
An Inductive Database and Query Language in the
Relational Model

Lothar Richter, Jörg Wicker, Kristina Kessler, and Stefan Kramer
Technische Universität München, Institut für Informatik I12

Boltzmannstr. 3
D-85748 Garching b. München, Germany

+49 89 289 19411
{lothar.richter, joerg.wicker, stefan.kramer}@in.tum.de, kskessler@web.de

ABSTRACT
In the demonstration, we will present the concepts and an
implementation of an inductive database – as proposed by
Imielinski and Mannila – in the relational model. The goal
is to support all steps of the knowledge discovery process,
from pre-processing via data mining to post-processing, on
the basis of queries to a database system. The query lan-
guage SIQL (structured inductive query language), an SQL
extension, offers query primitives for feature selection, dis-
cretization, pattern mining, clustering, instance-based learn-
ing and rule induction. A prototype system processing such
queries was implemented as part of the SINDBAD (struc-
tured inductive database development) project. Key con-
cepts of this system, among others, are the closure of oper-
ators and distances between objects. To support the analy-
sis of multi-relational data, we incorporated multi-relational
distance measures based on set distances and recursive de-
scent. The inclusion of rule-based classification models made
it necessary to extend the data model and the software ar-
chitecture significantly. The prototype is applied to three
different applications: gene expression analysis, gene regu-
lation prediction and structure-activity relationships (SARs)
of small molecules.

1. INTRODUCTION
Inductive databases are databases handling data, patterns

and models, and supporting the complete knowledge dis-
covery process on the basis of inductive query languages.
Many of the recent proposals for inductive databases and
constraint-based data mining are restricted to single pat-
tern domains (such as itemsets or molecular fragments) or
single tasks, such as pattern discovery or decision tree in-
duction. Although the closure property is fulfilled by many
of those approaches, the possibilities of combining various
techniques in multi-step and compositional data mining are
rather limited. In the demonstration, we present a prototype
system, SINDBAD (structured inductive database develop-
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ment), supporting the most basic preprocessing and data
mining operations such that they can be combined more or
less arbitrarily. One explicit goal of the project is to sup-
port the complete knowledge discovery process, from pre-
processing to post-processing. The research extends ideas
discussed at the Dagstuhl perspectives workshop“Data Min-
ing: The Next Generation” [1], where a system of types and
signatures of data manipulation and mining operators was
proposed to support compositionality in the knowledge dis-
covery process. In this work, the main idea was to use the
simplest possible signature (mapping tables onto tables) as
a starting point for the exploration of more complex scenar-
ios.
The development of ideas was guided by several use cases,
for instance, the analysis of the NCI DTP HIV data [9] or
gene regulation prediction [4]. Starting from concrete sce-
narios for multi-step, compositional data mining, we identi-
fied building blocks necessary for their reconstruction in an
inductive query language.
For the development of such a system, various paradigms
could have been adopted. In SINDBAD, we chose the re-
lational model, as it possesses several desirable properties,
from closure to convenient handling of collections of tuples.
Moreover, it is possible to take advantage of mature and
optimized database technology. Finally, systems supporting
(variants of) SQL are well-known and established, making it
easier to get users acquainted with new querying facilities.
Thus, we took the same approach as, for instance, Meo et
al. [10] and devised a data mining extension of SQL. The
extension is more comprehensive than previous approaches
by covering discretization, feature selection, pattern discov-
ery, clustering and classification. Similar approaches have
been taken by Imielinski and Virmani [7], and Han et al.
[6]. For a comprehensive discussion of these query languages
and the current lack of preprocessing (and postprocessing)
primitives, we refer the reader to a survey by Boulicaut and
Masson [2].

