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ABSTRACT
Enterprises may have multiple database systems spread across
the organization for redundancy or for serving different ap-
plications. In such systems, query workloads can be dis-
tributed across different servers for better performance. A
materialized view, or Materialized Query Table (MQT), is
an auxiliary table with pre-computed data that can be used
to significantly improve the performance of a database query.
In this paper, we propose a framework for coordinating ex-
ecution of OLAP query workloads across a database clus-
ter with shared nothing architecture. Such coordination is
complex since we need to consider (1) the time to build the
MQTs, (2) the query execution impact of the MQTs, (3)
whether the MQTs can fit in the disk space limitation, (4)
server computation power, and (5) the effectiveness of the
scheduling and placement algorithms in deriving a combina-
tion of configurations so that the workload can be completed
in the shortest time period. We frame the problem as a com-
binatorial problem with a solution space that is exponen-
tial in the number of queries, MQTs, and servers. We pro-
vide a stochastic search heuristic that finds a near-optimal
mapping of queries-to-servers and MQTs-to-servers within
an arbitrarily bounded time and compare our solution with
an exhaustive search and three standard greedy algorithms.
Our search implementation produced schedules within 9%
of the optimal found through an exhaustive search and pro-
duced better solutions than typical greedy algorithms for
both TPC-H and synthetic benchmarks under a variety of
experiments. For a key trial where disk space is limited, it
produced 15% better results than the next best competitor,
corresponding to an absolute wall clock advantage of over
10 hours.
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1. INTRODUCTION
Enterprises may have multiple database systems spread

across the organization for redundancy or for serving differ-
ent applications. For example, an insurance company may
have two identical database systems, one as a production
system for online transactions and one as a hot standby.
The insurance company could also have additional database
systems which have a subset of base tables for various ap-
plications, such as claim process, risk analysis, and cross
sale analysis. In such systems, query workloads can be dis-
tributed across different servers for better performance.

These systems have their dedicated missions in the day
time, but they could be left idle or under-utilized in the
evening when batch workloads are processed. These systems
may be located in the headquarters or data centers, or they
may be distributed across multiple locations. In this paper,
we propose to utilize and coordinate these available servers
and use them as a database cluster to process OLAP-type
query workloads.

A common approach to improving query running time is
the use of materialized views, which we call Materialized
Query Tables (MQTs). An MQT is an auxiliary table with
pre-computed data that can be used to significantly improve
the performance of a database query [18] [7]. To be consis-
tent with work such as [2], we use the term MQT to refer
to both the materialized view (with their indexes) as well as
indexes on base tables.

Because MQTs are required in OLAP (Online Analytical
Processing) applications in which the query workloads tend
to have complex structures and syntax, a separate MQT
Advisor product is often used to recommend MQTs [35]
[1]. Several vendors have MQT Advisor products, includ-
ing IBM DB2 Design Advisor [34] [35], RedBrick/Informix
[28], Oracle 10g [24], and Microsoft SQL Server [21]. All
of these MQT Advisors provide recommendations for only
single server configurations.

In this paper, we propose a framework for coordinating
and optimizing execution of OLAP query workloads across a
cluster of database servers with shared-nothing architecture.
For a database cluster, such an optimization is achieved
when the maximum completion time of the workloads across
all database servers is minimized. The completion time at
each database server includes MQT and index building time
and query workload execution time.
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Figure 1: A high-level overview of how our scheduler system fits into a traditional DBMS. (1) A query workload is

submitted to our scheduler. (2) The scheduler gives the queries to an MQT Advisor product, which (3) returns a set

of candidate MQTs and associated indexes. (4) The scheduler runs a search heuristic against possible combinations

and produces query-to-server and MQT-to-server mappings. (5) The mappings are used to distribute the queries and

MQTs onto the servers.

A näıve manner of load distribution is to divide the work-
load into multiple sub-workloads and assign each sub-workload
to a database server in some greedy manner, such as a round-
robin distribution. This simple solution will not work for
several reasons:

• queries routed to a database server may not be collo-
cated with their needed MQTs;

• some MQTs may not fit in the data server that has a
limited disk space;

• some sub-workloads may be more expensive to execute
than others, so some server may be idle while other
servers are still busy;

• some servers may be more powerful than others.

We assume the database cluster may consist of database
servers. We would like to derive a load distribution solution
such that the tasks of each server (building the MQTs and
then running the sub-workload) are completed with mini-
mum overall time. Such a solution is complex since we need
to consider the time to build the MQTs, the query execution
impact of the MQTs, whether the MQTs can fit in the disk
space limitation, server computation power, and the solution
space size of all combinations of configurations.

Furthermore, we would like a solution where no assump-
tions can be made about the presence of a query-routing
optimizer, such as that found in [17], which assumes feder-
ation. Our approach only assumes that the servers in the
cluster are independent and potentially heterogeneous with
no other query placement optimizer than our own. We dis-
cuss these subtle differences more in Section 5 on related
work.

