
Revisiting Redundancy and Minimization
in an XPath Fragment∗

Benny Kimelfeld and Yehoshua Sagiv
The Selim and Rachel Benin School of Engineering and Computer Science

The Hebrew University of Jerusalem
Edmond J. Safra Campus, Jerusalem 91904, Israel

{bennyk,sagiv}@cs.huji.ac.il

ABSTRACT
Redundancy and minimization of queries are investigated
in a well known fragment of XPath that includes child and
descendant edges, branches, wildcards, and multiple output
nodes. Contrary to a published result, a proposed technique
does not guarantee minimality or even non-redundancy, and
it is unknown whether a non-redundant query is also mini-
mal. It is shown that for two sub-fragments, non-redundancy
and minimality are the same, and can be realized by means
of simple (local) tests. The latter property is used to prove
that testing non-redundancy is NP-complete.

1. INTRODUCTION
Minimization is a basic technique for query optimization.

Usually, queries are minimized by eliminating redundant
parts [1–3, 9, 11]. So, important tools for minimization are
algorithms for testing containments and equivalences among
queries [6, 8, 10, 12]. We explore the notions of redundancy,
minimization and the connection between them in a frag-
ment of XPath that has been widely studied [4–6,13]. This

fragment, XP{//,[],∗}, consists of tree patterns with child
and descendant edges, branches, and wildcards. A pattern
is minimal if it is not larger than any equivalent pattern. A
pattern is redundant if it is equivalent to one of its proper
sub-patterns (subtrees); otherwise, it is non-redundant.

A basic question is whether a non-redundant pattern is
also minimal (the opposite is clearly true). This property

holds in some sub-fragments of XP{//,[],∗}, namely, those
obtained by not allowing either wildcards [1, 9], descendant
edges [11] or branches (actually, all the patterns without
branches are minimal). The reason is that in these sub-
fragments, containment is characterized by the existence of
a homomorphism [6] (in the case of branch-free patterns, a
simple normalization needs to be applied first [7]). How-

ever, in the fragment XP{//,[],∗} as a whole, containment

∗This research was supported by The Israel Science Foun-
dation (Grant 893/05).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

may exist even if there is no homomorphism [6]. Hence,
testing containment in each of the three sub-fragments is in
polynomial time, but in XP{//,[],∗} it is coNP-complete [6].

There is a claim [4] that every non-redundant pattern of

XP{//,[],∗} is also minimal. However, we show that the proof
is incorrect. Hence, it is unknown whether non-redundancy
and minimality are the same in XP{//,[],∗}.

The flaw in [4] led them to the conclusion that a pattern
P is non-redundant if for all nodes n of P , the sub-pattern
rooted at n has no redundant branch that emanates from
n. But we give a counterexample to this claim. Hence, the
algorithm of [4] (which tests containments among branches)
does not guarantee non-redundancy (let alone minimality).

Still, the approach of [4] is interesting because it attempts
to characterize non-redundancy in terms of a local property,
namely, whether there is a containment between a pair of
branches that emanate from the same node. In compar-
ison, the obvious characterization of non-redundancy is a
global one, that is, there is no redundant node. To deter-
mine whether this characterization holds, we need to test
whether every sub-pattern obtained by deleting a node (and
its descendants) is not contained in the original pattern.

We pursue this approach and show that for two large sub-
fragments, non-redundancy has a local characterization and
is the same as minimality. Interestingly, testing contain-
ment in each of these sub-fragments is coNP-complete. In
one sub-fragment, minimization is realized by eliminating re-
dundancy based on containments among branches that em-
anate from the same node (as done in [4, 5]). In the second
sub-fragment, we reason about redundancy by utilizing new
concepts, namely, weak and relative containment, and weak
redundancy. These concepts are based on relaxing the usual
definition of evaluation (of a pattern against an XML docu-
ment) by allowing the root of the pattern to be mapped to
any node of the XML tree (and not just to the root thereof).

We refer to the two sub-fragments as normal forms. We
define them in terms of natural syntactic properties and the
notion of stability. Although testing stability is NP-hard, we
give simple sufficient conditions indicating that the normal
forms cover many of the patterns that are used in practice.

For patterns in the normal forms, minimality can often
be proved by very simple arguments. As an example, in the
proof of [6] that containment is coNP-hard, the patterns are
in both normal forms. Thus, we easily show that testing
either non-redundancy or minimality is NP-hard.

In [5], they study the sub-fragment comprising all Boolean
patterns B, such that every wildcard node of B has at most
one child. They show that their algorithm [4] actually min-

61

imizes every pattern of this sub-fragment. Their result is
a straightforward corollary of our work, because every pat-
tern of their sub-fragment can be easily transformed into an
equivalent pattern in the first normal form.

Our results are firstly given for Boolean patterns. But as
in [6], we also consider non-Boolean patterns with an ar-
bitrary number of output nodes. We correct a minor flaw
in the reduction of [6] by showing how to transform a gen-
eral pattern into its b-version, which is Boolean. We prove
that a pattern is redundant if and only if so is its b-version.
Consequently, our results carry over to general patterns.

2. FORMAL SETTING

2.1 Trees and XML
In this work, a tree t has a designated node, called the

root and denoted by root(t), such that every other node of t
is reachable from root(t) through a unique directed path. In
a labeled tree, every node n has a label which is denoted by
label(n). The sets of nodes and edges of a tree t are denoted
by N (t) and E(t), respectively. In figures, the direction of
edges is not explicitly shown, but is assumed to be from top
to bottom.

Consider a tree t. If there is an edge (n1, n2) ∈ E(t), then
node n1 is the parent of n2, while n2 is a child of n1. If t
has a directed path from n1 to n2, then n1 is an ancestor of
n2 (and n2 is a descendant of n1). The node n1 is a proper
ancestor of n2 (and n2 is a proper descendant of n1) if, in
addition, n1 6= n2.

If a tree t′ satisfies N (t′) ⊆ N (t) and E(t′) ⊆ E(t), then
it is a subtree of the tree t. Given a node n of t, we denote
by tn∆ the subtree of t that is rooted at n and induced by
all the descendants of n. The subtree t−n is obtained from
t by pruning tn∆. Let r = root(t) and n be a child of r. A
branch of t consists of the edge (r, n) and the subtree tn∆,

and is denoted by t
r
n
∆
. If the root of t has exactly one child,

then we say that t itself is a branch.
A leaf of a tree t is a node without outgoing edges. The

set of leaves of t is denoted by leaves(t). The height of t,
denoted height(t), is the maximal number of edges in a path
from the root to a leaf.

We consider two types of labeled trees that represent XML
documents and queries, respectively. A document is called
an XML tree (or tree for short) and its labels come from an
infinite set Σ. By TΣ we denote the set of all the trees with
labels from Σ.

2.2 Patterns
Queries are called patterns. They are different from XML

trees in three aspects. First, the labels of a pattern come
from the set Σ ∪ {∗}, where ∗ is the “wildcard” symbol (∗ 6∈
Σ). Second, a pattern P has two types of edges: E/(P) is the
set of child edges and E//(P) is the set of descendant edges.
Third, a pattern P has a k-tuple (k ≥ 0) of output nodes
that is denoted by out(P) (i.e., out(P) ∈ N (t)k). If k = 0
then the pattern is Boolean. For example, Figures 6 and 7
show patterns. Nodes are circles with labels inside them.
Child edges and descendant edges are depicted by single
and double lines, respectively. Output nodes are denoted by
thicker circles. If there are multiple output nodes, then we
write next to each one its index in the output tuple. (In our
examples, each k-tuple consists of distinct nodes, but this is
not required in general).

Note that patterns represent an extension of the fragment
XP{//,[],∗} of XPath that was investigated in [4,6,13] and is
described by the grammar

q =⇒ q/q | q//q | q[q] | l | ∗
where l denotes a label in Σ.

A pattern is linear if it forms a path; that is, each node
has at most one child. Σ[P] denotes the set of labels of Σ
that appear in P . Note that the wildcard ∗ may appear in
P , but is not in Σ[P].

Let P be a pattern and n be a new node (i.e., n 6∈ N (P)).
The patterns n/P and n//P are obtained by creating a child
edge and a descendant edge, respectively, that connect n to
root(P). If n is labeled with ∗, then we write ∗/P and ∗//P .

2.3 Applying Patterns to Trees
We now define the result of applying a pattern to a tree.

Definition 2.1. An embedding of a pattern P in a tree t
is a mapping e : N (P)→ N (t) with the following properties.

