
Dynamic Skyline Queries in Metric Spaces

Lei Chen and Xiang Lian
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Kowloon
Hong Kong, China
{leichen,xlian}@cse.ust.hk

ABSTRACT
Skyline query is of great importance in many applications, such as
multi-criteria decision making and business planning. In particular,
a skyline point is a data object in the database whose attribute vec-
tor is not dominated by that of any other objects. Previous methods
to retrieve skyline points usually assume static data objects in the
database (i.e. their attribute vectors are fixed), whereas several re-
cent work focus on skyline queries with dynamic attributes. In this
paper, we propose a novel variant of skyline queries, namely metric
skyline, whose dynamic attributes are defined in the metric space
(i.e. not limited to the Euclidean space). We illustrate an efficient
and effective pruning mechanism to answer metric skyline queries
through a metric index. Extensive experiments have demonstrated
the efficiency and effectiveness of our proposed pruning techniques
over the metric index in answering metric skyline queries.

1. INTRODUCTION
Recently, skyline queries have attracted much attention from the
database research community due to its wide applications related to
multi-criteria decision making. Specifically, given a d-dimensional
data set D, a skyline query [2] returns all the data objects which
are not dominated by other objects in D. Here, we say a data ob-
ject X(X1, X2, ..., Xd) dominates another one Y (Y1, Y2, ..., Yd),
if attribute Xi of X on each dimension is never greater than Yi in Y
(for all i ∈ [1, d]), and there exists at least one attribute Xj which
is strictly smaller than Yj in Y .

Figure 1 illustrates a simple example of skyline, in which nine data
points locate in a 2-dimensional space (i.e. d = 2). Specifically,
we say o3 dominates o4, since object o3(1.5, 2.5) has smaller coor-
dinates than object o4(2, 3.5) in both dimensions (i.e. 1.5 < 2 and
2.5 < 3.5). Similarly, object o1(2, 1) dominates object o2(2.8, 1),
since o1 has smaller x-coordinate (attribute) than o2 (i.e. 2 < 2.8)
and moreover y-coordinate not greater than o2 (i.e. 1 = 1). As ob-
jects o1 and o3 are not dominated by any other points in the space,
they are called skyline points in the database.

In literature, many proposals have studied the efficiency issues of
searching skylines, including block nested loop (BNL) [2], divide-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25-30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003...$5.00.

Figure 1: Example of Traditional Skyline

and-conquer (D&C) [2], bitmap and index [23], nearest neighbor
(NN) [14], and branch-and-bound (BBS) [18]. These methods as-
sume static data objects in the database (i.e. attributes of each data
object are fixed). As in the previous example of Figure 1, coordi-
nates of each object are assumed to be static.

The skyline query processing with dynamic attributes is more chal-
lenging than that with static ones, in the sense that skylines have to
be calculated in an online fashion, which requires effectively prun-
ing method to reduce the computation cost. Some recent work [19,
22, 10] consider skyline queries with dynamic attributes. In particu-
lar, Papadias et al. [19] defined a dynamic skyline, where attributes
of each data object are given by a set of dimension functions. Shar-
ifzadeh and Shahabi [22] proposed the spatial skyline query, where
attribute values of each data object are dynamically calculated as
Euclidean distances from query points to this object. Deng et al.
[10] presented the multi-source skyline query, in which attributes
are defined as the shortest path lengths on road networks from data
to query objects. In their proposed approaches [19, 22, 10], how-
ever, they all assume data objects in the form of vectors and utilize
the geometric property of data objects in the Euclidean space to
facilitate the pruning. However, there exist applications where the
data from them can not be represented as vectors. For example,
in the bioinformatics, the DNA sequences are usually modeled as
strings. Therefore, the previous methods restricted their solutions
to a specific application domain.

In this paper, we propose a more generic skyline query with dy-
namic attributes, namely metric skyline, which retrieves skyline
points with dynamic attributes in the metric space. Specifically,
the input of a metric skyline query is a set of data objects, D =
{o1, o2, . . . , om}, and a set of query objects, Q = {q1, q2, . . . , qn},
in the metric space. The output includes those data objects in D

333

whose attribute vectors are not dominated by those of other data
objects, where the attribute vector of a data object is defined as an
n-dimensional vector consisting of metric distances from this ob-
ject to n query points.

Metric skyline queries have many important applications. For ex-
ample, consider a business plan of opening a number of shops near
some residential areas. The candidate locations for opening a shop
can be viewed as data objects in the database, whereas residen-
tial areas that the shop is targeting at are query points. The man-
ager has to decide appropriate shop locations for the convenience
of customers living in the targeted areas. In particular, the candi-
date locations of shop must be interesting in terms of the traveling
distance from a shop to all its targeted customers (areas), and any
candidate location should satisfy the condition that no other loca-
tion is closer to all its targeted areas than itself. Note that, here the
computation of the traveling distance between a candidate location
and a residential area should take into account the underlying road
network, for instance, the shortest road path between two places,
which is a metric distance function.

Unlike previous work such as dynamic skyline [19], spatial skyline
[22] or multi-source skyline on road networks [10], our metric sky-
line is more generic in that it does not require data objects be either
vectors or in the Euclidean space. Thus, it can be applied to a much
broader application areas, such as geographic information systems
(GIS), traffic networks and molecular biology, where data objects
in these areas are often modeled as polygons or sequences and dif-
ferent metric distance functions are used to compute dynamic at-
tribute vectors of data objects. Due to this generality of metric
skyline, previous methods [19, 22, 10] specifically designed in the
Euclidean space cannot be used to retrieve metric skyline with ar-
bitrary format of data (e.g. numerical vector, string, etc.) and in
arbitrary metric spaces.

Therefore, in the paper, we propose an efficient and effective ap-
proach to answer generic metric skyline query in the metric space,
without any assumption of the format of data objects and met-
ric distance functions. In particular, we present a novel pruning
method and retrieve metric skyline points over M-tree index [8].
However, the proposed methodology is not limited to M-tree only,
and it can be applied to other metric index as well.

The contributions of this paper are summarized below.

1. We formally define in Section 3 the problem of metric skyline
query, and present in Section 4 the foundation of our pruning
method, namely triangle-based pruning, in metric spaces.

2. We propose in Section 5 an efficient query procedure to an-
swer metric skyline queries over M-tree index [8].

3. Last but not least, we demonstrate in Section 6 the efficiency
and effectiveness of our proposed approach for answering
metric skyline queries through extensive experiments, com-
pared with the linear scan.

In the sequel, Section 2 briefly reviews the previous work on sky-
line and spatial skyline queries. We discuss in Section 5 query
processing of metric skyline queries. Finally, Section 7 concludes
this paper.