In this paper we model the scenario as a combinatorial
problem with a solution space that is exponential in the
number of queries, MQTs, and servers. We provide a genetic

algorithm (GA) search heuristic that finds a near-optimal
mapping of queries-to-servers and MQTs-to-servers within
an arbitrarily bounded time and compare our solution with
an exhaustive search and two standard greedy algorithms.
We evaluated the proposed framework using an extended
TPC-H workload and compared it with various approaches.
The experimental results validate scalability and effective-
ness of our approach. Our GA implementation produced
schedules within 9% of the optimal found through an ex-
haustive search and produced better solutions than typi-
cal greedy algorithms for both TPC-H and synthetic bench-
marks under a variety of experiments. For a key trial where
disk space is limited, it produced 15% better results than
the next best competitor, corresponding to an absolute wall
clock advantage of over 10 hours.

This paper is organized in the following manner. In Sec-
tion 2 we describe the problem space where queries and
MQTs are distributed across servers and then propose a
search heuristic to find near-optimal solutions. In Section
3 we describe how we implemented our genetic algorithm.
In Section 4 we show our experiments and results from our
implementation. We discuss related work in Section 5 and
conclude our paper in Section 6.

2. QUERY AND MQT PLACEMENT
2.1 Problem space

Figure 1 shows how our system fits into an existing database
framework. Our key component is a scheduler that operates
on the queries and the MQTs produced by an existing MQT
Advisor product.

Once the MQTs are recommended by the MQT Advisor,
they and the queries may be spread across several servers in
a distributed environment such as the clustered system we
are considering. These servers may be placed across multiple
branch sites, or they can be redundant nodes located at the
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same site. Our scheduler distributes the workload’s queries
and MQTs according to query-to-server and MQT-to-server
mappings. This paper is focused on finding the optimal
mappings that produces the shortest workload running time.

Figure 2 is an abstract representation of the distribution
problem. Suppose there are Q queries in the workload, M
candidate MQTs recommended by the MQT Advisor, and S
servers. We define the problem with the following assump-
tions.

1. Each of the Q queries can be assigned to exactly one of
the S servers. There are thus SQ total combinations
of such assignments.

2. Each of the M MQTs can be replicated across the S

servers. Since each MQT is either at or is not at each
server (a boolean condition), there are 2(M×S) total
combinations.

3. Every time a candidate MQT is replicated to a server,
a materialization cost is incurred. In our experiments,
we use the actual materialization cost from the MQTs
produced from a TPC-H workload.

4. We assume that the servers have access to the base
tables needed for the queries.

5. Each query may be dependent on one or more candi-
date MQTs, where this mapping is given by the MQT
Advisor product. We further assume that each query’s
execution time is largely taken up by the execution of
one or more long-running sub-queries, and when the
MQT Advisor evaluated the query, it properly recom-
mended one or more candidate MQTs created by these
sub-queries. Thus, the execution time of a given query
is largely determined by whether or not its required
MQTs are collocated at the same server. We thus use:
(a) a query-to-MQTs requirement mapping; (b) sub-
query running times with collocated MQTs; and (c)
sub-query running times without collocated MQTs. In
our experiments, these parameters are again provided
by the MQTs produced from a TPC-H workload.

6. In this paper we assume that the time to execute the
queries and materialize the MQTs dominate any net-
work delays (transmission, propagation, or queueing).

7. The execution time of the workload as a whole is de-
fined to be the maximum execution of its queries across
the servers. In the job-scheduling research community,
this value is known as the makespan.

The objective of the system is to minimize item (7), the
maximum workload execution time across the servers. (An
alternative optimization objective would to minimize the
variance between the execution times.) In other words,

• Let t[s] be the execution time of server s

• ∀s, let T ≥ t[s]

• The objective is to minimize T .

The resulting problem is to find optimal mappings of queries-
to-servers and MQTs-to-servers that meets the objective.
Intuitively, we would like a schedule of these two mappings

MQT  1 MQT  2

Server  1 Server 2 Server  S

Query  1 Query  2 Query  Q

...

...

...

MQT  M

Figure 2: The allocation problem. There are Q queries,

M MQTs, and S servers. Each query is assigned to one

server. Each MQT can be replicated across multiple

servers.

that produces a high number of collocations for a given num-
ber of MQT materializations. Such a workload would pro-
duce the best net effect between the positive factor of having
a collocation (where the query can read the MQT) and the
two negative factors of having to materialize an MQT and
of not having a collocation (where the query must read the
base tables).

Given (1) and (2) above, it can be seen that the ex-
haustive number of different distribution combinations is
SQ ×2(M×S). Even for small parameters, the solution space
grows exponentially, making an exhaustive search infeasible.