2. SINDBAD: CONCEPTS AND IMPLEMEN-
TATION

The goal of the SINDBAD system is to support the whole
knowledge discovery process, from pre-processing via data
mining to post-processing, on the basis of database queries.
The approach adopts the relational model. As each pre-
processing and data mining operator returns a table, queries
can be arbitrarily nested. In this way, the kind of composi-
tionality needed in multi-step data mining can be achieved
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easily. One of the main ideas of the system is to support the
knowledge discovery process by a successive transformation
of data. The mining operators were designed in analogy to
relational algebra and SQL: For instance, we made heavy use
of the extend-add-as operator and devised a feature-select
clause in analogy to the select clause. SIQL (structured in-
ductive query language), the query language supported by
SINDBAD, is a straightforward extension of SQL. Instead
of just adding complicated data-mining operators to SQL,
we focused on incorporating small, but extensible and ad-
justable operators that can be combined to build more com-
plex functions.
From each category of preprocessing/mining algorithms, we
implemented most fundamental representatives. For dis-
cretization, we included equal-frequency/equal width, for
feature selection a filter approach based on information gain
or variance, for pattern mining, the computation of frequent
itemsets using APriori, for clustering k-Medoids, and for
classification k-nearest neighbor and rule induction (pFOIL,
a propositional variant of FOIL [11]). External tools can be
integrated via wrappers.
We adopted the extend [3] operator to add the results of
various data mining operations as new attributes to a given
relation. It computes a function for each tuple and adds the
result as the value of a new attribute. The most general
form of an extend clause is given as follows:

<extend-clause> ::= extend <relation>

add <function>

as <att>

As an example, consider we want to add a new attribute
gmwt to a table p, defined as the attribute weight multiplied
by 454 [3]:

> extend p

> add (weight*454)

> as gmwt

In SINDBAD, the extend operator adds the result of clus-
tering, instance- or rule-based predictions, and sampling to
a table. For clustering/classification, the cluster/class mem-
bership is indicated by an additional attribute. In sampling,
the sample membership determined by a random number
generator is given in the new attribute. In this way, we can
split datasets, for instance, into a training set and a test set.
For clustering and instance-based learning (k-nearest neigh-
bor), other methods for handling tuples and distances are
provided as well.
One of the central concepts of SINDBAD is that of distances
between objects. This is not restricted to tuples of a single
relation. Using relational distance measures, it is possible
to apply clustering and instance-based learning to multi-
relational data [12]. Most relational distance measures are
based on recursive descent and set distances, i.e., distances
between sets of points. In the simplest case, the computation
of a distance between two sets of tuples A and B boils down
to computing the minimum distance between two elements
of each set (single linkage), dSL(A, B) = mina∈A,b∈B d(a, b).
Other measures, also known from hierarchical agglomerative
clustering, include complete linkage and average linkage. In
Table 1, various parameters for configuring multi-relational
distance measures in SINDBAD are shown.
Particularly in biological applications, we often find tables

where all attributes are of the same type. In this case, the

Table 1: Parameters of multi-relational distance

measures

(11)> configure

> multirelational_recursion_depth = 3;

(12)> configure

> multirelational_exclude_tables = ’’;

(13)> configure

> distance_between_instances = euclidean;

(14)> configure

> distance_between_instance_sets =

> single_linkage;

possibility to transpose a table makes sense. Therefore, we
included a primitive for table transposition in SIQL. If a
table is transposed, tuple identifiers become attributes, and
vice versa.
Table 2 shows an selection of other SIQL operators (for a
full list, we have to refer to a more comprehensive publica-
tion [8]). Following operators for discretization and pattern
mining (frequent itemsets), a feature select clause reminis-
cent of the select clause in SQL is presented. Feature se-
lection can be done according to various criteria specified in
<fscondition>, for instance by applying hard thresholds, or
by relative thresholds (in top).

One of the most recent additions is the inclusion of full-

Table 2: Selection from query language definition:

discretization, pattern mining, and feature selection

<disc-clause> ::=

discretize (* | <att-list>)

in <relation>

<pattern-disc-clause> ::=

frequent itemsets

in <relation>

<feature-select-clause> :: =

feature select <conditions-on-tuples>

from <relation>

where <fs-condition>

<fs-condition> ::=

((variance | infogain <att>)