1. Root preserving. e(root(P)) = root(t).

2. Label preserving. For all nodes n ∈ N (P), either
label(n) = ∗ or label(n) = label(e(n)).

3. Child preserving. For all edges (n1, n2) ∈ E/(P), node
e(n2) of t is a child of e(n1).

4. Descendant preserving. For all edges (n1, n2) ∈ E//(P),
node e(n2) of t is a proper descendant of e(n1).

Consider a pattern P and let out(P) = (m1, . . . ,mk). An
embedding e of P in a tree t produces (e(m1), . . . , e(mk)),
which is a k-tuple of nodes of t. The result of applying P to
the tree t, denoted by P (t), is the set of tuples produced by
all embeddings from P to t.

For a Boolean pattern B, the result B(t) is either {()}
or ∅, depending on whether there is an embedding of B in
t. Note that {()} is interpreted as true while ∅ stands for
false. Thus, B is a Boolean formula that expresses whether
there is an embedding in the given tree.

For clarity of presentation, when we specifically refer to a
Boolean pattern, we call it a b-pattern and denote it by B.
When we just say “pattern,” it could be either Boolean or
non-Boolean.

Recall that an embedding is root preserving. Now, we con-
sider mappings that do not satisfy this property. Consider
a pattern P and a tree t. A mapping e : N (P)→ N (t) that
satisfies the last three properties of Definition 2.1 (but not
necessarily the first) is a weak embedding. That is, a weak
embedding preserves labels as well as child and descendant
edges. Pw(t) denotes the set of tuples produced by all the
weak embeddings of P in t. Note that P (t) ⊆ Pw(t). In par-
ticular, if B is a b-pattern, then Bw(t) is a Boolean value
that specifies whether there is a weak embedding of B in t.

2.3.1 Models
A tree t is a model of a b-pattern B if B(t) = true.

Reasoning about b-patterns is made easier by considering
only canonical models [6] that are defined as follows.

We assume that ⊥ is a special label of Σ that does not
appear in any of the patterns that we use.

A canonical model for a b-pattern B is any tree t that is
obtained from B by applying the following two steps. First,

62

B3 B5B2 B4B1

aa a

*

bb

a

**

b

a a

**

b

a

Figure 1: Equivalence vs. weak equivalence

each occurrence of the label ∗ is replaced with ⊥. Second,
each descendant edge is replaced with a path of one or more
edges, where all the internal nodes are labeled with ⊥.

As an example, Figure 2 shows a b-pattern Bmin and a
canonical model t thereof.

We use Mod(B) and CMod(B) to denote the set of all
models and all canonical models of B, respectively.

2.4 Containment and Equivalence
The following definition is just the usual one.

Definition 2.2 (Containment/Equivalence). Consider
two patterns P1 and P2 that have the same number of output
nodes. If for all trees t ∈ TΣ, it holds that P1(t) ⊆ P2(t),
then P1 is contained in P2, denoted by P1 v P2.
P1 and P2 are equivalent, denoted by P1 ≡ P2, if P1 v P2

and P2 v P1, that is, P1(t) = P2(t) for all trees t ∈ TΣ.

The next definition is based on weak embeddings.

Definition 2.3 (Weak Containment and Equivalence).
P1 is weakly contained in P2, denoted by P1 vw P2, if for
all trees t ∈ TΣ, it holds that Pw1 (t) ⊆ Pw2 (t).
P1 and P2 are weakly equivalent, denoted by P1 ≡w P2, if

P1 vw P2 and P2 vw P1, namely, ∀t ∈ TΣ(Pw1 (t) = Pw2 (t)).

Clearly, if P1 and P2 are equivalent, then they are also
weakly equivalent. However, the opposite direction does not
always hold, as the following example shows.

Example 2.4. Consider the b-patterns B1, . . . , B5 of Fig-
ure 1. Clearly, B1 and B2 are only weakly equivalent (but
not equivalent). B3 is contained in both B4 and B5 (because
B4 and B5 are isomorphic to the left and right branches,
respectively, of B3). But neither B4 nor B5 is contained in
B3. In fact, B4 is not even weakly contained in B3 (because
only B3 requires that there are a parent and a child labeled
with a and b, respectively). However, B5 is weakly contained
in B3, and therefore, B3 and B5 are weakly equivalent.

Consider two b-patternsB1 andB2. To determine whether
there is a containment (or equivalence) between them, it is
enough to consider their canonical models [6]. Formally,
B1 v B2 if and only if CMod(B1) ⊆ Mod(B2) (that is,
B2(t) = true for all t ∈ CMod(B1)). The following proposi-
tion shows a similar result for weak containment.

Proposition 2.5. For all b-patterns B1 and B2, we have:
B1 vw B2 if and only if Bw2 (t) = true for all t ∈ CMod(B1).

2.4.1 Isomorphism and G-Isomorphism
Containment and equivalence are semantic properties of

patterns. Next, we consider syntactic properties.

Two patterns are isomorphic if they are identical up to
renaming of nodes. Formally, P1 and P2 are isomorphic
if there is a bijection ϕ : N (P1) → N (P2) that preserves
labels, child edges, descendant edges and output nodes (that
is, label(n) = label(ϕ(n)), if (n1, n2) is a child edge then
so is (ϕ(n1), ϕ(n2)), etc.). Obviously, the existence of an
isomorphism ϕ is sufficient but not necessary for P1 ≡ P2.

A weaker notion is graph isomorphism (g-isomorphism for
short) which is a bijection ψ : N (P1) → N (P2) that only
preserves the edges; that is, if (n1, n2) is an edge of P1, then
(ϕ(n1), ϕ(n2)) is an edge of P2 (but the two edges may be
of different types). A g-isomorphism is neither necessary
nor sufficient for equivalence, but when it exists, it means
that the two patterns have the same graph structure and, in
particular, the same size.

2.5 Basic Observations
Next, we describe some basic observations that are implied

by weak containment and weak equivalence (and, hence,
also by containment and equivalence). The first observation
shows a connection between height and (weak) containment.

Proposition 2.6. If the patterns P and P ′ satisfy P vw
P ′, then height(P) ≥ height(P ′). Therefore, if P ≡w P ′,
then height(P) = height(P ′).

Weak equivalence and weak containment imply some re-
lationships between the labels of the two patterns.

Proposition 2.7. If the patterns P and P ′ satisfy P ≡w
P ′, then label(root(P)) = label(root(P ′)).

Proposition 2.8. If the patterns P and P ′ satisfy P vw
P ′, then Σ[P] ⊇ Σ[P ′]. Therefore, if P ≡w P ′, then Σ[P] =
Σ[P ′].

Weak equivalence of b-patterns can be reduced to equiv-
alence of Boolean branches (which have roots with exactly
one child). The converse also holds if a descendant edge
connects the root of each branch to its child.

Proposition 2.9. Consider the b-patterns B and B′. If
the nodes n and n′ have the same label and are new (namely,
n1, n2 6∈ N (B)∪N (B′)), then the following holds. B ≡w B′
if and only if n//B ≡ n′//B′.

Weak containment (and weak equivalence) between two
Boolean branches implies the same between the b-patterns
obtained by removing the roots.

Proposition 2.10. Let r and r′ be the roots of the b-
patterns B and B′, respectively. If n and n′ are children of

r and r′, respectively, and B
r
n
∆
vw B′

r′
n′
∆

, then Bn
∆ vw B′n′

∆
.

Therefore, if B
r
n
∆
≡w B′r

′
n′
∆

, then Bn
∆ ≡w B′n′∆.

Finally, the next proposition is a direct corollary of Propo-
sitions 2.7, 2.9. and 2.10,

Proposition 2.11. Let n1 and n2 be new nodes that do
not appear in the b-patterns B1 and B2. If n1//B1 ≡w
n2/B2, then n1//B1 ≡ n2//B2.

3. REDUNDANCY AND MINIMIZATION
In this section, we discuss the notions of redundancy and

minimization of patterns.

63

3.1 Redundancy of Patterns
We define two notions of redundancy. The first definition

says that a pattern is redundant if it has an equivalent proper
sub-pattern.

Definition 3.1 (Redundant Pattern). A pattern P
is redundant if P has a proper subtree P ′, such that P ′ ≡ P ;
otherwise, P is non-redundant.

The second definition says that a node of a pattern is
redundant if that node (and its descendants) can be removed
while preserving equivalence.

Definition 3.2 (Redundant Node). A node n of a
pattern P is redundant in P if P − n ≡ P ; otherwise, n is
non-redundant in P .

Note that if the pattern P ′ is a subtree of P , then out(P ′)
is obtained from out(P) by removing the nodes that are not
in P ′. In particular, P and P ′ are comparable only if P ′

includes all the output nodes of P . Consequently, an output
node is never redundant.

The next proposition shows that existence of a redundant
leaf is necessary and sufficient for redundancy in a pattern.

Proposition 3.3. A pattern is redundant if and only if
it has a redundant leaf.