2.2 Genetic algorithm search heuristic
Given the solution space of SQ×2(M×S), the goal is to find

the best placements of queries and MQTs onto the servers
to minimize the execution time. To search through the so-
lution space, we use a genetic algorithm (GA) global search
heuristic that allows us to explore portions of the space in a
guided manner that converges towards the optimal solutions
[14] [13]. We note that a GA is only one of many possible
approaches for a search heuristic; others include tabu search,
simulated annealing, and steepest-ascent hill climbing. We
use a GA only as a tool.

GAs have been used to solve a variety of optimization
problems. [11] and [20] provide good surveys. A GA is a
computer simulation of Darwinian natural selection that it-
erates through various generations to converge toward the
best solution in the problem space. A potential solution
to the problem exists as a chromosome, and in our case, a
chromosome is a specific mapping of queries-to-servers and
MQTs-to-servers along with its associated workload execu-
tion time. Genetic algorithms are commonly used to find
optimal exact solutions or near-optimal approximations in
combinatorial search problems such as the one we address.
It is known that a GA provides a very good tradeoff be-
tween exploration of the solution space and exploitation of
discovered maxima [13].

Pseudo code for a genetic algorithm is shown in Algo-
rithm 1. The GA executes as follows. The GA produces
an initial random population of chromosomes. The chro-
mosomes then recombine (simulating sexual reproduction)
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Algorithm 1 Genetic search algorithm

1: FUNCTION Genetic algorithm
2: BEGIN

3: Time t

4: Population P (t) := new random Population
5:
6: while ! done do

7: recombine and/or mutate P(t)
8: evaluate(P (t))
9: select the best P (t + 1) from P (t)

10: t := t + 1
11: end while

12: END

to produce children using portions of both parents. Muta-
tions in the children are produced with small probability to
introduce traits that were not in either parent. The chil-
dren with the best scores (in our case, the lowest workload
execution times) are chosen for the next generation. The
steps repeat for a fixed number of iterations, allowing the
GA to converge toward the best chromosome. In the end
it is hoped that the GA explores a large portion of the so-
lution space. With each recombination, the most beneficial
portion of a parent chromosome (that is, the best portions
of the queries-to-servers and MQTs-to-servers mappings) is
ideally retained and passed from parent to child, so the best
child in the final generation has the best mappings. To im-
prove the GA’s convergence, we implemented elitism, where
the best chromosome found so far is guaranteed to exist in
each generation.

Note that the GA is not guaranteed to find the opti-
mal solution since the recombination and mutation steps
are stochastic. However, as we show later, our GA imple-
mentation consistently comes within 9% of the optimal solu-
tion without the exponential running time of an exhaustive
search.

We chose a GA for several reasons. From our own prior
work, we are familiar with its operations and the factors
that affect its performance and optimality convergence. Ad-
ditionally, the queries-to-server and MQTs-to-server map-
pings are ideally suited to array and matrix representations,
allowing us to use prior GA research that aid in chromosome
recombination [9].

3. GENETIC ALGORITHM DESIGN
3.1 Chromosome representation

The chromosomes are the mappings and their associated
scores. The GA recombines and evaluates these chromo-
somes during its execution.

Given the fact that we are modeling two mappings, namely
the mapping of queries onto the servers and the MQTs onto
the servers, it is intuitive that the mappings could be imple-
mented as a one-dimensional array and a two-dimensional
matrix, respectively. In the 1D array for the query place-
ments, the ith element could contain the server identifier
at which the ith query is placed. In the 2D matrix for the
MQT placements with replication, position (i, j) could be a
boolean indicator that MQT i is at server j.

However, from our previous work, we have learned that
having two separate sets of chromosomes for a multi-objective

0 1 2

0

1

2

C C

A

B

MQTs

Q
ue

ri
es

0 1 2

A B C

0 1 2

MQTs:

Queries:

Servers:

Figure 3: This figure shows a chromosome data struc-

ture on the left and the physical mapping that it repre-

sents on the right. A chromosome is a collocation map-

ping of queries and MQTs to the same server. Its data

structure is a 2-dimensional Q × M matrix where row i,

column j is the server at which query i and MQT j are

collocated. For example, it can be seen in the matrix

(left) that query 0 and MQT 1 are collocated at server

C, which is also evident in the physical mapping (right).

optimization has a hard time converging. We instead use
a single unified chromosome that represents collocations of
queries and MQTs onto the same server.

The layout of the chromosome is shown in Figure 3. The
chromosome is a 2D matrix shown on the left of the figure.
Position (i, j) in the matrix contains the server identifier
where query i is collocated with MQT j or null if they are
not collocated. The physical collocations are shown on the
right of the figure. Note that this representation is a very
concise way of showing collocations. It omits unnecessary
MQT-to-server placements that do not result in a collocation
with a server.