2. RELATED WORK
2.1 Traditional Skyline Processing
The skyline operator was first introduced into the database com-
munity by Borzsonyi et al. [2]. In their work, they also pro-
posed solutions based on block nested loop (BNL) and divide-and-
conquer (D&C). BNL is a straightforward approach to compute
skyline points. Specifically, each data object is compared with all
the other objects in the data set and output if it is not dominated
by others. However, BNL is computationally expensive, since the
cost of dominance checks for each data object is proportional to
the total database size. D&C approach recursively divides the data
space into partitions until each partition can fit in memory. Then,
partial skyline points in each partition are calculated and merged
into a final skyline set.

A variant of BNL, sort-filter-skyline (SFS), was proposed by Chomicki
et al. [6], where the basic idea is to sort the input data with respect
to some monotonic score function, and then compute the skyline
by scanning the sorted list. Later, Tan et al. [23] proposed two
progressive processing algorithms, bitmap and index. Specifically,
bitmap encodes all the information that can determine a skyline
point, and then simply applies bitwise “AND” operation to obtain
skyline points. The index approach partitions the entire data set into
several lists, each of which is in ascending order of their minimum
coordinate along that dimension. Local skyline is calculated in each
list and merged into a global one.

Kossmann et al. [14] proposed a nearest neighbor (NN) approach
to obtain skyline with the aid of a spatial index, for example, R-tree
[12]. Specifically, the NN algorithm identifies skyline by repeat-
ing the NN search on the partitioned spaces. Papadias et al. [18]
improved the NN method by using the idea of branch-and-bound
(BBS). Unlike the NN approach, which searches R-tree many times,
BBS only traverses the R-tree once. In particular, the algorithm
maintains a list to store skyline points and use a minimum heap to
traverse the R-tree in the best-first manner. Entries in the heap are
sorted in ascending order of a key, which is defined as the mini-
mum L1-norm distance from the origin to an R-tree node or data
point. Whenever an R-tree node is encountered, BBS checks the
dominance of the node as well as entries in it, with respect to sky-
line points in the list. Then, those entries that cannot be pruned are
inserted into the heap. The traversal procedure terminates when the
heap is empty. BBS algorithm has been proved to be I/O optimal
[18].

Recently, Lee et al. [15] utilized the close relationship between Z-
order curve and skyline processing strategy to index data objects
and efficiently answer skyline queries. In particular, they encode
data objects with Z-order curve and construct a novel index struc-
ture called ZBtree. Then, the skyline search can be conducted over
ZBtree based on the pruning property of Z-order curve. Morse et
al. [17] considered the skyline computation in the case where at-
tributes are drawn from low-cardinality domains. A lattice skyline
algorithm (LS) was proposed with such property.

2.2 Skyline Variants
There are many variants of the traditional skyline query. Pei et al.
[21] and Yuan et al. [29] proposed methods to compute skylines in
all possible subspaces. Tao et al. [24] gave an efficient algorithm
to calculate skylines in a specific subspace. Chan et al. [4] defined
a k-dominant skyline which extends the dominant concept of tradi-
tional skyline to k-dominant. Given a d-dimensional data space, an

334

object p is said to k-dominate another one q if there are k(≤ d) di-
mensions in which p dominates q. Dellis and Seeger [9] proposed
a reverse skyline query, which obtains those objects that have the
query point as skyline, where each attribute is defined as the abso-
lute difference from objects to query point along each dimension.

In the context of uncertain databases, Pei et al. [20] proposed the
probabilistic skyline over uncertain data, which returns a number of
objects that are expected to be skylines with probability higher than
a threshold. Khalefa et al. [13] studied the skyline query process-
ing in the presence of missing attributes. Furthermore, skyline has
also been studied in some constrained environment, such as on data
streams [16], in distributed environment [1] and in the partial-order
domain [3].

The most relevant problems to our work are the dynamic skyline
[19], spatial skyline [22] and multi-source skyline on road networks
[10]. Specifically, Papadias et al. [19] applies BBS algorithm to
retrieve skyline points, where dynamic attributes of data objects
are computed by a set of dimension functions. However, only Eu-
clidean distance were considered for dimension functions. For the
spatial skyline [22], given a database D containing data objects oi

(i ∈ [1, m]), a spatial skyline query takes as input an arbitrary num-
ber (e.g. n) of query points q1, q2, ..., and qn in the vector space.
For each data object oi ∈ D, vector 〈L2(q1, oi), L2(q2, oi), ...,
L2(qn, oi)〉 contains n spatial derived attributes, where L2(qj , oi)
is the Euclidean distance between two data objects qj and oi. A
spatial skyline query retrieves a set of data objects oi ∈ D such
that their attribute vectors are not dominated by those of other ob-
jects. Note that, the spatial skyline query requires all data objects be
in a Euclidean space. Thus, the proposed solutions by Sharifzadeh
and Shahabi [22] can utilize the geometric property of data objects
in the database to prune the search space. In particular, two im-
portant theorems are given, that is, spatial skyline points are those
data objects either within the convex hull of query points or hav-
ing their own Voronoi cells intersect with boundaries of the convex
hull of query points. All these assumptions and properties, how-
ever, do not hold in a more general metric space, which makes their
methods inapplicable to our metric skyline scenario.

Similarly, the method proposed for multi-source skyline on road
networks [10] also utilizes geometric information of data objects
during the pruning, which is thus limited to road network applica-
tion and cannot be used for generic metric skyline retrieval in other
metric space.

In summary, previous studies on skyline variants are limited to ei-
ther Euclidean space or metric space for a specific application. In
contrast, our work focuses on the generic metric skyline search in
the metric space.

3. PROBLEM DEFINITION
In this section, we formally define a variant of skyline with dynamic
attributes, namely metric skyline, where attributes are defined in the
metric space. Specifically, given a database D with m data objects
oi (i ∈ [1, m]) in a metric space, assume that all the pairwise dis-
tances dist(oi, oj) between data objects oi and oj are known in
advance, where i, j ∈ [1, m], and dist(·, ·) is a metric distance
function, satisfying four properties below: ∀x, y, z ∈ D,

1. dist(x, y) > 0,

2. dist(x, y) = 0 ⇔ x = y,

Symbol Description
D a database of size m
oi the data object in D
qj the j-th query point of the metric skyline query
m the number of data objects
n the number of query points
dist(·, ·) the metric distance function

Figure 2: Meanings of Symbols Used

3. dist(x, y) = dist(y, x), and

4. dist(x, z) ≤ dist(x, y) + dist(y, z).

Given a set of query points, Q = {q1, q2, ..., qn}, a metric sky-
line query retrieves all data objects oi such that their attribute vec-
tors in the form 〈dist(oi, q1), dist(oi, q2), ..., dist(oi, qn)〉 are not
dominated by those of other objects. In other words, a data object
oi ∈ D is in the answer to a metric skyline query if and only if it
holds that:

∀ocand ∈ D ∧ ocand 6= oi,

(∃qj ∈ Q, s.t. dist(qj , oi) < dist(qj , ocand)).

