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ABSTRACT
In this paper we study the problem of mining all frequent
queries in a given database table, a problem known to be
intractable even for conjunctive queries. We restrict our at-
tention to projection-selection queries, and we assume that
the table to be mined satisfies a set of functional depen-
dencies. Under these assumptions we define a pre-ordering
¹ over queries and we show the following: (a) the support
measure is anti-monotonic (with respect to ¹), and (b) if we
define q ≡ q′ iff q ¹ q′ and q′ ¹ q then all queries of an
equivalence class have the same support.

With these results at hand, we further restrict our atten-
tion to star schemas of data warehouses. In those schemas,
the set of functional dependencies satisfies an important
property, namely, the union of keys of all dimension tables is
a key for the fact table. The main contribution of this paper
is the proposal of a level-wise algorithm for mining all fre-
quent projection-selection queries in a data warehouse over
a star schema. Moreover, we show that, in the case of a star
schema, the complexity in the number of scans of our algo-
rithm is similar to that of the well known Apriori algorithm,
i.e., linear with respect to the number of attributes.

1. INTRODUCTION
In this paper we study the problem of mining all frequent

queries in a (relational) table ∆ over an attribute set U ,
where a query is said to be frequent if the cardinality of its
answer is above a given threshold.

This is an important but challenging problem of data min-
ing, known to be intractable even for conjunctive queries [6].
Indeed, the size of the search space can be shown to be ex-
ponential not only in the number of attributes, but also in
the number of tuples (since there are as many selection con-
ditions as there are sub-tuples of tuples in ∆).

In this work we restrict our attention to projection-selection
queries, and we assume that ∆ satisfies a set of functional
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dependencies. A projection-selection query is of the form
πX(σY =y(∆)) where X and Y are subsets of U and y is a
tuple of πY (∆). We define the support of such a query to be
the number of tuples in the answer. Under these assump-
tions, we use the set of functional dependencies to define a
pre-ordering ¹ over queries and we show that (a) the sup-
port measure is anti-monotonic (with respect to ¹), and (b)
if we define q ≡ q′ if and only if q ¹ q′ and q′ ¹ q then all
queries of an equivalence class have the same support.

With these results at hand, we restrict our attention to
star schemas of data warehouses. In those schemas, the set
of functional dependencies satisfies an additional important
property, namely, the union of keys of all dimension tables
is a key for the fact table. The main contribution of this
paper is the proposal of a level-wise algorithm for mining
all frequent projection-selection queries in a data warehouse
over a star schema.

Our algorithm is inspired from the well known Apriori
algorithm [1], and we show that its complexity is similar to
that of Apriori. More precisely, whereas the complexity in
the number of scans of the transaction table of Apriori is in
O(n) (where n is the number of items), we show that, in the
case of a star schema, the complexity in the number of scans
of the table of our algorithm is in O(|U |), where |U | is the
number of attributes in U .

Let us illustrate the basic concepts of our approach through
an example (that will serve as a running example throughout
the paper).

Example 1. Consider the table ∆ defined over the at-
tribute set U = {Cid, Cname, Caddr, P id, P type, Qty}, as
shown in Figure 1, where:

• Cid, Cname and Caddr stand for Customer Identifier,
Customer Name and Customer Address,

• Pid and Ptype stand for Product Identifier and Prod-
uct Type,

• Qty stands for Quantity (i.e., number of products sold).

Moreover, assume that the table ∆ satisfies the following set
FD of functional dependencies:

FD = {Cid → Cname Caddr , P id → Ptype ,
Cid P id → Qty}.

(One can easily verify that the table ∆ shown in Figure 1
does satisfy the above dependencies.)
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∆ Cid P id Cname Caddr Ptype Qty

c1 p1 John Paris milk 10

c1 p2 John Paris beer 10

c2 p1 Mary Paris milk 1

c2 p2 Mary Paris beer 5

c3 p3 Paul NY beer 10

c4 p4 Peter Paris milk 15

Figure 1: The table of the running example

We note that, in a star schema, the table ∆ could be the
result of joining the following three tables: Customer(Cid,
Cname, Caddr), Product(Pid, P type), Sales(Cid, P id, Qty)
where Customer and Product are dimension tables and
Sales is the fact table.

Assuming that all frequent projection-selection queries are
computed using the table ∆, we argue that it is relevant to
consider the confidence of rules of the form q1 ⇒ q2 (i.e.,
the ratio of the support of q2 over that of q1), where q1 and
q2 are frequent queries such that the support of q2 is less
than the support of q1.

To illustrate this point, assume that q1, q2, q3 and q4 are
frequent queries defined as follows:

– q1 = πCid(σCaddr=Paris(∆)),
– q2 = πCid(σCaddr Ptype=Paris beer(∆)),
– q3 = πPid(σPtype=beer(∆)),
– q4 = πPid(σCaddr Ptype=Paris beer(∆)).

The fact that the confidence of q1 ⇒ q2 (respectively, q3 ⇒
q4) is 80% (respectively, 75%) means that 80% of the cus-
tomers from Paris buy beer (respectively, 75% of the products
of type beer are bought by at least one customer from Paris).
Combining these two facts, we can state that 80% of the
customers from Paris buy 75% of the products of type beer.

However, in this paper, we focuss on the computation of
frequent projection-selection queries, and we leave the study
of rules for future work.

Now, referring to Figure 1, it is easy to verify that we have
|ans(πCid(∆))| ≥ |ans(πCaddr(∆))|, and that this inequality
holds because the table ∆ satisfies the dependency Cid →
Caddr (which is a consequence of FD).

Similarly, it is easy to verify that we have |ans(πCid(∆))| =
|ans(πCid Caddr(∆))|, and that this equality holds because
the table ∆ satisfies the dependencies Cid → Cid Caddr
and Cid Caddr → Cid (which are consequences of FD).

Note that, although not equivalent according to standard
query equivalence [14], the queries πCid(∆) and πCid Caddr(∆)
have the same support. Thus, as long as we are interested
only in computing supports, only one computation is neces-
sary for these two queries.

On the other hand, it is easy to verify that we have
|ans(σPid=p2(∆))| ≤ |ans(σPtype=beer(∆))|, and that this in-
equality holds because the table ∆ satisfies the dependency
Pid → Ptype and p2 is associated with beer. Clearly, this
inequality will hold in any table that satisfies the depen-
dency Pid → Ptype and in which the Pid value p2 is asso-
ciated with the Ptype value beer.

Now, consider the table ∆′ obtained from ∆ by replacing
all occurrences of beer by wine. Then ∆′ still satisfies FD
but now p2 is associated with wine instead of beer. As a
result we have |ans(σPid=p2(∆

′))| > |ans(σPtype=beer(∆
′))|,

showing that these queries are not comparable in any table
satisfying FD. Therefore, selection conditions have to be

taken into account for a given table, when comparing the
supports of selection-projection queries. 2

In what follows, based on the observations of the previ-
ous example, we define a pre-ordering over the set of all
projection-selection queries, and show that the support is
anti-monotonic with respect to this pre-ordering.

Moreover, the pre-ordering induces an equivalence rela-
tion over projection-selection queries, and this equivalence
relation plays a fundamental role in our approach, since two
equivalent queries are shown to have the same support. The
importance of this property lies in the fact that only one
computation is necessary in order to obtain the support of
all queries in the same equivalence class.

Finally, in the case where the set FD of functional de-
pendencies is that of a star schema, we provide a level-wise
algorithm (inspired from the Apriori algorithm [1]) showing
that the problem of mining all frequent projection-selection
queries becomes tractable in this particular case.

The paper is organized as follows: In Section 2, we briefly
review previous work in the area, and in Section 3 we recall
basic properties of projection-selection queries and introduce
the associated pre-ordering. In particular, we show that the
support measure is anti-monotonic with respect to this pre-
ordering. In Section 4, we consider the equivalence relation
induced by the pre-ordering, we characterize the content of
equivalence classes, and we give a basic property for building
the set of equivalence classes. In Section 5, we show how the
general results of the earlier sections apply in the particular
case of a star schema, and we give algorithms for mining all
frequent projection-selection queries in this case. Section 6
concludes the paper and discusses future work.

2. RELATED WORK
The work in [6] considers conjunctive queries, as we do

in this paper, and points out that without restrictions on
the database schema, the problem is intractable. Although
some hints on possible restrictions are mentioned in [6], no
specific case is studied.

In [7], the authors consider restrictions on the frequent
queries to be mined using the formalism of rule based lan-
guages. Although the considered class of queries is larger
than in our approach, it should be pointed out that, in [7],
(i) equivalent queries can be generated that can not be tested
efficiently (a problem that does not exist in our approach),
and (ii) functional dependencies are not taken into account,
as we do in this paper.

The work of [8], although dealing with mining tree queries
in a graph, is nevertheless closely related to ours. Indeed, in
[8], a graph is represented by a binary relation, and frequent
tree queries, expressed as SQL queries involving projections,
selections and joins, are mined.

Therefore, the approach in [8] can be considered as being
more general than ours because (i) particular joins are taken
into account, which is not the case in our approach, and
because (ii) for a given join, all frequent projection-selection
queries are mined, as we do in our approach.

We also note that the consideration of joins, as done in [8],
implies that selection conditions involve equalities between
two attributes, which we do not consider in this paper.

However, in [8] frequent projection-selection queries are
mined according to the standard notion of query equivalence
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([14]), whereas in our approach, we introduce a new notion
of query equivalence with the following characteristics:

1. it generalizes the standard one used in [8],

2. it is based on comparisons of cardinalities, instead of
being based on set inclusion as in [8], and

3. it takes functional dependencies into account, which is
not the case in [8].

In our previous work [11], we consider the particular case
of a database in which relations are organized according to
a star schema. In this setting, frequent selection-projection
queries are mined from the associated weak instance ([14]).
However, in [11], equivalence classes are defined based on
projection only, and thus, only projection queries can be
mined through one run of the proposed level-wise algorithm.
Therefore, the present work can be seen as a generalization
of [11], because in the present paper, we consider (i) equiv-
alence classes for projection-selection queries, and (ii) any
set of functional dependencies (not only those associated to
star schemas).

