
P2P Systems with Transactional Semantics ∗

Shyam Antony
shyam@cs.ucsb.edu

Divyakant Agrawal
agrawal@cs.ucsb.edu

Amr El Abbadi
amr@cs.ucsb.edu

Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA

ABSTRACT
Structured P2P systems have been developed for construct-
ing applications at internet scale in cooperative environ-
ments and exhibit a number of desirable features such as
scalability and self-maintenance. We argue that such sys-
tems when augmented with well defined consistency seman-
tics provide an attractive building block for many large scale
data processing applications in cluster environments. To-
wards this end, we study the problem of providing trans-
actional semantics to P-Ring a P2P system which supports
efficient range queries. We first extend a commonly used
replication protocol in P2P systems to provide well defined
guarantees in the presence of concurrent updates and un-
der well defined failure assumptions. A multi-version con-
currency control protocol called LSTP which leverages the
guarantees of the replication protocol to provide transac-
tional semantics is proposed. LSTP is designed to provide
useful consistency semantics over P-Ring for read intensive
workloads without sacrificing the scalability and other desir-
able properties inherent to the system. Under LSTP, read-
only transactions are abort-free and non-blocking and the
index stores no state for such transactions. We show that
LSTP ensures no missed dependencies between transactions
and guarantees basic consistency for read-only transactions
when update transactions are serializable. The design of
LSTP and its provable properties is a proof of concept that
P2P systems can be augmented with transactional seman-
tics. Results from a preliminary simulation study are also
presented.

1. INTRODUCTION
Allowing programmers to concentrate on domain specific

problems and relieving them from having to deal with gen-
eral data management issues such as efficient access, storage,
isolation and recovery is one of the fundamental reasons why
many enterprise applications are layered on top of databases.

∗This work was supported under the UC Discovery/NEC
Award COM-05-10189.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’08, March 25–30, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

In other words, databases form a foundational building block
for such applications. In recent years, cluster computing en-
vironments consisting of thousands of nodes distributed over
a few data centers has become the defacto environment for
service providers operating on very large scales of data, such
as search engines (e.g., [3]), pub-sub systems (e.g., [13]) and
storage systems (e.g., [2]). Distributed databases cannot
cope with such an environment and such degrees of scale
[15, 7] and hence are unsuitable to act as building blocks for
such applications. However, building such applications from
the ”ground up” is extremely difficult, expensive and time
consuming. Ideally, issues of scale should be made trans-
parent to the application programmer and should be dealt
with by generalized software components. In this paper,
we position suitably augmented structured P2P systems, as
a foundational software component for data processing ap-
plications that do not require a rich and full featured data
model.

Structured P2P systems such as Chord [25] and P-Ring
[9] may be viewed as scalable, dynamic, self-maintaining,
load-balanced, integrated data partitions and index structures.
These hybrid data partition and index structures provide
a powerful abstraction for constructing distributed applica-
tions in cooperating environments at an internet scale. We
argue that the use of these systems in cluster computing
environments should also be explored due to the following
advantages.

1. Encapsulated Scalability: As already mentioned,
structured P2P systems are highly scalable. What
makes them even more attractive is the fact that they
completely encapsulate the details of scale and scal-
ing from the application programmer. The software
infrastructure can seamlessly adapt to a rapid change
in the scale of the system without any change in the
code.

2. Simple yet Powerful Interface: Structured P2P
systems export a simple interface involving primitive
operations such as lookup, insert and range query. Us-
ing such simple primitives, researchers have shown that
it is possible to create a variety of applications such
as pub-sub systems (e.g., [14]), storage systems (e.g.,
[16]), information monitoring systems (e.g., [12]) etc.

3. Reduced Administrative Cost: Administrative costs
are significant in establishing and maintaining large
scale cluster computing environments. For example,
partitioning data as per load characteristics is one of
the chief administrative task in systems where data is

4

partitioned among nodes. Since P2P systems are self-
maintaining, the administrator is relieved from the re-
sponsibility of having to act on such occasions as the
system dynamically adapts to changing circumstances.

4. Efficient Infrastructure Sharing: The ability of
P2P systems to add or remove nodes seamlessly is
particularly useful in cluster environments since the
infrastructure can be effectively shared between differ-
ent services with the proportion of resource allocation
decided dynamically and automatically.