Note that, since we consider the metric skyline problem in the met-
ric space, no geometric information can be utilized to guide the
pruning during query processing. Thus, previous methods, for ex-
ample, the one that retrieves spatial skyline points [22] in Euclidean
space or uses specific measure (e.g. the shortest distance on road
networks [10]), are inapplicable to the generic metric skyline sce-
narios. Fortunately, we have one important tool (probably the only
one) to facilitate the metric skyline search, that is, the triangle in-
equality (the fourth property for the metric distance function above),
which will be discussed in the next section. Figure 2 illustrates the
commonly-used symbols in this paper.

4. THE PRUNING FOUNDATION
In this section, we propose an effective pruning mechanism to fa-
cilitate answering metric skyline queries in the metric space. We
first illustrate the basic pruning heuristics resulting from the defini-
tion of metric skyline, and then propose our pruning method with
the help of the triangle inequality in the metric space.

4.1 Preliminary
As mentioned earlier, given a database D and a set, Q, of query
points, data object oi ∈ D is in the result of a metric skyline query,
if and only if for any data object ok ∈ D\{oi}, there exists at least
one query point qj ∈ Q such that dist(qj , oi) < dist(qj , ok),
where dist(·, ·) is a metric distance function. In other words, data
object oi can be safely pruned, if and only if there exists one object
ok ∈ D such that dist(qj , oi) ≥ dist(qj , ok) for all j ∈ [1, n]
(i.e. the attribute vector of oi is dominated by that of ok), for qj ∈
Q, which is our basic pruning heuristics to answer metric skyline
queries.

However, with such heuristics, in order to prune an object oi, we
have to scan the entire database, which requires O(m) dominance
checks in the worst case, where m is the number of objects in the
database. Obviously, this method is quite inefficient, especially

335

when the computation of distance function dist(·, ·) is costly. Mo-
tivated by this, in the sequel, we propose a more efficient yet ef-
fective method, triangle-based pruning, by applying the (probably
only) available tool, the triangle inequality, in metric spaces.

4.2 Triangle-Based Pruning
In our metric skyline problem, since the metric distance function is
used to measure the similarity among data objects, a very impor-
tant property, triangle inequality (Section 3), thus holds, which is
the foundation of our triangle-based pruning method for answering
metric skyline queries.

Specifically, we select a number of objects in the database D as so-
called pivots. Then, for each data object oi ∈ D, we can obtain its
lower and upper bounds of distance dist(qj , oi), LBij and UBij ,
respectively, using the triangle inequality, where qj is a query ob-
ject (j ∈ [1, n]) and p is a pivot. Obviously, we have LBij =
|dist(qj , p) − dist(p, oi)| and UBij = dist(qj , p) + dist(p, oi).
Next, we utilize these bounds to prune unqualified objects dur-
ing the metric skyline search. The following lemma illustrates the
heuristics of our triangle-based pruning method.

LEMMA 4.1. (Triangle-Based Pruning Heuristics) Given a
database D containing m data objects o1, o2, ..., om, and a set,
Q, of query points q1, q2, ..., qn in a metric space, a data object
oi ∈ D can be safely pruned, if there exists a data object ok ∈ D
such that UBkj ≤ LBij for all j ∈ [1, n], where qj ∈ Q and
dist(·, ·) is a metric distance function.

Proof. By the triangle inequality and the definition of metric sky-
line. 2

Intuitively, by the triangle inequality, the distance from any data
object to a query point is bounded by an interval. According the
skyline definition, any data object oi is definitely dominated by
another one ok, if the lower bound LBij of dist(qj , oi) is never
smaller than the upper bound UBkj of dist(qj , ok) for all dimen-
sions (i.e. LBij ≥ UBkj for all j ∈ [1, n]), which is exactly the
pruning condition given in Lemma 4.1. Note that, in the case where
metric distance function dist(·, ·) is costly, the pruning heuristics in
Lemma 4.1 shows its superiority, since all the distances dist(p, oi)
(dist(p, ok)) from pivot p to objects oi (ok) can be pre-computed.
The only required online computation is to calculate dist(qj , p) for
all j ∈ [1, n], when metric skyline query is issued. We summarize
our triangle-based pruning method below.

THEOREM 4.1. Given a metric skyline query set, Q, any data
object oi ∈ D can be safely pruned, if there exists a data object
ocand ∈ D such that 2 · dist(qj , p)+ dist(p, ocand) ≤ dist(p, oi)
holds for all j ∈ [1, n], where qj is a query object, p is a pivot, and
dist(·, ·) is a metric distance function.

Proof. According to Lemma 4.1, a data object oi can be safely
pruned if and only if there exists a data object ok such that UBkj ≤
LBij for all j ∈ [1, n], that is, dist(qj , p)+dist(p, ok) ≤ |dist(qj ,
p)− dist(p, oi)|. Since this pruning condition can only hold when
dist(qj , p) < dist(p, oi) (otherwise, inequality dist(p, ok) + dist
(p, oi) ≤ 0 is contradict to the first property of a metric distance
function that the distance is positive), we rewrite it as dist(qj , p)+
dist(p, ok) ≤ dist(p, oi)− dist(qj , p) for all j ∈ [1, n], which is

exactly the pruning condition in the theorem by letting ok = ocand.
2

According to Theorem 4.1, we discuss one possible solution to our
metric skyline problem. Specifically, we first select d pivots p1,
p2, ..., and pd from database D. Next, we pre-compute pairwise
distances dist(pl, ok) from pivot pl to object ok for l ∈ [1, d]
and k ∈ [1, m]. Thus, for each data object ok, we can obtain a
d-dimensional vector 〈dist(p1, ok), dist(p2, ok), ..., dist(pd, ok)〉
which can be inserted into any multidimensional index structure
such as R-tree [12]. Without loss of generality, assume we also
pre-compute the minimum distance from each pivot pl to data ob-
jects in D\{pl}, denoted as mindist(pl,D/pl). Given any metric
skyline query with n query points q1, q2, ..., and qn, we first com-
pute the pairwise distance dist(qj , pl) between qj and pivot pl for
any l ∈ [1, d]. Then, based on Theorem 4.1, we issue a range query
on the R-tree, where the query interval along the l-th dimension is
[0, 2 · maxn

j=1dist(qj , pl) + mindist(pl,D/pl)) for l ∈ [1, d].
All the returned objects of the range query are metric skyline can-
didates. However, this method has the defect as follows. In the case
where query points follow the same distribution as data objects, the
distance dist(pl, ok) from pivot pl to an object ok is very likely to
be smaller than 2 ·maxn

j=1dist(qj , pl) + mindist(pl,D/pl). In
other words, we have to issue a large range query which essentially
accesses nearly all the objects in the database. Thus, this method is
quite inefficient and may perform even worse than a linear scan.