Proof. The “if” direction is clear from the definitions.
For the “only if” direction, it suffices to show the following.
If P ′ ≡ P for some proper subtree P ′ of P , then there is a
leaf n, such that P−n v P (note that P v P−n is obvious).
By Proposition 2.6, P ′ has the same height as P , and hence,
P ′ contains the root of P . Since P ′ is a proper subtree
of P , there is a leaf n of P that is not in P ′. Therefore,
P − n v P ′ ≡ P .

Following is a variant of Definitions 3.1 and 3.2 that uses
weak equivalence instead of equivalence.

Definition 3.4 (W-Redundancy). A pattern P is w-
redundant if P has a proper subtree P ′, such that P ′ ≡w P .
A node n of P is w-redundant in P if P − n ≡w P .

The proof of the following proposition is similar to that of
Proposition 3.3

Proposition 3.5. A pattern is w-redundant if and only
if it has a w-redundant leaf.

Since equivalence implies weak equivalence, it follows that
if a pattern is redundant then it is also w-redundant. Con-
sequently, if a pattern is not w-redundant then it is also
non-redundant; that is, non-w-redundancy is stronger than
non-redundancy (it is actually strictly stronger as the next
example shows).

As an example, consider the b-pattern B3 of Figure 1.
B3 is non-redundant; however, it is actually w-redundant.
(Recall that Example 2.4 shows that B3 is weakly equivalent
to B5, which is the same as the right branch of B3.)

nb

t BminB
r
n
∆

Bn
∆ n

r

⊥

a

b

d

b

d

d

⊥

b∗

∗ ∗

a a

d

⊥b

Figure 2: A counterexample to past claims

3.2 Minimization of Patterns
For a pattern P , we use size(P) to denote the number of

nodes of P , i.e., |N (P)|.
The problem of minimizing a pattern P is to find an equiv-

alent pattern Pm (i.e., Pm ≡ P) that has the minimum size.
We use min≡(P) to denote the size of the smallest pattern
that is equivalent to P . If size(Pm) = min≡(Pm), then Pm is
minimal. Similarly, minw≡(P) denotes the minimum size of a
pattern P ′, such that P ′ ≡w P . A pattern Pm is w-minimal
if its size is minw≡(Pm). Clearly, minw≡(P) ≤ min≡(P).

3.3 Eliminating Redundancy and Minimizing
By definition, a minimal pattern is non-redundant. How-

ever, whether the converse also holds is an open problem.
In [4], it was claimed that a non-redundant pattern is mini-
mal. In this section, we show that their proof is wrong. This
section and the next one consider only b-patterns.

In our terminology, the flawed argument1 of [4] is phrased

as follows. If B is a b-pattern with a root r and B
r
n
∆

is a

branch of B, then

min≡(B
r
n
∆
) = 1 + min≡(Bn

∆) .

The above equation is equivalent to claiming that the branch

B
r
n
∆

is minimal if and only if the b-pattern Bn
∆ is minimal.

The above equation is wrong because B
r
n
∆

may be redun-

dant (and, hence, larger than the minimum) even if Bn
∆ is

minimal. This is shown in the following example.

Example 3.6. Consider the b-pattern B
r
n
∆

that is shown

in Figure 2. The following argument proves that Bn
∆ is non-

redundant, and by the results of Section 4, it is also mini-
mal. If we remove any leaf m of Bn

∆ and construct a canon-
ical model t (for Bn

∆−m) by replacing the descendant edge

with a path of length 2, then Bn
∆(t) = false. B

r
n
∆
, however,

is redundant because it is equivalent to Bmin (which is also
shown in Figure 2). Note that Bmin is the same as the path

from the root of B
r
n
∆

to the rightmost leaf, and therefore,

B
r
n
∆
v Bmin. The other direction, Bmin v B

r
n
∆
, is proved by

observing that if there is an embedding e : Bmin → t, then an

embedding of B
r
n
∆

in t can be obtained by mapping n to the

1This argument is stated in the last sentence on the fourth
page of [4] (and no proof is given).

64

parent of e(nb), as illustrated in the figure. Consequently,

min≡(B
r
n
∆
) = 4, whereas 1 + min≡(Bn

∆) = 7.

B
r
n
∆

in the above counterexample is of the form n̂//B̂.

When minimizing a b-pattern of this form, it is not enough
to replace B̂ with a minimal b-pattern that is equivalent to
B̂ (as claimed in [4]). Rather, we need to replace B̂ with a

minimum-size b-pattern that is weakly equivalent to B̂ (by
Proposition 2.9, this replacement preserves equivalence). In
other words, the following equality is correct for patterns of
the form n̂//B̂ (the formal proof is based on Propositions 2.9
and 2.10, and Lemma 1 of [4]).

min≡(n̂//B̂) = 1 + minw≡(B̂)

The flawed argument led [4] to propose the following incor-
rect algorithm for minimizing a b-pattern B. Traverse the
nodes of B top down. When visiting a node n, test whether
n has a child m that is redundant in Bn

∆ and if so, prune Bm∆
from B. Note that this algorithm uses an oracle for testing
containment (which is a coNP-complete problem [6]). It is
unknown whether minimization can be achieved by means
of redundancy elimination. But the algorithm of [4] is actu-
ally wrong because it fails to eliminate redundancy in some
cases. For example, it does not remove any part of the re-

dundant b-pattern B
r
n
∆

of Figure 2 (and Example 3.6). Note

that a correct algorithm for redundancy elimination is the
one implied by Proposition 3.3. Namely, while there is a leaf
n, such that B − n v B, remove n from B.

3.4 Redundant Branches in B-Patterns
The rationale for the top-down algorithm of [4] is to im-

prove efficiency by testing containments among branches,
rather than between the original query and another one that
is almost as large. This approach is based on removing re-
dundant branches that are defined as follows.

Definition 3.7 (Redundant Branch). Suppose that
B is a b-pattern with a root r. If a child n of r is redundant

in B (see Definition 3.2), then the branch B
r
n
∆

is redundant.

The next proposition follows from Lemma 1 of [4].

Proposition 3.8. A branch R of a b-pattern B is redun-
dant if and only if B has a branch R′ 6= R, such that R′ v R.

The following is analogous to Definition 3.7.

Definition 3.9 (W-Redundant Branch). Let B be
a b-pattern with a root r. If a child n of r is w-redundant in

B (see Definition 3.4), then the branch B
r
n
∆

is w-redundant.

Example 3.10. Consider the b-pattern B6 of Figure 3.
The bottom of this figure depicts the branches of B6 that are
denoted by R1, . . . , R4. The branch R1 is redundant (and,
hence, w-redundant) because R3 v R1. It is more difficult to
reason about w-redundancy of branches. For example, con-
sider the b-pattern B7 and its branches R5, R6 and R7 of
Figure 3. The branch R5 is not w-redundant (and, therefore,
not redundant). To see that, let B′7 be the result of removing
R5 from B7. It is easy to verify that there is no weak em-
bedding of B7 in the canonical model of B′7 that is obtained
by replacing each descendant edge with two edges. Note that
R5 is not w-redundant, even though R6 vw R5.

R1 R3 R6

B7B6

R2 R4 R5 R7

b

*

a

* *

b

*

a

*

*

*

*

a

*

bb

*

b

a

*

*

b

*

a

a

*

b

a

a

b

b

b

*

**

*

*

*

a

b

b

*

*

a

*

Figure 3: Examples of w-redundancy of branches

The above example shows that we cannot obtain a result
about w-redundant branches that is analogous to Proposi-
tion 3.8 by replacing R′ v R with R′ vw R. To show a
similar characterization for w-redundant branches, we need
to define a new type of containment.

Definition 3.11 (Relative Containment). Suppose
that B, B1 and B2 are b-patterns. B1 is contained in B2 rel-
ative to B, denoted by B1 vB B2, if for all trees t,

B1(t)⇒ B2(t) ∨Bw(t) .

That is, if there is an embedding of B1 in t, then there is
either an embedding of B2 in t or a weak embedding of B in
t. B1 ≡B B2 denotes that B1 vB B2 and B2 vB B1.

Clearly, vB is weaker than containment, that is, B1 v B2

implies B1 vB B2. In general, vB and weak containment
are incomparable. However, we are usually interested in rel-
ative containment of the form R′ vB R, where R is a branch
of B. In this case, vB is stronger than weak containment,
that is, R′ vB R implies R′ vw R (but the opposite impli-
cation does not hold). To see why, observe that if there is
a weak embedding of B in a tree t, then there is certainly a
weak embedding of the branch R of B in t.

Lemma 3.12. A branch R of a b-pattern B is w-redundant
if and only if R′ vB R for some branch R′ 6= R of B.

