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ABSTRACT
Index trees created using distance based indexing are diffi-
cult to maintain online since the distance function involved
is often costly to compute. This problem is intensified when
the database we are dealing with, is frequently updated, as
only limited time is available to perform the maintenance.
In this paper, we propose a novel tree maintenance mecha-
nism for the problem of answering approximate k-Nearest
Neighbor queries with a probabilistic guarantee on time-
series streams. When the underlying data change, we may
choose to defer updating the tree as long as the probabilistic
guarantee of answering queries is high. To prolong such de-
ferment, we present innovative techniques that maintain the
utility of the tree by migrating its pivots and by partially re-
constructing it. As the probabilistic guarantee decays with
time and crosses the minimum guarantee threshold, all of
the deferred updates are performed. In essence, our work
offers an elegant compromise between the accuracy guaran-
tee of query results and the cost of providing them. With
extensive empirical studies, we also show the flexibility and
efficiency of our approach.

1. INTRODUCTION
Indexing is traditionally deployed in databases to speed up

query performance. If a total ordering can be established,
objects in the database are sorted based on some set of at-
tributes, and then an index, usually a tree, is built on the
objects. When a query arrives, the index is consulted to re-
duce the search space as far as possible, resulting in a shorter
response time. Where a total ordering cannot be established
among them, the objects may be indexed based on their
distances to other objects. Ideally we would like to store
the distance between every pair of objects in the database,
however this is infeasible since it requires high amount of
storage, and distance computations are often costly to com-
pute. This leads to the idea that, instead of computing the
distance between each pair of objects, we could compute the
distance of each object to only a few distinguished objects
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(pivots) selected from the database. One of the earliest data
structures based upon this idea is the metric tree [23, 24],
which is a binary tree that partitions sets of objects into two
smaller subsets at each node. In this way, exhaustive search
of the whole database can be avoided in most cases.

Numerous types of metric trees have been proposed in the
last decade. In vantage point tree (vp-tree) [31], each node
partitions the data set into inner and outer subsets based
on the distance from one pivot. This partitioning method
is usually called ball-partitioning. Those objects whose dis-
tance is more than a specific threshold are included in the
outer subset, while the rest are included in the inner sub-
set. A variation of vp-tree is the multi vantage point tree [3],
which uses more than one pivot per node in order to increase
the fan-out. Fu et al. [12] introduced a dynamic vp-tree
which supports update. A different partitioning method is
used in generalized hyperplane tree (gh-tree) [24]. Two piv-
ots are selected on each node and the data are partitioned
based on the closest pivot. A variant is introduced in [4],
where the number of pivots in a node depends on the cardi-
nality of the data set it partitions. This results in different
number of pivots in different levels of the tree.

Pivot selection is an important issue in metric trees, as
their performance is dramatically affected by how the pivots
are selected [5]. In general, good pivots can eliminate more
false candidates very early, e.g., in a balanced binary search
tree, approximately half of the remaining search candidates
are eliminated on each node. Poorly selected pivots, on the
other hand, may eliminate nothing at all, and instead only
add to the computation time required for a query.

Another important issue is of tree maintenance, which
becomes significant when the underlying database changes
frequently. This occurs in several domains, such as in a
stock exchange, where the database records transactions and
stock movements, or in the telecom sector, where a database
may record users’ calls and billing statements. Data in such
applications is said to be streaming, and each record/object
is treated as a data stream. Values of these objects may
change with time, and in most data stream applications,
existing objects are usually decayed after some period of
time, rather than being removed entirely from the database.

The sliding window model [1] is used to ensure that only
the most recent N elements of the data stream are used
when answering queries. This is also known as discounting
stale data in data stream applications. Babcock et al. [2]
addressed the problem of maintaining variance by providing
a continually updated estimate of the variance of the last N
values in a data stream.
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Xia et al. [30] proposed a technique for maintaining two
separate index structures - one R-tree and one QuadTree.
This technique separates objects into slow or fast state of
motion, storing them into the R-tree and QuadTree respec-
tively. Such an indexing method is proposed based on the
observations of physical moving objects, implying that there’s
a physical constraint on the value of the next point (loca-
tion) of the object. Hence approaches developed for indexing
moving objects are not directly applicable in general time se-
ries data streams, where such constraints cannot be justified.
Tao et al. [22] address the problem of solving probabilistic
range search in uncertain databases by proposing the U-tree.
The U-tree computes some auxiliary information for each
object, which is used to disqualify the object or to validate
it as a result without having to determine its appearance
probability. This differs from the proposed approach in this
paper, which looks into the accuracy of the entire tree as a
whole, instead of an individual object or node in a tree.

Existing metric tree maintenance approaches only support
object-wise addition, removal and updates. In this paper, we
present a novel metric tree maintenance mechanism, which
addresses the unique characteristics of data streams, i.e.,
continuous and simultaneous updates of all data streams.
We use data streams – represented as time series data – as
the objects to be indexed in the database. We use distance
based indexing with Edit distance with Real Penalty (ERP)
[7] as distance function.

1.1 Problem Definition
We focus on answering approximate k nearest neighbours

(k-NN) queries over multiple streams of time series data –
each data stream as one object – at once. By definition,
the result of a k-NN query for an object (data point or a
sequence) are the k closest objects (with respect to a given
distance measure) to the query object. Figure 1 depicts sam-
ples of time series data streams with a sliding window over
which queries are posed. Here, a query (and the correspond-
ing results) is a time-series sequence from one of the streams
(DS1 − DS10), and the results are similar subsequences
among them. The figure also shows gh-tree (described in
detail in Section 2.3) which is used to improve access on the
underlying sequences. This is a more challenging problem
than problems addressed earlier in the sense that we process
queries on several streams of unknown patterns. Wu et al.
[29] addressed k-NN queries over financial data streams but
they only considered one data stream at a time. Saltenis et
al. [21] addressed continuously updating objects all at once,
but restricted the domain to location coordinates, and did
not address the time series as the object. Vlachos et al. [26]
worked on multiple time series at once, but they assumed
large static time series data instead of real-time changing
time series data.