5. METRIC SKYLINE QUERY
Up to now, we have illustrated our pruning foundation, triangle-
based pruning, for answering metric skyline queries. Note that,
without the help of indexes, we have to sequentially scan the en-
tire database, which is not efficient. In this subsection, we discuss
query processing of metric skyline via indexes in the metric space,
which can significantly reduce the search space by filtering out the
unqualified data objects as earlier as possible.

Specifically, we use M-tree [8] for illustration, since it is a widely-
used data structure to index and search data objects in the metric
space, and moreover it is the only metric index structure consider-
ing I/O cost. Our proposed approach for answering metric skyline
query, however, can be applied to other metric indexes as well. Fig-
ure 3 depicts a small M-tree, which contains 9 data objects o1, o2,
..., and o9. Only for the sake of clear presentation, we use Eu-
clidean distance as the similarity measure. Figure 3(a) is the visu-
alization of hierarchical M-tree structure in Figure 3(b). Similar to
other multidimensional indexes in the vector space such as R-tree
[12], data objects in the M-tree are recursively grouped together by
minimum bounding hyperspheres (the circles in Figure 3(a)), until
finally only one large sphere (i.e. root node bounding e1 and e2)
is obtained. Each entry ei in an intermediate node of M-tree con-
sists of three components, a routing point ei.piv (a selected pivot
in the subtree of ei), a covering radius ei.r, and a parent distance
dist(e.piv, ei.piv) where e.piv is the selected pivot (routing point)
in the parent node e of ei. Note that, once the M-tree is constructed
on the data, all the pivots in nodes are fixed. Moreover, through the
M-tree index, as long as an intermediate node is filtered out, we can
avoid accessing all the objects under this node, which significantly
reduces the search space of metric skyline queries.

In the sequel, we first introduce the rationale of our metric skyline
query processing. Then, we illustrate the mechanism of pruning an
intermediate node in M-tree index. Finally, we present the detailed
procedure of our metric skyline query processing.

336

(a) (b)

Figure 3: An Example of M-tree

5.1 Rationale of Query Processing
In order to clarify our metric skyline query processing, we con-
ceptually map each entry ei of M-tree onto a hyperrectangle in
an n-dimensional vector space, namely conceptual vector space
(CVS), in which each dimension is related to one dynamic attribute.
Specifically, the j-th dimension of the hyperrectangle (from entry
ei) corresponds to interval [LB(qj , ei), UB(qj , ei)], where LB(qj , ei)
and UB(qj , ei) are lower and upper bounds of distance dist(qj , ox),
respectively, for any object ox in entry ei. Formally, by applying
the triangle inequality, the distance dist(qj , ox) (j ∈ [1, n]) from
query point qj to any object ox ∈ ei is bounded by: dist(qj , ox) ∈

{
[0, dist(qj , ei.piv) + ei.r] if dist(qj , ei.piv) ≤ ei.r,
[dist(qj , ei.piv)− ei.r, dist(qj , ei.piv) + ei.r] otherwise.

(1)
where ox ∈ ei.

In the example of Figure 3(a), assume we have two query points
q1 and q2. Let us first discuss upper and lower bounds of distance
dist(q1, ox) (dist(q2, ox)) from q1 (q2) to any object ox in entry
e1. Since both query points q1 and q2 are within the circle of en-
try e1, that is, dist(q1, e1.piv) < e1.r and dist(q2, e1.piv) <
e1.r, based on Eq. (1), we have dist(q1, ox) ∈ [0, dist(q1, e1.piv)
+ e1.r] and dist(q2, ox) ∈ [0, dist(q2, e1.piv) + e1.r], for any
ox ∈ e1. As another example, we consider lower and upper bounds
of distance dist(q1, oy) (dist(q2, oy)) from q1 (q2) to any object
oy in entry e6. Since it holds that dist(q1, e6.piv) > e6.r, ac-
cording to Eq. (1), we have dist(q1, oy) ∈ [dist(q1, e6.piv) −
e6.r, dist(q1, e6.piv) + e6.r], for any oy ∈ e6. Similarly, for
query point q2, we have dist(q2, oy) ∈ [dist(q2, e6.piv) − e6.r,
dist(q2, e6.piv) + e6.r], for any oy ∈ e6.

Figure 4 illustrates the resulting CVS conceptually transformed
from Figure 3(a) with respect to q1 and q2. In particular, since
the distance from q1 (q2) to entry e1 is bounded by [0, 5] ([0, 4])
using Eq. (1), entry e1 corresponds to a rectangle in the 2D CVS
with two diagonal corner points (0, 0) and (5, 4). Similarly, entry
e3 (e4) is represented by a rectangle with corner points (1, 0) and
(3, 2) ((0.5, 1.5) and (2.5, 3.5)); entry e2 is transformed to rectan-
gle with corner points (3, 2) and (9, 9), and; entry e5 (e6) to that
with corner points (4.5, 3.5) and (7, 6) ((6.5, 5.5) and (9, 8)). The
transformed hyperrectangles in CVS have the following property:

LEMMA 5.1. Given a set, Q, of n query points, if an entry e in
the M-tree is conceptually transformed to a hyperrectangle HR in
an n-dimensional CVS, and its child node ei is also transformed

Figure 4: Illustration of Metric Skyline in CVS

to a hyperrectangle HRi similarly, then it holds that HR contains
HRi (i.e. HRi ⊆ HR) in CVS.

Proof. Without loss of generality, we consider the j-th dimension
of hyperrectangles HRi and HR, where j ∈ [1, n]. According to
the conversion (indicated by Eq. (1)), the j-th side of HRi (HR) is
within the interval [max{0, dist(qj , ei.piv)−ei.r}, dist(qj , ei.piv)+
ei.r] ([max{0, dist(qj , e.piv)−e.r}, dist(qj , e.piv)+e.r]). Since
entry ei is fully contained in e, we have dist(ei.piv, e.piv) +
ei.r ≤ e.r. Furthermore, according to the triangle inequality
that dist(qj , ei.piv) − dist(qj , e.piv) ≤ dist(ei.piv, e.piv), it
holds that dist(qj , ei.piv)+ei.r ≤ dist(qj , e.piv) + e.r. Simi-
larly, we have max{0, dist(qj , ei.piv)−ei.r} ≥max{0, dist(qj ,
e.piv) − e.r}. In other words, for each j ∈ [1, n], the interval of
HRi is always contained in that of HR along the j-th dimension.
Hence, we have HRi ⊆ HR. 2

As a simple example in Figure 4, since entry e1 is the parent of
e3 and e4, the transformed rectangle from e1 contains those from
both e3 and e4. The same case occurs to entries e2 and e5 (e6).
Moreover, since data objects o1 and o2 are in a child node of e3,
the converted rectangle from e3 also contains the transformed ob-
jects, where the coordinate of object o1 (o2) in CVS along the j-th
dimension is defined as the real metric distance from o1 (o2) to qj

for j ∈ [1, n].