Proof. Consider a branch R that corresponds to a child
n of root(B) and let B− = B − n. First, we assume that
R′ vB R for some branch R′ 6= R of B. To prove B− ≡w B,
it is sufficient to show that B− vw B (because the contain-
ment B vw B− is trivial). So, consider a tree t, such that
B−(t) = true. R′ is a branch of B−, and therefore, there is
an embedding of R′ in t. By assumption, R′ vB R. Hence,
there is either an embedding of R in t or a weak embedding
of B in t. In the former case, the embedding of B− in t can
be combined with the embedding of R in t to produce an em-
bedding of B in t, thereby showing that B(t) = true. In the
latter case, Bw(t) = true. It thus follows that B− ≡w B.

Now suppose that R′ 6vB R for all branches R′ 6= R of
B. To show that R is not w-redundant, we will construct a

65

Algorithm ReducePattern(B)

1: for all nodes n of B do
2: Let B′ = Bn

∆

3: while B′ has branches R1 6= R2, s.t. R1 v R2 do
4: Remove the branch R2 (except for its root n)
5: if n has an incoming descendant edge in B then
6: while B′ has branches R1 6= R2, s.t. R1 vB′ R2

do
7: Remove the branch R2 (except for its root n)

Figure 4: Removing redundancy from a b-pattern

tree t, such that B−(t) = true and Bw(t) = false. For each
branch R′ 6= R, we choose a tree tR′ , such that R′(tR′) =
true, R(tR′) = false and Bw(tR′) = false. (The tree tR′
exists because R′ 6vB R.) The tree t is obtained by joining
the roots of all the tR′ . Clearly, B−(t) = true. To show that
Bw(t) = false, suppose (by way of contradiction) that e is
a weak embedding of B in t. If e maps root(B) to root(t),
then it is an embedding of the branch R in one of the tR′ ,
contradicting the fact that R(tR′) = false; otherwise, e is
a weak embedding of B in one of the tR′ , contradicting the
fact that Bw(tR′) = false.

Example 3.13. We continue with Example 3.10. The
branch R2 of B6 is not redundant; however, it is w-redundant
because R3 vB6 R2. To prove R3 vB6 R2, suppose that t
is a tree, such that there an embedding e of R3 in t and
R2(t) = false. We have to show that Bw6 (t) = true. Since
R2(t) = false, the embedding e maps the descendant edge
of R3 to a path that starts at root(t) and has at least 3
edges. Therefore, a weak embedding of B6 in t is obtained
by mapping the root of B6 to the grandparent of the node
e(n), where n is the upper node of R3 that is labeled with a.
Finally, the branches R3 and R4 are not w-redundant because
R3 6vw R4 and R4 6vw R3. As for B7, none of its branches
is w-redundant. In particular, observe that R6 6vB7 R5, al-
though R6 vw R5.

4. NORMAL FORMS FOR B-PATTERNS
In this section, we define two classes of b-patterns in terms

of normal forms. We believe that these classes capture
most of the b-patterns that are used in practice. All the b-
patterns B of these classes have two useful properties. First,
B is non-redundant if and only if it is minimal. Second, B
can be minimized by simply removing redundant and (in
some cases) w-redundant branches from every subtree of B.

The algorithm ReducePattern of Figure 4 eliminates
redundancy from a b-pattern B as follows. At each node n
of B, it removes redundant branches of Bn

∆. If a descendant
edge enters n, then the algorithm also removes w-redundant
branches of Bn

∆. Note that if the nodes of B are processed
bottom-up, then the tests of the loops of Lines 3 and 6 are
no longer satisfied after each node is visited just once. It can
be shown, however, that the order of visiting nodes is not
important. The next lemma shows that ReducePattern
is sound in the sense that it preserves equivalence.

Lemma 4.1. Let B′ be the result of applying ReducePat-
tern to a b-pattern B. Then B ≡ B′.

Proof. Eliminating redundant branches of Bn
∆ preserves

equivalence to the original Bn
∆. Hence, the whole b-pattern

remains equivalent to B. Removing w-redundant branches
preserves weak equivalence to the original Bn

∆, and since a
descendant edge enters n, it also preserves equivalence of the
whole b-pattern to the original B (see Proposition 2.9).

Lines 1–4 of ReducePattern constitute the algorithm
of [4, 5]. These four lines alone cannot always produce a

non-redundant b-pattern; an example is the b-pattern B
r
n
∆

of

Figure 2. If Lines 5–7 are also applied, all redundancies are
removed from that particular b-pattern. In the next section,
we prove that if B is in either one of the two classes defined
below, then ReducePattern actually produces a minimal
(and not just non-redundant) b-pattern that is equivalent
to B. However, the next example shows that the result of
ReducePattern is not always a non-redundant b-pattern.

Example 4.2. Consider the b-patterns B8 and B′8 of Fig-
ure 5. Clearly, node n of B8 is redundant. Nevertheless,
ReducePattern does not detect this redundancy because it
only looks for redundant (rather than w-redundant) branches
when visiting node m. The b-pattern B′8 differs from B8 by
the additional node with the label d. In this case, the node n′

is non-redundant (and as shown later, B′8 is non-redundant).
This example illustrates that it is not always enough to look
for redundancy based on local properties of the subtrees Bn

∆;
sometimes, we have to apply global considerations.

4.1 Stable B-Patterns
As said earlier, two b-patterns may be weakly equivalent

even if they are not equivalent. Often, however, the two
types of equivalence coincide. A b-pattern B is stable if for
all b-patterns B′, it holds that B ≡w B′ implies B ≡ B′.
Testing stability is NP-hard, yet decidable (the proof is omit-
ted). However, the next theorem gives sufficient conditions
for stability that can be tested efficiently. We believe that
these conditions cover many of the b-patterns that are used
in practice. We prove this theorem in the next section.

Theorem 4.3. A b-pattern B is stable in each of the fol-
lowing cases.

1. label(root(B)) 6= ∗.
2. Every child n of root(B) satisfies Σ[Bn

∆] (Σ[B].

The next observation shows that stability is preserved un-
der weak equivalence. The proof follows immediately from
the definition of a stable b-pattern and the transitivity of
weak equivalence (and equivalence).

Observation 4.4. If B is stable and B ≡w B′, then B′

is stable.

4.2 The Normal Forms NF/∗ and NF//∗

Definition 4.5 (NF/∗ and NF//∗). A b-pattern B is
in NF/∗ (resp., NF//∗) if every non-root node n of B satis-
fies at least one of the following.

1. A child (resp., descendant) edge enters n.

2. Bn
∆ is stable.

66

3. Bn
∆ is linear.

The next theorem shows that for b-patterns of NF/∗ and
NF//∗, redundancy elimination is the same as minimization.

Theorem 4.6. Consider a b-pattern B that is in either
NF/∗ or NF//∗. If B′ is obtained from B by applying Redu-
cePattern, then B′ ≡ B and B′ is minimal. In particular,
if B is non-redundant, then it is minimal.

We prove the above theorem by means of several lemmas
that are given below. But first we note the following. Con-
sider a b-pattern B of NF/∗. If a descendant edge enters
node n of B, then Bn

∆ is either linear or stable. In the for-
mer case, Bn

∆ has no w-redundant branches. In the latter
case, a branch of Bn

∆ is w-redundant if and only if it is re-
dundant. Therefore, the first four lines of ReducePattern
are sufficient for minimizing b-patterns of NF/∗.

Example 4.7. Consider the b-pattern B′8 of Figure 5. The
subtree B′8

q
∆ is stable because it satisfies the second condition

of Theorem 4.3. Therefore, B′8 is in NF/∗. Clearly, B′8 is
not changed by ReducePattern, hence it is minimal.

Lemma 4.8. Suppose that n1/B1 ≡ n2//B2. Then there
exists a b-pattern B′2, such that n2//B2 ≡ n2/B

′
2 and B′2 is

g-isomorphic to B2.

Proof. We will prove the lemma in stages. At first, we
will construct a b-pattern n1/B

′
1 that is equivalent to n1/B1.

Then we will show how to obtain B′2 from B2. Finally, we
will prove that n2//B2 v n2/B

′
2 v n2//B2.