In [3], a set of attributes, called the key, provides the set
of values according to which the supports are to be counted.
Then, using a bias language, the different tables involving
the key attributes are mined, based on a level-wise algo-
rithm. Our approach (as well as that of [7]) can be seen as a
generalization of the work in [3], in the sense that we mine
all frequent queries for all keys.

The work of [5] follows roughly the same strategy as in [3],
except that joins are first performed in a level-wise manner;
and for each join, frequent queries are mined, based also on
a level-wise algorithm.

All other approaches dealing with mining frequent queries
[4, 9, 12, 13] consider a fixed set of “objects” to be counted
during the mining phase and only one table for a given min-
ing task. For instance, in [13], objects are characterized
by values over given attributes, whereas in [4], objects are
characterized by a query, called the reference. On the other
hand, except for [13], all these approaches are restricted to
conjunctive queries, as is the case in the present paper.

To end this section, we emphasize that, to the best of our
knowledge, this work along with that of [11], is the first at-
tempt to consider explicitly constraints on the data set, such
as functional dependencies, for optimizing the computation
of frequent queries.

3. FREQUENT QUERIES

3.1 Preliminaries
We assume that the reader is familiar with the relational

model for which we follow the notation of [14]. In particular,
we consider a relational table over a fixed set of attributes U ,
each attribute A being associated with a domain of values,
denoted by dom(A). We extend the notion of domain to any
subset X of U as follows: dom(X) = ΠA∈X(dom(A)).

For notational convenience, tuples will be denoted by lower
case characters and their schema by the corresponding up-
per case characters. Given a tuple x over X, for every subset
Y of X, x.Y denotes the restriction of x over Y .

In this work, we consider a relational table ∆ defined over
an attribute set U and containing no null values. Moreover,

we assume that ∆ satisfies a set FD of functional depen-
dencies.

As in [14], we denote by FD+ the set of all functional
dependencies that can be inferred from FD, based on Arm-
strong axioms ([2]). For every X → Y in FD+ and for
every tuple x over X, we denote by ∆Y (x) the tuple over Y
associated in ∆ with x through X → Y .

Referring back to Figure 1, Cid → Caddr is in FD+, and
we have, for instance, ∆Caddr(c1) = Paris, as all tuples t
such that t.Cid = c1 satisfy t.Caddr = Paris. In this paper,
given an attribute set X, we consider the notions of closure
and keys of X as in [14], that is:

• X+ denotes the closure of X (with respect to FD),
namely, the set of all attributes A in U such that the
dependency X → A is in FD+,

• keys(X) denotes the set of all keys of X+, namely, the
set of all minimal K (with respect to set inclusion)
such that K ⊆ X+ and K → X+ ∈ FD+.

Moreover, given a query q, we denote by ans(q) the answer
to q in ∆ and by |ans(q)| the cardinality of ans(q).

Functional dependencies allow for comparisons of the car-
dinalities of the answers to queries, as stated below.

Lemma 1. For all nonempty schemas X and Y such that
X → Y is in FD+:

1. |ans(πX(∆))| ≥ |ans(πY (∆))| and
2. |ans(σX=x(∆))| ≤ |ans(σY =∆Y (x)(∆))|.

Proof. 1. Since ∆ satisfies X → Y , there exists a to-
tal, onto function from ans(πX(∆)) to ans(πY (∆)). Thus,
|ans(πX(∆))| ≥ |ans(πY (∆))|.
2. For every t in ans(σX=x(∆)), t.X = x. Thus, t.Y =
∆Y (x), showing that t is in ans(σY =∆Y (x)(∆)). Therefore,
we have |ans(σX=x(∆))| ≤ |ans(σY =∆Y (x)(∆))|.

In the standard relational model, schemas are assumed to
be nonempty sets. However, for the purposes of this pa-
per, we also consider the empty schema, denoted by ∅. The
set dom(∅) is assumed to contain a single tuple, namely the
empty tuple, denoted by ⊤. We consider functional depen-
dencies involving ∅ along with the following rules, which can
be shown to be consistent with Armstrong axioms.

• For every X (empty or not) X, every table ∆ satisfies
X → ∅. Thus, for every x in dom(X), ⊤ = ∆∅(x).

• For every set of functional dependencies FD, keys(∅) =
{∅} and ∅+ = ∅.

3.2 Queries
The projection-selection queries considered here are stan-

dard, conjunctive projection-selection relational queries, along
with their extension to the empty schema.

Definition 1. A conjunctive selection condition, or a se-
lection condition for short, is an equality of the form Y = y
where Y is a possibly empty relation schema and y a tuple in
dom(Y ). Let S = (Y = y) be a selection condition. A tuple
t over U is said to satisfy S if: either Y = ∅ and y = ⊤, or
Y 6= ∅ and t.Y = y.

We denote by Q(∆) the set of all queries of the form
πX(σY =y(∆)) such that X 6= ∅ or Y 6= ∅, and y ∈ πY (∆).
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In order to simplify notation, a projection-selection query
of the form πX(σY =y(∆)) will be denoted by 〈X, y〉, and
its answer in Q(∆) by ans∆(〈X, y〉) (or simply ans(〈X, y〉)
when ∆ is understood). This answer is defined as usual if
X 6= ∅, and if X = ∅ then ans∆(〈∅, y〉) = ans∆(〈Y, y〉).

We note that all queries in Q(∆) of the form 〈X,⊤〉 where
X 6= ∅ are simply the relational queries of the form πX(∆).

Therefore, in our approach, a query is defined by a relation
schema X (which can be empty) together with a tuple y
(which can also be empty). However, the case where X and
Y are both empty is not considered here, simply because the
resulting query would be meaningless.

It is also important to note that we restrict queries 〈X, y〉
to be such that y appears in ∆, simply because, otherwise,
the answer is known to be empty, and thus not relevant
regarding frequency computations.

Example 2. In the context of Example 1, the queries q1 =
〈Cid, Paris〉 and q2 = 〈Cid, Paris beer〉 are queries in Q(∆)
and we have ans(q1) = {c1, c2, c4} and ans(q2) = {c1, c2}.

On the other hand, 〈Cid,⊤〉, 〈Caddr, Paris beer〉 and 〈∅,
Paris beer〉 are also queries in Q(∆) for which we have
ans(〈Cid,⊤〉) = {c1, c2, c3, c4}, ans(〈Caddr, Paris beer〉) =
{Paris}, and ans(〈∅, Paris beer〉) = {Paris beer}.

However, the query 〈Cid Caddr, NY 15〉 is not in Q(∆) be-
cause NY 15 is not a tuple in πCaddr Qty(∆). 2

The notion of frequent query in our approach is defined in
much the same way as in [6].

Definition 2. For every query q in Q(∆), the support
of q in ∆, denoted by sup∆(q) (or simply sup(q) when ∆
is understood) is the cardinality of the answer to q, i.e.,
sup∆(q) = |ans∆(q)|.

Given a support threshold min-sup, a query q is said to be
frequent in ∆ (or simply frequent when ∆ is understood) if
sup∆(q) ≥ min-sup.

Referring back to queries q1 and q2 in Example 2, it is easy
to see that sup(q1) = 3, sup(q2) = 2. Thus, for a support
threshold equal to 3, q1 is frequent whereas q2 is not.

We notice that for every ∆ and every q = 〈X, y〉 in Q(∆),
we have 1 ≤ sup(q) ≤ |∆|. Moreover, sup(〈U,⊤〉) = |∆| and
for every Y ′ such that ∅ ⊆ Y ′ ⊆ Y , sup(Y ′, y) = 1.

3.3 Comparing Queries
In our approach, the queries of Q(∆) are compared as

stated in the following definition.

Definition 3. Let q = 〈X, y〉 and q1 = 〈X1, y1〉 be queries
in Q(∆). Then q1 is said to be more specific than q in ∆,
denoted by q ¹∆ q1 (or q ¹ q1 when ∆ is understood) if one
of the following cases holds:

1. Y1 → X1 ∈ FD+, or equivalently X+
1 ⊆ Y +

1 ,

2. q and q1 are such that
• XY1 → X1 ∈ FD+, or equivalently X+

1 ⊆ (XY1)
+,

• Y1 → Y ∈ FD+, or equivalently Y + ⊆ Y +
1 , and

• y = ∆Y (y1).

The assumptions in Definition 3 imply that all queries 〈X, y〉
such that Y → X ∈ FD+ are the most specific queries in

Q(∆). Moreover, it can be easily seen that each most specific
query has a support equal to 1.

Indeed, if Y → X ∈ FD+ and sup(〈X, y〉) > 1, then
∆ contains at least two distinct tuples t and t′ such that
t.Y = t′.Y = y and t.X 6= t′.X, which is a violation of the
dependency Y → X assumed to be satisfied by ∆.

We note that all queries of the form 〈Y ′, y〉 where ∅ ⊆
Y ′ ⊆ Y are such that Y → Y ′ ∈ FD+.

The following proposition shows that the relation ¹ is a
pre-ordering over Q(∆), i.e., ¹ is reflexive and transitive.

Proposition 1. The relation ¹ is a pre-ordering over
Q(∆).

Proof. It is easy to see that ¹ is reflexive, thus we only
show the transitivity of ¹. Let q = 〈X, y〉, q1 = 〈X1, y1〉
and q2 = 〈X2, y2〉 be such that q ¹ q1 ¹ q2.