Recall that, a data object is a metric skyline point if and only if
its attribute vector is not dominated by that of other objects in the
database. Intuitively, each dimension of our CVS corresponds to
one attribute of data objects. Moreover, any intermediate node in
the M-tree has its transformed hyperrectangle containing those of
its children in CVS. Therefore, our metric skyline problem in metric
space can be reduced to a classical skyline search in CVS.

Note, however, that, for different sets of query points given by dif-
ferent metric skyline queries, the resulting CVS’ are also different,
in terms of coordinates of hyperrectangles or even the dimension-
ality (due to different numbers, n, of query points). Thus, it is
quite inefficient to materialize the metric space to a CVS for every
incoming metric skyline query, and then issue a classical skyline
query in CVS. Motivated by this, we propose a novel approach
that can directly answer metric skyline queries in the metric space,
through metric index. Although we do not explicitly convert (or
materialize) CVS, which is the reason that we call CVS “concep-
tual”, our query procedure can inherently perform a skyline query
in CVS.

337

5.2 Pruning Intermediate Entries
Before we provide the detailed query procedure for the metric sky-
line retrieval, in this subsection, we present heuristics of pruning
entries in an intermediate node of M-tree, which can avoid access-
ing data objects under entries and thus reduce the search cost. As-
sume that we have obtained a metric skyline candidate ocand in the
databaseD. Our goal is to find the condition of pruning an entry ei

by candidate ocand. Obviously, if the attribute vector of candidate
ocand can dominate that of any point ox in entry ei, then we can
safely prune entry ei. Specifically, we have the theorem below:

THEOREM 5.1. Given a set, Q, of query points q1, q2, ..., and
qn, and a candidate skyline point ocand ∈ D, for any entry ei

in the M-tree, entry ei can be safely pruned by candidate ocand

if it holds that dist(qj , ocand) ≤ LB(qj , ei) for all j ∈ [1, n],
where dist(·, ·) is a metric distance function and LB(qj , ei) is the
minimum possible distance between query point qj and any data
object in ei.

Proof. By contradiction, assume that although it holds dist(qj ,
ocand)≤ LB(qj , ei) for all 1 ≤ j ≤ n, there still exists a data ob-
ject ox in entry ei that is a metric skyline point. Therefore, accord-
ing to the definition of metric skyline, since candidate ocand is in
the databaseD, there exists a query point qj such that dist(qj , ox) <
dist(qj , ocand). However, this is contrary to the fact that dist(qj , ocand) ≤
LB(qj , ei) (i.e. dist(qj , ocand) ≤ dist(qj , ox) since ox ∈ ei) for
all j ∈ [1, n], which completes our proof. 2

Figure 5: Illustration of Theorem 5.2

Theorem 5.1 illustrates the criterion of pruning an entry ei using
candidate ocand ∈ D, which requires to obtain lower bound dis-
tance LB(qj , ei). As given by Eq. (1), the calculation of LB(qj ,
ei) involves computing dist(qj , ei.piv), which is costly in the case
where the time complexity of dist(·, ·) is high. Moreover, it is
quite inefficient to perform such calculation for every intermedi-
ate entry encountered during query processing. To reduce the cost,
we present a more efficient way to prune data objects with parent
distances stored in entries.

THEOREM 5.2. Given a set, Q, of query points q1, q2, ..., and
qn, and a candidate skyline point ocand ∈ D, for any entry ei in
the M-tree, entry ei can be safely pruned by ocand if it holds that
dist(qj , ocand) ≤ dist(e.piv, ei.piv)− dist(qj , e.piv)− ei.r for
all j ∈ [1, n], where dist(·, ·) is a metric distance function and
entry e is parent of entry ei.

Proof. From Theorem 5.1, entry ei can be safely pruned if dist(qj ,
ocand) ≤ LB(qj , ei) for all j ∈ [1, n]. Therefore, it is suffi-
cient to prove that dist(e.piv, ei.piv) − dist(qj , e.piv) − ei.r ≤
LB(qj , ei) for all 1 ≤ j ≤ n. Since it holds that LB(qj , ei) =

max{0, dist(qj , ei.piv)−ei.r} (Eq. (1)) and dist(e.piv, ei.piv)−
dist(qj , e.piv) ≤ dist(qj , ei.piv) (triangle inequality as illus-
trated in Figure 5), we can infer that dist(e.piv, ei.piv)− dist(qj ,
e.piv)−ei.r ≤ dist(qj , ei.piv)−ei.r ≤ LB(qj , ei), which com-
pletes our proof. 2

Since distances dist(qj , e.piv) between query points qj and pivot
e.piv in parent node e have been computed before accessing entry
ei and moreover parent distances dist(e.piv, ei.piv) are stored in
entry ei, we can utilize these information to quickly check the prun-
ing condition given in Theorem 5.2, which requires much lower
cost than that of directly calculating the metric distance. In brief,
we check the condition of pruning entries in an intermediate node
as follows. First, we use Theorem 5.2 to prune entries in the node.
Then, in case entry ei cannot be pruned, we compute the distance
between qj and ei.piv and perform the pruning with Theorem 5.1.
Finally, if entry ei cannot be pruned by both Theorems 5.2 and 5.1,
we have to access the subtree of ei since ei may contain metric
skylines.

Pruning over Other Metric Index. Note that, our proposed method-
ology to prune intermediate entries can be applied to other metric
indexes as well, such as VP-tree [5] or SS-tree [27]. Taking VP-tree
[5] as an example, since intermediate nodes in a VP-tree also have
pivots (called vantage points), we can use the same pruning idea
as that in Theorem 5.1 and moreover derive light-weighted pruning
conditions similar to Theorem 5.2, which can be integrated into our
metric skyline query processing.

5.3 Query Processing
In this subsection, we present the procedure of our metric skyline
query processing, namely MSQ, in Figure 6, which is directly pro-
cessed in the metric space via metric index, M-tree. Specifically,
similar to query processing on multidimensional indexes like R-
tree [12], we search metric skyline points in a best-first manner by
initializing an empty min-heapH and set rlt (recording metric sky-
line points). We define the key in heap H as

∑n
j=1 LB(qj , e) for

any entry e, where qj is the query point for j ∈ [1, n]. Intuitively,
the smaller the key is, the more likely entry e contains metric sky-
line points. Then, we insert all entries of root into H (lines 1-3).
Each time we pop out one entry e from heap H (lines 4-5) and
by applying Theorem 5.1, check whether or not e can be pruned
by points in rlt (lines 6-7). If the answer is yes, we do nothing;
otherwise, process e as follows.