((<|>|=|<=|>=) <real> |

in top <integer>))

fledged predictive models in the form of rule sets. For sim-
plicity, we chose pFOIL, a propositional variant of the tradi-
tional FOIL algorithm [11]. The addition of models required
significant extensions of the data model of the system. Mod-
els can be composed of component models. The evaluations
of component models (e.g. class predictions) can be aggre-
gated via combining functions. Combining functions can be
defined in terms of logical or arithmetic operators. In this
way, rule sets, weighted rule sets, trees, linear classifiers, and
ensembles can be handled conveniently.
The SINDBAD prototype is implemented in Java. For pars-
ing the queries, we used the lexical analyzer generator JFlex
(see http://jflex.sourceforge.net/) and the parser gen-
erator Cup (see http://www2.cs.tum.edu/projects/cup/).
The implementation supports arbitrarily nested queries. In
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the future, we are planning to integrate a full-fledged anal-
ysis of parse trees, opening possibilities for query optimiza-
tion. The system is built on top of PostgreSQL (see http://
www.postgresql.org/), an open source relational database
management system. Most of the inductive queries are bro-
ken down and translated into a larger number of less complex
non-inductive queries. The implementation of data mining
features as PostgreSQL functions seems to be critical for
performance.

3. DEMONSTRATION OVERVIEW
In the demonstration, we will highlight some of the main

features of SINDBAD in three real-world applications. In
the first application, we test it on the gene expression data
from Golub et al. [5], which contains the expression levels
of genes from two different types of leukemia. In the second
application, the task is to predict gene regulation dependent
on the presence of binding sites and the state of regulators
[4]. The third application is to predict anti-HIV activity for
more than 40,000 small molecules [9].

3.1 Gene expression analysis
Table 3 shows how the AML/ALL gene expression dataset

is analyzed step by step. We aim at finding a classifier
that predicts the cancer type, either acute myeloid leukemia
(AML) or acute lymphoblastic leukemia (ALL), from the
gene expression levels of a cell line. The expression levels
of a cell’s gene are equivalent to metabolic functions of the
cell and characteristic for each cell type. The input relation
contains attributes stating the expression levels of the genes
(that is, one attribute per gene) and one class attribute,
which gives the actual tumor subtype (AML or ALL) of the
cell. Table 3 shows the input and output of the system with-
out displaying the actual relations.

First, the dataset is loaded, discretized and divided into
a training and a test set (queries (20) to (23)). Note that
the discretization and labeling as training or test example
is done in the second query. The sample membership state-
ment conceptually splits a set of examples into two subsets,
simply indicated by an additional attribute containing either
the value zero or one. The following two queries split the
table into two tables based on the previously added informa-
tion. Queries (24) perform class-sensitive feature selection.
As a result, we reduce the dataset to the fifty genes with
maximal information gain with respect to the tumor sub-
type to be predicted. Since the test set should have the
same attributes as the training set, we project the former
onto the attributes of the latter in query (25). Next, we
query for frequent itemsets, that is, co-expressed genes. The
co-expressed genes are used to transform the data, because
individual genes are usually only predictive in conjunction
with other genes. In the following queries, one new attribute
per frequent itemset is added to training (27) and test table
(28), which specifies which gene occurs in which frequent
item set. Then, it uses feature selection to remove the origi-
nal expression attributes. In this way, each example is repre-
sented only by attributes indicating co-expression with other
genes. Finally, query (29) induces a k-nearest neighbor clas-
sifier on the training table and applies it to the examples in
the test table. The predictions are added to the test table
as values of the new attribute predicted_tumor_subtype.
More generally, the k-nn clause adds the values of a pre-
dicted attribute to a given test set on the basis of a target

attribute of a given training set:

extend <testset>

add knn prediction

of <targetatt>

from <trainset>

as <predictatt>

Table 3: Sample run on leukemia gene expression

dataset

(20)> create table expression_profiles as

> import ../ALLAML.arff;

(21)> create table

> train_test_expression_profiles as

> extend (discretize * in expression_profiles)

> add sample membership as test_flag;

(22)> create table

> train_expression_profiles as

> select * from

> train_test_expression_profiles

> where test_flag = true;

(23)> create table

> test_expression_profiles as

> select * from

> train_test_expression_profiles

> where test_flag = false;

(24)> create table

> reduced_train_expression_profiles as

> feature select * from

> train_expression_profiles

> where infogain tumor_subtype in top 50;