If Y2 → X2 is in FD+, then we have q ¹ q2. If Y2 → X2 6∈
FD+, then we show that Y1 → X1 cannot be in FD+ either.
Indeed, if Y1 → X1 ∈ FD+ then, as we assume that q1 ¹ q2,
X1Y2 → X2 and Y2 → Y1 are in FD+. So, Y2 → X1 is in
FD+, and thus, Y2 → X2 ∈ FD+, which is a contradiction.
Thus, in this case, we also have that Y → X is not in FD+.
Therefore, in this case, the following dependencies are in
FD+: XY1 → X1, Y1 → Y , X1Y2 → X2 and Y2 → Y1. As
a consequence, XY2 → XY1 ∈ FD+, and so, using XY1 →
X1, XY2 → X1Y2 is in FD+. As X1Y2 → X2 ∈ FD+, we
obtain that XY2 → X2 ∈ FD+. On the other hand, as
Y2 → Y1 and Y1 → Y are in FD+, so is Y2 → Y . Moreover,
as we have y = ∆Y (y1) and y1 = ∆Y1

(y2), we obtain y =
∆Y (y2), which shows that q ¹ q2.

Example 3. Consider the table ∆ of Example 1 and the
queries q1 and q2 of Example 2:

• q1 ¹ q2, since the dependencies Cid Caddr P type →
Cid and Caddr Ptype → Caddr are in FD+, and
∆Caddr(Paris beer) = Paris.

• 〈Cid,⊤〉 ¹ q1, since the dependencies Cid Caddr →
Cid and Caddr → ∅ are in FD+, and ⊤ = ∆∅(beer).

• 〈Caddr, Paris beer〉 ¹ 〈∅, Paris beer〉, since the de-
pendencies Caddr Ptype → ∅ and Caddr Ptype →
Caddr Ptype are in FD+, and
∆CaddrPtype(Paris beer) = Paris beer.

• 〈∅, Paris beer〉 ¹ 〈Caddr, Paris beer〉 for the same
reasons as above.

We also have 〈Cid, beer〉 ¹ 〈Qty, p2〉, because Cid P id →
Qty and Pid → Ptype are in FD+, and ∆Ptype(p2) = beer.
2

Let q = 〈X, y〉 and q1 = 〈X1, y1〉. Then, it is easy to see
from Definition 3 that, if X1 ⊆ X and Y ⊆ Y1 and y = y1.Y ,
then q ¹ q1 holds. In particular, for every nonempty X and
every tuple y over Y , we have 〈X,⊤〉 ¹ 〈X, y〉. Moreover,
it can also be seen that, if X ⊆ Y , then 〈∅, y〉 ¹ 〈X, y〉 and
〈X, y〉 ¹ 〈∅, y〉 hold.

We note that the pre-ordering ¹ generalizes query con-
tainment ⊑ (see [14]), because, for all queries q = 〈X, y〉
and q1 = 〈X1, y1〉 in Q(∆), q1 ⊑ q implies q ¹ q1.

Indeed, if q1 ⊑ q then q and q1 are defined over the same
schema and thus X = X1. Moreover, if q1 ⊑ q then, for
every table ∆ over U (satisfying FD or not), ans(q1) ⊆
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ans(q). Thus, for every tuple t over U , t.Y1 = y1 implies
that t.Y = y. Hence, we have Y ⊆ Y1 and y1.Y = y, which
shows that Y1 → Y is a trivial dependency in FD+ and
that, by Definition 3 above, q ¹ q1.

As a consequence of Lemma 1, the following proposition
states that the support is anti-monotonic with respect to ¹.

Proposition 2. For all q and q1 in Q(∆), if q ¹ q1 then
sup(q1) ≤ sup(q).

Proof. The result holds if Y1 → X1 is in FD+, because
sup(q1) = 1 and sup(q) ≥ 1.

In the case where Y1 → X1 is not in FD+, then:
− If y1 = ⊤, as q ¹ q1 and Y1 → Y ∈ FD+, Y = ∅. Thus,
y = ⊤ and the result follows from Lemma 1(1).
− If y1 6= ⊤, ans(〈U, y1〉) satisfies X → Y1, and as XY1 →
X1 ∈ FD+, ans(〈U, y1〉) satisfies X → X1. As ans(〈X, y1〉) =
πX(ans(〈U, y1〉)) and ans(〈X1, y1〉) = πX1

(ans(〈U, y1〉)), by
Lemma 1(1), we obtain |ans(〈X1, y1〉)| ≤ |ans(〈X, y1〉)|. As
Y1 → Y ∈ FD+ and y = ∆Y (y1), by Lemma 1(2), we
have |ans(〈X, y1〉)| ≤ |ans(〈X, y〉)|. Therefore, we obtain
|ans(〈X1, y1〉)| ≤ |ans(〈X, y〉)|.

We recall from [1] that anti-monotonicity is an important
property for computing frequent patterns using a level-wise
algorithm. In our context we use Proposition 2 in a stan-
dard way as follows: Given a support threshold min-sup and
two queries q and q1 in Q(∆) such that q ¹ q1, if q is not
frequent, then q1 is not frequent either. Thus, in this case, it
is not necessary to compute sup(q1). Further optimizations
are possible, based on query equivalence, as defined next.

4. QUERY EQUIVALENCE

4.1 Equivalence Relation
The pre-ordering ¹ induces the following equivalence re-

lation between queries:

Let q and q1 be two queries in Q(∆). Then q and q1

are said to be equivalent, denoted by q ≡ q1, if q ¹ q1

and q1 ¹ q hold.

The equivalence class of q modulo ≡ is denoted by [q], and
the set of all equivalence classes modulo ≡, i.e., the set
Q(∆)/ ≡, is denoted by C(∆).

The pre-ordering ¹ over Q(∆) induces a partial ordering
over C(∆), that we shall also denote by ¹. This partial
ordering is defined as follows:

For all [q] and [q1] in C(∆), [q1] is said to be more
specific than [q], denoted by [q] ¹ [q1], if q ¹ q1 holds.

It is easy to see that ¹ is indeed a partial ordering and that
it is independent from the choice of representatives. This is
why we use the same notation for the pre-ordering in Q(∆)
and its associated partial ordering in C(∆).

Moreover, as the relation ¹ has been shown to generalize
query containment, it is easy to see that the equivalence
relation ≡ generalizes query equivalence, as defined in [14].

It can be seen from Definition 3 that all queries 〈X, y〉
such that Y → X ∈ FD+ form an equivalence class. We
denote this class by ⊥ and, for every q ∈ Q(∆), we have
[q] ¹ ⊥, meaning that ⊥ is the most specific class in C(∆).

The following corollary is a direct consequence of Propo-
sition 2:

Corollary 1. For all q and q1 in Q(∆), if q ≡ q1 then
sup(q) = sup(q1).

For instance, in Example 3, we have 〈Caddr, Paris beer〉 ¹
〈∅, Paris beer〉 and 〈∅, Paris beer〉 ¹ 〈Caddr, Paris beer〉.
Therefore, these two queries are equivalent, and it follows
from Corollary 1 above that their supports are equal (this
can be also checked directly in Example 2).

Based on Corollary 1, given a class [q] in C(∆), we denote
by sup([q]) the support of [q], i.e., the support of any query
in [q]. Thus, similarly to individual queries, given a support
threshold min-sup, a class [q] in C(∆) is said to be frequent
if sup([q]) ≥ min-sup.

The following theorem follows easily from Proposition 2
and Corollary 1:

Theorem 1. For all [q] and [q1] in C(∆), if [q] ¹ [q1]
then sup([q1]) ≤ sup([q]).

The impact of Corollary 1 and Theorem 1 on the computa-
tion of frequent queries is as follows:

1. In each equivalence class only one computation of sup-
port is necessary. Thus, in the algorithms that we shall
present shortly, we do not consider individual queries
of Q(∆), but rather, equivalence classes of C(∆).

2. Frequent classes can be computed using a level-wise
algorithm.

However, considering frequent classes is effective if equiva-
lent queries can be characterized easily and if the set C(∆)
can be constructed in an efficient manner. These two issues
are addressed in the next two sections.

4.2 Equivalence Classes
In order to characterize the content of classes in C(∆), we

first define the notion of keys of a query as follows.

Definition 4. For every q = 〈X, y〉 in Q(∆), the set
of keys of q, denoted by Keys(q), is the set of all queries
q0 = 〈X0, y0〉 in Q(∆) such that

• X0 = K0 \ Y +, where K0 ∈ keys(XY ) and
• y0 = ∆Y0

(y), where Y0 ∈ keys(Y ).

It follows from Definition 4 that, for every q = 〈X, y〉 such
that Y → X is in FD+, we have:

Keys(q) = {〈∅, y0〉 | Y0 ∈ keys(Y ) ∧ y0 = ∆Y0
(y)}.

Indeed, in this case, X+ ⊆ Y + and thus, for every X0 ∈
keys(XY ), X0 ⊆ (XY )+ = Y +. Hence, X0 \ Y + = ∅.

Example 4. In the context of Example 1, let q be the
query 〈Cid Cname,⊤〉. As keys(Cid Cname) = {Cid}, we
have Keys(q) = {〈Cid,⊤〉}.

For q′ = 〈Cid Ptype Qty, p2〉, keys(Cid Ptype Qty P id) =
{Cid P id} and keys(Pid) = {Pid}. As Pid+ = Pid Ptype,
we have Keys(q′) = {〈Cid, p2〉}. 2

The following proposition characterizes equivalent queries.

Proposition 3. 1. ⊥ = {〈X, y〉 ∈ Q(∆) | X ⊆ Y +}.

