a variant of
the problem considered in Example 2, in which attribute
name in the target schema is mandatory rather than nullable
and, of course, a r-a correspondence for names of car owners
is used instead of a traditional attribute correspondence.

For this mapping problem, current mapping algorithms,
modified with the above definition of r-a correspondence and
the related notion of coverage, are able to compute the fol-

Car[3]

Owner[3]

person
name
email

car
model

car
person

cn’

cc

cm

Person[3]

Car[1a]
car
model
name

cn’

Figure 8: A referenced-attribute correspondence

267

lowing schema mapping:

O3(c, p), C3(c,m), P3(p, n, e) → C1a(c,m, n)

C3(c,m) → C1a(c,m, n′)

This is the best possible schema mapping for this problem.
Note that the use of a traditional correspondence rather than
a r-a correspondence would have led to the generation of
the following undesired additional logical mapping, which
intuitively specifies that an invented car is needed for each
person:

P3(p, n, e) → C1a(c′,m′, n)

From the schema mapping above, our query generation
algorithm (described in Section 5) is then able to compute
the following transformation, which does not invent cars,
and invents names for car owners only for cars without a
real owner (remind that owner names are mandatory in the
target schema):

C1a(c,m, n) ← O3(c, p), C3(c,m), P3(p, n, e)

OCtmp(c) ← O3(c, p), C3(c,m), P3(p, n, e)

C1a(c,m, fN (c)) ← C3(c,m),¬OCtmp(c)

A referenced attribute is equivalent to a traditional at-
tribute if its prefix path of foreign keys is empty. Simi-
larly, an r-a correspondence is semantically equivalent to a
traditional attribute correspondence if both its referenced
attributes are just ordinary attributes. In this sense, r-a
correspondences generalize traditional attribute correspon-
dences.

We feel that referenced-attribute correspondences have
a natural and intuitive semantics, since they specify cor-
respondences between elements that already exists in the
involved schemas (specifically, in each schema, an attribute
and a path of foreign keys). Visually, it is possible to specify
a r-a correspondence by first drawing an attribute correspon-
dences, and then selecting, in each schema, a path of foreign
keys to the relation containing the referenced attribute.

4. SCHEMA MAPPING GENERATION
— WITH NULLABLE ATTRIBUTES

First of all, let us consider the role of null values and in-
vented values in the context of schema mapping. In general,
null values and nullable attributes are mechanisms for deal-
ing with incomplete information (see, e.g., [1]). In databases,
null values are usually used with the following three main
possible semantics: nonexistent (“John hasn’t a car”), un-
known (“John has a car, but we don’t know which one”),
no-information (“we don’t know if John has a car”). Given
the possibility to introduce new invented values in a target
instance, we adopt the unknown semantics for invented val-
ues (also called labeled nulls), and use the no-information
semantics for null values (also called unlabeled nulls). Intu-
itively, an invented value (to be used in a target instance)
denotes a required but unknown value; it is therefore essen-
tially a “placeholder” for a value that should be supplied in
the target instance. On the other hand, a null value in a
target instance denotes a value that is not available in the
source instance and it is not required in the target.

In our framework, we need to consider nullable attributes
(mainly) in the context of schema mapping generation, while
keys need to be considered (mainly) in the context of query

generation. We therefore extend the basic relational sche-
ma mapping generation algorithm outlined in Section 2.2 to
take into account nullable attributes. Our management of
nullable attributes is based on the following extensions to
baseline algorithms: (i) each logical relation can be based
on a different combination of null/non-null values for nul-
lable attributes — we define a different notion of tableaux
and a modified chase procedure to compute logical relations;
(ii) while candidate logical mappings are still based on pairs
of logical relations, we extend logical mapping generation
mainly by means of novel pruning rules, to be used together
with the subsumption and implication rules, to select the
meaningful logical mappings. These topics are analyzed in
the following subsections. We assume that the reader is fa-
miliar with notions related to the standard chase procedure
(see, e.g., [1]).

4.1 Logical Relation Generation
Logical relations are computed separately in each indi-

vidual schema. In basic logical relation generation, each
logical relation (or tableau) is computed by applying a stan-
dard chase procedure to each individual (base) relation of
a schema. In presence of nullable attributes, we consider
partial tableaux, a variant of the notion of tableaux, and a
modified chase procedure, to compute such partial tableaux.

An (ordinary) tableau [1] is a set of relational atoms — of
the form R(x1, . . . , xn), where R is a relation name and the
xi’s are variables — together with a set of constraint atoms
— of the form xi = xj . A partial tableau, apart from rela-
tional and constraint atoms as in an ordinary tableau, can
also contain null atoms and non-null atoms — respectively
of the form xi = null and xi �= null, where xi is a variable
bound to some nullable attribute.