Although there have been several recent works in stream-
ing time series, or in approximate querying, to the best of
our knowledge there has been no study on approximate k-
NN search over several streams of time series data. Cur-
rently, existing literature with regards to time series only
looked into the aspect of indexing static time series data.
Similarly, existing literature with regards to data streams
indexing are performed only in a specified time instance,
i.e., a single time point for a set of different data streams.
Our work approach the problem of indexing different time
series data in a streaming environment. Instead of taking a

single time point for indexing, we index subsets of data corre-
sponding to a given window size from the various streaming
time series data. In our problem, several constraints about
the number of dimensions of data, and the number of data
streams are relaxed.

The major contributions of this paper are as follows:

• We address the problem of answering approximate k-
NN queries among several streaming time series data.
To that end, we build an index that enables efficient
querying. These queries are ad-hoc and dynamic.

• We introduce a tree maintenance technique for metric
trees even when insertions and existing object updates
change the overall object distribution and thereby ren-
der the initially chosen pivots as potentially ill candi-
dates. We show that our approach requires little num-
ber of distance computations, while maintaining high
query accuracy. While our approach is applicable to
metric trees in general, for the sake of simplicity, we
base our method and analysis on the generalized hy-
perplane trees with two pivots.

• We provide pivot selection and pivot reselection tech-
niques suitable for our tree maintenance method. Our
approach focuses on supporting the tree to maintain
its accuracy as long as possible, thus reducing the fre-
quency with which the tree needs to be changed or
rebuilt. We demonstrate that our approach requires
less execution time to achieve this goal.

• We establish a general framework of pivot maintenance
for metric trees based on our probabilistic approach.
This includes the pivot migration policy, pivot rese-
lection policy, and the decaying confidence metric tree
model.

The rest of this paper is structured as follows. We present
a detailed study of the background of the problem, and dis-
cuss limitations of some related work in section 2. Then, we
present a probabilistic analysis of object migration in met-
ric trees in section 3, based on which we introduce a novel
tree maintenance approach in section 4. We evaluate this
approach with a real dataset, and analyze the experimental
results in section 5. Finally, we conclude in section 6 with
directions for further researches.

2. BACKGROUND AND RELATED WORK

2.1 Similar works in other domains
The problem of monitoring continuously changing data

objects in real time has been addressed in the moving object
databases domain. Cai et al. [6], address continuous mon-
itoring queries on certain ranges. To answer such queries,
each mobile object updates the database when it is outside a
predefined known range. Each object maintains information
about nearby queries to enable it to know when to update
the database efficiently. This approach is only applicable
only when the ranges being monitored are known in ad-
vance, and are static. Wolfson et al. [28] address location
queries with imprecise answers along with its deviation. To
maintain the answers within some a threshold (deviation),
objects are responsible to report their position once they de-
viate above the deviation threshold. In this paper, we have
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Figure 1: (a) Samples of Time Series Data Streams. (b), (c) gh-tree representations of two windows.

no such assumptions about the ranges, and these ranges dy-
namically change depending on the actual values of the data
in the time series stream. We also do not impose any addi-
tional burden for the streams to monitor their deviation.

To the best of our knowledge, [8] is the only work dealing
with a generic data model specially for probabilistic query-
ing. It provides a data model that is domain independent
and is used to answer a query with some probabilistic guar-
antee. This problem they tackle is similar to what we are
trying to address in our paper. Their data model is based
on four concepts:

1. Uncertainty Region Ui, a region where an object may
possibly be located.

2. fi(location, time), a probability density function of ob-
ject location at a particular time. This pdf can be
determined by knowing certain motion properties, e.g.
velocity.

3. Pi(r), probability of an object being located within
range r from a query point.

4. pri(r), probability density function of Pi(r).

Even though this data model is generic, it is not suitable for
the general time series domain because it is computationally
inefficient to find Ui, fi, Pi(r) and pri(r). This is due to the
fact that moving object databases maintain point coordinate
data while time series databases maintain trajectory data of
points. Furthermore, in most cases we don’t have time series
motion properties to determine fi.

Hence to the best of our knowledge, while our problem is
similar to the one in moving objects domain, it has not been
addressed before in the time series domain. Furthermore,
approaches in moving objects domain are not extendable
to time series domain. This paper proposes an approach

specifically for the time series domain for answering queries
with a probabilistic guarantee of the result.

2.2 Approximate k-NN
Finding k-nearest neighbors (k-NN) is a classical database

problem, and it has been well studied in several contexts.
There are several recent methods [10, 18, 19] that tackle
this problem when the data is in a high dimensional space.
In [20], the authors looked into the problem of searching
time series data through a lattice structure integrated into
a R-tree indexing scheme. Gao and Wang [13] consider the
problem of continuously finding the nearest neighbor to a
streaming time series. In their approach, they assume that
the database of predefined patterns is in secondary mem-
ory. Vlachos et al. [25] addressed the problem of indexing
multi-dimensional time series. In their method they propose
a technique that is based on the Longest Common Subse-
quence (LCSS) model and Dynamic Time Warping (DTW).
The purpose of this technique is to efficiently organize trajec-
tories on disk, so that they can quickly answer k-NN queries.
Another interesting work yielding efficient query filtering for
streaming time series is proposed in [27]. Their main objec-
tive is to monitor streaming time series for a set of predefined
patterns and their problem is analogous to that of query fil-
tering for discrete valued data [11]. Jagadish et al. [16]
approaches the problem of k-nearest neighbours search in
high-dimensional metric space through a method known as
iDistance. In [17] the authors propose an approach to solve
the e-approximate k-NN (also called ekNN problem) over
single data streams. They develop a technique called DISC
to solve k-NN with a guaranteed error bound and to achieve
the best accuracy under a given memory constraint.