If e is a data point, we simply add it to rlt (lines 8-11). In case entry
e is a leaf node, for each object oi in e, which cannot be pruned by
Theorem 4.1, we further verify whether or not it can be pruned by
points in rlt and insert it into heap H when the answer is negative
(lines 12-15). Similarly, in the case where entry e is an intermediate
node, for each entry ei in e, we first perform a quick pruning with
rlt based on Theorem 5.2, followed by another verification with
Theorem 5.1 if the former one fails to prune entry ei (lines 17-
19). When entry ei cannot be pruned by both theorems, we need
to insert ei into heap H for further filtering. The query procedure
repeats until heap H is empty.

As a example in Figure 3, assume a metric skyline query specifies
two query points q1 and q2, and aims to retrieve all the metric sky-
line points through M-tree I constructed over D, which contains
nine data objects o1, o2, ..., and o9. We first initialize set rlt and
min-heap H which accepts entries in the form (e, key). Figure

338

Procedure MSQ {
Input: M-tree I, n query points q1, q2, ..., and qn

Output: a set rlt of metric skyline points
(1) initialize a min-heapH accepting entries in the form (e, key)
(2) rlt = Φ;
(3) insert all entries of root(I) into heap H
(4) while H is not empty
(5) (e, key) = de-heap H
(6) if e can be pruned by some point in rlt (Th. 5.1)
(7) do nothing
(8) else //e is not dominated
(9) if e is a data point
(10) add e to rlt
(11) else
(12) if e is a leaf node
(13) for each data object oi in e that cannot be pruned by Th. 4.1
(14) if oi is not dominated by any point ocand ∈ rlt
(15) insert oi into heap H
(16) else // intermediate node
(17) for each entry ei in e
(18) if ei cannot be pruned by Th. 5.2
(19) if ei cannot be pruned by Th. 5.1
(20) insert ei into heap H
(21) return rlt

}

Figure 6: Metric Skyline Query Processing (MSQ)

7 illustrates the heap contents of query processing in each step of
procedure MSQ.

Specifically, our metric skyline query processing starts by inserting
all entries (i.e. e1 and e2) in root root(I) into heap H, which sorts
them in ascending order of keys (i.e. (e1, 0) and (e2, 5)). Each time
we pop out an entry (e.g. e1) with the minimum key (0) in heap H.
Since the initial set, rlt, for metric skyline is empty, we expand
entry e1 and add its children e3 and e4 back to heap H. Then, we
further de-heap entry e3 fromHwhich contains data objects o1 and
o2. Since o1 and o2 cannot be pruned by any point in rlt (empty),
we insert them into heapH. Similarly, we also expand entry e4 and
insert objects o3 and o4 into heap H. After that, we encounter the
first data object o1 in the heap, which cannot be pruned by empty
rlt, and thus add it to rlt. Since the attribute vector of the secondly
popped data object o2 is dominated by that of o1 (as illustrated
in Figure 4), we simply discard data object o2. Furthermore, the
attribute vector of the third data object o3 is not dominated by o1

in rlt, and o3 is thus added to rlt. Finally, we expand entry e2

and obtain its child entries e5 and e6. The next popped object, o4,
is discarded due to the dominance of its attribute vector by that of
object o1 (or o3). Moreover, since attribute vectors (rectangles) of
the remaining two entries e5 and e6 in heap H are dominated by
that of data object o1 (as shown in Figure 4), both of them can be
pruned. Finally, the resulting points o1 and o3 in the set rlt are the
answer to the metric skyline query.

Note that, procedure MSQ in Figure 6 demonstrates the search pro-
cedure of metric skyline queries in the metric space, which exactly
corresponds to that of skyline queries, BBS [18], in CVS. In other
words, given query points from a metric skyline query, the execu-
tion of procedure MSQ in Figure 6 is implicitly a skyline search in
CVS. In particular, each node of M-tree can be conceptually con-
verted into a hyperrectangle in CVS, whose accessing cost is one
page I/O. Since BBS [18] is proved to be I/O optimal, we have

heap operation heap status rlt

access root(I) (e1, 0), (e2, 5) Φ
expand e1 (e3, 1), (e4, 2), (e2, 5) Φ
expand e3 (e4, 2), (o1, 3), (o2, 3.8), (e2, 5) Φ
expand e4 (o1,3), (o2, 3.8), (o3, 4), (e2, 5), {o1}
(de-heap o1, o2) (o4, 5.5)
de-heap o3 (o3,4), (e2, 5), (o4, 5.5) {o1, o3}
expand e2 (o4, 5.5), (e5, 8), (e6, 12) {o1, o3}

Figure 7: Heap Contents During Metric Skyline Retrieval

Data sets Data size Dim. Measure Page size
SF 174K 2 L1-norm 1KB
sstock 50K 4 L2-norm 10KB
sat 200K 5 L∞-norm 10KB
signature 50K 64 Edit distance 10KB

Figure 8: Characteristics of the Four Tested Data Sets

similar result for our MSQ, due to its equivalence to BBS in CVS.

THEOREM 5.3. The search procedure MSQ in Figure 6 is I/O
optimal in CVS.

Proof. Proved by the facts that, procedure MSQ in metric spaces
corresponds to BBS in CVS and moreover BBS is I/O optimal [18].
2

6. EXPERIMENTAL EVALUATION
In this section, through extensive experiments, we demonstrate the
efficiency and effectiveness of our proposed approach for metric
skyline queries. In particular, we test our methods using both real
and synthetic data sets, SF [25], sstock [26], sat [11], and signature
[25], with four different metric distance functions, L1-norm, L2-
norm, L∞-norm, and Edit distance, respectively. All the selected
distance functions have been widely used in many real-world ap-
plications [28, 7]. The first data set, SF , contains 174K 2D spatial
locations in San Francisco. The second one, sstock, is obtained
from 193 company stocks’ daily closing price from late 1993 to
early 1996, which consists of 50K truncated time series with length
4. The third data set, sat, includes 200K 5-dimensional satel-
lite image data. The last one, signature, is a synthetic data set.
Specifically, 50K strings, each containing 64 English letters, are
randomly generated, which form about 20 clusters. Figure 8 briefly
summarizes characteristics of our tested four data sets. In order to
guarantee large node capacity for indexes, in our experiments, we
set the page size of tree indexes to 1 KB for SF , and 10 KB for the
other 3 data sets.