Our logical relations are computed, as partial tableaux,
each starting from a base relation, by means of a modified
chase procedure, as follows. Given a partial tableau T and
a constraint/dependency σ, the result of chasing T with re-
spect to σ is defined by means of the following rules (as
usual, we refer to an ordering � on variables):

null rule Let σ = nullable(R.A) (i.e., attribute A is nul-
lable in a relation R), R(u) be a relational atom in T ,
and assume that neither A = null nor A �= null occur
in T . The result of applying σ to R(u) in T produces
two partial tableaux, T ′ and T ′′, where T ′ = T ∪{A =
null} and T ′′ = T ∪ {A �= null}.

fd rule Let σ = R : X → A be a functional dependency
(in particular, a key constraint) over a relation R, and
let R(u), R(v) be two relational atoms in T such that
u.X = v.X and u.A. �= v.A. Let x be the least variable
in {u.A, v.A} under the ordering �, and y be the other
one. Call θ the substitution that maps y to x and is
the identity elsewhere. The result of applying σ to
R(u), R(v) in T is the partial tableau θ(T) if x �= y �∈
T , and ⊥ otherwise.

ind rule Let σ = R.X ⊆ S.Y be an inclusion dependency
(in particular, a foreign key constraint), let R(u) be a
relational atom in T , and suppose that, for each x ∈ X,
either attribute x is mandatory in R or T contains a
non-null atom u.x �= null. Moreover, suppose that T
does not contain any relational atom S(v) such that
v.Y = u.X. Let w be a free tuple over S such that

268

w.Y = u.X and w has distinct new variables in all
attributes not in Y (that are greater than all variables
occurring in T). Then, “the” result of applying σ to
R(u) in T is the partial tableau T ′ = T ∪ {S(w)}.

Note that there are two main differences with respect to
the basic logical relation generation algorithm: (i) a nullable
attribute can split a partial tableau into two distinct partial
tableaux (one in which the attribute is null, the other one
in which the attribute is not null); and (ii) it is possible
to traverse a foreign key only if the referencing attribute is
mandatory or it is nullable and non-null.

To guarantee termination of the above modified chase pro-
cedure, we assume that the integrity constraints over the
involved relational schemas comprise only primary key con-
straints, foreign key constraints (used to reference simple
keys and forming a weakly acyclic set [4]), and nullable at-
tribute constraints.

Example 4. Consider the target schema CARS2 shown in
Figure 1. Logical relations for schema CARS2 are the follow-
ing (partial tableaux can still be considered as “autonomous
concepts” or “representative instances” of a schema): (i)
P2(p, n, e): persons (unrelated to cars); (ii) C2(c,m, p), p =
null: cars without an owner; and (iii) C2(c,m, p), p �= null,
P2(p, n, e): owned cars, with their owner.

If we apply our modified chase procedure to a base re-
lation R, in general we obtain a set TR = {T1, . . . , Tn} of
partial tableaux. Note also that each partial tableau can
also be considered as a conjunctive query (called tableau
query in [1]), possibly with null and non-null conditions.
Intuitively, these partial tableaux, seen as queries, form a
“partition” of relation R, in the following sense: (i) partial
tableaux in TR are partially disjoint, that is, Ti ∩ Tj = ∅
if i �= j (over databases satisfying the schema constraints);
and (ii) R = T1 ∪ . . . ∪ Tn.

4.2 Logical Mapping Generation
As in basic logical mapping generation, this phase pro-

ceeds as follows: (i) skeletons are computed by coupling each
source logical relation with each target logical relation; (ii)
candidate logical mappings are computed from those skele-
tons covering at least one correspondence; (iii) some candi-
date logical mappings are pruned; (iv) the schema mapping
is defined from the remaining logical mappings. However,
there are a number of differences in our novel algorithm,
which we will describe in order. (A number of conclusions
in this section are motivated by a case-by-case reasoning,
described in the full version of the paper [3].)

Computing Candidate Logical Mappings. In the basic
framework, an attribute occurring in a tableau is said to
be covered by the tableau. With nullable attributes, partial
tableaux, and referenced-attribute correspondences, a more
complex notion of coverage is needed.

Consider an attribute A of a relation R and a partial
tableau T . The coverage level of A (or of a variable bound
to A, thereof) in T can be one of the following:

• mand, if A occurs in T and it is mandatory in R;

• null, if A occurs in T , it is nullable in R, and T contains
the null condition A = null;

• nonnull, if A occurs in T , it is nullable in R, and T
contains the non-null condition A �= null;

• none, if A does not occur in T .

Then, the coverage level of a referenced attribute R1.A1 �

. . . � Rn.An in T is defined as the coverage level of Rn.An,
provided that all previous attributes R1.A1, . . . , Rn−1.An−1

in the path are covered with level mand or nonnull; otherwise,
the coverage level of the referenced attribute is none.

The coverage degree of a referenced-attribute correspon-
dence (π1, π2) by a skeleton (T1, T2) is a pair (c1, c2), where
each ci is the coverage level of referenced attribute πi in
tableau Ti. Of course, this definition applies also to tradi-
tional attribute correspondences.

A skeleton (T1, T2) covers a referenced-attribute corre-
spondence (π1, π2) (or an attribute correspondence (A1, A2))
if the coverage degree of the correspondence is (c1, c2), both
c1 and c2 are different from none, and (c1, c2) is different
from (null,mand).

Let V be the set of correspondences covered by a skeleton
(T1, T2). As in basic logical mapping generation, if V is
not empty, the triple (T1, T2, V) defines a candidate logical
mapping. However, not all candidate logical mappings will
contribute to the resulting schema mapping: some of them
need to be pruned.

Pruning. The pruning phase of candidate logical map-
pings is based on the following steps: (i) pruning related to
nullable attributes; (ii) pruning based on subsumption; (iii)
pruning based on implication; (iv) pruning based on non-null
extension. Let us consider the various steps individually.