2.3 Generalized hyperplane tree
As we have discussed earlier, each node in the gh-tree uses

two pivots, and partitions the data set into those closer to
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the first pivot and those closer to the second pivot. Formally,
we say that a node N in gh-tree partitions a set SN into two
subsets SN1 and SN2 using pivots PN1 and PN2 , such that:

SN1 = {x ∈ S|d(x, PN1) ≤ d(x, PN2)}

SN2 = {x ∈ S|d(x, PN1) > d(x, PN2)}
In the gh-tree described using equation above, we say that

subset SN1 is represented by pivot PN1 , while subset SN2 is
represented by pivot PN2 . The two disjoint subsets SN1 and
SN2 can also be described using alternative equation:

SN1 = {x ∈ S|d(x, PN1)− d(x, PN2) ≤ 0}

SN2 = S\S1

We call ψ(x, PN1 , PN2) = d(x, PN1) − d(x, PN2) the dis-
crimination of object x with respect to pivots PN1 and
PN2 . Observing the alternative equation above, the result-
ing SN1 and SN2 can be of different sizes, thus reducing
the effectiveness of the node. A recommended partition-
ing [4] of the gh-tree is based on threshold value m, such
that SN1 = {x ∈ S|d(x, PN1)− d(x, PN2) ≤ m} and |SN1 | is
roughly equal to |SN2 | [23, 15]. m, which is user-defined and
domain dependant, allows boundary objects to be included
in SN1 .

For the rest of the paper, if node N is a node in the gh-
tree, we denote PNi as the i-th pivot of node N , and SNi

as the subset represented by PNi . SN refers to SN1 ∪ SN2 ,
which is the original set before it is divided into two. If the
subset SNi is to be further partitioned by another node, that
particular node is denoted as NCi .

The general search algorithm for gh-tree uses a Depth
First Search approach. For a query q, an empty list with
size k is initially created to hold the current k-NN result.
During the tree traversal, when a node is visited, the dis-
tances between the query and the two pivots PN1 and PN2

are computed. A decision is made whether we need to visit
the subsets of this node by observing the computed distance.
Given a range query with query radius ε, the subset SN1

needs to be visited if and only if d(q, PN1)− d(q, PN2) ≤ 2ε,
and subset SN2 needs to be visited if and only if d(q, PN2)−
d(q, PN1) ≤ 2ε. The subsets SN1 and SN2 are visited in
order of the distances that PN1 and PN2 have from q. Sup-
pose this node has threshold m, SN1 is visited first only when
d(q, PN1)−d(q, PN2) ≤ m. In other cases, SN2 is visited first
over SN1 .

M-tree [9], which is based on ball-partitioning method,
uses an overflowing approach to allocate new nodes when a
new object is inserted into the tree. The algorithm finds the
leaf node where the object should be placed into, and then if
the addition of the new object causes the leaf node to over-
flow, a new node with new pivot is created and the objects
are repartitioned among the two nodes. This splitting may
cause the parent to overflow, thus the change may cascade
up to the root of the tree. A variant of the M-tree, Slim-
tree [13], optimizes the object insertion and node splitting
process of the M-tree.

2.4 Limitations of existing methods
A major problem with the approaches discussed above is

that they do not specifically handle situations when an up-
date causes existing objects to change their value. Because
of such changes, the object may then be placed in the incor-
rect subset. The näıve way of solving this problem is to first

remove the object from the tree, and then insert the updated
object back into the tree. However, while this approach may
suffice in static databases, it is infeasible in a data stream
environment. This is because all objects may potentially
change on update of every stream, and so changes to the
tree are frequent.

We introduce a novel tree maintenance approach that ad-
dresses the problems we discussed above. The main pur-
pose of tree maintenance is to keep the tree updated with
the objects that it indexes. With respect to data streams,
we identify two major events that lead to the need of tree
maintenance: (a) addition of new objects to the tree, and
(b) change of existing object’s value with the new update.
Our approach focuses on reducing the amount of distance
computations required to maintain the tree without sacri-
ficing too much query accuracy. With regard to this, we
provide a probabilistic analysis of the accuracy with which
the approximate k-NN query can be answered by our tree
for the two events mentioned above. We establish a decay
model for accuracy guarantee provided by the metric tree,
and offer algorithms to extend this guarantee by performing
tree maintenance according to the model. We use a slightly
modified representation of gh-tree in our approach to ac-
commodate the peculiarities of data streams. We store the
data objects only on the leaf nodes of the tree, similar to the
approach used in M-tree [9]. In our tree, we use a metric
distance function, Edit distance with Real Penalty (ERP)
[7] for computing distances between time series. Detailed
discussion of the metric and implementation can be found
in [14].

3. PROBABILISTIC ANALYSIS OF ERP-
BASED METRIC TREE

In this section, we provide mathematical analysis of the
metric tree which uses gh-tree with ERP as distance func-
tion. A similar analysis can be made when other metric
functions are used with other trees. In gh-tree, each node
contains two pivots which are used to separate objects into
the corresponding two partitions. We’re interested in de-
termining the probability of an object migrating into other
partition in a node, i.e., the probability of an object be-
coming nearer to the other pivot after it has changed. We
observe this probability behaviour against amount of change
of the object (∆) to get an estimation. This probability es-
timation will be further used to estimate amount of change
of nodes of the tree and thereby the confidence level of the
tree.

ERP can be seen as the minimum sum of area-differences
between two time series which are split into parts. This
minimum sum is achieved by aligning parts of each time
series after adding gaps into them [7]. This is why ERP
values vary around the absolute area difference between the
two series. Absolute area-difference between two time series
R and S is given by |Area(R) − Area(S)|, where Area(R)
(resp: S) is the area of time series R (resp: S) plotted in
cartesian coordinates. Note that this is actually the L1-
norm of two scalar values, i.e. the 1-dimensional Euclidean
distance.