We start with the construction of the b-pattern B′1. Con-
sider a path p of n1/B1 that begins at the root n1 and
consists of only child edges. If p includes a node with a
label other than ∗, then by replacing the descendant edge
that emanates from n2 with a path that is longer than p,
we will get a canonical model that is a counterexample to
n2//B2 v n1/B1. So, all the nodes of p are labeled with
∗. In particular, root(B1) is a wildcard node (and so is
root(B2)—see Propositions 2.7 and 2.10). Now suppose
that p has a maximal length and it ends at the node m
(that has the label ∗). Then either m is a leaf or all the out-
going edges of m are descendant edges. In either case, by
replacing the incoming edge of m with a descendant edge,
we obtain a pattern that is equivalent to n1/B1. If we con-
tinue this process of replacing child edges with descendant
edges, we will eventually replace all the outgoing edges of
root(B1) with descendant edges. B′1 is the pattern that is
obtained at the point. The important features of B′1 are
that n1/B

′
1 ≡ n1/B1 and all the outgoing edges of root(B′1)

are descendant edges.
The pattern B′2 is obtained from B2 by replacing all the

outgoing child edges of root(B2) with descendant edges. We
first prove that n2//B2 v n2/B

′
2. Clearly, B2 v B′2 and,

therefore, n2//B2 v n2//B
′
2. In addition, n2/B

′
2 ≡ n2//B

′
2

because root(B′2) is a wildcard node and all its outgoing
edges are descendant edges. Therefore, n2//B2 v n2/B

′
2.

Finally, we prove that n2/B
′
2 v n2//B2. We do it by

showing that B′2 v B′1. As a result, n2/B
′
2 v n1/B

′
1 ≡

n1/B1 ≡ n2//B2 (note that n1 and n2 must have the same
label, as implied by Proposition 2.7). So, let t be a canonical
model of B′2. We will show that B′1(t) is true. Let ts be
obtained from t as follows. Each path of ts that corresponds
to an outgoing edge of root(B′2) is replaced with a single

B′8B8

m

n n′

q

d

b

a

*

aa

*

*

d*

d

b

a

Figure 5: B-patterns B8 and B′8 used for illustrating
the limitations of ReducePattern

edge. Let v/ts be obtained from ts by adding a new root v
that matches the label of n1 (and n2) and is connected to
root(ts) by an edge. Then B2(ts) = true and, therefore,
n2//B2(v/ts) = true. We conclude that n1/B1(v/ts) =
true and, therefore, n1/B

′
1(v/ts) = true and so B′1(ts) =

true. In particular, there is an embedding of each branch of
B′1 in some branch of ts. Since all of the outgoing edges of
root(B′1) are descendant edges, B′1(t) = true (and, actually,
an embedding of B′1 in ts is also an embedding of B′1 in t).
It follows that B′2 v B′1, as claimed.

Lemma 4.9. If B is in NF/∗ (resp., NF//∗) and B′ is the
result of executing ReducePattern(B), then B′ is in NF/∗
(resp., NF//∗).

Proof. We prove that every node n of B′ satisfies Defini-
tion 4.5 in exactly the same way that it satisfies it as a node
of B. ReducePattern does not change the type of edges
or add new children to existing nodes. So, it remains to deal
with the case of a non-root node n of B′, such that Bn

∆ is
stable. The algorithm deletes from Bn

∆ only w-redundant
nodes. Therefore, B′n∆ ≡w Bn

∆. By Observation 4.4, it fol-
lows that B′n∆ is stable.

The next lemma shows that the output of ReducePat-
tern is a minimal b-pattern provided that it is in NF/∗.

Lemma 4.10. Consider a b-pattern B of NF/∗ that is not
changed by ReducePattern. If B′ ≡ B, then B is g-
isomorphic to a subtree of B′ that has the same root as B′.
Therefore, B is minimal.

Proof. The proof is by induction on the height of B.
The basis of the induction is trivial because B is a single
node. Next, we assume that B has at least two nodes and
prove the inductive step.

We first remove redundant branches from B′. (By proving
the induction hypothesis after removing those branches, we
show that it holds for the original B′.) Let r and r′ be the
roots of B and B′, respectively. Note that r and r′ have the
same label because B ≡ B′. In [4], the following is shown for
equivalent b-patterns B andB′ without redundant branches.
There is a bijection ϕ from the children of r to those of r′,

such that for each child n of r, B
r
n
∆
≡ B′

r′
ϕ(n)
∆

. We will show

that for all children n of r, the branch B
r
n
∆

is g-isomorphic to

a subtree of B′
r′
ϕ(n)
∆

that is rooted at r′. So, consider a child

67

n of r and let n′ = ϕ(n). By the assumptions of the lemma,
Bn

∆ is not changed by ReducePattern and is in NF/∗.
Case 1: (r, n) is a child edge. By Lemma 4.8, we can assume
that (r′, n′) is also a child edge (otherwise, we replace the

branch B′
r′
n′
∆

with an equivalent and g-isomorphic branch).

Therefore, Bn
∆ ≡ B′n′

∆
. By the inductive hypothesis, Bn

∆ is

g-isomorphic to a subtree of B′n′
∆

that is rooted at n′.
Case 2: (r, n) is a descendant edge and Bn

∆ is linear. By

Proposition 2.6, B
r
n
∆

and B′
r′
n′
∆

have the same height. Thus,

B
r
n
∆

is g-isomorphic to a path of B′
r′
n′
∆

that starts at r′.

Case 3: (r, n) is a descendant edge and Bn
∆ is nonlinear. By

the definition of NF/∗, B
n
∆ is stable. By Proposition 2.10,

Bn
∆ ≡w B′n′

∆
. Therefore, Bn

∆ ≡ B′n′
∆

. By the induction

hypothesis, Bn
∆ is g-isomorphic to a subtree of B′n′

∆
that is

rooted at n′.

Lemmas 4.1, 4.9 and 4.10 prove Theorem 4.6 for patterns
of NF/∗. Next, we prove it for patterns of NF//∗.

Lemma 4.11. Consider b-patterns B and B′ with roots
r and r′, respectively. If B and B′ have no w-redundant
branches, then the following are equivalent.

1. B ≡w B′

2. There exists a bijection ϕ from the children of r to
those of r′, such that for all children n of r,

B
r
n
∆
vB′ B′ r

′
ϕ(n)
∆

and B′
r′
ϕ(n)
∆
vB B

r
n
∆
.

Proof. We first prove that Condition 1 implies Condi-
tion 2. We assume that B ≡w B′ and construct the mapping
ϕ. Let n be a child of r. The mapping ϕ(n) is defined as
follows. Let tn be a tree such that (B − n)(tn) = true and
yet there is no weak embedding of B in tn (if no such tn
exists, then n is w-redundant). We choose as ϕ(n) an arbi-

trary child n′ of r′ that satisfies B′
r′
n′
∆

(tn) = false. Node n′

exists because B ≡w B′ and Bw(tn) = false.

Now, we show that for all children n of r, B
r
n
∆
vB′ B′ r

′
ϕ(n)
∆

.

So, let n be given and t be a tree, such that B
r
n
∆
(t) = true.

Let t+n be obtained from tn and t by merging their roots.
Then B(t+n) = true, and as a result, there is a weak em-
bedding e of B′ in t+n . If e is an embedding (i.e., e(r) = r′),

then e induces an embedding of B′
r′
n′
∆

in t because B′
r′
n′
∆

(tn) =

false. Otherwise, the image of e must be contained in t (be-
cause there is no weak embedding of B′ in tn), and therefore,
e is a weak embedding of B′ in t. It follows that there is

either an embedding of B′
r′
n′
∆

in t or a weak embedding of B′

in t. We conclude that B
r
n
∆
vB′ B′ r

′
ϕ(n)
∆

, as claimed.

We now show that ϕ is a bijection and B′
r′
ϕ(n)
∆
vB B

r
n
∆

for

all children n of r. Let ϕ′ be a mapping that is constructed,
as described above, from the children of r′ to those of r. It
suffices to show that both ϕ and ϕ′ are injections and ϕ′ =
ϕ−1. So, suppose otherwise. Then there are two children
n1 6= n2 of r and a child n′ of r′, such that ϕ(n1) = n′ and
ϕ′(n′) = n2 (or there is a symmetric case that is handled

similarly). Therefore, B
r
n1
∆
vB′ B′r

′
n′
∆

and B′
r′
n′
∆
vB B

r
n2
∆

. The

relation vB is transitive and B ≡w B′. Hence, B
r
n1
∆
vB B

r
n2
∆

.

By Lemma 3.12, this contradicts the fact that B has no w-
redundant branches.

Next, we prove that Condition 2 implies Condition 1,
namely, B vw B′ (weak containment in the other direction
is proved similarly). Let t be a tree, such that B(t) = true.

Hence, B
r
n
∆
(t) = true for all children n of r. If B′

r′
ϕ(n)
∆

(t) =

true for all n, then B′(t) = true; otherwise, by Condition 2,
there is a weak embedding of B′ in t.

We are now ready to prove Theorem 4.3 that gives suffi-
cient conditions for stability.

Proof of Theorem 4.3. Observe that each of the two
conditions must hold for every canonical model of B, assum-
ing that it is true for B. A label is simple if it is neither ∗
nor ⊥. The rank of a tree is the maximum number of sim-
ple labels that appear on any path from the root to a leaf.
Observe that a b-pattern and each of its canonical models
have the same rank. Furthermore, a weak embedding can
map a b-pattern only to a tree that has at least the same
rank. Consequently, two weakly equivalent b-patterns have
the same rank.