3.2 Chromosome recombination and mutation
Two parent chromosomes recombine to produce a new

child chromosome. The hope is that the child contains the
best contiguous chromosome regions from its parents.

An example recombination is shown in Figure 4. A cut
point in the range of [0, Q−1] is chosen, and the rows above
the cut point from one parent are combined with the rows
below the cut point from the other parent. Since each row
represents the collocations of a particular query with the
MQTs, the child inherits the respective collocations from its
parents. Note that new collocations may arise as shown in
the figure.

To help the GA explore more of the solution space, we
implemented mutations in new children. A mutation con-
sists of randomly-introduced MQT-to-server links with low
probability (we use 0.1 in accordance with GA best prac-
tices). Note that the mutation is introduced into the child
before the chromosome is formed, meaning that the new
MQT-to-server links will be ignored unless it results in a
new collocation with a server.

3.3 Evaluation function
The evaluation function returns the resulting workload ex-

ecution time given a chromosome and the requirement map-
ping between queries and MQTs (which is produced by the
MQT Advisor). Note the function can be implemented to
evaluate the workload in any way so long as it is consistently
applied to all chromosomes across all generations.

Our evaluation function is shown in Algorithm 2. In lines
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Figure 4: This figure shows an example recombination between two parents to produce a new child. Parent 1 is

the same chromosome shown in Figure 3. Initially a cut point is randomly chosen in the range [0, Q − 1]. The rows

[0, cutpoint − 1] from parent 1 and the rows [cutpoint,Q − 1] from parent 2 are chosen. Since each row of the matrix

represents a collocation of one query and several MQTs, the chosen rows represent sets of collocations. In this figure,

a cut point of 1 was chosen. In parent 1 in the upper-left box, row range [0, 0] was selected (shown shaded), and

the resulting physical collocations are shown to the right of the matrix using dark solid arrows. The dashed arrows

represent collocations which were not inherited by the child. In parent 2 in the lower-left box, row range [1, 2] was

selected. In the child in the right box, the respective collocations from parent 1 and parent 2 are combined into a new

chromosome. Note that a new collocation was created (the collocation of query 1 and MQT 0 at server C).

7 to 9, it initializes the execution times for all the servers in
the chromosome. In lines 11-16, it checks to see what MQTs
have been materialized and at what server. It accordingly
adds these materialization times to the respective servers.
Lines 18 to 29 are the key loop that looks across all col-
locations. If a query needs a particular MQT, the query’s
execution with the MQT is added to the execution time if
the query and MQT are collocated. If they are not collo-
cated, then the query’s execution time without the MQT
is added (where this execution time is the time to run the
sub-query against the base tables). The function returns the
maximum execution time among the servers.

4. EXPERIMENTS
4.1 Setup

The goals of our experiments were to: (1) show that our
genetic algorithm implementation does a good job in find-
ing solutions and quantify how close it comes to the optimal
solutions that are found via an exhaustive search; and (2)
compare the performance of the GA against greedy algo-
rithms that run faster than the GA but may not find as
good a solution. In the experiments that follow, we use the

following names for the scheduler algorithms:

• GA: our genetic algorithm implementation described
in Section 3

• Exhaustive: an exhaustive searching algorithm that
iterates through all SQ × 2(M×S) combinations

• Greedy1-MQTs-then-queries: a greedy algorithm
that deals out the MQTs across the servers in round-
robin fashion and then assigns each query to the server
that hosts the most number of its needed MQTs

• Greedy2-queries-then-MQTs: a greedy algorithm
that assigns the queries across the servers in round-
robin fashion and then places only the MQTs that are
needed by each query onto the respective servers

• Greedy3-no-MQTs: a greedy algorithm that assigns
the queries across the servers in round-robin fashion
without any MQTs

In our experiments we used two types of data, namely
a workload produced by the standard TPC Benchmark H
(TPC-H) generator and a synthetic benchmark based on the
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Algorithm 2 GA evaluation function

1: FUNCTION evaluate
2: IN: CHROMOSOME, a representation of the colloca-

tion of queries and MQTs to servers
3: IN: REQUIRES, a mapping between queries and

MQTs
4: OUT: runningtime, the running time of this workload
5: BEGIN

6:
7: for (each server ∈ CHROMOSOME) do

8: set server’s running time to 0
9: end for

10:
11: {Compute the materialization cost of each MQT}
12: for (each mqt ∈ CHROMOSOME) do

13: if mqt was materialized at server then

14: server’s running time += mqt’s materialization
time

15: end if

16: end for

17:
18: for (each query ∈ CHROMOSOME) do

19: server := query’s server
20: for (each mqt ∈ CHROMOSOME) do

21: if query and mqt ∈ REQUIRES then

22: if query and mqt are collocated then

23: server’s running time += query’s running
time with mqt

24: else

25: server’s running time += query’s running
time without mqt

26: end if

27: end if

28: end for

29: end for

30:
31: runningtime := maximum running time of each server
32: return runningtime