However structured P2P systems exhibit the following dis-
advantages as well which limit their usability in non-P2P
settings.

1. Best Effort Query Processing: In order to handle
the volatile nature of the P2P environment, structured
P2P systems usually follow a best effort query process-
ing paradigm wherein no guarantee is provided about
the semantics or consistency of query results. This
makes them unsuitable for cluster computing environ-
ments which usually serve customers rather than grass
root driven P2P applications. For example, a customer
of a pub-sub system will be unhappy if an important
publication was not delivered and will be annoyed if
the same publication is delivered multiple times. These
kind of scenarios can arise if best effort query process-
ing is followed. Even though some studies (reviewed
below) have considered issues of query semantics for
singleton queries, that is inadequate since applications
often need consistency across multiple queries and up-
dates. For example, in the pub-sub case, consistency
between subscription queries and publication updates
is needed. The goal of this paper is to address this
inadequacy.

2. Churn and Security concerns: Structured P2P
systems are arguably plagued by vulnerabilities to churn
[22] and also malicious behavior [24] by participating
nodes. Fortunately, these concerns are not important
in a cluster environment which represents a much more
controlled environment than the internet.

There is a growing body of work exploring P2P systems
with stronger consistency guarantees. Issues of atomic data
access were first raised in [19]. Linga et al. [17] raise is-
sues of query correctness in P-Ring and our work builds
on techniques discussed therein. Similarly, Bawa et al. [4]
explored correctness conditions for aggregate queries which
were subsequently used in [20]. But these efforts suffer
from an important limitation, they are restricted to the se-
mantics of singleton queries. Assuming that applications
using very large scale data partitions would only interact
with the data in terms of singleton queries or updates is
too simplistic. In order to provide meaningful semantics to
applications, one has to consider the semantics provided to
groups of related queries and updates. Transactions are the
traditional database abstraction for representing groups of
related queries and updates. But even if a specific applica-
tion in a large scale environment does not explicitly use the
notion of transactions, lessons learned as part of developing
transactional protocols can be extrapolated to such applica-
tions. For example, in the course of developing our protocol,
we uncover the slow committers problem, which is the kind

of uncertainty an application must cope with in a large scale
dynamic system. We develop techniques for P-Ring (a range
partition) but they also carry over to Chord (a hash parti-
tion) provided Chord is modified to use consistent successor
pointers (described in the system model).

Issues of replication and distributed transactions have long
been studied in the database literature (e.g., [18, 27, 8]).
However, none of these protocols were designed to scale to
thousands of machines. These protocols often provide strong
consistency which unfortunately translates to a scalability
bottleneck. Furthermore, they often rely on primitives such
as broadcast which are unsuitable for large scale systems.
The protocol we develop avoids such pitfalls and minimizes
the number of synchronization points in the system. The
proposal by Türker et al. [26] is similar in spirit to our
work in that it attempts to add notions of transactions to
emerging paradigms.

This paper makes the following technical contributions:

1. We extend the replication model in P-Ring to allow
concurrent updates and extend a simple replication
protocol to support such updates. The basic idea of the
protocol, to replicate on successor peers is frequently
used and hence not novel. However, our extension to
this protocol, is the first protocol to leverage consistent
successor pointers to provide guarantees about seman-
tics in the presence of concurrent updates.

2. We develop a transactional protocol that is well suited
for large scale, read heavy environments. The proto-
col allows read-only transactions to be non-blocking
and abort-free and the index is stateless for read-only
transactions. To the best of our knowledge, there ex-
ists no known transactional semantics in such large
scale systems.

3. We expect our protocol to be a significant proof of
concept that transactional semantics can be added to
P2P systems in cluster settings.

Road Map: We describe the system model and some
design objectives in Section 2. The replication scheme which
provides durability and concurrent update semantics is the
subject of Section 3. The primitives of the LSTP protocol
is described in Section 4 and the protocol itself is Section 5.
Section 6 provides some preliminary empirical results and
Section 7 concludes.