2. For every q = 〈X, y〉 in Q(∆) but not in ⊥ we have:

[q] = {〈X1, y1〉 | (∃〈X0, y0〉 ∈ Keys(q))
((X0 ⊆ X1 ⊆ (X0Y0)

+)∧
(Y0 ⊆ Y1 ⊆ Y +

0 ) ∧ (y1 = ∆Y1
(y)))}.
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Proof. 1. If [q] = ⊥, the result follows from Definition 3.
2. If [q] 6= ⊥, denoting by Q the set of queries as defined
in the proposition, let q1 = 〈X1, y1〉 be in [q]. It follows
from Definition 3 that (XY )+ = (X1Y1)

+, Y + = Y +
1 and

y1 = ∆Y1
(y). It can be seen that there exists K ∈ keys(XY )

such that K ⊆ X1Y1 ⊆ (XY )+ and Y0 ∈ keys(Y ) such that
Y0 ⊆ Y1 ⊆ Y + and y0 = ∆Y0

(y). Moreover, for X0 =
K \ Y +

0 , as X0 ∩ Y +
0 = ∅ and Y1 ⊆ Y +

0 , X0 ∩ Y1 = ∅. Since
X0 ⊆ K ⊆ X1Y1, we have X0 ⊆ X1Y1, and thus, X0 ⊆ X1.
Therefore q1 ∈ Q.

Conversely, let q1 be in Q. As X0 ⊆ X1, X1 → X0 ∈
FD+, and as Y0 ⊆ Y1, Y1 → Y0 ∈ FD+. Therefore, X1Y1 →
X0Y0 ∈ FD+. As X1 ⊆ (X0Y0)

+ and Y1 ⊆ Y +
0 , X0Y0 →

X1Y1 and Y0 → Y1 are in FD+. Thus, (X0Y0)
+ = (X1Y1)

+

and Y +
0 = Y +

1 . As we also have y1 = ∆Y1
(y0), it can be seen

that this entails that q1 ≡ 〈X0, y0〉, and thus that q1 ∈ [q]
(because it is easy to see that q0 ≡ q).

As a consequence of Proposition 3, for every q = 〈X, y〉 in
Q(∆) such that [q] 6= ⊥, [q] contains exactly one represen-
tative 〈X ′, y′〉 such that X ′ = X+, Y ′ = Y + and Y ′ ⊂ X ′.

Thus, C(∆) \ {⊥} is isomorphic to the set of all queries
〈X, y〉 such that X+ = X, Y + = Y and Y ⊂ X. In the
remainder of the paper, we identify every class of C(∆)\{⊥}
with this unique, particular representative.

For instance, consider again the queries q and q′ of Exam-
ple 4. We have:

− [q] = {〈Cid,⊤〉, 〈Cid Cname,⊤〉, 〈Cid Caddr,⊤〉,
〈Cid Cname Caddr,⊤〉}

− [q′] = {〈X, y〉 | (Cid ⊆ X ⊆ U)∧ (y = p2 ∨ y = p2 beer)}.

The classes [q] and [q′] are respectively represented by:

− 〈Cid Cname Caddr,⊤〉 and
− 〈Cid Cname Caddr P id P type Qty, p2 beer〉.

4.3 Successors of an Equivalence Class
In this section, we show how to generate the set C(∆).

First, given a class q in C(∆), call successors of q, denoted
by succ(q), the set of all classes 〈X ′, y′〉 such that:

1. 〈X, y〉 ¹ 〈X ′, y′〉 and

2. if 〈X ′′, y′′〉 is such that 〈X, y〉 ¹ 〈X ′′, y′′〉 ¹ 〈X ′, y′〉,
then 〈X ′′, y′′〉 = 〈X, y〉 or 〈X ′′, y′′〉 = 〈X ′, y′〉.

In order to characterize the set succ(q), we introduce the fol-
lowing notation. We denote by cl(FD) the set of all schemas
X such that X = X+ and, given a schema X in cl(FD), X↓

(respectively X↑) denotes the set of all maximal (respec-
tively minimal) schemas X ′ of cl(FD) such that X ′ ⊂ X
(respectively X ⊂ X ′). Notice however that U↑ and ∅↓ are
not defined.

Proposition 4. Given a class q = 〈X, y〉 in C(∆) differ-
ent than ⊥, succ(q) is equal to the set of all classes computed
according to the following:

1. succ(q) = {⊥} if and only if, for every Y ′ ∈ Y ↑,
X ⊆ Y ′.

2. For every nonempty schema Z, if
(a) Y ⊂ (X \ Z), and
(b) (X \ Z) ∈ X↓,
then succ(q) contains the class 〈X ′, y′〉 where X ′ =
(X \ Z), Y ′ = Y and y′ = y.

3. For every tuple z over any nonempty schema Z such
that yz ∈ πY Z(∆), if
(a) Z ⊆ X,
(b) Y Z ∈ Y ↑ \ {X}, and
(c) there exists no X0 in cl(FD) \ {∅} such that

Y ⊆ X0 ⊂ X ⊆ (X0Z)+,
then succ(q) contains the class 〈X ′, y′〉 where X ′ = X,
Y ′ = Y Z and y′ = yz.

4. For every tuple z over any nonempty schema Z such
that yz ∈ πY Z(∆), if
(a) Z 6⊆ X,
(b) Y Z ∈ Y ↑, and
(c) there exists no X0 in cl(FD) such that

Y ⊆ X0 ⊂ X and (X0Z)+ = (XZ)+,
then succ(q) contains the class 〈X ′, y′〉 where X ′ =
(XZ)+, Y ′ = Y Z and y′ = yz.

Proof. See Appendix A.

We illustrate Proposition 4 through the following examples.

Example 5. Let us consider the case where U = {A, B},
FD = ∅ and ∆ = {ab}. We note that, in this case, every
subset of U is in cl(FD).

For 〈AB,⊤〉, based on Proposition 4, the set succ(〈AB,⊤〉)
is computed as follows:

1. succ(〈AB,⊤〉) 6= {⊥}, because A ∈ ∅↑ and AB 6⊆ A.

2. Let us consider Z = B, i.e., the class 〈A,⊤〉. Then we
have (a) ∅ ⊂ (AB \ B) = A and (b) A ∈ AB↓. Notice that
the same reasoning also holds if we consider Z = A, i.e., the
class 〈B,⊤〉. Thus, 〈A,⊤〉 and 〈B,⊤〉 are in succ(〈AB,⊤〉).

3. Proposition 4(3) does not apply. Indeed, for Z = A,
although we have (a) A ⊆ AB and (b) A 6= AB and A ∈ ∅↑,
it is the case that, (c) for X0 = B, B ∈ cl(FD) and ∅ ⊆
B ⊂ AB ⊆ (AB)+ = AB. Notice moreover that a similar
argument holds for Z = B.

4. Proposition 4(4) does not apply either, because X =
AB = U .

Thus, we have that succ(〈AB,⊤〉) = {〈A,⊤〉, 〈B,⊤〉}.
Now, considering the class 〈A,⊤〉, based on Proposition 4,
the set succ(〈A,⊤〉) is computed as follows:

1. succ(〈A,⊤〉) 6= {⊥}, because B ∈ ∅↑ and A 6⊆ B.

2. Proposition 4(2) does not apply, because removing A
results in the empty set.

3. Proposition 4(3) does not apply, because the only Z to
be considered is Z = A, and (b) A 6∈ ∅↑ \ {A} = {B}.

4. Let us consider Z = B, i.e., the class 〈AB, b〉. Then: (a)
B 6⊆ A, (b) B ∈ ∅↑, and (c) there exists no X0 ∈ cl(FD)
such that ∅ ⊆ X0 ⊂ B and (X0B)+ = (AB)+ (because, in
this case, X0 = ∅ and B+ = B 6= (AB)+ = AB). Thus,
〈AB, b〉 is in succ(〈A,⊤〉).

Therefore, succ(〈A,⊤〉) = {〈AB, b〉}. Applying the same
reasoning as above implies that succ(〈B,⊤〉) = {〈AB, a〉}.

Going one step further, we have that succ(〈AB, a〉) =
succ(〈AB, b〉) = {⊥}, because, as A↑ = B↑ = {AB}, Propo-
sition 4(1) applies. 2

Example 6. Let U = {A, B, C, D}, FD = {ABC → D}
and ∆ = {abcd} over U . The successors of q1 = 〈BC,⊤〉 are
computed as follows:
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1. succ(q1) 6= {⊥}, because B ∈ ∅↑ and BC 6⊆ B.

2. Let us consider Z = B, i.e., the class 〈C,⊤〉. Then: (a)
∅ ⊂ (BC \ B) = C and (b) C ∈ BC↓.

As the same reasoning holds for Z = C, i.e., for the class
〈B,⊤〉, the classes 〈B,⊤〉 and 〈C,⊤〉 are in succ(q1).

3. Let us consider Z = B, i.e., the class 〈BC, b〉. Then: (a)
B ⊆ BC, (b) B 6= BC and B ∈ ∅↑, but (c) for X0 = C, we
have C in cl(FD) \ {∅}, ∅ ⊆ C ⊂ BC ⊆ (BC)+ = BC.

Thus, Proposition 4(3) does not apply. Notice that the
same reasoning holds for Z = C, i.e., for the class 〈BC, c〉.

4. Let us consider Z = A, i.e., the class 〈(ABC)+, a〉 =
〈ABCD, a〉. Then: (a) A 6⊆ BC, (b) A ∈ ∅↑ and (c) there
is no X0 in cl(FD) such that ∅ ⊆ X0 ⊂ BC and (X0A)+ =
(ABC)+. Thus, 〈ABCD, a〉 is in succ(q1).

For Z = D, i.e., for 〈(BCD)+, d〉 = 〈BCD, d〉, we have:
(a) D 6⊆ BC, (b) D ∈ ∅↑ and (c) there is no X0 in cl(FD)
such that ∅ ⊆ X0 ⊂ BC and (X0D)+ = (BC)+ = BC.
Thus, 〈BCD, d〉 is in succ(q1).

Therefore, succ(〈BC,⊤〉) = {〈B,⊤〉, 〈C,⊤〉, 〈ABCD, a〉,
〈BCD, d〉}.

It can be seen, using similar arguments, that we have
succ(〈BD,⊤〉) = {〈B,⊤〉, 〈D,⊤〉, 〈ABD, a〉, 〈BCD, c〉}.