Now suppose that B satisfies the first condition of the
theorem, and B ≡w B′. By Proposition 2.7, B′ also satisfies
this property. Since weakly equivalent b-patterns and their
canonical models have the same rank, it follows that a weak
embedding e of B′ in a canonical model t of B must map
root(B′) to root(t); that is, e is actually an embedding. The
same is true for a weak embedding of B in a canonical model
of B′. Thus, we conclude that B ≡ B′, thereby showing that
B is stable.

Now consider a b-pattern B that satisfies the second con-
dition, and suppose that B ≡w B′. We first show that
B v B′. So, let t be a canonical model of B. Since the
second condition of the theorem holds for B, it must also
hold for t. There is a weak embedding e of B′ in t because
B ≡w B′. Suppose that e does not map root(B′) to root(t).
Then there is a symbol of Σ that appears in B but not in
B′, in contradiction to Proposition 2.8. Thus B v B′, as
claimed.

To complete the proof, we show that B′ must also satisfy
the second condition of the theorem. Then, by symmetry, we
conclude that B′ v B. Let r = root(B), r′ = root(B′) and
n′ be a child of r′. Let B′′ be obtained from B′ by removing
all the w-redundant branches. By Lemma 3.12, root(B′′)

has a child n′′, such that B′
r′
n′′
∆
vB′ B′r

′
n′
∆

(note that if n′ is

in B′′, then n′ = n′′). By Lemma 4.11, r has a child n, such

that B
r
n
∆
≡B′ B′ r

′
n′′
∆

. Hence, B
r
n
∆
vB′ B′r

′
n′
∆

and, as a result,

B
r
n
∆
vw B′

r′
n′
∆

. By Propositions 2.10, Bn
∆ vw B′n′

∆
, and by

Proposition 2.8, Σ[B′n′
∆

] ⊆ Σ[Bn
∆]. So, Σ[B′n′

∆
] (Σ[B] =

Σ[B′], as claimed.

The next lemma shows that the output of ReducePat-
tern is a minimal b-pattern provided that it is in NF//∗.
The proof of Theorem 4.6 for NF//∗ follows from Lemma 4.1,
Lemma 4.9 and the next one. Note that the second part in
the assumption about B′ (in the lemma below) is needed for
the inductive hypothesis.

Lemma 4.12. Consider a b-pattern B of NF//∗ that is
not changed by ReducePattern. Suppose that B′ is any

68

BP P ′P BP ′

b

a

**

b

a

b

aa

τ1

b

τ1

Figure 6: Illustrating a wrong reduction of g-
patterns to b-patterns

b-pattern, such that either 1. B ≡ B′, or 2. B ≡w B′ and
B has no w-redundant branches (that is, ∗//B is not changed
by ReducePattern). Then there is a g-isomorphism be-
tween B and a subtree of B′ that has the same root as B′.

Proof. The proof is by induction on the height of B. If
the height is 0, then the lemma is trivial. For the inductive
step, consider a B that has a height h ≥ 1 and suppose that
the lemma is true for height h− 1. We prove both parts of
the lemma simultaneously. We start by removing branches
of B′ as follows. For proving Part 1, we remove redundant
branches, and for Part 2, we remove w-redundant branches.
By proving the induction hypothesis after removing those
branches, we show that it holds for the original B′.

Let r and r′ be the roots of B and B′, respectively. We
use the bijection ϕ from the children of r to those of r′ that
exists for Part 1 as described in the proof of Lemma 4.10
and exists for Part 2 by Lemma 4.11. Consider a child n of

r and let n′ = ϕ(n). Next, we prove that B
r
n
∆

is g-isomorphic

to a subtree of B′
r′
n′
∆

that is rooted at r′. Note that by the

properties of ϕ (in the proof of either Part 1 or 2), it holds

that B
r
n
∆
≡w B′

r′
n′
∆

and, hence, Bn
∆ ≡w B′n′

∆
. The rest of the

proof is the same for both parts of the lemma.
Case 1: (r, n) is a descendant edge. In this case, ∗//Bn

∆ is
not changed by ReducePattern because neither is B. By
the inductive hypothesis of Part 2, Bn

∆ is g-isomorphic to a
subtree of B′n′

∆
that is rooted at n′.

Case 2: (r, n) is a child edge and Bn
∆ is linear. This case is

handled as the previous one because a linear b-pattern does
not have w-redundant branches.
Case 3: (r, n) is a child edge and Bn

∆ is nonlinear. By the
definition of NF//∗, Bn

∆ is stable and, hence, Bn
∆ ≡ B′n′

∆
.

By the inductive hypothesis of Part 1, Bn
∆ is g-isomorphic

to a subtree of B′n′
∆

that is rooted at n′.

In [5], they study the sub-fragment consisting of all b-
patterns B, such that wildcard nodes of B have at most
one child. They show that their algorithm (i.e., Lines 1–4 of
ReducePattern) can minimize all the b-patterns B of that
sub-fragment. Although B is not necessarily in NF/∗, we can
transform it into an equivalent b-pattern of NF/∗ by repeat-
edly applying the following operation. If a descendant edge
enters a node n labeled with ∗, then we replace the incom-
ing edge of n with a child edge and also replace the outgoing
edge (if it exists) with a descendant edge. Note that this op-
eration is well defined and preserves equivalence because n
is labeled with ∗ and has at most one child. Clearly, for all
subtrees Bm∆ of B that have more than one branch, the above

P1 B[P1]

1 2

d τ1

h

*

*

b

a a

*

h

*

bb

a

bb

a

b

d τ2

Figure 7: An example of a b-version

operation does not create new redundant branches (because
it replaces a branch of Bm∆ with an equivalent one). There-
fore, it suffices to apply Lines 1–4 of ReducePattern to
the original b-patterns B (rather than firstly transforming
B into NF/∗). Thus, the above result of [5] follows from the
properties of NF/∗.

5. NORMAL FORMS FOR G-PATTERNS
A generating pattern (g-pattern for short) has one or more

output nodes. We now extend the results of the previous
section to g-patterns. At first, we discuss how to reduce
g-patterns to b-patterns.

We assume that there is an infinite list of labels τ1, τ2, . . .
of Σ, such that patterns and trees do not contain any τi
unless explicitly stated otherwise.

If P is a g-pattern with out(P) = (o1, . . . , ok), then we

sometimes write P (k) to explicitly specify the arity of out(P).

5.1 On Reducing G-Patterns to B-Patterns
Given a g-pattern P with out(P) = (o1, . . . , ok), we con-

struct the b-pattern BP as follows. For i = 1, 2, . . . , k, we
add to oi a new child edge that leads to a node labeled with
τi. Note that an output node gets as many new children as
its number of occurrences in out(P). In [6], it was claimed

that P (k) v P ′(k) if and only if BP (k) v BP ′(k) (thus, reduc-
ing containment of g-patterns to that of b-patterns). The
next example shows that this claim is wrong.

Example 5.1. Consider the patterns P and P ′ of Fig-
ure 6. Clearly, P 6v P ′ because P ′ requires the output node
not to be a leaf. Nevertheless, BP v BP ′ .

Next, we modify the reduction of [6] and use it to derive
results about redundancy and minimization of g-patterns.

5.2 B-Versions of G-Patterns
Let P be a g-pattern with out(P) = (o1, . . . , ok). The b-

version of P , denoted B[P], is obtained from P as follows.
First, for all 1 ≤ i ≤ k, we add a child edge (oi,mi), where
mi is a new node with the label τi. Second, for each leaf
n /∈ {o1, . . . , ok}, we add a child edge (n,m), where m is a
new wildcard node. As an example, Figure 7 shows the g-
pattern P1 and its b-version B[P1]. The newly added nodes
are surrounded by dotted circles.

The next proposition shows that a correct reduction from
containment of g-patterns to that of b-patterns is by means
of replacing g-patterns with their b-versions.

69

Proposition 5.2. P
(k)
1 v P (k)

2 ⇔ B[P
(k)
1] v B[P

(k)
2].