2. PRELIMINARIES

2.1 System Model
We assume a cluster computing model consisting of thou-

sands of nodes distributed over a few data centers and con-
nected by a low latency, high bandwidth, reliable network.
We assume a communication model in which there are known
upper bounds on per-hop latency and processing delays. We
also assume that nodes are able to establish reliable FIFO
sessions with each other. A high level view of the system
model is shown in Figure 1. The system has three distinct
components, viz., P-Ring, the user pool and the free peer
pool.

P-Ring: P-Ring [9] acts as a distributed data store with
fast access to the data. Each item, i, stored in the index has
two components, 〈 ki, vi 〉 where ki is the data key of the

5

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

P3

P4

Range
Queries

Updates

Joins Leaves

Free Peer Pool

P2P
Index

User Pool

P2

P1 20 2
8045

Figure 1: High level system model

item and vi is the value of the item. Similar to Chord [25],
the peers are organized in a ring topology. The data key
space is contiguously distributed over the ring as shown in
Figure 1. Unlike Chord, here data keys are not hashed but
stored in the ring according to their actual value. A peer
is the owner of the sub-range of the data space associated
with it. For example in the figure P2 owns [20, 45) and the
entire data key space is [0, 100). A range query [lb, ub] is
evaluated by contacting the owner of lb and by following the
successor pointers along the ring. For example to evaluate
[8, 25] first P1 is contacted which returns the data in [8, 20)
and forwards the query to P2. Failures of peers during the
range query evaluation process would result in the relevant
sub-range queries being retried by the querying process. The
figure shows a flat data space but multiple namespaces [15]
can be used to store different types of data in the same index.
To achieve fast logarithmic routing across the ring, each peer
maintains O(logd(N)) long distance pointers, where N is the
number of nodes in the network and d ≥ 2, is a configurable
parameter. The peers are assumed to follow a fail-stop fail-
ure model.

User Pool: The user pool is the set of processes that
query and update P-Ring. A transaction is the unit of in-
teraction of a user process with P-Ring and is a sequence
of range queries (reads) and writes. There is no designated
transaction manager. Instead the user processes and P-Ring
collaborate to emulate the functionality of a transaction
manager. Each user process is responsible for maintaining
the state of its transaction. For ease of exposition, we make
the following assumptions. We assume that user processes
that update the index have access to stable storage to log
their updates. In the event of a crash, upon recovery, the
user process should use the log to resume or abort its up-
dates. We can avoid making this assumption by “pushing”
the functionality of stable storage into the index; i.e, the
index in addition to storing data, also stores the log of user

processes. We also assume that user processes have access
to a local cache. This local cache should be used for repeat-
ing reads, i.e, when a transaction reads the same part of the
index more than once. The local cache assumption allows
us to sidestep the so called “phantom problem”. However
later in the paper we discuss how repeating reads can be
supported correctly without the need for a local cache. The
distinction between user processes and peers is virtual and
the same physical node may support both processes provided
the respective failure models are obeyed.

Free Peer Pool: Since the data keys are not distributed
across the ring using hashing, skewed data distributions
would result in the overloading of some regions of the ring.
Therefore there is a need for dynamic load balancing which
is achieved using the free peer pool. When a peer in the ring
is overloaded it tries to balance the load with its successor.
If the successor is also overloaded, it invites a free peer to
join the ring as its successor and split its load. In either
case the overloaded peer transfers a suffix of its region of
ownership to its successor resulting in a data range transfer.
Similarly when a peer is underloaded it tries to balance the
load with its predecessor by requesting it to yield a suffix of
its range of ownership. If the predecessor is also not suffi-
ciently loaded it leaves the ring and its region of ownership
is taken over by its successor. Note that in all these cases
ownership transfer is unidirectional, i.e, from a predecessor
to a successor and never in the opposite direction. This is a
restriction we add to the load balancing protocol developed
in [9]. Intuitively, this prevents the problem of a query
moving forward and thereby missing data which is concur-
rently moving backward and also ensures rollover if data is
replicated in successors.