Moreover, using Proposition 4(2), we also have 〈ABD, a〉 ∈
succ(〈ABCD, a〉). Thus, we obtain:

• 〈BC,⊤〉 ¹ 〈B,⊤〉 and 〈BC,⊤〉 ¹ 〈ABD, a〉,
• 〈BD,⊤〉 ¹ 〈B,⊤〉 and 〈BD,⊤〉 ¹ 〈ABD, a〉.

It follows that 〈B,⊤〉 and 〈ABD, a〉 are two distinct least
upper bounds of 〈BC,⊤〉 and 〈BD,⊤〉. Therefore, the set
C(∆) is not a lattice.

Now, in order to illustrate a case where Proposition 4(3)
applies, consider the class 〈ABCD,⊤〉.

For Z = D, we have (a) D ⊆ ABCD, (b) D 6= ABCD
and D ∈ ∅↑, and (c) there is no X0 ∈ cl(FD)\{∅} such that
∅ ⊆ X0 ⊂ ABCD ⊆ (X0D)+.

Indeed, regarding point (c), the last inclusion above en-
tails that (X0D)+ = ABCD, meaning that the only pos-
sibility for X0 is X0 = ABC. However, this is not pos-
sible because ABC 6∈ cl(FD), and thus, 〈ABCD, d〉 is in
succ(〈ABCD,⊤〉). 2

It is important to note that, as shown in Example 6, the set
C(∆) is not a lattice in general. However, despite this nega-
tive result, it is still possible to design a level-wise algorithm
for computing all frequent classes, in some important cases.
In the following section we present such a case study for star
schemas in data warehouses.

5. A CASE STUDY: STAR SCHEMAS

5.1 Basics
An N-dimensional star schema consists of a distinguished

table ϕ with schema F , called the fact table, and N other
tables δ1, . . . , δN with schemas D1, . . . , DN , called the di-
mension tables, such that:

1. If K1, . . . , KN are the (primary) keys of δ1, . . . , δN , re-
spectively, then K = K1 ∪ . . . ∪ KN is the key of ϕ;

2. For every i = 1, . . . , N , πKi
(ϕ) ⊆ πKi

(δi)
(thus each Ki is a foreign key in the fact table ϕ).

The attribute set M = F \ K is called the measure of the
star schema.

Clearly, the table ∆ of Figure 1 can be seen as the result of
joining the following three tables: Customer(Cid, Cname,
Caddr), Product(Pid, P type), Sales(Cid, P id, Qty) where
Customer and Product are the dimension tables and Sales is
the fact table. Moreover, in this example, K = {Cid, P id}.

From now on, we consider an N -dimensional star schema
with the corresponding set of functional dependencies FD.
In this setting, we show how to mine all frequent projection-
selection classes from the table ∆ obtained by joining all
tables of the star schema.

We note that Example 6 above shows that, in the case
of a star schema, the set C(∆) is not a lattice. This is so
because the functional dependency ABC → D in Example 6
can be considered as specifying the fact that the key of the
fact table of a 3-dimensional star schema is K = ABC.

However, we show in this section that, nevertheless, fre-
quent queries can be mined based on standard level-wise
algorithms in this case.

First, the following lemma shows that the schemas in
cl(FD) can easily be characterized.

Lemma 2. In the case of a star schema, X is in cl(FD)
if and only if: either X = U , or K 6⊆ X and for every
Ki ∈ X, Di ⊆ X.

Proof. − If K ⊆ X, then X+ = U as K is a key of U .
As K is the only key of U , U is the only schema in cl(FD)
containing K.
− If K 6⊆ X, then the result holds because in this case, the
only dependencies of FD+ that can be applied are the form
Ki → Z such that Ki ∈ X.

5.2 Successors in Star Schemas
Based on Proposition 4, for every q ∈ C(∆), we character-

ize the set succ(q) in the case of a star schema. Given an
attribute set X in cl(FD) different than U and ∅, we have:

• X↓ is the set of all schemas X \ A where A is an at-
tribute in X such that
− A ∈ K, or
− (∃i ∈ {1, . . . , N})(Ki 6∈ X and A ∈ DiM).

• X↑ is the set of all schemas XA where A is an attribute
not in X such that
− A 6∈ K, or
− (∃i ∈ {1, . . . , N})(A = Ki and (Di \ Ki) ⊆ X).

Moreover, U↓ = {U \ A | A ∈ K} and ∅↑ = {A | A 6∈ K}.

Now, given a class 〈X, y〉 different than ⊥, we use Proposi-
tion 4 in order to explicitly characterize the set succ(〈X, y〉)
in the case of a star schema.

Proposition 5. Let q = 〈X, y〉 be a class in C(∆) differ-
ent than ⊥. Then, succ(q) is the set of all classes 〈X ′, y′〉
defined as follows:

1. succ(q) = {⊥} if and only if Y ↑ = {X}.

2. If A ∈ (X \Y ) is such that Y ⊂ (X \A) and (X \A) ∈
X↓, then X ′ = (X \ A) and y = y′.

3. If A is such that A ∈ (X \ Y ), Y A ∈ Y ↑ \ {X} and
(X \ A) 6∈ cl(FD) \ {∅}, then X ′ = X, Y ′ = Y A and
y′ = ya where ya ∈ πY A(∆).
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4. If A is such that A 6∈ X, Y A ∈ Y ↑ and y′ is any tuple
over Y ′ such that y′ = ya and ya ∈ πY A(∆), then
(a) if A ∈ K, (K \ A) ⊆ X and (M ∩ (X \ Y )) = ∅,

then X ′ = U and Y ′ = Y A,
(b) if A 6∈ K then X ′ = XA and Y ′ = Y A.

Proof. See Appendix B.

Example 7. In the context of Example 1, we illustrate
Proposition 5 through the computation of succ(〈X, beer〉)
where X = Cid Cname Caddr P type. In this case, we have:

1. succ(〈X, beer〉) 6= {⊥} because Ptype↑ = {Pid Ptype,
P type Qty} 6= {X}.

2. For A = Cid, we have that Cid ∈ (X \ Ptype) and
Cname Caddr P type ∈ X↓. Thus, 〈Cname Caddr P type,
beer〉 ∈ succ(〈X, beer〉).

This item does not apply to any other A in (X\Ptype), be-
cause, as X↓ = {Cid Cname Caddr, Cname Caddr P type},
we would not have (X \ A) ∈ X↓.

3. For A = Cname, we have Cname ∈ (X \ Ptype), (X \
Cname) 6∈ cl(FD) \ {∅} and Ptype Cname ∈ Ptype↑. Thus
the classes 〈X, John beer〉, 〈X, Mary beer〉 and 〈X, Paul beer〉
are in succ(〈X, beer〉).

Moreover, a similar reasoning with A = Caddr shows that
〈X, Paris beer〉 and 〈X, NY beer〉 belong to succ(〈X, beer〉).

4. The only attributes not in X are Pid and Qty.
– For A = Pid, we have Pid ∈ Cid P id, (Qty ∩ (X \
Ptype)) = ∅, ((Cid P id) \ Pid) ⊆ X and Pid Ptype ∈
Ptype↑. Therefore, 〈U, p2 beer〉 and 〈U, p3 beer〉 belong to
succ(〈X, beer〉).

– For A = Qty, we have Qty 6∈ Cid P id, and Ptype Qty ∈
Ptype↑. Thus, 〈U\Pid, beer 10〉 and 〈U\Pid, beer 5〉 belong
to succ(〈X, beer〉).

Consequently, succ(〈X, beer〉) is the following set:

{〈Cname Caddr P type, beer〉,
〈Cid Cname Caddr P type, John beer〉,
〈Cid Cname Caddr P type, Mary beer〉,
〈Cid Cname Caddr P type, Paul beer〉,
〈Cid Cname Caddr P type, Paris beer〉,
〈Cid Cname Caddr P type, NY beer〉,
〈Cid Cname Caddr P id P type Qty, p2 beer〉,
〈Cid Cname Caddr P id P type Qty, p3 beer〉,
〈Cid Cname Caddr P type Qty, beer 10〉,
〈Cid Cname Caddr P type Qty, beer 5〉}. 2

5.3 Algorithms
In order to avoid generating all candidate classes, in our

algorithms we consider generic classes defined as follows:

Given two schemas X and Y in cl(FD), the generic
class 〈X, Y 〉 is the set of all classes 〈X, y〉 such that y is
in πY (∆), i.e., 〈X, Y 〉 = {〈X, y〉 ∈ C(∆) | y ∈ πY (∆)}.

A generic class 〈X, Y 〉 is said to be frequent if it contains
a frequent class 〈X, y〉. Moreover, the set of successors of a
generic class 〈X, Y 〉, denoted by succ(〈X, Y 〉), is computed
based on Proposition 5, except that, for generic classes, the
different tuples defining the selection conditions have not to
be considered.

Referring back to Example 7, the generic class to be con-
sidered is 〈X, Ptype〉 where X = Cid Cname Caddr P type.
The set succ(〈X, Ptype〉) is then the following:

Algorithm 1

Input: The table ∆ associated to an N -dimensional star
schema and a support threshold min-sup.
Output: The set Freq of all frequent classes.
Method:

if |∆| < min-sup then

//no computation as for every q ∈ C(∆), |∆| ≥ sup(q)
Freq = ∅

else //the computation starts with 〈U,⊤〉
L = {〈U, ∅〉} ; Freq = {〈U,⊤〉}
while L 6= ∅ do

C = generate(L)
C = prune(C, L)
scan(C, L, LFreq)
//all generic classes of L are instanciated and the
//supports of the corresponding classes are computed
Freq = Freq ∪ LFreq

end while

end if

return Freq

Figure 2: The main algorithm

{〈Cname Caddr P type, P type〉,
〈Cid Cname Caddr P type, Cname Ptype〉,
〈Cid Cname Caddr P type, Caddr P type〉,
〈Cid Cname Caddr P id P type Qty, P id P type〉,
〈Cid Cname Caddr P type Qty, P type Qty〉}.