Pruning Related to Nullable Attributes. A candidate
logical mapping (T1, T2, V) should be pruned if it satisfies
one of the following conditions:

• there is a correspondence in V having coverage de-
gree (nonnull, null), (mand, null), or (null, nonnull) —
this rule is motivated by the fact that, if there ex-
ists such a candidate logical mapping m, by the logical
relation generation algorithm, there should also be a
different but preferable candidate logical mapping m′;

• there is a target variable/attribute A2 in T2 that sat-
isfies the following conditions: (i) attribute A2 is nul-
lable and non-null; (ii) there is no foreign key defined
from attribute attribute A2; and (iii) A2 is not bound
to any variable/attribute in T1 — in this case, we are
guaranteed that there is a preferred candidate logical
mapping in which a null value is assigned to A2 (note
that this would not be the preferred semantics if a for-
eign key starts from attribute A2).

Pruning Based on Subsumption and on Implication.
As in the basic logical mapping generation, subsumed and
implied mappings should be pruned [13, 15].

The basic pruning procedure of the baseline algorithms,
based on subsumption and implication, is still valid in our
extended algorithm, provided that we re-define the notion
of sub-tableau for partial tableaux. A partial tableau T ′ is a
sub-tableau of a partial tableau T (written T ′ ≤ T) if: (i) the
relational atoms of T ′ are a superset of the relational atoms
in T ; (ii) the constraint atoms (conditions) in T ′ are also
a superset of those in T or they imply them; (iii) the null

269

conditions in T ′ are also a superset of those in T ; and (iv)
the non-null conditions in T ′ are also a superset of those in
T (in each point, possibly after some renaming of variables).
Moreover, T ′ is a strict sub-tableau of T (written T ′ < T) if
T ′ ≤ T and the relational atoms in T ′ are a strict superset
of those in T .

A candidate logical mappingm′ = (T ′
1, T

′
2, V

′) is subsumed
by another candidate logical mapping m = (T1, T2, V) if T ′

1

and T ′
2 are respective sub-tableaux of T1 and T2 (with at

least one being strict), and V = V ′. We prune m′ since it
covers the same set of correspondences that are covered by
the “smaller” (and more general) logical mapping m.

A candidate logical mapping m = (T1, T2, V) is implied
by a candidate logical mapping m′ = (T ′

1, T
′
2, V

′) whenever
T1 = T ′

1 and T ′
2 is a sub-tableau of T2 (this implies V ′ ⊇ V).

Intuitively, all target components (relational atoms, with
their additional condition atoms) that are asserted by m are
asserted by m′ as well (with the same conditions).

Pruning Based on Non-Null Extension. First, note that
each partial tableaux can be depicted as a rooted graph (or
a rooted tree, if foreign keys are acyclic), in which nodes
represent relational atoms, arcs represent traversals of for-
eign keys, and the root is the base relation from which the
chase procedure has been started from. Let T and T ′ be two
distinct partial tableaux obtained by chasing a same base re-
lation R (as described in Section 4.1). We say that T ′ is a
non-null extension of T (written T ′ ≺ T) if T can be ob-
tained from T ′ by pruning the corresponding rooted graph
over one or more nullable foreign keys, with null values for
such foreign keys in T where, for the same attributes, T ′

associates non-null values.
For example, with respect to partial tableaux over schema

CARS2 of Example 4, it turns out that C2(c,m, p), p �= null,
P2(p, n, e) is a non-null extension of C2(c,m, p), p = null.

Non-null extension is similar to, but different from, the
sub-tableau relationship. We need further pruning rules,
based on non-null extension, which are similar to, but dif-
ferent from, subsumption and implication.

Let m = (T1, T2, V) and m′ = (T ′
1, T

′
2, V

′) be two candi-
date logical mappings such that: (i) T1 = T ′

1 and (ii) T ′
2 ≺ T2

(T ′
2 is a non-null extension of T2); then: (a) if V = V ′, candi-

date logical mappingm′ should be pruned, and (b) otherwise
(V ⊂ V ′), candidate logical mapping m should be pruned.

This pruning rule aims at avoiding the generation, in the
target instance, of “useless tuples”made of null and invented
values only (for case (a)) or containing tuples stating par-
tially duplicate and less informative facts (for case (b)).

Actual Schema Mapping Generation. After pruning,
there are a number of remaining candidate logical map-
pings. If a candidate logical mapping (T1, T2, V) has not
been pruned, it contributes to a logical mapping in the
schema mapping having the form ∀T1 → ∃T2.V , where: T1

is the source partial tableau (null and non-null conditions
included); T2 is obtained by the target partial tableau by
dropping its null and non-null conditions; and V denotes
the conjunction of a set of conditions, as described in Sec-
tions 2.2 and 3.

Example 5. Consider again the mapping problem of Ex-
ample 1, depicted in Figure 1.

There are seven candidate logical mappings, as follows:

S1: P3(p, n, e) / P2(p, n, e) / p1, p2, p3

S2: O3(c, p), C3(c, m), P3(p, n, e) / P2(p, n, e) / p1, p2, p3

S3: C3(c, m) / C2(c, m, p), p = null / c1, c2

S4: O3(c, p), C3(c, m), P3(p, n, e) / C2(c, m, p), p = null /

c1, c2, o1

S5: C3(c, m) / C2(c, m, p), p �= null, P2(p, n, e) / c1, c2

S6: P3(p, n, e) / C2(c, m, p), p �= null, P2(p, n, e) / p1, p2, p3

S7: O3(c, p), C3(c, m), P3(p, n, e) /

C2(c, m, p), p �= null, P2(p, n, e) / p1, p2, p3, c1, c2, o1, o2

Candidate logical mapping S4 should be excluded (either
because of pruning related to nullable attributes, or because
of pruning on non-null extension, wrt S7). S2 and S6 are
subsumed by S1. There are no implied candidate logical
mappings. S5 should be excluded because of pruning on
non-null extension (wrt S3).