2.2 Consistent Ring
As already mentioned, the index is organized in a ring

topology. After the initial routing, queries are evaluated
by following the successor pointers in the ring. Hence the
structural integrity of the ring is important to ensure that
no relevant peers are missed during the processing of a range
query. Structural integrity is enforced by adapting the pro-
tocol developed in [25]. Briefly, each peer maintains a list
of k successor pointers and a single predecessor pointer.
These pointers are continuously maintained by each peer
through periodic synchronization of the list with its succes-
sor. However this scheme allows temporary inconsistencies
in the ring. As a simple example, consider three succes-
sive peers p1, p2 and p3 in the ring. Suppose p2 introduces
a new peer p′ into the ring and before information about
p′ has been propagated to p1 through the synchronization
process, p2 crashes. Now p1 discovers the crash and hence
assumes that its new successor is p3 but the actual succes-
sor is p′. This temporary inconsistency in the ring struc-
ture will be eventually resolved by the protocol but range
queries processed during the temporarily inconsistent phase
will “jump over”p′ and hence miss some of the result set. To
avoid this problem, [17] introduced the notion of consistent
successor pointers which ensures that, provided there is no
network partition, a range query which follows the consis-
tent successor pointers will not “jump over” any peer. While
this scheme was developed specifically to ensure that range
queries will not miss parts of the result set, a side effect is
that any message which is propagated by forward hopping
through the consistent successor pointer will not“jump over”

6

any peer. Similarly, a simple handshake protocol, ensures
that messages which hop through the system by following
predecessor pointers will not miss any peer “on the way” as
well. We exploit the ability of messages to hop over con-
sistent pointers in our replication scheme in Section 3. Our
work inherits the absence of network partitions assumption
from the consistent ring [17] protocol.

2.3 Design Considerations
Our target environment is a P-Ring consisting of a few

thousand machines supporting millions of concurrent trans-
actions which are predominantly read-only in nature. We
also assume that transactions are short-lived in general but
also that there are a few long-running read-only transactions
that execute range queries spanning large portions of the
ring (These correspond to statistics gathering transactions
which are common in large scale systems). We have two
main design objectives; high scalability and low overhead.
A major constraint on the concurrency protocol design is
the performance behavior of the replication protocol that
we design for durability (Section 3). To exploit the read-
heavy workload, the replication system is biased against up-
dates which are relatively more expensive compared to range
queries. Given these objectives and constraints, what direc-
tion should we take in designing a concurrency control pro-
tocol (CCP)? CCPs can be broadly categorized into three
distinct flavors; locking protocols, optimistic protocols and
version based protocols.

A number of strong reasons can be cited against lock-
ing based protocols in our target environment. Firstly, it
is fairly complicated to implement a correct locking based
protocol using the guarantees provided by the replication
scheme since techniques such as lock coupling are necessary
for range queries. Secondly, given the overwhelmingly read-
only nature of the target workload, update transactions will
suffer from starvation unless they are provided with some
priority in locking. However once update transactions are
given priority there will be an enormous amount of blocked
transactions in the system. Note that updates take longer
to execute since our replication scheme is an update every-
where with retries when necessary scheme and hence will
block read-only transactions for a longer duration. Finally,
we will have to store state in P-Ring even for read-only trans-
actions to keep track of the lock holders and since any state
which is not replicated could be lost, read-only transactions
effectively become update transactions in the sense that they
have to execute updates to make sure that state correspond-
ing to their locks are not lost.

Given the read-only nature of the workload, optimistic
protocols are seemingly attractive. Furthermore, it has been
shown [26] that it is possible to design distributed optimistic
concurrency control protocols that do not need a global co-
ordinator. However the main disadvantage of this approach
is that aborts cascade and even read-only transactions may
have to abort. This disadvantage is particularly severe on
read-only transactions that execute range queries spanning
a large portion of the data space since they will often be
forced to repeatedly abort. Note that these transactions do
the most work in terms of data transfer and hence aborting
them is expensive. Also, in this approach, read-only trans-
actions may be forced to block on commit.

Given the disadvantages and constraints discussed above,
we base our design on the multi version approach. We be-

lieve that LSTP (Large Scale Transaction Protocol), the
protocol we develop, effectively addresses these issues. For
example, in LSTP, read-only transactions are non-blocking
and abort-free. Furthermore, no state is stored in P-Ring for
read-only transactions which is particularly important given
the nature of our replication scheme. This ensures good re-
sponse time for short-lived read-only transactions and the
abort-free property relieves long running read-only transac-
tions from having to waste any work.