Following this, we propose that probability behaviour of
an ERP-based metric tree should be similar to that of 1-
dimensional Euclidean distance-based metric tree. We show
that while the probability plot of the 1-dimensional Eu-
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Figure 2: Partitioning in 1-dim. Euclidean space

clidean distance-based metric tree is a unit step function,
that of the ERP-based metric tree has a smooth transition
instead of a step.

Let the two pivots in a node of the gh-tree be A and B,
and let the distances of object S to them be dAS and dBS
respectively. S belongs to partition A iff dAS−dBS ≤ m for
a certain threshold value m, otherwise S belongs to partition
B. Figure 2 shows an example of gh-tree partitioning in 1-
dimensional Euclidean space.

Here S initially belongs to partition A. After update, S
changes to S’, and the amount of change (distance between
S’ and S) is ∆. From Figure 2, we see that the object mi-
grates partitions with probability of 0.5, only when ∆ >
0.5(dBS − dAS + m), m is as described in Section 2.3. In
general, the probability of migration of an object S is given
by the step function:

p =

{
0, ∆ ≤ m+|dAS−dBS|

2

0.5, ∆ > m+|dAS−dBS|
2

As in [15], we assume in the following that m = 0; the
following equations can be generalized for other values of
m.

ERP behaves similarly to the 1-dimensional Euclidean dis-
tance, however, for a given ∆, there is a range of locations for
S’. Moreover, in order to analyse the probability of migra-
tion in a data-independent manner, it is necessary to have a
normalised scale, therefore we propose to observe the proba-
bility distribution against the following displacement factor
α:

α =
∆

0.5|dAS − dBS| ·min

(
dAS

dBS
,
dBS

dAS

)
,

where min
(

dAS
dBS

, dBS
dAS

)
indicates the relative closeness of the

object to its current pivot and is always < 1. Just as
the probability of migration in the 1-dimensional Euclidean
space rises to 0.5 when ∆ = 0.5|dAS−dBS|, the probability
plot against α is expected to rise from 0 when α nears 1, and
approach 0.5 when α increases beyond a threshold.

We propose that the probability will be as follows :

p(S, S′, A, B) =





0, α < τ1

f(α), τ1 ≤ α ≤ τ2

0.5, α > τ2

(1)

where f(α) is a monotonically increasing continuous func-
tion from 0 to 0.5. The reason we have f(α) instead of a step
function is that ERP values vary due to alignment of parts
of the time series, i.e., for a given value of ∆, the location
of S’ is a range instead of a fixed point.

In order to determine the probability behaviour of mi-
gration against α, which would demonstrate correctness of
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Figure 3: Simulation results

the above conjecture, we performed a Monte-Carlo simu-
lation. Initial values were assumed to be uniformly dis-
tributed. This assumption allows the probabilistic analysis
to be domain-independent. The simulation also provides us
with reasonable values of the thresholds τ1, τ2 and f(α).
Figure 3 shows results of the simulation indicating cutoffs of
τ1 and τ2. These results are used when objects change and
we need to estimate to estimate the confidence level of the
tree (section 4.3).

From our experimental runs [14] , we observe that f(α)
is nearly linear, with slope approximated as 1

32
. Based on

the simulation results, it is approximated that τ1 = 0.8,
τ2 = 16.8 and f(α) = 1

32
(α− 0.8).

We use Equation 1 while maintaining our tree in order to
determine the probability of an object actually migrating to
another node of the tree (c.f. Section 4.3).

4. TREE MAINTENANCE
In this section, we describe our procedures and algorithms

to perform tree maintenance. Before we proceed, we portray
the terms we use frequently in our explanation.

Let M and N be nodes in a metric tree. M is said to be
an ancestor of N if and only if SN ⊆ SM1 ∨ SN ⊆ SM2 . If
M is an ancestor of N , then N is a descendant of M . We
denote A(N) as the set of ancestors of node N , and D(N)
as the set of descendants of node N .

Definition 1. (Terminal node) The terminal node T (o) of
an object o is the leaf node that contains object o.

Definition 2. (Route) Route R(o, N) is the set of nodes
in the subtree rooted at N that contains o.

Definition 3. (Correctly-partitioned) Let m be the thresh-
old of node N , and ψ(x, PN1 , PN2) = d(x, PN1)− d(x, PN2).
RCP is a relation whose tuples (o,N) satisfy the following
condition (o ∈ SN1 ∧ ψ(o, PN1 , PN2) ≤ m) ∨ (o ∈ SN2 ∧
ψ(o, PN1 , PN2) > −m). An object o in SN is correctly-
partitioned by node N if and only if tuple (o, N) ∈ RCP .

Definition 4. (Correctly-routed) An object o is correctly-
routed by node N if and only if node N and all the nodes
included in R(o,V ) correctly partition o. We define a rela-
tion RCR whose tuples (o,N) satisfy the condition (o, N) ∈
RCP ∧ ((o, K) ∈ RCP , ∀K ∈ R(o, V )), where V is the root
node of the metric tree.

Definition 5. (Node correctness) The correctness of node
N is defined as the ratio of objects in SN that are correctly-
partitioned by node N to the cardinality of SN . We denote
the correctness of node N as E(N) = |Y |/|SN |, where Y =
{o|∃(o, N) ∈ RCP }. It can be easily shown that E(N) is
bounded between 0 and 1.
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Definition 6. (Node confidence) The confidence of node
N is defined as the ratio of the number of nodes correctly-
routed by N to the cardinality of SN . Each node has a
confidence value. Mathematically, we define the confidence
of node N as F (N) = |W |/|SN |, where W = {o|∃(o, N) ∈
RCR∧o ∈ SN}. The value of F (N) is also bounded between
0 and 1.

Another way to look at F (N) is the probability that an
object o randomly chosen in NS will be correctly-partitioned
by all nodes in R(o,N). Therefore, the value of F (N) will be
influenced by the correctness of node N and the other nodes
contained in R(o,N). We approximate the value F (N) as

F (N) = E(N)[F (NC1)|SN1 |+ F (NC2)|SN2 |]/|SN | (2)

A special case occurs when the node is balanced and the
confidence of the two children nodes are approximately the
same. In this case, the expression simplifies to F (N) =
E(N)F (NC1)

Lemma 1. The confidence value of a node N is upper-
bounded by the value of correctness of node N .