Note that, methods like dynamic [19], spatial [22], multi-source
skylines [10] are designed for specific applications and cannot han-
dle generic cases with arbitrary metric distance functions. Thus,
we do not compare with them in our experiments. Moreover, our
search procedure MSQ inherently corresponds to the BBS algo-
rithm [18] in CVS, which is I/O optimal. However, it is inef-
ficient to use BBS to answer metric skyline queries in CVS by
first performing a space conversion and then constructing a mul-
tidimensional index (e.g. R-tree [12]) over transformed data in
CVS. Therefore, in our experiment, we only compare our approach,

339

(a) SF (b) sstock

(c) sat (d) signature

Figure 9: The Number of Dominant Checks vs. m

(a) SF (b) sstock

(c) sat (d) signature

Figure 10: The CPU Time vs. m

namely MS, over M-tree index [8] with the linear scan (LS). In
particular, we consider three measures, the number of dominance
checks, the CPU time, and page accesses (i.e. I/O cost). Note
that, the CPU time include the cost of both accessing the index and
checking the dominance relationships.

In order to evaluate the performance of our query processing, we
generate a set, Q, of query points q1, q2, ..., and qn as follows.
We first choose a random object o in the database D, then retrieve
max{λ ·m, n} data objects in D that are closest to o, and finally
randomly select n points from these objects as query points, where
λ is a parameter within (0, 1), m is the data size, and n is the
number of query objects. Note that, a similar parameter has been
used in the experiments of spatial skyline [22] to test the query
performance with different region areas covered by query points.

(a) SF (b) sstock

(c) sat (d) signature

Figure 11: The I/O Cost vs. m

Intuitively, large λ may lead to a large diameter of query points
in the metric space. Specifically, in the example of opening shops
near residential areas (Section 1), λ indicates the closeness of these
areas (query points).

In the sequel, we compare the performance of MS and LS in an-
swering metric skylines over four data sets. Specifically, Section
6.1 evaluates the effect of the data size m on the performance of
metric skyline queries, whereas Section 6.2 studies the performance
with respect to the query size (i.e. the number, n, of query points).
Furthermore, we also present the experimental results by varying
the workload of query points with respect to parameter λ. All our
experiments are conducted on a Pentium IV 3.4GHz PC with 1G
memory and query results are averaged over 50 runs.

6.1 Query Performance vs. Data Size
In the first set of experiments, we illustrate the performance with
metric skyline queries under different data sizes m, by comparing
MS with LS over both real and synthetic data sets. In particu-
lar, for LS, we assume that data objects are stored consecutively
on disk blocks and the metric skyline query can be answered by
sequentially scanning disk pages. For MS method, we insert each
data point from data setD into a standard M-tree index I, on which
the metric skyline query is processed (i.e. procedure MSQ).

Figure 9 illustrates the number of dominance checks of LS and
MS, with respect to data size m, during the metric skyline search,
over four data sets, SF , sstock, sat, and signature, where the
number, n, of query points is set to 5 and λ = 0.03%. For all data
sets, when m varies from 20% to 100% of the total data size, the
number of dominance checks also increases. This is reasonable,
since more data objects become candidates of metric skyline.

Obviously, since LS sequentially scans the data set for only one
pass, it requires large number of dominance checks each time a data
point is encountered, so as not to incur false dismissals (i.e. actual
answer to metric skyline queries that are, however, not in the final
result). On the other hand, since M-tree can facilitate pruning the
search space, MS can save the cost of dominance checks. Thus,

340

(a) SF (b) sstock

(c) sat (d) signature

Figure 12: The Number of Dominant Checks vs. n

(a) SF (b) sstock

(c) sat (d) signature

Figure 13: The CPU Time vs. n

MS always outperforms LS by order of magnitude.

Correspondingly, Figure 10 shows the CPU time of LS and MS
with the same experimental settings, over the four data sets. Since
the major cost in the CPU time is for dominance checking and dis-
tance computation, the trends of the CPU time with respect to m
are similar to that of the number of dominance checks in Figure 9.
From 11, we can also find that CPU cost of finding metric skylines
in signature data set is much larger than costs on other tree data
sets, this because the expensive distance function, Edit distance, is
used in signautre data set.

Figure 11 demonstrates the effect of data size m on the I/O cost of
LS and MS, over four data sets, where n = 5 and λ = 0.03%. For

(a) SF (b) sstock

(c) sat (d) signature

Figure 14: The I/O Cost vs. n

LS, since data objects are sequentially stored on disk, the number
of page accesses (I/O cost) can be easily obtained, that is, dividing
the required space for the entire data set by the page size. Specif-
ically, in our implementation, each real number takes up 8 Bytes.
Thus, the total number of pages for data set SF is 2719, that for
sstock is 157, for sat 782, and for signature 313, respectively.
As shown in our experimental results, the I/O cost of LS is higher
than that of MS.

From the results demonstrated in Figures 9 to 11, we can find that
larger m will lead to higher cost in finding metric skylines. Com-
pared to LS, our proposed method, MS, not only reduces the
search cost significantly but also scales smoothly with the increase
of data size, which indicates that MS can be applied to very large
data sets with complicated distance functions.

6.2 Query Performance vs. Query Size
In the second set of experiments, we evaluate the effect of query
size (i.e. the number of query points, n) on the query performance,
in terms of the number of dominance checks, the CPU time, and
the I/O cost. Specifically, we vary the number, n, of query points
from 2 to 10, and compare MS with LS.

In particular, Figure 12 illustrates the number of dominance checks
with LS and MS, over four data sets SF , sstock, sat, and signature,
where n = 2, 3, 5, 8, 10, λ = 0.03%, and m is set to 60% of the
data size that each data set has (described in Figure 8). For both
methods, when n increases, the number of dominance checks also
becomes higher, since more objects are included as metric skyline
points. In general, MS requires much fewer dominance checks
than LS.

Figure 13 demonstrates the CPU time of LS and MS with the
same experimental settings. Like previous results, the trends of the
CPU time are similar to that of the number of dominance checks.
That is, the CPU time increases with the increasing n due to higher
distance computation between query points and objects/MBRs.

Next, Figure 14 presents the I/O cost of LS and MS, with the same

341

(a) SF (b) sstock

(c) sat (d) signature

Figure 15: The Number of Dominant Checks vs. λ

(a) SF (b) sstock

(c) sat (d) signature

Figure 16: The CPU Time vs. λ

settings. Specifically, when the number, n, of query points becomes
larger, more metric skyline points are included in the answer set
and more page accesses (I/O’s) are thus needed for MS during the
metric skyline search.

Again, the results reported in Figures 12 to 14 show that the search
cost of MS is much less than that of LS in retrieving the metric
skylines when different number of query objects are used.