33: END

queries and MQTs from the TPC-H benchmark. The initial
TPC-H workload was a set that we extended from 22 queries
to 133 queries with the added queries defined by a Business
Intelligence performance team 1. These additional queries
were defined specifically to simulate BI applications with
complex queries and result in an average query processing
cost equivalent to that of the original 22 queries. The prin-
cipal reason we used this extended set was to allow the IBM
DB2 MQT Advisor to recommend more MQTs to be mate-
rialized, resulting in a bigger solution space. Specifically, for
the 133-query workload, the MQT Advisor recommended 21
MQTs and 21 base table indexes, whereas for the 22-query
workload the MQT Advisor recommended only 9 MQTs and
26 base table indexes. The total amount of TPC-H data was
approximately 20GB.

The result of this step were (1) a mapping of queries to
needed MQTs, (2) query execution times with and without
each MQT, and (3) MQT sizes. We further wanted to study
the algorithms’ scalability with different query and MQT

1This workload is available for other researchers. Please
email us if interested.

counts, but since running the TPC-H generator and the
MQT Advisor product with different initial workloads would
create different MQT characteristics (1-3 in this paragraph),
we used an additional synthetic benchmark to normalize the
results. The synthetic benchmarks produced query-to-MQT
mappings, query executions times, and MQT sizes with the
same statistical distributions as that produced by the TPC-
H benchmark. These parameters are shown in Table 1.

We implemented our scheduler algorithms in standard
C++ and ran our system on an off-the-shelf desktop com-
puter running Red Hat Linux with a Pentium IV 2.8 Ghz
CPU, 2GB of RAM, and 1MB of cache. In all the experi-
ments that follow, the results shown are the results averaged
over 20 trials per data point.

We ran our genetic algorithm for 100 generations with a
population size of 100 chromosomes.

4.2 Comparison against exhaustive search
We initially wanted to quantify how well the GA does in

finding an optimal solution. Figure 5 shows a comparison
of the workload execution times produced by the exhaustive
search and the GA using the synthetic workload. We vary
the number of queries on the x-axis. It can be seen that
the GA produces workload times that are very close, if not
exactly the same as the exhaustive search. In Figure 6 we
show the scheduled workload running times as a function of
an increasing number of MQTs. Again, the GA produced
running times very close to that of the exhaustive search.

For completeness we graph the percent difference between
the GA and the exhaustive search for the two preceding
experiments in Figure 7 and Figure 8, respectively. The
difference between the two does not reach beyond 8.60%.

It is not surprising at all that the primary difference be-
tween the two scheduling algorithms is their running times.
Figure 9 shows the running times of the scheduler itself for
the exhaustive search and the GA for an increasing number
of MQTs. The GA consistently finished within two seconds.
Since the exhaustive search must examine all combinations
in the solution, its running time grows exponentially. Since
the number of combinations is SQ × 2(M×S), its running
time is very sensitive to M , the number of MQTs, which
is reflected in the figure. We suspect that the exhaustive
search’s algorithm could be improved by a constant factor
with faster hardware and a tighter software implementation,
but its growth is exponential nonetheless.

Note that we would have shown data points for more
MQTs had the running time for the exhaustive search not
been so high. Experiments with more than 8 MQTs would
have reached into durations of several hours and then days.

We conclude from this trial that our GA is able to provide
a schedule very close to the optimal solution provided by the
exhaustive search but without its high running time.

4.3 TPC-H workload
In these experiments we compared the running times re-

sulting from the schedules produced by the GA and the
greedy algorithms. We used a TPC-H workload that re-
sulted in 133 queries and 42 combined MQTs and indexes
on them, as mentioned earlier in section 4.1.

Figure 10 shows the running time for the TPC-H bench-
mark workload after having been scheduled by the GA and
the three greedy algorithms. The x-axis shows the increasing
number of servers. In this trial we configured the schedulers
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Experimental parameter Comment

Query running time with MQT Gaussian (λ = 137156 milliseconds, µ = 20420 milliseconds)
Query running time without MQT Gaussian (λ = 1910363 milliseconds, µ = 171428 milliseconds)
MQT materialization time Gaussian (λ = 4753468 milliseconds, µ = 292773 milliseconds)
MQTs required per query Gaussian (λ = 2.1, µ = 0.1)
MQT size Gaussian (λ = 523 MB, µ = 150 MB)

Table 1: Experimental parameters for the synthetic benchmark taken by analyzing a 133 query, 42 MQT TPC-H
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Figure 7: Percent difference between the exhaustive search

and GA scheduled workload times shown in Figure 5.
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and GA scheduled workload times shown in Figure 6.
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Figure 9: Comparison of the running time of the scheduler

itself for the exhaustive search and the GA.

to assume that each server had an infinite amount of avail-
able disk space to hold all 42 possible MQTs. (In reality at
most 25GB of space was needed to hold all the MQTs.)