Proof. We first prove the left-to-right implication. Sup-
pose that P1 v P2. We consider a tree t, such thatB[P1](t) =
true, and show that B[P2](t) = true. Let t− be the tree
that is obtained from t by pruning all the leaves. Suppose
that e is an embedding of B[P1] in t, and let e− be the
restriction of e to the nodes of P1. Note that none of the
nodes of P1 is mapped to a leaf of t. Therefore, e− is an
embedding of P1 in t−. For 1 ≤ i ≤ k, let vi = e(oi), where
oi is the ith output node of P1. Since P1 v P2, there is an
embedding f− of P2 in t− that maps the output nodes of
P2 to v1, . . . , vk, respectively. We obtain an embedding f of
B[P2] in t by extending f− as follows. Let n be a leaf of
B[P2] and m be its parent. If label(n) = ∗, then we map
n to an arbitrary child of f−(m). Otherwise, there is a τi,
such that label(n) = τi; that is, m is the ith output node of
P2 and, hence, f−(m) = e(oi) = vi. So, we map n to the
child of vi that is labeled with τi (this child exists because
B[P1] has a child edge (oi,mi), where mi is labeled with τi,
and e is an embedding of B[P1] in t).

We now prove the other direction. Suppose that B[P1] v
B[P2] and let e be an embedding of P1 in a tree t. Note that
we assume that t does not contain the labels τ1, . . . , τk. Let
o1i and o2i be the ith (1 ≤ i ≤ k) output nodes of P1 and P2,
respectively. We now construct an embedding f of P2 in t,
such that f(o2i) = e(o1i). Let t+ be obtained from t as fol-
lows. For each leaf of t, we add a child labeled with l, where
l /∈ {τ1, . . . , τk}. In addition, for all 1 ≤ i ≤ k, we add a child
labeled with τi to e(o1i). So, e can be extended to an embed-
ding of B[P1] in t+, that is, B[P1](t

+) = true. Therefore,
B[P2](t

+) = true because we assumed that B[P1] v B[P2].
Let f+ be an embedding of B[P2] in t+. Since f+ maps none
of the nodes of P2 to a leaf of t+, it follows that f+ includes
an embedding f of P2 in t. Furthermore, for all 1 ≤ i ≤ k,
the node e(o1i) is the only node of t+ that has a child labeled
with τi, hence f(o2i) = e(o1i).

The following theorem shows that the reduction from a
g-pattern to its b-version preserves non-redundancy.

Theorem 5.3. P is non-redundant if and only if B[P] is
non-redundant.

Proof. Let out(P) = (o1, . . . , ok). First, suppose that
B[P] is redundant. Hence, there is a proper subtree B′ of
B[P], such that B′ ≡ B[P]. Let P ′ be obtained from B′ by
pruning all the leaves. If all the nodes of P are in B′, then
some leaf n of P is also a leaf of B′ and, so, n is removed
when constructing P ′. Therefore, P ′ is a proper subtree of
P . Next, we prove that P ′ v P and, consequently, P ′ ≡ P .

Note that B′ contains all the nodes labeled with τ1, . . . , τk
because each of these labels has a unique occurrence in B[P].
Therefore, P ′ contains all the output nodes of P . Now sup-
pose that e is an embedding of P ′ in a tree t that does not
contain the labels τ1, . . . , τk. We construct an embedding f
of P in t, such that e(oi) = f(oi) for all 1 ≤ i ≤ k. Let
t+ be obtained from t as follows. For each leaf n of B′

with a parent m (note that m ∈ N (P ′)), we add to e(m)
a new child with the label label(n) (or some arbitrary label
l /∈ {τ1, . . . , τk} if label(n) = ∗). Then there is an embedding
of B′ in t+ and, therefore, there is an embedding f+ of B[P]
in t+. Note that f+ cannot map a node of P to a leaf of
t+. Therefore, we can restrict f+ to an embedding f of P

Algorithm ReduceGPattern(P)

1: B ← B[P]
2: ReducePattern(B)
3: Prune all the leaves of B
4: P ← B (with the original output nodes)

Figure 8: Removing redundancy from a g-pattern

in t. Furthermore, each oi is mapped by f to e(oi) because
e(oi) is the only node that has a child with the label τi. This
concludes the proof of the first direction.

Now suppose that P has a proper subtree P ′, such that
P ′ ≡ P . By definition, the output nodes of P ′ are the
same as those of P . We need to show that B[P] has a
proper subtree B′, such that B′ v B[P]. By Proposition 5.2,
P ′ v P implies that B[P ′] v B[P]. Note that B[P ′] is not
necessarily a subtree of B[P], but the former has fewer nodes
than the latter because P ′ is a proper subtree of P . So, we
construct a subtree B′ of B[P] that has the same size as
B[P ′] and satisfies B′ v B[P ′] (hence, B′ ≡ B[P]).

To obtain B′, we start with P ′. For each 1 ≤ i ≤ k, we
add the edge (oi, ni), where ni is the unique node of B[P]
with the label τi. For each leaf n of P ′ that is not an output
node, either n has a child in P or n is a leaf in P and has
a child in B[P]. So, n has some outgoing edges in B[P]
and we add one of those to B′. Observe that B′ v B[P ′]
for the following reason. B[P ′] can be obtained from B′ by
changing, in some leaves, the label and incoming edge into
∗ and a child edge, respectively.2

In general, it is unknown whether a g-pattern is minimal
if and only if its b-version is minimal. However, the next
section shows that this is true for large classes of g-patterns.

5.3 Normal Forms of G-Patterns
We now define the versions of NF/∗ and NF//∗ for g-

patterns.

Definition 5.4. A g-pattern P is in NF/∗ (resp., NF//∗)
if B[P] is in NF/∗ (resp., NF//∗).

Next, we will prove that for a g-pattern in NF/∗ or NF//∗,
the algorithm ReduceGPattern of Figure 8 eliminates all
the redundant nodes and, moreover, minimizes the given
g-pattern. This algorithm accepts a g-pattern P as input,
constructs B = B[P] (which is in NF/∗ or NF//∗), minimizes
it using ReducePattern and removes the leaves from the
result. For the proof, we need the following observation.

Observation 5.5. If B′ is obtained from B by executing
ReducePattern(B), then leaves(B′) ⊆ leaves(B).

Proof. ReducePattern changes the input b-pattern B
only in the following way (Lines 4 and 7). It removes from B
a whole subtree Bm∆, where the parent of m has at least two
children. Therefore, if n is not a leaf of B, then it cannot
become a leaf during the execution of the algorithm.

Lemma 5.6. Let P be a g-pattern in NF/∗ (resp., NF//∗).
If P ′ is the result of executing ReduceGPattern(P), then
P ′ is in NF/∗ (resp., NF//∗).
2Converting a descendant edge of a b-pattern to a child edge
preserves equivalence if that edge enters a wildcard leaf.

70

B9

1 2

P ′1

b

dτ2

a

d

*

*

b

h

b

*

τ1

h

b

a

Figure 9: Restoring a g-pattern from a minimized
b-pattern

Proof. Assume that P is in NF/∗. The proof for NF//∗
is similar. Let B′ be the result of applying Line 2 of Re-
duceGPattern(P). By Observation 5.5, B[P ′] is isomor-
phic to B′ (because the leaves that are removed from B′ in
Line 3 are added to P ′ when constructing B[P ′]). Line 2
is an execution of ReducePattern and, by Lemma 4.9,
it preserves membership in NF/∗. We conclude that after
executing Line 2, B′ is in NF/∗ and, therefore, so is P ′.

Lemma 5.7. Suppose that P ≡ P ′, where P is a non-
redundant g-pattern in NF/∗ or NF//∗. P is g-isomorphic
to a subtree of P ′.

Proof. Assume that P is in NF/∗ (the proof for NF//∗
is similar). Hence, B[P] is in NF/∗. By Theorem 5.3, B[P]
is non-redundant. Furthermore, by Proposition 5.2, B[P] ≡
B[P ′]. By Lemma 4.10, B[P] is g-isomorphic to a subtree
of B[P ′]. It thus follows that P is g-isomorphic to a subtree
of P ′, as claimed.

Theorem 5.8. The following hold for a g-pattern P in
NF/∗ or NF//∗.

1. P is non-redundant if and only if P is minimal.

2. ReduceGPattern(P) results in a minimal g-pattern
that is equivalent to P .

Proof. Part 1 follows immediately from Lemma 5.7. So,
we prove Part 2. Let P ′ be the result of applying ReduceG-
Pattern(P), and let B′ be the result of executing Line 2.
By Observation 5.5, B[P ′] is isomorphic to B′. By Theo-
rem 4.6, B[P ′] is non-redundant and, by Theorem 5.3, so is
P ′. Lemma 5.6 shows that P ′ is in NF/∗ or NF//∗. Hence,
Part 1 implies that P ′ is minimal. Lemma 4.1 and Proposi-
tion 5.2 imply that P ≡ P ′.

Example 5.9. Consider again the patterns P1 and B[P1]
of Figure 7. Note that P1 is in NF//∗ because so is B[P1].
By applying ReducePattern to eliminate redundancy from
B[P1], we obtain the b-pattern B9 of Figure 9. Finally, by
pruning the leaves of B9, we get the g-pattern P ′1 (also in
Figure 9). Since P1 is in NF//∗, we conclude that P ′1 is a
minimal g-pattern that is equivalent to P1.