Therefore, the computed schema mapping is the following:

P3(p, n, e) → P2(p, n, e)

C3(c,m) → C2(c,m, p
′)

O3(c, p), C3(c,m), P3(p, n, e) → C2(c,m, p),

P2(p, n, e)

4.3 Discussion
Algorithm 1 summarizes our schema mapping generation

procedure. We have underlined differences with respect to
the baseline algorithm described in Section 2.2.

Algorithm 1 (Schema Mapping Generation).

Input: Source schema S, with constraints ΓS; target schema T,
with constraints ΓT; set C of referenced-attribute corre-
spondences.

Output: Schema mapping, a set of logical mappings.

1. Logical Relation Generation. Compute all source and
target logical relations as the partial tableaux obtained by
chasing (use modified chase procedure) individual relations
in S and T with ΓS and ΓT, respectively.

2. Identify Candidate Logical Mappings. For each skeleton
(T1, T2), compute set V of correspondences covered by the
skeleton (use modified notions related to coverage); if V is
non-empty, define a candidate logical mapping (T1, T2, V).

3. Pruning. Perform pruning related to nullable attributes.
Prune those candidate logical mappings that are subsumed
by other candidate logical mappings. Prune those candi-
date logical mappings that are implied by other remaining
candidate logical mappings. Prune the remaining candidate
logical mappings according to non-null extensions.

4. Actual Schema Mapping Generation. Generate a logical
mapping from each remaining candidate logical mapping.

Each schema mapping computed by our mapping genera-
tion procedure is a set Σ of logical mappings, each a source-
to-target tuple-generating dependency [4] of the form:

(∀x)(φS(x)→ (∃y)ψT (x,y)),

where φS is a conjunctive query over the source schema,
possibly with null and non-null conditions, and ψT is a con-
junctive query over the target schema. We call φS and ψT ,
respectively, the premise and the consequent of the logical
mapping. Among the integrity constraints defined over the
source and target schemas, our algorithm takes into con-
sideration nullable attributes and foreign keys. Keys are
ignored by our schema generation procedure; they will be
taken into account by our query generation algorithm.

270

5. QUERY GENERATION — WITH KEYS
We now extend the basic relational query generation algo-

rithm outlined in Section 2.2. The main extension consists in
an additional intermediate processing step, concerning the
management of key constraints. This step is positioned after
mapping skolemization and before actual query generation.

The novel additional step aims at either ensuring satis-
faction of target key constraints or unveiling unsatisfiability
of such keys, provided that all integrity constraints over the
source schema are satisfied. (When target key constraints
are unsatisfiable, we simply signal such inconsistency of the
mapping and stop; finding possible repairs of the mapping
in such a case is out of the scope of this paper.) This step
is based on the following activities: (i) check whether each
individual logical mapping is consistent with target key con-
straints; (ii) identify possible key conflicts between groups
of logical mappings, having the same target relation in the
consequent of the mapping; (iii) try to resolve the identified
key conflicts, by rewriting conflicting logical mappings.

As running example for introducing issues related to query
generation, we refer to the mapping problem of Examples 1
and 5, depicted in Figure 1.

Logical Mapping Skolemization and Rewriting. We
first skolemize logical mappings, as follows. Let m be a log-
ical mapping, and y be an existentially quantified variable
occurring in the consequent of m. If y occurs only in a po-
sition for a nullable attribute, we replace y with null. Oth-
erwise, y occurs at least once in a position for a mandatory
attribute. In this case, we skolemize y by replacing all occur-
rences of y with a new Skolem functor fm,y(w), as follows.
A different Skolem function fm,y is used for each different
logical mapping m and existentially quantified variable vari-
able y. Moreover, w is a set of terms chosen as follows.
With logical mappings computed by our schema mapping
generator, there are only two cases: (i) y is bound only to a
key attribute (in the relational atom for the “root” relation
of the target tableau); or (ii) y is bound to a non-key at-
tribute (note that, in this case, y can also be bound to a key
attribute). In case (i), w consists of all universally quan-
tified variables occurring in logical mapping m (or, equiv-
alently, of the variable(s) bound to the key attribute(s) of
the “root” relation of the source tableau). In case (ii), w
consists of the term(s) bound to the key attribute(s) of the
single relational atom in which y occurs in a non-key at-
tribute position. (Note that this can lead to nested Skolem
terms.)

We use a skolemization procedure different from the one
adopted by [13, 15] and described in Section 2.2, motivated
by the goal of managing target key constraints and the con-
sequent need to possibly obtain functional mappings.

After this step, skolemized logical mappings are in the
form φi(x) → ψi(x), i.e., they do no more contain existen-
tially quantified variables. Moreover, ψi may now contain
Skolem functors and null conditions.