This figure shows several trends. First, as the number
of servers increases, the workload running times decrease
approximately linearly. This result is expected since the
queries are being spread across the servers in the cluster,
allowing for parallelism. Although the parallel execution is
not a focus of this paper, we do note that the performance
gain does not increase exactly as the number of servers in-
creases. The reason is that the MQT materialization time
is not fully parallelized: even though the queries are dis-
tributed to run in parallel, the MQTs may be replicated
across many servers, and each server accumulates its MQTs’
materialization costs. Second, the GA’s schedule results in
a better workload running time than the greedy algorithms.
As we will discuss in the next subsection, this performance is
due to the fact that the GA converges toward a schedule that
produces a high number of MQT materializations but with
a high number of query and MQT collocations. Third, the
relative performance of the greedy algorithms shows that
Greedy2 (which places queries first and then MQTs) pro-
duces a faster workload running time than Greedy1 (which
places MQTs first and then queries) and Greedy3 (which
places queries but does not use any MQTs). We will more
closely examine the reasons for this behavior later.

In Figure 11 we show the results of running the TPC-H
workload with an increasing amount of disk space per server
for the MQTs. We fixed the number of servers at 4. It can
be seen for all schedulers that the workload running time de-
creases as the disk space increases. Given more disk space,
more MQTs may be materialized, incurring a higher mate-
rialization cost, but jointly more collocations with queries
will occur as well. In the next subsection we show how the
increasing disk space affects materializations and colloca-
tions. The GA does particularly well in this key case where
disk space is a limiting factor. For example, with 10000MB
the GA’s workload running time is 15% better than that of
Greedy2, its closest competitor, which is an absolute advan-
tage of approximately 36000 seconds, or 10 hours.

4.4 MQT behavior
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Figure 10: Running time of TPC-H workload with un-

limited disk space for the MQTs.
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Figure 11: Running time of TPC-H workload with an

increasing amount of disk space available for the MQTs.

There were 4 servers.

We examine in more detail the results from the previ-
ous subsection. As we described earlier, the scheduling al-
gorithms differ in their treatment of the number of MQT
materializations and the likelihood of collocations between
the MQTs and the queries. These differences impact the
running times of the workloads.

Greedy3 places queries across the servers but does not
materialize any MQTs, and as a result it avoids material-
ization costs but instead accumulates more base table ac-
cesses. Greedy2 spreads queries first across the servers and
then places each query’s needed MQTs on the same servers,
resulting in guaranteed collocations but a high number of
materializations. Greedy1 spreads MQTs first across the
servers and then places each query onto the server with the
highest number of its needed MQTs, resulting in an interme-
diate number of materializations and an intermediate num-
ber of collocations. The GA aims to have a high number
of collocations to offset the number of materializations and
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Figure 12: Number of MQT materializations for TPC-H

workload.

query accesses to base tables (in the absence of collocations).
Greedy3 can also be interpreted as a baseline case against

which the other algorithms are measured: since Greedy3
does not incur any MQT materialization cost but does have a
high base table access cost, the other algorithms that do use
MQTs should have enough collocation net gains to outweigh
its materialization costs.

Figure 12 shows the number of MQT materializations for
the TPC-H workload as a function of disk space available for
MQTs. As can be see, Greedy2 algorithm produce the high-
est number of materializations as expected, Greedy3 pro-
duces no materializations as expected, while Greedy1 falls
in the middle. The GA actually produces a number of mate-
rializations that is quite close to Greedy2, which is somewhat
counterintuitive since the materialization cost contributes a
fairly large portion to the workload execution time. How-
ever, this materialization cost is put to good use since it
provides a high number of collocations.

Figure 13 shows the number of MQT collocation hits from
the sample experiment. Since Greedy2 guarantees that all
queries are collocated with their MQTs, its curve represents
the upper bound. The GA comes very close to this up-
per bound; coupled with the fewer materializations vis-a-vis
Greedy2, it can be seen that the GA produces a better net
workload gain than Greedy2, which was what was seen in
Figure 11. It can also be seen that Greedy3 had no colloca-
tion hits as expected, while Greedy1 produced an interme-
diate amount.

4.5 Scalability
Here we looked to see the behavior of the scheduling algo-

rithms as we scale the number of queries and MQTs from a
baseline value up to their respective numbers from the TPC-
H configuration. As was mentioned in Section 4.1, we used
a synthetic benchmark for this purpose and used the MQT
characteristics as input into the random statistical distribu-
tions of the MQTs in this benchmark.