Proof. We rewrite Equation 2 into F (N) = E(N)Z(N),
where Z(N) = (F (NC1)|SN1 |+ F (NC2)|SN2 |)/|SN |. Let us
assume that F (NC1) ≥ F (NC2). From the definition of SN ,
we know that |SN | = |SN1 | + |SN2 |. Substituting the value
of |SN2 | by |SN | − |SN1 |, the equation becomes Z(N) =
|SN1 |
|SN | (F (NC1) − F (NC2)) + F (NC2). Because the fraction

|SN1 |/|SN |cannot exceed 1, therefore the value Z(N) also
cannot exceed F (NC1). Consequently, F (N) ≤ E(N). A
similar proof can be derived for the case F (NC1) < F (NC2)
by substituting the value of SN1 .

Lemma 2. The confidence of a node N is upper-bounded
by the highest confidence value of its children, i.e., F (N) ≤
max(F (NC1), F (NC2)).

Proof. Let j be the index, such that F (NCj ) = max(F (NC1),
F (NC2)). From Lemma 1, we see that Z(N) ≤ F (NCj ).
Because 0 ≤ E(N) ≤ 1, then it follows that 0 ≤ F (N) ≤
F (NCj ).

The confidence value of a metric tree’s root node can be
used as measuring the confidence of the tree itself, since it
summarizes the confidence information of all the nodes. We
use confidence of the metric tree thoroughly when we decide
whether an update to the tree can be deferred at present
time.

4.1 Construction of Metric Tree
Before we can construct a metric tree for a set of objects

S, we need to set the minimum node utilization parameter
µu. µu is defined as the minimum number of objects that
node N should have (|SN |), before N may have children.
It follows that all non-leaf nodes M in the tree must have
|SM | ≥ µu. However, |SM | ≥ µu does not imply that M is a
non-leaf node. The value of µu must insure that each child
has at least two objects, viz. its pivots. In this work, we set
µu to be 8.

The metric tree is constructed by recursively partitioning
the set of objects O. For node N , two pivots are selected
from O, and the threshold value m is determined from the
median of the distance distribution. Each object in O is

Algorithm 1: Construct

Input: A set of objects O, and level of the tree
Output: A node N that partitions the set O
begin1

Create a new node N2

Select 2 Pivots from O setting them as the Pivots of3

node N
for each object o ∈ O do4

compute the difference in distance between the5

object and both pivots of node N , diffDist

Insert object o into distribution of N6

Set threshold m as the median of diffDist7

for each object o ∈ O do8

if diffDist ≤ m then9

place object in subset 1 of node N , SN110

else11

place object in subset 2 of node N , SN212

if number of objects in O ≥ µu then13

call Construct for node SN1 at level+114

call Construct for node SN2 at level+115

Set confidence F (N) value to 1.016

return N17

end18

placed in either SN1 or SN2 . Based on the size of O, the
algorithm may decide to stop the partitioning process or to
assign a new node to further partition the subsets. Our full
algorithm for metric tree construction is shown in Algorithm
1.

To create the whole metric tree, the construction algo-
rithm above is invoked with 0 as its level parameter. Our
algorithm, however, assumes that the number of objects in
O is as least 2.

Lemma 3. The resulting metric tree created using the Con-

struct algorithm consists of between 2|O|
µu−1

− 1 and |O| − 1
nodes.

Proof. A node may contain up to (µu-1) objects, with-
out the need of further partitioning. A full metric tree with
n leaf nodes has (n-1) non-leaf nodes. As there are |O|/(µu-

1) leaf-nodes, the minimum number of nodes is 2|O|
µu−1

− 1.
The maximum number of nodes is obtained when each node
contains exactly 2 objects. Using a similar argument, the
maximum number of nodes is |O| − 1.

4.2 Insertion of New Object
When a new object o is inserted, it is first examined at

the root of the tree. The root node V computes the value
of ψ(x, PV1 , PV2) and routes the object to the next node
according to that value. This process is repeated until it
reaches its terminal node. After the insertion, the object o is
guaranteed to be correctly-routed, because on every node N
passed by o, the value of ψ(x, PN1 , PN2) is always examined
before deciding whether the next node is NC1 or NC2 . Due
to this fact, we have to update the confidence value of each
node passed by object o.

We rewrite the equation for confidence of node N to be
F (N) = E(N)Z(N) as in the proof of Lemma 1. To know
the new value F (N)’, we have to know E(N)’ and Z(N)’.
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Algorithm 2: InsertObject

Input: o, N , level
begin1

compute new E(N)’ value2

compute the difference in distance between the3

object and both pivots of node N , diffDist
if diffDist ≤ m then4

place object into 1st subset of node N , SN15

if node N is not a leaf node then6

call InsertObject for object o, into node7

NC1 at level+1

else8

place object into 2nd subset of node N , SN29

if node N is not a leaf node then10

call InsertObject for object o, into node11

NC2 at level+1

UpdateConfidence of node N12

end13

Algorithm 3: UpdateConfidence

Input: The node N whose confidence is to be updated
Output: The confidence F (N)
begin1

if SN changes since last computation then2

compute new F (N)’ value3

Store new F (N)’ value and return F (N)’4

else5

Return stored F (N) value6

end7

The new value E(N)’ can be derived from E(N). From
Definition 5 we know that |Y | = E(N)|SN |. We want to
find out the value E(N)′ = |Y ′|/|S′N | Because a new object
is inserted into node N and it is guaranteed to be correctly-
partitioned, therefore |S′N | = |SN | + 1 and |Y ′| = |Y | +
1. The equation for the new confidence becomes E(N)′ =
E(N)|SN |+1
|SN |+1

.