3. DURABILITY: REPLICATION SCHEME
In many P2P systems such as P-Ring [17], CAN [21] etc.,

it is implicitly assumed that there is a unique user process
(peer) corresponding to each data item. The user process
periodically refreshes the item by contacting the peer in the
system storing the item. The item is discarded if there is no
refresh within a specified timeout. Only the designated user
may update the item. In other words in this model which we
term the user refresh model the responsibility for sustaining
and updating the item in the system is bound to some user.
In our system model, the system assumes the responsibility
of sustaining the item and mediating between concurrent
updates by different users. One of the most commonly ([10,
17]) used availability schemes in P2P systems with a ring
topology is to replicate an item on the k successors of the
owner of the item. The failure assumption is that there
cannot be more than k near simultaneous crashes among k
successive peers in the ring.

The simple scheme of replicating an item in k + 1 suc-
cessive peers with the owner of the item at the head of the
list gives rise to a variety of questions, when we need clear
semantics for updates under dynamic system operation. In
order for this scheme to work, there should be no “gap” in
the list of replicas of an item; otherwise a situation could
arise where a sequence of crashes results in a peer without a
copy of an item taking over as the owner of the item. How do
we ensure that no gaps occur in the replica list of an item?
Crashes results in a reduction in the number of replicas for
some items. How do we restore the number of replicas per
item as k in the presence of concurrent system events such
as crashes? These issues are explained under the heading
“replica maintenance” below. How do we propagate an up-
date on an item among the different replicas of an item while
avoiding the problem of “lost updates”? This question is an-
swered under the heading “update propagation” below. For
this replication scheme to work, for every item there should
have been a short time interval, such that k + 1 distinct
copies of the item existed in the system within that time
interval. But for a newly inserted item, there are 0 copies
in the system to begin with? How do we go from 0 copies
to k + 1 copies within a short time interval? This question
is answered under the heading “replication bootstrapping”
below. How the replication scheme coexists with concurrent
data redistribution for load balancing purposes is answered
under the heading “concurrent data distribution” below. Fi-
nally, when we consider all these different components to-
gether, what guarantees can we provide to the application?
That is answered towards the end of this section.

Replica Maintenance: As explained above, for each
item i stored in the system, the replicas of i form a list
of contiguous peers in the ring with the owner of the sub-
range, which includes i, at the head of the list. The system
asynchronously tries to maintain the length of this list as

7

k + 1. This is achieved by periodically forwarding replica
maintenance messages through the list starting from the
head (owner of the item) of the list. The message carries
a count which is an estimate of the distance between the
peer currently processing the message and the owner of i in
number of hops. The last peer in the list uses this distance
estimate to increase or decrease the length of the list by 1.
The length of the list increases when the last peer in the list
creates a replica for i on its successor or when a peer in the
list introduces a new peer into the system as its successor.
The length of the list decreases when the last peer in the
list discards its copy of i or if some peer in the list crashes.
If the successor neighborhood of i remains stable then the
number of copies converges to k. The peer join algorithm
from [17] is modified (see concurrent data redistribution
below) such that a joining peer receives copies of the items
from the peer introducing it as its successor before partic-
ipating in ring activities. Since replicas are only discarded
from the end of the list and also since copies are created in
new peers joining the list in the middle, no “gap” can never
arise in a replica list. Note that these arguments hold only
because we assume the fail-stop model for peer crashes. The
next lemma whose correctness follows from the correctness
of the consistent successor pointer protocol [17], formalizes
this “no gaps” concept. Replica messages can be succinctly
batched for efficiency.

Lemma 1. Let a replica maintenance message forward hop
along p0, p1, p2..., px where p0 is the owner of item i. Then
when the message arrives at px every peer which owns some
part of [ki, px.lb] has a copy of i.