We then rewrite each individual logical mapping m =
φi(x) → ψi(x) as a set {φi(x) → ψi,j(x)} of logical map-
pings, each having the same premise φi(x) of m, but each
having a single relational atom in the consequent ψi,j(x),
with the related null conditions. (Note that i refers to the
original logical mapping mi in Σ, and j to a single conse-
quent of mi.) We denote by Σ the resulting set of unitary
skolemized logical mappings.

Example 6. Consider the logical mappings of Example 5.
By rewriting them, we obtain the following “unitary” logical
mappings:

P3(p, n, e) →1 P2(p, n, e)

C3(c,m) →2 C2(c,m,null)

O3(c, p), C3(c,m), P3(p, n, e) →3 C2(c,m, p)

O3(c, p), C3(c,m), P3(p, n, e) →3 P2(p, n, e)

Note how we subscribed each implication arrow, to keep
track of the provenance of each unitary mapping (this infor-
mation will be useful next).

Functionality Check. We say that a unitary logical map-
ping is functional if it can not violate the key constraint of
the relational atom in its consequent, provided the source
schema constraints are satisfied. For example, the first log-
ical mapping of Example 6 is functional, since the fact that
p is a key for source relation P3 implies that p is a key also
for target relation P2.

The functionality check for a unitary logical mapping m =
φi(x) → ψi,j(x) is performed as follows. Let k be the vari-
able occurring in the position for the key attribute of the
relational symbol for ψi,j . For each other non-key attribute

position v occurring in ψi,j(x), let φk,v
i (k, v) be the projec-

tion of φi(x) over k, v. Then, m is functional if, for each

such variable v, φk,v
i (k, v) ∧ φk,v

i (k′, v′) ∧ k = k′ ∧ v �= v′

is unsatisfiable over instances satisfying the source schema
constraints. (Otherwise, we signal an error and stop.)

A minor modification in the procedure is needed to con-
sider composite keys and Skolem functors. (See the full pa-
per for more details [3].)

It turns out that the functionality check can be reduced
to an emptiness test for a conjunctive query with inequal-
ities, under functional and inclusion dependencies, which,
from the form of our logical mappings and of the involved
integrity constraints, can be computed by chasing the query
with respect to the involved integrity constraints (using our
modified chase procedure). Decidability of such a check is a
direct consequence of classical results [9, 10].

Example 7. Every unitary logical mapping of Example 6
is functional. In particular, functionality of the third map-
ping is guaranteed by the fact that car is a key for both
source relations O3 and C3. That mapping would not be
functional if a car could have more than one owner.

Identify Key Conflicts. Even if each individual logical
mapping is functional, it is still possible that the whole set of
logical mappings is not functional. In particular, two unitary
logical mappings m = φi(x) → ψi,j(x) and m′ = φi′(x) →
ψi′,j′(x) are in conflict if a same target relational symbol
R occurs in their consequent and they can generate tuples
having a same key, but different values for other attributes.

We check a potential key conflict between m and m′ by
verifying, for each non-key attribute position v occurring in
ψi,j(x) and different from the key k of R, if φk,v

i (k, v) ∧
φk,v

i′ (k′, v′) ∧ k = k′ ∧ v �= v′ is unsatisfiable. If the above
expression is satisfiable for some v, then we say that m and
m′ are key conflicting over v. This check is also decidable.

Not every key conflict causes a real problem. A key con-
flict between a group of logical mappings is hard if the vari-
ous mappings are intended to copy distinct source values to

271

the conflicting target attribute. For example, if two map-
pings can suggest two different owners for a same car. A key
conflict is soft if at most one of the mappings copies source
values to the conflicting target attribute, while other logical
mappings move null values and/or invented values.

Example 8. Consider again the unitary logical mappings
of Example 6. The first and fourth mappings generate tuples
over a same target relation P2. However, they are not key
conflicting. (Indeed, the fourth mapping always generates a
subset of the tuples generated by the first mapping.)

On the other hand, the second and third logical mappings
are key conflicting over attribute person . Indeed, the third
logical mapping generates tuples for cars having an owner,
with the actual owner in position person , while the second
logical mapping generates tuples for all cars, always with a
null value in position person . This key conflict is soft. Note
also that these two logical mappings are not key conflicting
over attribute model .

Resolving (Soft) Key Conflicts. When we encounter a
hard conflict, we signal an error and stop. On the other
hand, soft conflicts can sometimes be resolved, as follows.

We first need a “resolution strategy” for soft key conflicts.
In what follows, we make the following (natural) assump-
tions: (i) copying an existing value from the source to the
target is preferable to generating a null value or an invented
value; and (ii) if it is not possible to copy an existing value
from the source to the target in a position for a nullable at-
tribute, a null value is preferable to an invented value. This
is consistent with our position stated at the beginning of
Section 4.

Let Σ be the set of unitary skolemized logical mappings
obtained from logical mapping skolemization and rewriting.
Assume, without loss of generality, that the sets of variables
of the unitary logical mappings in Σ are pairwise disjoint.

For each target relation R, the conflicting set CSR for R
is the set of unitary logical mappings having relational sym-
bol R in the consequent. Key conflicts happen only among
unitary logical mappings in a same conflicting set.

In what follows, we fix a target relation R, the conflicting
set CSR for R, and two different unitary logical mappings
m,m′ in CSR. Moreover, we write key(R) to denote the key
attribute of relation R, and v to denote a non-key attribute
of R. We also write m�v m

′ (or m′ �v m), if there is a soft
key conflict on v between m and m′, and m is preferable
to m′ over v. (E.g., m copies source values and m′ invents
new values for v.) Relationship �v is computed during key
conflict identification.