Computation for the new Z(N)’ value is not as direct as
E(N)’, because Z(N)’ is involved with two separate con-
fidence values of the children. Recall from Lemma 2 that
the confidence of a node is upper-bounded by the high-
est confidence value of its children. Moreover, only one
of the child’s confidences is changing, because the other
child does not change. Let us say that i, j are indexes
such that the new object is inserted into NCi and not NCj .
Therefore, |S′Ni

| = |SNi | + 1 and |S′N | = |S′Ni
| + |S′Nj

| =

|SNi |+1+ |SNj | = |SN |+1. Consequently, the Z(N)’ equa-

tion becomes Z(N)′ =
F (NCi

)′( |SNi
|+1)+F (NCj

)|SNj
|

|SN |+1
. From

the variables involved in the equation, only F (NCi)’ is not
known previously, but it can be easily found out by recur-
sively calling the confidence value computation on the child
node i. The full algorithm to insert a new object o into the
metric tree is given in Algorithm 2 and the full algorithm to
update the confidence values accordingly is in Algorithm 3.

Since the value of µu is set as 8, node splits occur when
|SM | ≥ 8. Let us now consider two possible scenarios of
node splits. The first scenario occurs when the data sets are

equally split. This gives us a balanced tree with the same
number of nodes on either side of the tree, and each node
contains an equal number of objects. The second scenario
is when we have a bad split, i.e. the tree is unbalanced
and consequently inefficient. If this continues, the branch of
the tree with nodes having larger number of objects quickly
lose confidence and thereby bring the entire tree confidence
down. This results in a reconstruction of the tree.

4.3 Modification to Existing Object
Let N be a node, o an object in SNi , and SNj refer to

the other subset of node N . When o changes to o’, there
is a probability that o should be placed in SNj instead of
SNi (refer to Section 3 for the probability analysis). Hence,
modification to existing objects influences the correctness
and confidence of a node.

In a node N with specific threshold m, we know from
Equation 1 that the probability that an object o which changes
to o’ will migrate from its original pivot PN1 to PN2 is given
by p(o, o′, PN1 , PN2), where the displacement factor is

α =
d(o, o′)

0.5|ψ(o, PN1 , PN2)|
·min

(
d(o, PN1)

d(o, PN2)
,
d(o, PN2)

d(o, PN1)

)
,

Therefore the decrease in correctness of node N when an
object o changes to o’ is given by

p(o, o′, PN1 , PN2)/|SN | (3)

We can see that the correctness potentially reduces with
increase in discrimination of the object with respect to the
pivots. The modification of o affects the correctness of not
only its terminal node, but also the other nodes in the route
of o from the root node. We employ a recursive approach
(Algorithm 4) to update the affected values from the root
to the terminal node. Only the correctness and confidence
values of the affected nodes are updated in this process,
but the changed object is not updated. This approach is
much more efficient than a delete-insert approach since no
distance computations are required to be performed between
o’ and all the nodes, while maintaining the accuracy of the
tree. Experimental results (Section 5) show that the tree
confidence is a lower bound of the actual k-NN accuracy
provided.

4.4 Pivot Selection
Various pivot selection methods have been proposed for

use in metric trees. The easiest and most straightforward
way is to randomly select the pivots from the set of objects.
This is a very näıve method, as it does not attempt to choose
pivots that have some properties that may benefit the tree.

Our pivot selection method (Algorithm 5) focuses on re-
ducing the decrease in confidence when any object in the tree
changes. This effectively allows us to keep the original tree
unchanged, thus maintaining a balanced tree as discussed in
the previous subsection.

Let us now consider events that affect the confidence of
a node. Insertion of a new object partly increases the con-
fidence of the nodes, because the new object is guaranteed
to be correctly-routed. Construction of a new tree restores
the confidence of all the nodes in the tree to its maximum
value. Modification of existing objects in the tree decreases
the confidence of all nodes along the route of that particular
object. Among these events, only the last event adversely
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Algorithm 4: ObjectChanged

Input: o, N , lev, d
begin1

compute new E(N)’ value2

if N is non leaf node then3

compute the difference in distance between the4

object and both pivots of node N , diffDist
if diffDist ≤ m then5

call ObjectChanged for object o, in node6

NC1 at lev+1 with change of d

else7

call ObjectChanged for object o, in node8

NC2 at lev+1 with change of d

UpdateConfidence of node N9

else10

let F(N)’ = E(N)’11

end12

affects the confidence. Therefore, we focus our pivot selec-
tion analysis to reduce the decrease of confidence associated
with that event.

From Equation 3 and Lemma 1, the decrease of confi-
dence of node N when an object o changes to o’ is at most
p(o, o′, PN1 , PN2)/|SN |. Ignoring the min() term, this de-
crease is dependant on three parameters, viz., the distance
of o from o’, the number of objects in SN , and the initial
value of ψ(o, PN1 , PN2). Only the last parameter, i.e., initial
value of ψ(o, PN1 , PN2), is directly affected by the selected
pivots {PN1 , PN2}. For a given dist(o, o’), the decrease of
confidence is higher if ψ(o, PN1 , PN2) is closer to the thresh-
old value m.

Therefore, if the node must lose less confidence, we must
maximize the difference of the function ψ(o, PN1 , PN2) from
m for object o. However, finding pivots {PN1 , PN2} that
maximize this function value for each object o in the set is
an NP-hard problem. Hence, we adopt a heuristic approach
such that pivots having the maximum spread of the objective
function |m− ψ(o, PN1 , PN2)| are selected.

In some cases, we may opt to reselect the pivots. Reselec-
tion here means that pivots PN1 and PN2 have been selected
before, but due to reconstruction to part of a tree, we need
to do pivot selection again. Reconstruction is required to
prolong deferment period when only a certain part of the
tree has low confidence that affects the overall confidence of
the tree. This is beneficial to perform when the changes are
concentrated to one specific part of the tree.