Generic classes are built up and the supports of the corre-
sponding classes are computed during the same scan of ∆.

In other words, given a set of candidate generic classes at
a given level of the computation, a scan of ∆ performs the
following two tasks: (i) build up all generic classes and (ii)
compute the supports of the corresponding classes.

It is important to note from a computational point of view,
that the size of the set of all generic classes is exponential in
the size of the attribute set U , but independent from the size
of ∆, contrary to the set C(∆), whose size is exponential in
the size of U and also in the size of ∆.

Based on these considerations, the main algorithm we pro-
pose, shown in Figure 2, follows the same strategy as the
Apriori algorithm ([1]). Namely at each level:

1. The set of all candidate generic classes, denoted by C,
is generated from the set of all frequent generic classes
computed at the previous level, denoted by L.

2. The set C is pruned using the so-called Apriori trick,
that is: if in C, 〈X, Y 〉 is such that there exists a
generic class 〈X ′, Y ′〉 for which 〈X, Y 〉 ∈ succ(〈X ′, Y ′〉)
and 〈X ′, Y ′〉 6∈ L, then 〈X, Y 〉 is not frequent.

3. During the scan of ∆, every remaining generic class
〈X, Y 〉 in C is built up and the supports of the resulting
classes are computed. The resulting set of frequent
classes, denoted by LFreq, is added into the current
set of frequent classes, denoted by Freq.

We note that the second item above is shown to be correct as
follows. If 〈X ′, Y ′〉 is not in L then, for every y′ in πY ′(∆),
the class 〈X ′, y′〉 is not frequent. Thus, for every y in πY (∆),
there exists a non frequent class 〈X ′, y′〉 in 〈X ′, Y ′〉 such that
〈X, y〉 ∈ succ(〈X ′, y′〉).
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Algorithm generate

Input: A set L of frequent generic classes at level l.
Output: The set C of all candidate generic classes obtained
from L at level l + 1.
Method:

C = ∅
for each 〈X, Y 〉 ∈ L do

if Y ↑ = {X} then

//Proposition 5(1)
C = {⊥}

else

for each A ∈ (X \ Y ) do

if (X \ A) ∈ X↓ then

//Proposition 5(2)
C = C ∪ {〈(X \ A), Y 〉}

end if

if (X \ A) 6∈ cl(FD) \ {∅} and Y A ∈ Y ↑ then

//Proposition 5(3)
C = C ∪ {〈X, Y A〉}

end if

end for each

for each A ∈ (U \ X) do

if A ∈ K and (K \A) ⊆ X and (M∩(X \Y )) = ∅
and Y A ∈ Y ↑ then

//Proposition 5(4.a)
C = C ∪ {〈U, Y A〉}

end if

if A 6∈ K and Y A ∈ Y ↑ then

//Proposition 5(4.b)
C = C ∪ {〈XA, Y A〉}

end if

end for each

end if

end for each

return C

Figure 3: The algorithm for generating candidates

As a consequence, the anti-monotonicity of the support
stated in Theorem 1 implies that 〈X, y〉 cannot be frequent.
Hence, the generic class 〈X, Y 〉 is not frequent.

In the algorithm of Figure 2, each of the three steps calls
one algorithm, called generate, prune and scan are given in
figures 3, 4 and 5, respectively. The following comments are
in order regarding these algorithms and their complexity.

Algorithm generate. It is easy to see that this algorithm
follows Proposition 5. It should be noticed that the dif-
ferent tests on schemas can be efficiently implemented by
representing every schema X as an array of booleans the
length of which being the cardinality of U .

To this end, we order the attributes as follows: Based on
a fixed ordering of the dimensions, we first consider all key
attributes according to the dimension ordering, then all non-
key dimensional attributes appear at consecutive positions
according to the dimension ordering, and then, all measure
attribues are considered.

With this ordering at hand, it is possible to implement Al-
gorithm generate in such a way that candidate generation
is processed in a non redundant manner, i.e., a given candi-
date is generated in C only once, even if it is a successor of
more than one generic class in L.

Algorithm prune. It can be seen that this algorithm fol-

Algorithm prune

Input: A set L of frequent generic classes at level l, the set
C of candidate generic classes generated from L.
Output: The pruned set C.
Method:

//C is assumed to be different than {⊥}
for each 〈X, Y 〉 ∈ C do

for each A 6∈ X such that XA ∈ X↑ do

if 〈XA, Y 〉 6∈ L then //Proposition 5(2)
C = C \ {〈X, Y 〉}

end if

end for each

for each A ∈ Y do

if ((X \ A) 6∈ cl(FD) \ {∅} and (Y \ A) ∈ Y ↓ and

〈X, (Y \ A)〉 6∈ L) //Proposition 5(3)

or (A ∈ K and X = U and (Y \ A) ∈ Y ↓ and

〈(U \ ((M \ Y )A)), (Y \ A)〉 6∈ L)
//Proposition 5(4.a)

or (A 6∈ K and (Y \ A) ∈ Y ↓ and

〈(X \ A), (Y \ A)〉 6∈ L) //Proposition 5(4.b)
then

C = C \ {〈X, Y 〉}
end if

end for each

end for each

return C

Figure 4: The algorithm for pruning candidates

lows Proposition 5, but in a different manner, since in this
algorithm, we are interested in computing predecessors of a
generic class 〈X, Y 〉, i.e., the set of those classes 〈X ′, Y ′〉
such that 〈X, Y 〉 belongs to succ(〈X ′, Y ′〉).

Therefore, for each item in Proposition 5, if one of the
predecessors of the generic class 〈X, Y 〉 under consideration
is not in L, then 〈X, Y 〉 is pruned.

The only case to be clarified is that of Propostion 5(4.a).
In this case, under the hypotheses stated in this part of the
algorithm, it can be shown that X ′ = (U \ ((M \ Y )A)) is
the only schema such that A 6∈ X ′, (K \A) ⊆ X ′ and (M ∩
(X ′ \ (Y \ A))) = ∅. Thus, X ′ is the only schema for which
Propostion 5(4.a) shows that 〈X, Y 〉 ∈ succ(〈X ′, (Y \ A)〉).

Algorithm scan. We recall that, while scanning ∆, Algo-
rithm scan performs the following two tasks: (i) build up
the generic classes in C and (ii) compute the supports of all
associated classes.

Task (i) is achieved as follows: Every 〈X, Y 〉 in C is as-
sociated to a set of classes, denoted by L(〈X, Y 〉) and set
to ∅ in the first loop of Algorithm scan. Then, for every
tuple t in ∆, when considering 〈X, Y 〉, if 〈X, t.Y 〉 is not in
L(〈X, Y 〉), then it is added and its support is intialized to
1; otherwise, the support of 〈X, t.Y 〉 is updated.

We note that, at this step no pruning is performed, as
done when computing the set C. The reason why we skip
this step is that, when the number of candidates is huge
(which is the case in our approach when dealing with classes
in C(∆)), computing the supports of all candidates is faster
than pruning and computing the supports of the remaining
candidates. However, we plan to investigate the two options
when implementing and testing the algorithms.

Regarding task (ii) of Algorithm scan, it is important to
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note that, contrary to the standard Apriori algorithm ([1]),
the main difficulty in counting the supports is that a tuple
over a given schema may appear in several rows of ∆, but has
to be counted only once. Since we have to consider several
classes at the same time (i.e., the set of all generic classes
in C), it is not possible to sort ∆ accordingly, as done in
[3, 4]. Note also that this remark shows that an FP-growth
technique ([10]) can not be efficiently used in our appoach,
since it would also require that the database be sorted for
each candidate.

This explains why, in Algorithm scan, using the notation
pred(t) for the set of all tuples appearing in ∆ before the
tuple t under consideration, the test “if t.X 6∈ pred(t)” has
to be performed. In this way, given the class 〈X, t.Y 〉, it is
checked whether the value t.X has been previously counted.
If so (i.e., if t.X appeared in ∆ associated with t.Y before
the current occurrence in t), then the test fails and the sup-
port count is not changed. Otherwise, the support count is
incremented by 1.

We point out in this respect that, contrary to standard
level-wise algorithms, counting the supports of all candidates
at a given level cannot be processed through one simple scan
of ∆. However, we emphasize that it is possible to use in-
dexing techniques so as to avoid scanning ∆ for the test on
t.XY . In this case, counting the supports requires a number
of tests in O(|∆|), as in standard level-wise algorithms.

Once the supports of all classes in all generic classes of
C are computed (i.e., once ∆ has been scanned), all classes
〈X, y〉 whose support is less than the support threshold min-
sup are removed from L(〈X, Y 〉) and the remaining classes
are added to the set LFreq. Moreover, all generic classes
〈X, Y 〉 such that L(〈X, Y 〉) 6= ∅ are inserted into L.

Complexity issues. As usual for level-wise algorithms,
the complexity of our algorithms is expressed in terms of
the number of scans of ∆, because, as previously argued,
the supports of all classes at a given level can be computed
through one scan of ∆.

Therefore, the complexity of our algorithms is given by the
maximum number of levels that have to be processed, and
this number is equal to the length S of one of the longuest
sequences of classes (q1, . . . , qS) such that q1 are qS are re-
spectively the less and the most specific classes in C(∆), and
qi+1 ∈ succ(qi) for i = 1, . . . , S − 1.

We argue that S is in O(|U |). Indeed, Proposition 5 shows
that for all classes q = 〈X, y〉 and q′ = 〈X ′, y′〉 such that
q′ ∈ succ(q) and q′ 6= ⊥, we have either |X ′ \ Y ′| = |X \ Y |
(due to Proposition 5(4) where X ′ = XA and Y ′ = Y A),
or |X ′ \ Y ′| = |X \ Y | − 1 (due to Proposition 5(2) where
X ′ = X \ A and Y ′ = Y , and to Proposition 5(3) where
X ′ = X and Y ′ = Y A).