(25)> create table

> reduced_test_expression_profiles as

> project test_expression_profiles onto

> reduced_train_expression_profiles

> attributes;

(26)> create table

> coexpressed_genes as

> frequent itemsets in

> reduced_train_expression_profiles;

(27)> create table train_set as

> feature select * from

> (extend reduced_train_expression_profiles

> add covered by coexpressed_genes

> as ’fp’)

> where attribute like ’fp%’ or

> attribute = ’tumor_subtype’;

(28)> create table test_set as

> feature select * from

> (extend reduced_test_expression_profiles

> add covered by coexpressed_genes

> as ’fp’)

> where attribute like ’fp%’ or

> attribute = ’tumor_subtype’;

(29)> create table

> classified_test_expression_profiles as

> extend test_set

> add knn prediction of tumor_subtype

> from train_set

> as predicted_tumor_subtype;
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3.2 Gene regulation prediction
In the following, we briefly demonstrate multi-relational

clustering and classification on gene regulation data [4]. Gene
expression is the complex process of conversion of genetic in-
formation into resulting proteins. It mainly consists of two
steps: transcription and translation. Transcription is the
copying of a DNA-template in mRNA mediated by special
proteins, so called transcription factors. Translation is the
protein formation based on the information coded in the
mRNA. The data used here in this work reflects regulatory
dependencies involved in the step of transcription. The task
on this data is to learn a model that predicts the level of gene
expression, i.e., to learn under which experimental condi-
tions a gene is up- or down-regulated. The expression level
of a gene depends on certain experimental conditions and
properties of the genes such as the presence of transcription
factor binding sites, functional categorizations, and protein-
protein interactions. The data is represented in five relations
(see Table 4). The main table stores the gene identifiers and
their expression level, as well as an identifier of the exper-
imental condition. The experimental conditions are given
in two separate relations, information about the genes and
their interactions to each other in two additional tables.
Given this input, we can compute the similarity of a gene-

Table 4: Relational schema of gene regulation data.

The relation gene is the main table and connects

genes with experimental setups and expression lev-

els. The fun cat relation gives the functional cate-

gory membership of a gene accordign to the Fun-

Cat database. The third relation, has tfbs indicates

occurrence of transcription factor binding sites in

respective genes whereas in the regulators table ex-

perimental conditions and activated regulators are

given. The last table p p interaction gives the gene

product interaction data.

gene(gene_id, fun_cat(gene_id,

cond_id, fun_cat_id)

level)

has_tfbs(gene_id, regulators(cond_id,

yaac3_01, ybl005w,

yacc1_01, ycl067c,

yacs1_07, ydl214c,

yacs2_01, ydr277c,

...) ...)

p_p_interaction(gene1_id,

gene2_id)

condition pair using multi-relational distance measures. The
results of k-medoids clustering is shown in Table 5.
The results of k-nearest neighbor classification is shown in
Table 6. The target attribute in this case is the increase or
decrease in expression level. The class attribute is set to +1
if the expression is above a certain threshold, and −1 if it is
below. K-nearest neighbor is configured for k = 10 and the
“majority wins”strategy for prediction. This is a good exam-
ple for the advantage of the support of multi-relational dis-
tance measures over simple propositional distance measures.
Multi-relational distances make it possible to analyze com-
plex data with algorithms designed for propositional data in
an easy and transparent way without further modifications.

Table 5: k-Medoids for gene regulation prediction.

The resulting table shows in column 2 the gene iden-

tifiers, in column 3 the experimental conditions, fol-

lowed by the change of expression level and the clus-

ter membership in column 3 and 4.

(30)> configure kmedoids_k = 5;

(31)> ...

(32)> extend gene add k medoid membership of gene;

(33)> show table gene;

row|gene_id|cond_id |level|cluster|

1 |YAL003W|2.5mM DTT 120 m dtt-1 |-1 |2 |

2 |YAL005C|2.5mM DTT 180 m dtt-1 |-1 |3 |

3 |YAL005C|1.5 mM diamide (20 m) |+1 |5 |

4 |YAL005C|1.5 mM diamide (60 m) |+1 |1 |

5 |YAL005C|aa starv 0.5 h |-1 |2 |

...|... |... |... |... |

Table 6: k-nearest neighbor for gene regulation pre-

diction. This resulting table, column 2 and 3 are the

same as in Table 5 followed by the predicted class

label in column 4.