In reselection, we only allow one of the pivots to change
(Algorithm 6). First, we choose p closest objects to each PN1

and PN2 . We pair each of the p closest objects to PN1 with
PN2 and examine the approximate spread of the objective
function. Let object P ′N1 have the best spread from the p
objects closest from PN1 . During reselection, we consider
p closest objects to PN2 , and take P ′N2 which is the object
with the best spread. Then we compare the spread of P ′N1
and P ′N2 , and choose the one with best spread.

4.5 Overall algorithm
We offer two algorithms to perform the tree maintenance

when an object changes. The first algorithm focuses on
avoiding full tree reconstruction by performing partial re-

Algorithm 5: SelectPivots

Input: The set of objects O
Output: The pivots and a set of p objects closest to

them
begin1

Set bestSpread = 0, candidate = null,2

reselectCandidate = null
while O 6= NULL do3

Select two random objects C1, C2 ∈ O4

for each object o ∈ O do5

compute the object’s objective function6

|m− ψ(o, C1, C2)|
spread(C1, C2) = σ(objective functions)7

if spread(C1, C2) > bestSpread then8

bestSpread = spread(C1, C2)9

candidate = C1 and C210

let reselectCandidate = p closest objects to11

each C1 and C2

return candidate, reselectCandidate12

end13

Algorithm 6: ReselectPivots

Input: The node N
Output: The new pair of pivots
begin1

let L1, L2 denote the set of p closest objects to2

PN1 , PN2 resp.
set bestSpreadA = bestSpreadB = 03

for each object in L1 do4

let spread denote the estimated spread of object5

in L1, PN2

if spread > bestSpreadA then6

bestSpreadA = spread7

set PN1 ’ = object in L18

for each object in L2 do9

let spread denote the estimated spread of object10

in L2, PN1

if spread > bestSpreadB then11

bestSpreadB = spread12

set PN2 ’ = object in L213

if bestSpreadA > bestSpreadB then14

return PN1 ’ and PN215

else16

return PN1 and PN2 ’17

end18

construction of the tree. The goal is to minimize the number
of distance computations required to maintain our model at
a specific accuracy. To choose which part of the tree needs
to be reconstructed, we keep a list of nodes whose confidence
has changed since the last maintenance procedure. An ap-
proximation of the benefit achieved if we reconstruct this
node N is given by the equation (1− F (N)) · |SN |. We call
this algorithm the continuously-migrate policy (Algorithm
7).

The second algorithm, called the lazy-update policy (Al-
gorithm 8), focuses to maximize the accuracy of the queries,
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Algorithm 7: ContinuouslyMigratePolicy

Input: The original object o and the modified o’
begin1

call ObjectChanged with object o, in node V at2

level 0 with change d between object o and o’
let L denote the set of nodes whose confidence has3

changed
set bestBenefit = 0, targetNode = null4

for each N ∈ L do5

compute the benefit of N6

if benefit > bestBenefit then7

bestBenefit = benefit8

set targetNode = N9

if targetNode 6= null then10

Reconstruct tree rooted at targetNode11

end12

Algorithm 8: LazyUpdatePolicy

Input: The original object o and the modified o’
begin1

call ObjectChanged with object o, in node V at2

level 0 with change d between object o and o’
let L denote the set of nodes whose confidence has3

changed
if F (V ) < minimum query confidence then4

Call Construct with all objects O5

else6

let bestBenefit = 0, targetNode = null7

for each N ∈ L do8

compute the benefit of N9

if benefit > bestBenefit then10

bestBenefit = benefit11

set targetNode = N12

if bestBenefit < minimum benefit then13

set targetNode = null14

if targetNode 6=null then15

Reconstruct tree rooted at targetNode16

end17

even if a full tree reconstruction needs to be performed. This
is a strict approach in which once the confidence of the tree
crosses the minimum confidence level, the algorithm requests
for a full tree reconstruction. Otherwise, it calculates the
benefit of partially reconstructing the tree using the same
technique as in the first algorithm. The difference to the
previous policy is that, it may decide not to partially re-
construct the tree if the algorithm finds that the benefit is
small. The reason is that with the assumption that the de-
crease of confidence is approximately equal in every update,
if the benefit of updating now is low, there is a higher chance
that the confidence will drop below the minimum accuracy
threshold with the next update. Therefore, a full tree recon-
struction is initiated anyway.

We compile the algorithms and approaches we have dis-
cussed into the combined maintenance algorithm (Algorithm
9). Note that the combined algorithm shown below is with
the assumption that we use the continuously-migrate pol-

Algorithm 9: CombinedMaintenance

begin1

if object o changes to o’ then2

call ContinuouslyMigratePolicy with3

original object o, and modified object o’

else if object o is inserted then4

call InsertObject with object o and node V5

if E(V ) < minimum query confidence then6

Call Construct with all objects O7

end8

icy when an existing object changes. The combined main-
tenance algorithm using lazy-update policy is obtained by
replacing the call to ContinuouslyMigratePolicy(o,o’)
function with LazyUpdatePolicy(o,o’).

5. EXPERIMENTAL RESULTS

5.1 Environment and Dataset
We performed experiments on data obtained from Stan-

dard and Poor’s 500 Index (S&P 500). Each data stream in
our experiments represents the stock price of one company
within the S&P 500 Index. The entire length of a stream
consists of the company’s stock prices from January 1985
till December 2005. Companies were chosen at random, and
the prices were normalised to between 0 and 1000.

Experiments were conducted on a 1.66MHz PC with 3GB
memory and 500MB (restricted) disk space. The data were
stored as text files and varied in two aspects: the number
of different time series data streams, and the window size of
the streams.

5.2 Simulation of Streaming Data
We simulate the streaming nature of the data by restrict-

ing the visible window of the data to the program. This
is done by the use of a window of predefined size. At any
point of time, the program only has information on the data
of the time series within the window which is of a predefined
size. Any data which exists beyond the time series data set
is known to be future data thus simulating streaming data.
At every update, we shift the window of each stream and
notify the change to the tree maintenance procedure. This
acts as inputting new streaming data of the various time se-
ries into the program. The performance of our probabilistic
metric tree is examined after all the changes in the current
update have been notified to the maintenance procedure.