The basic key conflict resolution is as follows. First, we
consider, in turn, each unitary logical mapping m. Let
preferableTo(m) the set of the unitary logical mappings in
CSR that are preferable tom for at least a non-key attribute:

preferableTo(m) = {m′ ∈ CSR | ∃v : m′
�v m}.

If preferableTo(m) is not empty, we rewrite m by adding to

its premise, with a conjunction, k = k′ ∧ ¬φkey(R)
i′ (k′) for

each unitary logical mapping m′ ∈ preferableTo(m), where

φ
key(R)

i′ (k′) is the projection of the premise of m′ on key(R),
and k is the variable bound to key(R) in m. Moreover,

we add a similar condition ̂k = k′ ∧ ¬φkey(R)
i′ (k′) to the

premise of each other unitary logical mapping m̂ that has
been obtained from the same “original” logical mapping in

Σ as m. (̂k denotes the variable bound to key(R) in m̂.)
(At the end, all unitary logical mappings derived from a
same original logical mapping will have the same modified
premise, modulo renaming of variables.)

Example 9. Consider again the soft key conflict on person
identified in Example 8. Note that the third mapping is
preferable to the second one, since the third mapping copies
existing values while the second mapping generates null val-
ues in the conflicting position. Hence, we rewrite the second
mapping to “disable” it when the third mapping can be ap-
plied, i.e., only for cars having an owner. By applying the
above procedure, we rewrite the two mappings as follows:

C3(c,m),¬φc
3(c) →2 C2(c,m,null)

O3(c, p), C3(c,m), P3(p, n, e) →3 C2(c,m, p)

where φc
3(c) is {c | O3(c, p

′), C3(c,m
′), P3(p

′, n′, e′)}.

The above basic resolution procedure is able to deal with
mappings that are key conflicting among them in a simple
way. However, it is sometimes the case that mappings do
key conflict in the following more complex way: mappings
are key conflicting over multiple attributes, with different
preferences among the mappings with respect to the vari-
ous involved attributes. To deal with this case, we need an
additional step, as follows.

We consider each subset M ⊆ CSR of (the unrewritten)
unitary logical mappings such that each mapping in M is
preferable to at least one of the remaining mappings in M
over at least an attribute. That is, mappings in M are key
conflicting over different attributes in distinct ways, and
there is no a single preferred mapping in M . For such a
set M = {m1, . . . ,mn} of mappings, we add to the schema
mapping an additional unitary logical mapping mM , built
as follows:

• The premise of mM is the conjunction of the premises
of the mappings in M , plus a set of conditions k =
k1 ∧ . . . ∧ k = kn, where k is a new variable and each
ki, for 1 ≤ i ≤ n, is the variable bound to key(R) in
mapping mi.

• The consequent of mM is an atom R(k, t1, . . . , th) built
as the “fusion” of the consequents of the mappings in
M , as follows: (i) k is the new variable we introduced
in the premise of mM , and it occurs in the consequent
in the position for the key attribute of R; and (ii) each
ti (in the position for a non-key attribute vi in R) is a
term bound to attribute vi in a mapping mvi in M for
which there is no other mapping m′ in M such that
m′ is preferable to mvi over vi.

Note that, in the latter item, point (ii), for a position vi

there can be more mappings that are preferable on vi. Any
of the preferable terms occurring in position vi can be used
if the various terms are either all bound to source variables
or all bound to null. However, if the preferable terms are
Skolem terms, they can be different Skolem terms; in this
case, all such Skolem terms in position vi should be unified.
(Skolem term unification is described in the full version [3].)

Moreover, let preferableTo(M) the set of unitary logi-
cal mappings in CSR − M that are preferable to at least
a mapping m ∈ M for at least a non-key attribute. If
preferableTo(M) is not empty, we rewrite mapping mM by

272

adding k = k′∧¬φkey(R)

i′ (k′) to its premise, for each unitary

logical mapping m′ ∈ preferableTo(M), where φ
key(R)

i′ (k′) is
the projection of the premise of m′ on key(R), and k is the
variable bound to key(R) in mM .

Example 10. Let m1,m2 be two soft key conflicting map-
pings (let k be the key attribute of R), as follows:

m1 : φ1(k, a, b) →1 R(k, a, b, c)

m2 : φ2(k, a, c) →2 R(k, a, b, c)

Assume that m1,m2 are key conflicting over attributes b
and c, but not over attribute a. Furthermore, assume that
m1 is preferable to m2 over attribute b, but m2 is preferable
to m1 over attribute c. (E.g., m1 invents new values on c,
m2 propagates null values on b.)

We first rewrite the two mappings as follows:

φ1(k, a, b) ∧ ¬{φk
2(k)} →1 R(k, a, b, c)

φ2(k, a, c) ∧ ¬{φk
1(k)} →2 R(k, a, b, c)

We then add a new logical mapping that takes into account
the case in which the two mappings m1,m2 were both appli-
cable; the new mapping picks the best from each individual
mapping:

φ1(k, a, b) ∧ φ2(k
′, a′, c′) ∧ k = k′ →1,2 R(k, a, b, c′)

Actual Query Generation. Our schema mapping consists
now of a number of “modified” logical mappings, in which
each premise is a conjunctive query with null and non-null
conditions, plus a conjunction of safe negations of other con-
junctive queries, and each consequent contains just a single
relational atoms, possibly with null conditions and Skolem
terms.