Moreover, for i = 1, . . . , S, we denote by di the cardinality
of (Xi \ Yi), where Xi and Yi are such that qi = 〈Xi, yi〉.
Since 〈U,⊤〉 and ⊥ are respectively the less specific and the
most specific classes in C(∆), we have d1 = |U | and dS = 0
(as all queries 〈X, x〉 where X ∈ cl(FD) are in ⊥).

Thus, (d1, . . . , dS) is a decreasing sequence of integers
bounded by |U | and 0, and in which at most |U | terms
are equal (because Proposition 5(4) cannot be applied twice
with the same attribute A in the sequence). Therefore, we
have S ≤ 2.|U | + 1. On the other hand, let (q1, . . . , qs) be
the sequence built up as follows, starting with q1 = 〈U,⊤〉:

1. Reach a class of the form 〈A,⊤〉 where A ∈ (Di0 \Ki0)

Algorithm scan

Input: The set C of candidate generic classes.
Output: The set L of frequent generic classes in C and the
set LFreq of all associated frequent classes.
Method:

L = ∅ ; LFreq = ∅
for each 〈X, Y 〉 ∈ C do

L(〈X, Y 〉) = ∅
end for each

for each tuple t ∈ ∆ do

for each 〈X, Y 〉 ∈ C do

if 〈X, t.Y 〉 6∈ L(〈X, Y 〉) then

//Task (i)
L(〈X, Y 〉) = L(〈X, Y 〉) ∪ {〈X, t.Y 〉}
sup(〈X, t.Y 〉) = 1

else

//Task (ii)
if t.X 6∈ pred(t) then

sup(〈X, t.Y 〉) = sup(〈X, t.Y 〉) + 1
end if

end if

end for each

end for each

for each 〈X, Y 〉 ∈ C do

L(〈X, Y 〉) = L(〈X, Y 〉)\
{〈X, y〉 | sup(〈X, y〉) < min-sup}

if L(〈X, Y 〉) 6= ∅ then

LFreq = LFreq ∪ L(〈X, Y 〉)
L = L ∪ {〈X, Y 〉}

end if

end for each

return L and LFreq

Figure 5: The algorithm for scanning ∆

(i0 ∈ {1, . . . , N}) by removing from Xi one by one all
key attributes in K and then, all remaining attributes
but A. This step produces |U | − 1 classes such that
qi+1 ∈ succ(qi) (by Proposition 5(2)), thus giving a
sequence of length |U |.

2. Then, expand the sequence by adding one by one to Xi

and Yi all attributes different than A and Ki0 (consid-
ering first non key attributes, and then key attributes).
This step produces |U | − 2 classes such that qi+1 ∈
succ(qi) (by Proposition 5(4)) and q2.(|U|−1) = 〈U \
Ki0 , y〉 where y is over U\(Ki0A). As succ(q2.(|U|−1)) =
{⊥} (by Proposition 5(1)), s = 2.|U | − 1.

Therefore, 2.|U |−1 ≤ S ≤ 2.|U |+1, and thus, the complexity
in the number of scans of our algorithms is in O(|U |).

6. CONCLUSION AND FURTHER WORK
In this paper, we have considered the problem of mining

all projection-selection queries from a given relational table
satisfying a given set of functional dependencies. In this
setting, we defined a pre-ordering with respect to which the
support measure is anti-monotonic, and showed that this
pre-ordering allows to consider equivalence classes of queries
instead of individual queries.

In the case where the functional dependencies are those
considered in a star schema, we have provided algorithms
for computing all frequent queries, and we have shown that
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the complexity in the number of scans of these algorithms
is linear with respect to the size of the attribute set.

We are currently implementing these algorithms. It is
important to note that, regarding efficiency issues, the fol-
lowing points are to be carefully considered: First, as men-
tioned in the previous section, the option of pruning or not
the set of candidate equivalence classes in C(∆) has to be
studied. Second, efficient data structures are necessary for
storing the sets C and L of candidate and frequent generic
classes as well as the sets L(〈X, Y 〉). Hashing techniques are
expected to work efficiently in this case.

Regarding possible extensions of the present approach, we
plan to investigate the following issues: First, the case of a
database consisting of several tables, instead of a single ta-
ble, will be considered as done in [11], i.e., under the weak
instance semantics that allows to represent a database as a
single table ([14]). Second, extending the selection condi-
tions to equalities of the form Y = Y ′ where Y and Y ′ are
two relation schemas, as done in [8], is another point that
we plan to investigate in the context of the present work.
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APPENDIX

A. PROOF OF PROPOSITION 4
Regarding the proof of item 1 in the proposition, we first

note that, as ⊥ is the most specific class, if ⊥ ∈ succ(〈X, y〉),
then succ(〈X, y〉) = {⊥}.

Assume first that, for every Y ′ ∈ Y ↑, X ⊆ Y ′ and that
there exists 〈X ′′, y′′〉 such that 〈X, y〉 ≺ 〈X ′′, y′′〉 ≺ ⊥. As
comparisons are strict, Y → X and Y ′′ → X ′′ are not in
FD+. Thus, Y ⊂ X, Y ′′ ⊂ X ′′, X ′′ ⊆ (XY ′′)+, Y ⊆ Y ′′,
y′′.Y = y, and one of the last two inclusions is strict.
− If Y = Y ′′ then X ′′ ⊂ (XY ′′)+ = X. As in this case,
Y ⊂ X ′′, there exists Y ′ ∈ Y ↑ such that Y ⊂ Y ′ ⊆ X ′′.
Thus, X ⊆ Y ′ ⊆ X ′′, a contradiction with X ′′ ⊂ X.
− If Y 6= Y ′′, then there exists Y ′ ∈ Y ↑ such that Y ⊂ Y ′ ⊆
Y ′′. Thus, X ⊆ Y ′ ⊂ Y ′′, and so, X ′′ ⊆ (XY ′′)+ = Y ′′,
which is not possible. Therefore, we have shown that, if for
every Y ′ ∈ Y ↑, X ⊆ Y ′, then succ(〈X, y〉) = {⊥}.

Conversely, let 〈X, y〉 be such that succ(〈X, y〉) = {⊥}
and assume that there exists Y ′ in Y ↑ such that X 6⊆ Y ′.
Thus, X 6= Y ′ and:
− If Y ′ ⊂ X then, for any y′ in πY ′(∆) such that y′.Y = y,
we have 〈X, y〉 ≺ 〈X, y′〉 ≺ ⊥, and so, ⊥ 6∈ succ(〈X, y〉).
− If Y ′ 6⊂ X then Y ′ ⊂ XY ′ ⊆ (XY ′)+. In this case, with a
tuple y′ defined as above, we have 〈X, y〉 ≺ 〈(XY ′)+, y′〉 ≺
⊥, and so, ⊥ 6∈ succ(〈X, y〉).
Consequently, item 1 in the proposition holds.

In order to prove that the other items hold, assuming that
succ(〈X, y〉) 6= {⊥}, we denote by Σ(〈X, y〉) the set of all
classes defined by the last three items in the proposition,
and we show that Σ(〈X, y〉) = succ(〈X, y〉).

Assuming that there exists a class 〈X ′′, y′′〉 such that
〈X, y〉 ≺ 〈X ′′, y′′〉 ≺ 〈X ′, y′〉, we successively consider the
last three items in the proposition. In this case, we have
X ′′ ⊆ (XY ′′)+, X ′ ⊆ (X ′′Y ′)+, Y ⊆ Y ′′ and Y ′′ ⊆ Y ′.

2. If Y = Y ′, then Y = Y ′ = Y ′′. Thus, X ′′ ⊂ X and that
X \ Z ⊂ X ′′, a contradiction with the definition of Z.

3. If X = X ′ and Y ′ = Y Z, then X ′′ ⊆ (XY ′′)+, X ⊆
(X ′′Y Z)+ and Y ⊆ Y ′′ ⊆ Y Z. Thus, X ⊆ (XY ′′Y Z)+ =
(XY ′′)+. Moreover, as Y ′′ ∈ cl(FD), by item 3(b), we have
either Y ′′ = Y or Y ′′ = Y ′ = Y Z.

If Y ′′ = Y then X ′′ ⊂ X ⊆ (X ′′Y Z)+ = (X ′′Z)+. Thus,
Y ′′ ⊆ X ′′ ⊂ X ⊆ (X ′′Z)+, a contradiction with item 3(c).

If Y ′′ = Y ′ = Y Z then X ′′ ⊆ (XZ)+ = X and X ⊂
(X ′′Y Z)+ = (X ′′Y ′′)+ = X ′′. Thus, X ⊂ X ′′ ⊆ X, which
is impossible.
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4. If X ′ = (XZ)+ and Y ′ = Y Z, then Y ⊆ Y ′′ ⊆ Y Z and
thus, by item 4(b), either Y ′′ = Y or Y ′′ = Y ′ = Y Z.

If Y ′′ = Y then X ′′ ⊂ (XY )+ = X and (XZ)+ ⊆
(X ′′Y Z)+ = (X ′′Z)+. Thus, Y ⊆ X ′′ ⊂ X and (XZ)+ ⊆
(XZ)+. As X ′′ ⊂ X, we have (X ′′Z)+ ⊆ (XZ)+. Hence,
(X ′′Z)+ = (XZ)+, which is a contradiction with item 4(c).

If Y ′′ = Y ′ = Y Z then X ′′ ⊆ (XZ)+, Y Z ⊆ X ′′ and
(XZ)+ ⊂ (X ′′Y Z)+ = X ′′. Hence, X ′′ ⊆ (XZ)+ ⊂ X ′′,
which is impossible.

Therefore, we have shown that Σ(〈X, y〉) ⊆ succ(〈X, y〉).
We now proceed to the proof of the converse inclusion, i.e.,
succ(〈X, y〉) ⊆ Σ(〈X, y〉).