(40)> configure KNearestNeighbour_K = 10;

(41)> extend gene_test add knn prediction

> of level from gene_train;

(42)> show table gene_test;

row|gene_id|cond_id |class|

1 |YBL064C|aa starv 1 h |+1 |

2 |YDL170W|YPD 3 d ypd-2 |-1 |

3 |YER126C|Heat shock 40 minutes hs -1 |-1 |

4 |YJL109C|dtt 240 min dtt-2 |+1 |

5 |YKL180W|Nitrogen Depletion 1 d |+1 |

...|... |... |... |

3.3 Structure-activity relationships
In the last application, we predict the anti-HIV activity of

small molecules using the NCI Developmental Therapeutics
Program HIV data [9]. Here, the AIDS antiviral screen data
of the National Cancer Institute (see http://dtp.nci.nih.

gov/docs/aids/aids_screen.html) is used. The data is a
collection of about 43,000 chemical structures, which are la-
beled according to how effectively they protect human CEM
cells from HIV-1 infection [14]. We search the data for rules
describing a compound’s activity against HIV. Hence, the
data is prepared and randomly split into test and training
set. We chose a representation where each attribute in the
training and test relation specifies whether or not a chemi-
cal substructure occurs in a substance. The attributes are
named f1 to f688, each of them representing a chemical sub-
structure occuring in the antiviral screen data. The numbers
refer to the order of their detection by the tree mining al-
gorithm which searched these frequent subtrees in the data
set. An additional attribute gives the target label, that is,
the compound’s effectiveness in protecting against HIV. In
Table 7, a protocol of the analysis steps is shown. In the first
few queries the datasets are prepared and the FOIL rule in-
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duction algorithm is configured (50)-(56). In the main step,
rules are learned (57) and displayed (58). The sample rule
refers to substructures 683, 262, 219, and 165 to predict a
compound as active. Finally, the rule set is applied to a test-
set, adding its predictions as an additional attribute (59).

Table 7: Rule learning applied to NCI HIV data.

(50)> configure sampling_method = ’holdout’;

(51)> configure sampling_percentage = ’0.25’;

(52)> configure sampling_keep_ratio_column =

> ’activity’;

(53)> create table hiv_train_test as

> extend hiv_formatted

> add sample membership as test_flag;

(54)> create table testset as

> select * from hiv_formatted

> where test_flag = false;

(55)> create table trainset as

> select * from hiv_formatted

> where test_flag = true;

(56)> configure foil_mdl = ’true’;

(57)> create table hiv_rules as learn rules

> for activity in trainset;

(58)> show table hiv_rules;

(activity = true <- f683 = true AND

f262 = true AND f219 = true AND

f165 = true)

...

(59)> extend testset add

> model prediction of

> hiv_rules

> as learned_activity;

4. RELATED WORK AND CONCLUSION
In the demonstration, we present a new and comprehen-

sive approach to inductive databases in the relational model.
The main contribution is a new inductive query language in
the form of a SQL extension, including pre-processing and
data mining operators. SINDBAD and SIQL differ from
related work [2] in – among other things – the support of
pre-processing features. Also, it is a real prototype, useful
for exploring concepts and requirements on such systems.
Since it is at the moment far from clear what the require-
ments of a full-fledged inductive database will be, it is our
belief that we can only find out by building such prototype
systems.
The most similar work in the literature and on the market
is MS SQL Server [13]. For a detailed comparison, we have
to refer to a previous publication [8]. However, the main
focus of SINDBAD is the successive transformation of data,
which is not the case in MS SQL Server. Moreover, the ap-
proach presented here seems to be less rigid, especially with
respect to feature selection, discretization, and pattern min-
ing. In future work, we are planning to investigate a more
elaborate system of signatures and types. Type signatures
would be useful to define admissible inputs and outputs of
data manipulation and mining operations. Signatures of op-
erators would enable first steps towards the optimization of
inductive queries.
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