Figure 14 shows the workload running time for the syn-
thetic workload as we scale the number of queries. As can be
expected, the GA produces the best running times, followed
closely by Greedy2 and then Greedy 3 and Greedy1. These
results correspond to our findings from the previous subsec-
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Figure 13: Number of MQT collocation hits for TPC-H

workload.
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Figure 14: Impact of the number of queries on workload

execution time.

tion. The GA is able to produce a sufficiently high number of
collocations that offset the costs of materializations and base
table accesses (in lieu of collocations with MQTs). Greedy2
comes close since it guarantees collocations but has a higher
cost of more materializations.

In Figure 15 we show the workload running time for an
increasing number of MQTs. The same relative ordering
takes place among the algorithms, but the absolute workload
running times has increased. Since the number of unique
MQTs needed per query is fairly constant, having a larger
number of available MQTs means that the working set of
active MQTs is necessarily larger.

4.6 Effect of heterogeneous servers
In the previous experiments we assumed the servers were

homogeneous. Here we examine the impact of varying CPU
performance. We normalized an “average” server to have
a CPU performance factor of 1.0 and then assigned per-
formance factors to all servers using a Gaussian distribu-
tion with a mean of 1.0 and a standard deviation of 0.25.
The query processing time was increased or decreased ac-
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Figure 15: Impact of the number of MQTs on workload

execution time.

cordingly by this factor as an estimate of CPU performance
variation. Of course, there are many factors which affect
query processing, and CPU performance is but one among
several such as RAM, cache speed, disk speed, and shared
CPU load. As a first approximation, our approach makes a
simple estimation. In future work we look to take measured
server characteristics as inputs into our scheduler.

Figure 16 shows the impact of heterogeneous server power
on the running time of the TPC-H workload. The same
relative ordering of the algorithms can be seen as before.
We observe that this degree of CPU heterogeneity does not
impact the relative merits of each. In the future we will
look to implement other algorithms that can better adapt
to server heterogeneity and also explore other factors such
as disk and network heterogeneity.

4.7 GA running time
For completeness, we examine the running time of the GA

scheduler itself. From the experiment of Section 4.5 that
produced Figure 15 showing the workload running time for
an increasing number of MQTs, we observed that the GA
took on average 61.74 seconds with a standard deviation of
4.59 seconds. Of course, this time is fairly arbitary since we
had set up our GA to run for specifically 100 generations. As
with most stochastic search techniques, the GA can spend
more time in order to get closer to the optimal value.

We note that the other greedy algorithms took under a
second to run under almost all cases. However, we feel that
the faster workloads that the GA provides outweigh its ex-
ecution time.

4.8 Summary
We summarize the results of this lengthy section. We

have shown that the GA produces a workload execution time
that is nearly as fast as the optimal time found through an
exhaustive search. Since the comparisons between the GA
and the exhaustive shown in subsection 4.2 scaled only up to
10 queries and 8 MQTs (since the exhaustive search took too
long to run), we expect the GA’s near-optimal performance
to scale as well. In any event, the GA’s convergence towards
the optimal solution for larger numbers of queries and MQTs
can be improved with more interations.
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server CPUs. The servers’ CPU powers were normalized

with an average CPU power of 1.0, and each server’s

power was set to a random value with a Gaussian distri-

bution with λ=1.0 and µ=0.25.

We also showed that the GA produces better workload
execution times than the greedy algorithms. The GA consis-
tently produces fewer MQT materializations than its closest
competitor, Greedy2, but has nearly as many MQT collo-
cation hits. The net result of these two factors is a better
schedule with a shorter workload time.

5. RELATED WORK
The problem of view maintenance has been studied pre-

viously (e.g. [29]) in the context of materialized views in
data warehouses. Since a data warehouse consists of a large
view, the main focus of the database research has been the
maintenance of materialized views incrementally. Numerous
algorithms have been proposed for incremental view mainte-
nance [30]. These techniques are complementary to our work
in the sense that they can be used for the local refreshment
of the MQTs recommended by our scheduler.

The work described in [19] presents a new framework to
enable network and server load aware information integra-
tion. A component called the QCC (Query Cost Calibrator)
is introduced to monitor network and remote server load
conditions and provides feedback to the federation server.
This work does not recommend MQTs or base tables for
replication, but it operates on existing data placement set-
tings while providing adaptability to select a proper set of
servers that yield the fastest response time. It is limited to
federated systems and cannot be applied to database clus-
ters or enable parallelism.

Another closely related work is the IBM DB2 physical
database design advisor [35] [27]. It can be used for a
shared-nothing parallel database system in which data is
horizontally partitioned among multiple independent nodes.
The physical design advisor is used as a partition advisor
in a shared-nothing parallel database system in [27]. Given
a workload of SQL statements, the partition advisor seeks
to automatically determine how to partition the base data
across multiple nodes to achieve overall optimal (or close to
optimal) performance for that workload. It uses the query
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optimizer itself not only to recommend candidate partitions
for each table that will benefit each query in the workload
but also to evaluate various combinations of these candi-
dates. The partition advisor can also provide advice for
partition and placement of MQTs by evaluating combina-
tions of MQTs (or their partitions) and base tables (or their
partitions) in the same node. The evaluation is cost-based.
The work in [35] assumes each node has identical computa-
tion power and availability of parallelism-aware optimizer.
Our work does not make such assumptions.