Let 〈X ′, y′〉 ∈ succ(〈X, y〉), then we have 〈X, y〉 ≺ 〈X ′, y′〉
and there does not exist 〈X ′′, y′′〉 in C(∆) such that 〈X, y〉 ≺
〈X ′′, y′′〉 ≺ 〈X ′, y′〉. Thus, X ′ ⊆ (XY ′)+, Y ⊆ Y ′, y =
∆Y (y′) and at least one of the two inclusions is strict.

If y = y′, and so, if Y = Y ′, then X ′ ⊂ (XY ′)+ = X.
Therefore X ′ can be written as X \Z, where Y ⊆ X \Z and
(X \ Z) ∈ cl(FD). Thus, 2(a) in the definition of Σ(〈X, y〉)
is statisfied. Let us assume that 2(b) is not satisfied, i.e.,
that there exists X0 in cl(FD) such that (X \Z) ⊂ X0 ⊂ X.
Then, we have 〈X, y〉 ≺ 〈X0, y〉 and 〈X0, y〉 ≺ 〈X ′, y〉, which
is a contradiction with the fact that 〈X, y〉 is in succ(〈X, y〉).
Thus, in this case 〈X ′, y′〉 satisfies item 2 of the definition
of Σ(〈X, y〉), which shows that 〈X ′, y′〉 ∈ Σ(〈X, y〉).

If y 6= y′, then Y ⊂ Y ′, and thus, y′ = yz where Z is
such that Y ′ = Y Z and Y Z ∈ cl(FD). We consider the two
cases according to which Y Z is or not a subset of X.

− Let us assume that Y Z ⊆ X. Notice that if X = Y Z
then, as 〈X, y〉 ≺ 〈X ′, y′〉, X ′ ⊆ (XY ′)+ can be written as
X ′ ⊆ Y Z, meaning that X ′ ⊆ Y ′. This is not possible since
we assume that 〈X ′, y′〉 6= ⊥. Thus, X 6= Y Z.

If there exists Z′ such that Y Z′ ∈ cl(FD) and Y ⊂ Y Z′ ⊂
Y Z, then we have 〈X, y〉 ≺ 〈X, yz′〉 ≺ 〈X ′, yz〉, where
yz′ = yz.(Y Z′). Indeed, on the one hand, X ⊆ (XY Z′)+,
Y ⊂ Y Z′ and y = ∆Y (yz′), and on the other hand, X ′ ⊆
(XY Z)+, Y Z′ ⊂ Y Z and yz′ = ∆Y Z′(yz). This case is
impossible since 〈X ′, y′〉 ∈ succ(〈X, y〉), and therefore item
3(b) in the definition of Σ(〈X, y〉) is satisfied.

If there exists X0 in cl(FD)\{∅} such that Y ⊆ X0 ⊂ X ⊆
(X0Z)+, then we have 〈X, y〉 ≺ 〈X0, y〉 ≺ 〈X ′, yz〉. Indeed,
X0 ⊂ (XY )+ = X, X ′ ⊆ (X0Y Z)+ (because X ′ ⊆ (XY Z)+

and Y Z ⊆ X imply that X ′ ⊆ X, and X ⊆ (X0Z)+ ⊆
(X0Y Z)+), Y Z ⊂ Y and y = ∆Y (yz). Again, this case is
impossible since 〈X ′, y′〉 is assumed to be in succ(〈X, y〉),
and therefore item 3(c) in the definition of Σ(〈X, y〉) is sat-
isfied. Thus, item 3 in the definition of Σ(〈X, y〉) is satisfied,
which shows that 〈X ′, y′〉 ∈ Σ(〈X, y〉).

− Let us assume that Y Z 6⊆ X. If there exists Z′ such
that Y Z′ ∈ cl(FD) and Y ⊂ Y Z′ ⊂ Y Z, then we have
〈X, y〉 ≺ 〈(XZ′)+, yz′〉 ≺ 〈X ′, yz〉, where yz′ = yz.(Y Z′).
Indeed, we have on the one hand (XZ′)+ ⊆ (XY Z′)+ (be-
cause, as Y ⊆ X, XZ′ = XY Z′), Y ⊂ Y Z′ and y =
∆Y (yz′), and on the other hand, X ′ ⊆ (XY ZZ′)+ (be-
cause, as Y Z′ ⊆ Y Z and Y ⊆ X, XY ZZ′ = XZ and
X ′ ⊆ (XY ′)+ = (XY Z)+ = (XZ)+), Y Z′ ⊂ Y Z and
yz′ = ∆Y Z′(yz). This case is impossible since 〈X ′, y′〉 is
assumed to be in succ(〈X, y〉), and therefore item 4(b) in
the definition of Σ(〈X, y〉) is satisfied.

If there exists X0 in cl(FD) such that Y ⊆ X0 ⊂ X
and (XZ)+ = (X0Z)+, then 〈X, y〉 ≺ 〈X0, y〉 ≺ 〈X ′, yz〉.

Indeed, we have on the one hand X0 ⊂ (XY )+, and on
the other hand X ′ ⊆ (X0Y Z)+ (because X ′ ⊆ (XY ′)+,
Y ′ = Y Z, Y ⊆ X, (X0Z)+ = (XZ)+ and Y ⊆ X0 imply
that X ′ ⊆ (X0Z)+ = (X0Y Z)+), Y ⊂ Y Z and y = ∆Y (yz).
This case is impossible since 〈X ′, y′〉 is assumed to be in
succ(〈X, y〉), and therefore item 4(c) in the definition of
Σ(〈X, y〉) is satisfied. Thus, item 4 in the definition of
Σ(〈X, y〉) is satisfied, which shows that 〈X ′, y′〉 ∈ Σ(〈X, y〉).
Hence, succ(〈X, y〉) ⊆ Σ(〈X, y〉), and the proof is complete.

B. PROOF OF PROPOSITION 5
The items in the proposition respectively correspond to

those of Proposition 4. We consider each of them below.

1. As every Y ′ ∈ Y ↑ is of the form Y A where A 6∈ Y , and
as Y ⊂ X, X ⊆ Y A is equivalent to X = Y A. The result
follows from item 1 in Proposition 4.

2. It is easy to see that item 2 in Proposition 4 corresponds
to that in Proposition 5.

3. It is easy to see that items 3(a) and 3(b) in Proposition 4
correspond to A ∈ (X \Y ) and Y A ∈ Y ↑\{X}, respectively.
Thus, we have to show that item 3(c) in Proposition 4 is
equivalent to (X \ A) 6∈ cl(FD) \ {∅}.
− Let A ∈ (X\Y ) be such that (X\A) ∈ cl(FD)\{∅}. Then
Y ⊆ (X \ A) ⊂ X ⊆ ((X \ A)A)+, which shows that, with
X0 = (X \ A), item 3(c) in Proposition 4 is not satisfied.
− Conversely, if item 3(c) in Proposition 4 is not satisfied,
then let X0 be in cl(FD) \ {∅} such that Y ⊆ X0 ⊂ X ⊆
(X0A)+. In this case, A 6∈ X0 because, otherwise, we would
have X0 ⊂ X ⊆ X0.

If (X0A)+ = X0A, then we have X0 = (X \ A), showing
that (X \ A) ∈ cl(FD) \ {∅}.

If (X0A)+ 6= X0A, then as X0 ∈ cl(FD) \ {∅}, we have
that A is in K. Let A = Ki (i ∈ {1, . . . , N}), since Ki ∈ X
and X ∈ cl(FD), Di ⊆ X. Thus, (X \ Ki) ∈ cl(FD) \ {∅},
which shows that (X \ A) ∈ cl(FD) \ {∅}.

4. It is easy to see that items 4(a) and 4(b) in Proposition 4
correspond to A 6∈ X and Y A ∈ Y ↑, respectively. Thus, we
have to show that item 4(c) in Proposition 4, (a) either is
equivalent to the fact that (M∩(X\Y )) = ∅ and (K\A) ⊆ X
if A ∈ K, or (b) holds if A 6∈ K.

(a) If A ∈ K, let i ∈ {1, . . . , N} such that A = Ki. Moreover
− Let us assume that (M ∩ (X \Y )) 6= ∅ and (K \Ki) ⊆ X.
Then, for X0 = (X \ (M ∩ (X \ Y ))), we have Y ⊆ X0 ⊂ X
and (K \ Ki) ⊆ X0. Therefore, (XKi)

+ = (X0Ki)
+ = U ,

which shows that item 4(c) in Proposition 4 is not satisfied.
− Conversely, if item 4(c) in Proposition 4 is not satisfied,
then let X0 be in cl(FD) such that Y ⊆ X0 ⊂ X and
(XKi)

+ = (X0Ki)
+. Since Y Ki ∈ Y ↑, we have (Di \Ki) ⊆

Y and thus, (Di \ Ki) ⊆ X and (Di \ Ki) ⊆ X0.
If (K \ Ki) 6⊆ X, then we also have (K \ Ki) 6⊆ X0.

Thus, (XKi)
+ = XKi and (X0Ki)

+ = X0Ki, which is a
contradiction with (XKi)

+ = (X0Ki)
+.

Hence, (K \ Ki) ⊆ X, which entails that (XKi)
+ = U ,

and thus that (XKi)
+ = (X0Ki)

+ = XKiM . Moreover,
as X and X0 are in cl(FD), for every j 6= i, Dj ⊆ X and
Dj ⊆ X0. Thus, (X \ X0) ⊆ M , and as Y ⊆ X0 ⊂ X, we
have (X \ X0) = ((X \ Y ) \ X0). Thus, M ∩ (X \ Y ) 6= ∅.

(b) If A 6∈ K and A 6∈ X, then (XA)+ = XA. Thus,
if Y ⊆ X0 ⊂ X, then A 6∈ X0 and so, (X0A)+ = X0A.
Therefore, (XA)+ ⊂ (X0A)+ showing that there exists no
X0 such that X0 ⊂ X and (XA)+ = (X0A)+. Thus, item
4(c) in Proposition 4 holds, and the proof is complete.
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