5.3 Performance Evaluation
We compare the performance of the original gh-tree with

our tree maintenance approaches in two aspects: the tree
confidence level and the actual accuracy of the k-NN query
when using the tree. In the experiment, we set the value
of k to be 10% of the number of data streams. Further, we
also compare the maintenance cost required in two policies
we described in terms of number of distance computations
required. In our figures, we denote continuously-migrate
policy as cm-policy, and lazy-update policy as lu-policy. As
we can see from Figure 4, our tree confidence is indepen-
dent of the window size used in the stream. In general, we
notice that the lazy-update policy shows superior perfor-
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mance in terms of true k-NN accuracy compared to others,
as shown in Figure 5. For all the different window sizes, the
continuous-migrate policy is able to hold the query accuracy
much longer than gh-tree. We observe that the benefit in
accuracy of lazy-update policy to gh-tree decreases as the
window size grows larger. This may be caused by the fact
that with a larger window size, the time series actually ex-
periences lesser change in every update. We expect that gh-
tree would perform reasonably well in datasets with small
number of data streams and would experience performance
degradation as the number increases. However, we find in
Figure 6 that the situation is opposite of what we expected.
We may explain this with the fact that with smaller number
of data streams, we set smaller value of k. This actually
tightens the bound of the query, thus demanding a more ac-
curate answer. We can see in Figure 7 that the gh-tree in
general is not able to maintain query accuracy of 80% after
1700 updates to the streams. Using the continuous-migrate
policy, we are able to double this period, while lazy-update
policy is able to consistently produce at least 99% query
accuracy.

An interesting observation regarding the continuous-migrate
policy is also noted in this experiment. We take note that
the chosen node to be updated does not always improve the
tree confidence significantly. This is largely because a node
is not considered as candidate if it does not change during
the last update. The consequence of this is that nodes that
have changed before, but did not change in the last update
are not considered to be candidates. We establish this re-
striction to limit the search space we need to explore when
generating the candidates for node reconstruction.

In terms of maintenance cost, both the lazy-update pol-
icy (LU) and continuously-migrate policy (CM) incurs lesser
distance computations compared to the updated gh-tree (Ugh).
The updated gh-tree refers to a näıve manner of updating
the gh-tree whenever an object changes, thus producing a
100% accuracy in terms of k-NN queries. Here we present
the maintenance cost in terms of number of distance com-
putations performed by each approach. Actual run-time ef-
ficiency is dependent on other factors like i/o and caching
strategies, and can be optimized as well. Details of this are
provided in [14]. From Table 5.3, we notice that gh-tree (gh)
has the lowest maintenance cost. This could be explained
as the gh-tree never updates itself when an object changes,
thus incurring only the distance computations due to initial
construction of the tree. The lazy-update policy incurs more
distance computations to maintain the tree as compared to
continuously-migrate policy. One major reason is that lazy-
update forces the whole tree to be reconstructed as soon as
the tree confidence crosses the minimum accuracy threshold.
Therefore, a full tree reconstruction may be initiated even
if during the last update all the changes were located in a
specific part of the tree, simply because the low confidence
level of that part of the tree drags the whole tree confidence
down. This may actually be desirable if we want to treat
the tree confidence as a rough lower bound for the query
accuracy.

In nearly all cases when we track the maintenance cost,
continuously-migrate appears to incur less than 50% of the
maintenance cost of lazy-update. While both policies incur
significantly lesser distance computations compared to an
updated gh-tree which gives a 100% accuracy on true k-NN
queries. There appears to be a tradeoff between the main-

50 Streams 75 Streams
ws20 ws35 ws50 ws20 ws35 ws50

CM 1304 845 420 3180 979 1090
LU 1997 1776 1345 3857 3668 2913
Ugh 11600 8750 6200 10050 6000 4200
gh 50 50 50 75 75 75

Table 1: Average maintenance cost for 50 Data
Streams and 75 Data Streams

tenance cost and the query accuracy we can achieve. The
choice between the two policies should be made on which
aspect is primarily more important in the application.

6. CONCLUSION
In this paper, we addressed the problem of efficiently an-

swering approximate k-NN queries. Our domain was in
multiple streaming time series data, over which we per-
form k-NN queries. Since streaming data are seldom deleted
from the database, query results may be present in older se-
quences of the streams. We noticed that there was no prior
work addressing this concern. In order to solve our prob-
lem, we proposed an indexing technique based on pivots that
could be maintained in order to answer our queries with a
probabilistic guarantee. The model represented by our tree
displays its confidence of answering a query for which some
error is tolerated. This approach allow us to maintain the
query accuracy of the original tree without the need to re-
calculate distances with respect to the updated object. We
presented two algorithms to maintain this tree, one empha-
sized accuracy of the query results, while the other tried to
balance the cost of tree maintenance by deferring updates to
the tree. We also demonstrated that our technique is correct
within reasonable error, is efficient with respect to number of
distance calculations, scales well and is robust to changes in
parameters. Experimental results showed that there are sig-
nificant reductions to the number of distance calculations as
compared to a delete-insert approach. For future work, we
plan to explore the possibility of performing a k-NN query
of size smaller than the window size. Another interesting
improvement we’re working on is computing a tighter lower
bound on the confidence decay of a node, taking into account
the confidence decay of its siblings.
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Figure 4: Tree confidence for 75 Data Streams with varying window sizes
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Figure 5: True k-NN query accuracy for 75 Data Streams with varying window sizes
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Figure 6: Tree confidence for (a) 50 Data Streams, (b) 100 Data Streams with window size of 20
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Figure 7: True k-NN query accuracy for (a) 50 Data Streams, (b) 100 Data Streams with window size of 20
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