Finally, we demonstrate the effect of parameter λ on the query per-
formance. Recall that, λ can approximately indicate the diameter
of query points scattered in the metric space, similar to that used in
[22]. Figure 15, Figure 16, and Figure 17 illustrate the number of
dominance checks, the CPU time, and page accesses, respectively,
where m is 60% of the total data size and n = 5. From figures, we

(a) SF (b) sstock

(c) sat (d) signature

Figure 17: The I/O Cost vs. λ

find that when parameter λ becomes large (i.e. query points loosely
scattered in the space), both the number of dominance checks and
the CPU time increase. Furthermore, the I/O cost of both methods
also increases when large λ is used. This is mainly because more
metric skyline points are included in the answer set when query
points are loosely scattered in the space, which requires more I/O’s
to retrieve. Similar to previous results, MS outperforms LS, in
terms of both evaluated measures.

In summary, we have demonstrated through extensive experiments
the efficiency and effectiveness of our proposed method, MS, over
different data sets and under various metric measures, for the metric
skyline retrieval, compared with LS.

7. CONCLUSIONS
Skyline plays an important role in a wide spectrum of applications
including the business planning, multi-criteria decision making, and
so on. Previous work on the skyline search assume data objects
have either static attributes over Euclidean space or dynamic at-
tributes designed for specific applications. However, there exist
applications where the data from them can not be represented as
vectors. For example, in the bioinformatics, the DNA sequences
are usually modeled as strings. In these applications, other than the
data themselves, the only information that we can obtain are the
distance between each pair of data objects. Often, a metric distance
function in used and the corresponding data space is called metric
space.

In this paper, motivated by the usefulness of skyline queries, we
study the skyline queries over a metric space. Specifically, we pro-
pose a generic skyline query, namely metric skyline, which retrieves
skyline points with dynamic attributes defined in the metric space.
In order to search metric skylines efficiently, we present an effec-
tive pruning mechanism and efficient query algorithm over the met-
ric index. Extensive experiments have demonstrated the efficiency
and effectiveness of our proposed method.

342

8. ACKNOWLEDGMENT
Funding for this work was provided by Hong Kong RGC Grant No.
611907, National Grand Fundamental Research 973 Program of
China under Grant No. 2006CB303000, and the NSFC Key Project
Grant No. 60533110.

9. REFERENCES
[1] W. Balke, U. Guntzer, and J. X. Zheng. Efficient distributed

skylining for web information systems. In Advances in
Database Technology — EDBT’04, 2004.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline
operator. In Proc. 17th Int. Conf. on Data Engineering, 2001.

[3] C-Y Chan, P-K Eng, and K-L Tan. Stratified computation of
skylines with partially-ordered domains. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, 2005.

[4] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and
Z. Zhang. On high dimensional skylines. In Advances in
Database Technology — EDBT’06, pages 478–495, 2006.

[5] T. Chiueh. Content-based image indexing. In Proc. 20th Int.
Conf. on Very Large Data Bases, pages 582–593, 1994.

[6] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. In Proc. 19th Int. Conf. on Data Engineering,
2003.

[7] P. Ciaccia and M. Patella. Searching in metric spaces with
user-defined and approximate distances. In ACM Trans.
Database Sys., 2002.

[8] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In Proc.
23th Int. Conf. on Very Large Data Bases, pages 426–435,
1997.

[9] E. Dellis and B. Seeger. Efficient computation of reverse
skyline queries. In Proc. 33th Int. Conf. on Very Large Data
Bases, pages 291–302, 2007.

[10] K. Deng, X. Zhou, and H. T. Shen. Multi-source skyline
query processing in road networks. In Proc. 23th Int. Conf.
on Data Engineering, pages 796–805, 2007.

[11] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. E.
Abbadi. High dimensional nearest neighbor searching. Inf.
Syst., 31(6):512–540, 2006.

[12] A. Guttman. R-trees: a dynamic index structure for spatial
searching. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 47–57, 1984.

[13] M. Khalefa, M. Mokbel, and J. Levandoski. Skyline query
processing for incomplete data. In Proc. 24th Int. Conf. on
Data Engineering, 2008.

[14] Donald Kossmann, Frank Ramsak, and Steffen Rost.
Shooting stars in the sky: An online algorithm for skyline
queries. In Proc. 28th Int. Conf. on Very Large Data Bases,
2002.

[15] K. Lee, B. Zheng, H. Li, and W.-C. Lee. Approaching the
skyline in Z order. In Proc. 33th Int. Conf. on Very Large
Data Bases, 2007.

[16] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky:
Efficient skyline computation over sliding windows. In Proc.
21th Int. Conf. on Data Engineering, 2005.

[17] M. Morse, J. Patel, and H.V. Jagadish. Efficient skyline
computation over low-cardinality domains. In Proc. 33th Int.
Conf. on Very Large Data Bases, 2007.

[18] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages
467–478, 2003.

[19] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database systems. ACM Trans.
Database Syst., 30(1):41–82, 2005.

[20] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines
on uncertain data. In Proc. 33th Int. Conf. on Very Large
Data Bases, pages 15–26, 2007.

[21] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best views
of skyline: a semantic approach based on decisive subspaces.
In Proc. 31th Int. Conf. on Very Large Data Bases, pages
253–264, 2005.

[22] M. Sharifzadeh and C. Shahabi. The spatial skyline queries.
In Proc. 32th Int. Conf. on Very Large Data Bases, pages
751–762, 2006.

[23] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient
progressive skyline computation. In Proc. 27th Int. Conf. on
Very Large Data Bases, 2001.

[24] Y. Tao, X. K. Xiao, and J. Pei. SUBSKY: Efficient
computation of skylines in subspaces. In Proc. 22th Int.
Conf. on Data Engineering, page 65, 2006.

[25] Y. Tao, M. L. Yiu, and N. Mamoulis. Reverse nearest
neighbor search in metric spaces. IEEE Trans. Knowl. Data
Eng., 18(9):1239–1252, 2006.

[26] C.Z. Wang and X. Wang. Supporting content-based searches
on time series via approximation. In Proc. 12th Int. Conf. on
Scientific and Statistical Database Management, pages
69–81, 2000.

[27] D. A. White and R. Jain. Similarity indexing with the
SS-tree. In Proc. 12th Int. Conf. on Data Engineering, pages
516–523, 1996.

[28] B-K Yi and C. Faloutsos. Fast time sequence indexing for
arbitrary Lp norms. In Proc. 26th Int. Conf. on Very Large
Data Bases, pages 385–394, 2000.

[29] Y. Yuan, X. Lin, Q., W. Wang, J. Xu Yu, and Q. Zhang.
Efficient computation of the skyline cube. In Proc. 31th Int.
Conf. on Very Large Data Bases, 2005.

343