The work described in [17] exploits correlation and par-
allelism for materialized-view recommendation in federated
systems. This work proposed a federated MQT advisor to
recommend MQTs at remote servers to improve parallelism.
It does not assume all remote nodes are identical but does as-
sume that all nodes are coordinated via a federation server.
Our paper does not assume federation and can work on a
cluster of database servers.

Scheduling is also used in the scientific computing commu-
nity in the context of scheduling jobs onto compute nodes.
For example, other researchers have looked at finding opti-
mal schedules for data transfers across sites for grid com-
puting [5] [3]. Other researchers have has also looked into
global optimization algorithms for job scheduling [4] [32],
but they do not consider simultaneous job and data place-
ment, analogous to our work with simultaneous query and
MQT placement.

The distribution of MQTs and queries across database
servers is related to data placement problems also found in
the domains of cluster computing and grid computing. In
a typical cluster system, files can be placed at one of sev-
eral compute nodes. Processes arrive at each of the compute
nodes; if the needed file is already at that node, then process-
ing occurs locally, but if the file is remote, then the request
is transferred to the node containing the file for processing
to proceed at that node. In a typical grid computing sys-
tem, files (or more abstractly, data objects or data feeds)
can be assigned to nodes in the grid, and arriving tasks can
be placed at each of the nodes. In neither of these contexts
has there been work in simultaneous scheduling of data and
computation: data placement and computation placement
are decoupled, so each placement of data or computation is
in reaction to a prior placement of the other.

[10] provides a survey of solutions to the file assignment
problem where files must be assigned to compute nodes.
Fourteen solutions are described where files are initially mapped
to nodes, and arriving compute tasks are either executed at
that node or are redirected elsewhere. Note that this ap-
proach assumes an initial distribution of the files, with a
subsequent distribution of the compute tasks. This model is
close to one of our greedy algorithms (Greedy1-MQTs-then-
queries) where MQTs are placed first using some rules or
heuristics, and then queries are directed to the best nodes
using another set of rules or heuristics. Further, the fourteen
solutions take shortcuts, including (a) finding non-optimal
solutions (e.g. [12], (b) assuming that the files can be broken
up into pieces (e.g. [8], and (c) assuming infinite storage at
each compute node. None of the solutions there address all
of these issues together (e.g. [15]). Our approach does han-
dle these issues: (a) the GA finds near-optimal solutions,
(b) we assumes that MQTs cannot be broken up, and (c)
we place the MQTs using per-server storage limits as a first-
class constraint.

[33] surveys solutions to the data assignment problem in
the context of grid computing. In a typical system, the data
placement is decoupled from the job placement by schedul-
ing the job close to or at the source of the data or by access-
ing a replica, where closeness is refers to a site with minimum
transfer time [26]. Other approaches follow similar strate-
gies for reducing the response time of jobs by minimizing
the input and and output data transfer time. [22] assumes
that single-file input data has already been replicated across
sites and then uses an exhaustive algorithm to search across
all combinations to find the minimum cost. [31] treats files
systems systems at each site as a passive cache. [6] does
decouple job scheduling from data scheduling: at the end of
the job scheduling, the popularity of needed files is calcu-
lated and the used by the data scheduler to replicate data
for the next set of jobs, which may or may not share the
same data requirements as the previous set of jobs.

6. CONCLUSION
Database systems may be spread across multiple DBMS

servers to improve performance or redundancy. Since batch
query workloads may rely on materialized query tables to
improve their running time, the resulting problem is to dis-
tribute the queries and the MQTs across the servers to min-
imize the overall workload execution time. In this paper we
framed the problem in the context of a combinatorial search
across mappings of queries-to-servers and MQTs-to-servers,
and we showed that the solution space was exponential. To
explore this space, we implemented a search heuristic using a
genetic algorithm. This approach produced schedules within
9% of the optimal found through an exhaustive search and
produced better solutions than typical greedy algorithms for
both TPC-H and synthetic benchmarks.

In the future we look to extend our work in several ways.
In this paper we have assumed that the servers in the database
cluster all have access to all the underlying base tables; in
the future we look to investigate ways to optimize a sched-
ule to take advantage of servers having only a subset of the
base tables. We also look to compare our algorithms with
other scheduling approaches from the job scheduling com-
munity, such as schedulers using dynamic programming or
network flow optimization. Finally, we will look to explore
other stochastic search heuristics.
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