Then, query generation proceeds essentially as in the ba-
sic query generation algorithm, by reversing and unfolding
each logical mapping. It is also useful to add new rules for
defining intermediate relations for the negated subqueries.
The result is essentially a non-recursive Datalog program,
with Skolem functors and safe stratified negation.

Example 11. Consider again the mapping problem of Ex-
amples 1, 5, 6, and 9. The current mapping consists of the
following logical mappings:

P3(p, n, e) →1 P2(p, n, e)

O3(c, p), C3(c,m), P3(p, n, e) →3 P2(p, n, e)

C3(c,m),

¬{c | O3(c, p
′), C3(c,m

′), P3(p
′, n′, e′)} →2 C2(c,m, null)

O3(c, p), C3(c,m), P3(p, n, e) →3 C2(c,m, p)

By “reversing the arrows” and introducing a new intermedi-
ate temporary relation when negation is required, we obtain:

P2(p, n, e) ← P3(p, n, e)

P2(p, n, e) ← O3(c, p), C3(c,m), P3(p, n, e)

OCtmp(c) ← O3(c, p), C3(c,m), P3(p, n, e)

C2(c,m, null) ← C3(c,m),¬OCtmp(c)

C2(c,m, p) ← O3(c, p), C3(c,m), P3(p, n, e)

It is then possible to perform some standard query opti-
mization, e.g., the second rule can be dropped, since it is
subsumed by the first rule. Figure 3 shows a data transfor-
mation computed by the above queries.

5.1 Discussion
Algorithm 2 summarizes our query generation generation

procedure. We have underlined differences with respect to
the baseline algorithm described in Section 2.2.

Algorithm 2 (Query Generation).

Input: Source schema S, with constraints ΓS; target schema T,
with constraints ΓT; schema mapping Σ, a set of logical
mappings.

Output: A non-recursive skolemized Datalog program, with safe
negation, defining a query for each target relation.

1. Logical Mapping Skolemization and Rewriting. Skolem-
ize existentially quantified variables in the logical mappings
in Σ; use modified skolemization procedure. Rewrite each
skolemized logical mapping m into a set of unitary logical
mappings, one for each relational atom in the consequent of
m, each having the same premise of m and, as consequent,
just the single relational atom selected in the consequent of
m.

2. Functionality Check. Check whether each unitary skolem-
ized logical mapping is functional. If this is not the case,
signal an error and stop.

3. Manage Key Conflicts. Identify groups of unitary logical
mappings that key conflict. Try to resolve soft key conflicts,
by rewriting and/or adding logical mappings. If there are
hard or unsolvable key conflicts, signal an error and stop.

4. Actual Query Generation. Generate a set of non-re-
cursive skolemized Datalog rules, with a limited form of
negation, from the modified unitary skolemized logical map-
pings, as follows. From each unitary skolemized logical
mapping m, generate a Datalog rule having as body the
premise of m and as head the (single) consequent of m.

Our query generation algorithm computes source to target
transformations expressed as a non-recursive Datalog pro-
gram, with Skolem functors (to specify value invention) and
safe (stratified) negation.

6. RELATED WORK
We use the Clio framework [13, 15] as our reference base-

line, as many other mapping algorithms do (e.g., [5, 16]).
With respect to these proposals, however, we limit our at-
tention only to the flat relational case, whereas most pro-
posals are focused on nested and XML data. We are aware,
of course, that many results in the nested setting can be
applied to the flat relational case as well.

Many proposals deal, separately, with the management
of different integrity constraints. Most algorithms, starting
from Clio [13, 15], are able to deal with foreign keys, in the
form of inclusion dependencies. The work in [15] and [18]
consider nullable attributes, but not the significant case in
which foreign keys can originate from nullable attributes.
[18] proposes, in a different context, query resolution to man-
age target functional dependencies (thus including keys); our
key conflict resolution procedure, motivated by a different
context, is able to manage a different set of cases.

This paper focuses on a scenario in which the input is
a set of value correspondences and the output is a set of
query transformations. We are not aware of any other pro-
posal in which keys, foreign keys and nullable constraints
are taken together into consideration with respect to the
same scenario. Indeed, some mapping systems deal with is-
sues similar to ours, but at different stages of the mapping
process. For example, [8] deals with duplicate elimination

273

(somehow similar to key conflict resolution) during query
execution phase. Data exchange algorithms [4, 11] are also
able to deal with key constraints, but do not consider an
explicit query generation phase.

To the best of our understanding, referenced-attribute cor-
respondences can not be expressed by traditional value cor-
respondences, even resorting to filters [13]; indeed, a filter
permits to express a selection based on a condition, involving
only attributes occurring in the same relation of the filtered
attribute and constants. On the other hand, a referenced-
attribute correspondence can “filter” values with respect to
more complex conditions, involving join over foreign keys de-
fined in the schema. Referenced-attribute correspondences
can be expressed using “structural correspondences,” e.g.,
builders in Clip [16]. Structural correspondences are indeed
an expressive mechanism to specify mappings, but difficult
to use, because of their low abstraction level. For instance, a
builder can be used to specify any arbitrary Cartesian prod-
uct, i.e., something that is not initially present in a schema.
Viceversa, r-a correspondences, even if less expressive than
builders, have the advantage of referring only to elements
already present in a schema.