6. COMPLEXITY RESULTS
In this section, we prove that determining whether a pat-

tern is redundant and whether it is w-redundant are coNP-
complete problems. We also show that testing whether a
pattern is minimal (or w-minimal) is NP-hard.

Proposition 6.1. The problem of testing whether a pat-
tern is non-redundant (or not w-redundant) is in NP.

Proof. We first prove the claim for non-redundancy of a
b-patternB. By Proposition 3.3, to determine that B is non-
redundant, we have to show that for all leaves n ofB, B−n 6v
B. In [6], the following is proved. First, testing whether
B(t) = true is in polynomial time in B and t. Second, if
B1 6v B2, then there is a tree t1 ∈ CMod(B1), such that
B2(t1) = false and |N (t1)| = O(size(B1) · size(B2)). Hence,
an efficiently verifiable evidence that B is non-redundant
comprises a polynomial-size tree tn ∈ CMod(B−n)\Mod(B)
for each leaf n of B.

By the proof for the case of a b-pattern and Theorem 5.3,
testing whether a pattern P is non-redundant is in NP.

Testing non-w-redundancy is in NP because a pattern P
is not w-redundant if and only if ∗//P is non-redundant.

The intractability results below are for b-patterns. But
their proof is immediately applicable to g-patterns that have
the root as the only output node (in particular, weak con-
tainment and containment are the same in this case). Hence,
we get the same intractability results for g-patterns.

Next, we prove coNP-hardness. In [6], Miklau and Suciu
show that determining containment of b-patterns is coNP-
complete. Our proof of hardness is based on their reduction
from the 3SAT problem. For a 3-CNF formula ψ, they con-
struct two b-patterns Bψ and B′ψ, such that Bψ v B′ψ if and
only if ψ is not satisfiable. The roots of Bψ and B′ψ have
the same label and, so, we join these roots to obtain a new
b-pattern BMS

ψ (see Figure 10 for an illustration). The new
b-pattern has the following properties for all 3-CNF formu-
lae ψ. First, BMS

ψ is in both NF/∗ and NF//∗ because every
wildcard node has exactly one child, and that child is a leaf.
Second, every subtree (BMS

ψ)n∆ has no redundant branches,
except possibly in the following cases.

• label(n) 6= ∗ and all the branches of n are linear and
each has 4 or fewer nodes.3

• n is the root of BMS
ψ .

In the first case, we can use Proposition 3.8 to efficiently
remove redundant branches, and the resulting b-pattern re-
mains in both normal forms. In the second case, n has two
branches which are Bψ and B′ψ. The branch B′ψ is not con-
tained in Bψ, whereas Bψ v B′ψ if and only if ψ is not
satisfiable. Thus, we get the following lemma.

Lemma 6.2. For all 3-CNF formulae ψ, we can efficiently
construct a b-pattern B̂ψ that has the following properties.

1. B̂ψ is in both NF/∗ and NF//∗. 2. label(root(B̂ψ)) 6= ∗.
3. For all non-root nodes n of B̂ψ, the b-pattern B̂ψ

n
∆ has

no redundant branches. 4. B̂ψ has a redundant branch if
and only if ψ is not satisfiable.

3Specifically, n is a root of (an occurrence of) the pattern V
in the reduction of [6].

71

BMS
ψ

v
?

B′ψBψ

cc

hh

cc

h

Figure 10: Construction of BMS
ψ

From Proposition 6.1 and Lemma 6.2, we conclude the
following theorem.

Theorem 6.3. It is NP-complete to decide for a given b-
pattern B whether it is non-redundant (or not w-redundant).
Testing whether B is minimal (or w-minimal) is NP-hard.

Proof. Consider a 3-CNF formula ψ. Recall that only
Lines 1–4 of ReducePattern are needed for minimizing b-
patterns of NF/∗. Therefore, Properties 1, 3 and 4 of B̂ψ

in conjunction with Lemma 4.10 show that B̂ψ is minimal if
and only if ψ is satisfiable.
B̂ψ is a stable pattern because of Property 2 and Theo-

rem 4.3. Theorem 4.6 (in conjunction with Property 1) and

the stability of B̂ψ imply that the following are equivalent.

1. B̂ψ is non-redundant. 2. B̂ψ is not w-redundant. 3. B̂ψ
is minimal. 4. B̂ψ is w-minimal.

Note that the above theorem holds even if B satisfies
stricter definitions of both NF/∗ and NF//∗, namely, the sta-
bility requirement is replaced with the first sufficient condi-
tion of Theorem 4.3. Since Bψ and B′ψ satisfy these stricter
definitions, testing containment is coNP-complete even for
b-patterns that are in both of these stricter normal forms.

Consider the problem of testing whether a b-pattern is
minimal (or w-minimal). Clearly, it is in Π

p
2 . However,

we do not know whether this problem is in NP. Of course,
if non-redundancy implies minimality, then this problem is
NP-complete.

In [4], they prove that the following problem is coNP-
hard.4 Given a b-pattern B and an integer k, determine
whether min≡(B) ≤ k. However, hardness of this problem
does not imply hardness of testing whether a pattern is min-
imal (or whether it is non-redundant).

7. CONCLUSION
We considered the notions of redundancy and minimiza-

tion in a well known fragment of XPath. It was shown
that contrary to results of earlier work [4], the problem of
whether non-redundancy implies minimality is still open in
the general case. We proved that for patterns of two normal
forms, minimality and non-redundancy coincide, and more-
over, minimization is realized by removing redundant and
(sometimes) w-redundant branches. The two normal forms
can be combined in order to cover additional b-patterns.

Our results are based on the new notions of weak contain-
ment, relative containment, w-redundancy and stability. By
utilizing these notions, we can eliminate redundancies that

4They also claim that this problem is in coNP; but to prove
it, they assume that a non-redundant pattern is minimal.

cannot be detected by either the algorithm of [4, 5] or the
common technique [1, 3, 9, 11] of finding a non-injective ho-
momorphism from the pattern to itself. In fact, it can be
shown that the latter is only capable of detecting the type
of redundancy considered in the former

Stability of sub-patterns is important for showing that a
pattern is in one of the normal forms. We proved that some
natural properties of patterns guarantee stability. Therefore,
we believe that the normal forms cover many of the patterns
that are used in practice. Properties of patterns in the nor-
mal forms enabled us to show that testing non-redundancy
is NP-complete and testing minimality is NP-hard.

We proved our results for b-patterns and extended them
to g-patterns by employing the notion of b-versions. It was
shown that b-versions are a useful tool for reducing problems
of g-patterns to those of b-patterns. In particular, b-versions
correct a minor flaw in the reduction of [6].

Several questions remain open. The main one is whether
a non-redundant pattern is always minimal. Another open
problem is the relationship between minimality of g-patterns
and that of their b-versions. By Theorem 5.3, the answer is
trivial if minimality is equivalent to non-redundancy. The
third open problem is the exact complexity of stability (we
can show that it is decidable and NP-hard).

Acknowledgment
The authors thank the anonymous referees for helpful com-
ments and suggestions.

8. REFERENCES
[1] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and

D. Srivastava. Tree pattern query minimization. VLDB J.,
11(4), 2002.

[2] E. P. F. Chan. Containment and minimization of positive
conjunctive queries in OODB’s. In PODS, 1992.

[3] A. K. Chandra and P. M. Merlin. Optimal implementation
of conjunctive queries in relational data bases. In STOC,
1977.

[4] S. Flesca, F. Furfaro, and E. Masciari. On the minimization
of Xpath queries. In VLDB, 2003.

[5] S. Flesca, F. Furfaro, and E. Masciari. On the minimization
of Xpath queries. A paper in press, 2007.

[6] G. Miklau and D. Suciu. Containment and equivalence for
a fragment of XPath. J. ACM, 51(1), 2004.

[7] T. Milo and D. Suciu. Index structures for path
expressions. In ICDT, 1999.

[8] F. Neven and T. Schwentick. On the complexity of XPath
containment in the presence of disjunction, DTDs, and
variables. Logical Methods in Computer Science, 2(3), 2006.

[9] P. Ramanan. Efficient algorithms for minimizing tree
pattern queries. In SIGMOD, 2002.

[10] P. T. Wood. On the equivalence of xml patterns. In
Computational Logic, 2000.

[11] P. T. Wood. Minimising simple XPath expressions. In
WebDB, 2001.

[12] P. T. Wood. Containment for XPath fragments under DTD
constraints. In ICDT, 2003.

[13] W. Xu and Z. M. Özsoyoglu. Rewriting XPath queries
using materialized views. In VLDB, 2005.

72