Therefore, our proposal is unique in focusing on schema
mapping and query generation algorithms for relational da-
tabases with keys, foreign keys, and nullable attributes, when
mappings are initially specified as value correspondences.

7. CONCLUSIONS
In this paper, we extended the original schema mapping

and query generation algorithms proposed by Clio [13, 15]
to deal with keys, foreign keys and nullable attributes, in
a comprehensive way, in relational mappings. Specifically,
the novelty of our approach consists of: (i) an explicit and
broader management of nullable attributes, including the
case in which a foreign key is defined over a nullable at-
tribute; (ii) an explicit management of (target) key con-
straints during query generation. We also introduced ref-
erenced-attribute correspondences, which allow to express,
as value correspondences, more precise mappings than tra-
ditional attribute correspondences.

The algorithms presented in this paper have been imple-
mented and tested over a rich set of cases.

In our future work, we aim to apply and extend algorithms
presented in this paper to an object-relational setting [14].
In this case, keys, foreign keys and nullable attributes play
a significant role, and flat structures are adequate. Starting
from an object-relational mapping visually specified as a set
of correspondences/lines, we would like to generate an exe-
cutable mapping as a set of bidirectional views (query views
and update views), as in [12].

Our algorithms can also be extended to mappings over
nested/XML data.

Several authors (see, e.g., [18, 4]) have argued that a nat-
ural semantics for schema mappings is that based on canon-
ical (universal) solutions/instances. Given a schema map-
ping (i.e., a set of source-to-target dependencies Σ) and a
source instance, a canonical (universal) solution can be in-
tuitively constructed by chasing the source instance with
both the dependencies in Σ and the integrity constraints de-
fined over the target schema. Our transformations have a
semantics closer to this canonical semantics than transfor-
mations computed by basic mapping algorithms. (See, e.g.,
the motivating examples in the Introduction.) In our future

work, we also aim at determining whether our generation
algorithms compute canonical/universal target instances, or
how they should be modified to obtain such semantics.

Acknowledgements
I would like to thank Gabriele Rendina, who implemented
most of the algorithms presented in this paper, and Paolo
Papotti, for many useful discussions on mapping systems.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] P. A. Bernstein and S. Melnik. Model management 2.0:

manipulating richer mappings. In ACM SIGMOD Int.
Conf. on Management of Data, pages 1–12, 2007.

[3] L. Cabibbo. On keys, foreign keys and nullable attributes
in relational mapping systems. Technical Report 138, DIA
– Università Roma Tre, 2008. Available from
http://web.dia.uniroma3.it/ricerca/rapporti/rapporti.php.

[4] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: semantics and query answering. Theor. Comput.
Sci., 336(1):89–124, 2005.

[5] A. Fuxman, M. A. Hernández, C. T. H. Ho, R. J. Miller,
P. Papotti, and L. Popa. Nested mappings: Schema
mapping reloaded. In Int. Conf. on Very Large Data Bases,
pages 67–78, 2006.

[6] L. M. Haas. Beauty and the beast: The theory and practice
of information integration. In Int. Conf. in Database
Theory, pages 28–43, 2007.

[7] R. Hull and M. Yoshikawa. Ilog: Declarative creation and
manipulation of object identifiers. In Int. Conf. on Very
Large Data Bases, pages 455–468, 1990.

[8] H. Jiang, H. Ho, L. Popa, and W.-S. Han. Mapping-driven
xml transformation. In Int. Conf. on World Wide Web,
pages 1063–1072, 2007.

[9] D. S. Johnson and A. C. Klug. Testing containment of
conjunctive queries under functional and inclusion
dependencies. J. Comput. Syst. Sci., 28(1):167–189, 1984.

[10] A. C. Klug. On conjunctive queries containing inequalities.
J. ACM, 35(1):146–160, 1988.

[11] P. G. Kolaitis. Schema mappings, data exchange, and
metadata management. In ACM Symp. on Principles of
Database Systems, pages 61–75, 2005.

[12] S. Melnik, A. Adya, and P. A. Bernstein. Compiling
mappings to bridge applications and databases. In ACM
SIGMOD Int. Conf. on Management of Data, pages
461–472, 2007.

[13] R. J. Miller, L. M. Haas, and M. A. Hernández. Schema
mapping as query discovery. In Int. Conf. on Very Large
Data Bases, pages 77–88, 2000.

[14] E. J. O’Neil. Object/relational mapping 2008: hibernate
and the entity data model (edm). In ACM SIGMOD Int.
Conf. on Management of Data, pages 1351–1356, 2008.

[15] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and
R. Fagin. Translating web data. In Int. Conf. on Very
Large Data Bases, pages 598–609, 2002.

[16] A. Raffio, D. Braga, S. Ceri, P. Papotti, and M. A.
Hernández. Clip: a visual language for explicit schema
mappings. In Int. Conf. on Data Engineering, pages 30–39,
2008.

[17] M. Roth, M. A. Hernández, P. Coulthard, L.-L. Yan,
L. Popa, C. T. H. Ho, and C. C. Salter. Xml mapping
technology: Making connections in an xml-centric world.
IBM Systems Journal, 45(2):389–410, 2006.

[18] C. Yu and L. Popa. Constraint-based xml query rewriting
for data integration. In ACM SIGMOD Int. Conf. on
Management of Data, pages 371–382, 2004.

274