Update Propagation: When a user process issues an
update on an item i, it is first routed to the owner of i.
Then it forward hops across the replica chain of i until it
reaches the last replica of i or a replica on which the update
is a duplicate of an earlier update. Then, the update starts
backward hopping back towards the owner during which it
is executed at every hop destination. The update succeeds
when it is executed on the owner which sends an acknowl-
edgment to the user. If any of the peers crash during this
process, the user will timeout while waiting for the acknowl-
edgment from the owner and will retry the update. It is safe
to retry updates because we ensure that duplicates are de-
tected using rules imposed by the transactional protocols de-
scribed later. Note that updates are executed on the replica
list in reverse order. Also recall that range queries are eval-
uated at the head of the replica list. Together, these two
observations imply that an update on an item, which is vis-
ible to a range query has been executed on all the existing
replicas of the item at the time of evaluation of the range
query. Thus the problem of lost updates arises if and only
if all replicas of an item crashes. We already assumed that
there cannot be more than k near simultaneous crashes in
the successor neighborhood of any peer. Therefore, as long
as we ensure that no update is executed on an item before
k + 1 distinct copies of the item exist in the system, the
problem of lost updates does not occur.

Replication Bootstrapping: Before the first update is
executed on an item, the system has to ensure that copies
of the item are present in at least k + 1 peers within a short
time interval. When an update is received at the owner of an
item, with data key ki, which is not present in the owner’s
data store , the owner ignores the update and starts the

replication bootstrapping process. It first sends a forward
hopping message and every peer adds (ki, UNBORN) where
UNBORN is a special value to indicate that the item’s repli-
cation bootstrapping is not complete yet, to its data store if
it is not already present there. The forward hopping stops
either when it is received at a peer with (ki, BORN) in its
data store or the forward hopping reaches the end of the (ki,
UNBORN) list with a hop-count ≥ k. Then the UNBORN
state is converted to BORN in a backward hopping process
similar to update propagation. From the above description
it follows that the first time an item’s state is converted
from UNBORN to BORN , the item with key ki is present
in at least k peers within a short time (the time needed
for k hops) and hence by the failure assumption and replica
maintenance protocol, the replica list of the item will hence-
forth never reduce to 0. Note that items in the UNBORN
or BORN state only act as placeholders for future updates
and do not appear in the result set of range queries.

Concurrent Data Redistribution:Updates can be ex-
ecuted concurrently with replica creation and data redistri-
bution (for load balancing) as follows. While creating a new
replica, the items are transferred in key order. If an update
is received for an item that has already been sent then it is
forwarded to the new replica using the same FIFO channel
which after executing the update forwards it back simulat-
ing the usual backward hopping step. Similarly, during a
sub-range split for data redistribution items are discarded
in reverse key order at the previous owner.

The copy present in the owner of an item, i, is desig-
nated as the primary copy of the item, when {ki, BORN}
makes it to its data store. Non-primary copies are secondary
copies and exist to take over as the primary when the pri-
mary crashes. Reads are always using the primary copies of
items. The history of a copy of i is the totally ordered set of
all updates which were successfully executed on that copy.
When a new copy is created it inherits the history of its
source. We say an update on an item i succeeds the moment
it is present in the history of every copy of i. The transac-
tional primitives rely on the replication scheme to provide
the following guarantees.

1. If an update u on an item i is present in the history
of the primary copy of i at time τu then u should be
present in the history of all existing copies of i at time
τu.

2. ∃ a replication timeout τR such that an update will
not be executed on any copy of i τR time units after
u was last issued into the system.

The first guarantee is provided by the replication scheme
developed so far and its correctness follows from the reverse
hopping execution of updates over consistent pointers. The
second guarantee is easy to achieve but the need for such
a guarantee and its implications are interesting. When two
messages which originate around the same time are routed
towards the same item, there is no guarantee which mes-
sage arrives first at the owner of the item. This is true
even though we make the pairwise FIFO channel assump-
tion since different messages to the same item may be routed
through different paths. The transactional protocol is de-
signed to cope with such order of arrivals. The transactional
protocol can also handle duplicate updates. But in some spe-
cial cases there are restrictions such as a write message must

8

not arrive after an abort message. Since messages are ac-
knowledged by owners, it is usually sufficient to wait for an
acknowledgment. However in the presence of crashes, there
is a need for a safe timeout value. We determine such a value
by imposing an upper bound on the number of hops an up-
date message is allowed to make. Messages which exceed
that number of hops are discarded. Note that we assume
that the maximum per-hop latency is known. A conservative
value for such a timeout will not have an adverse impact on
efficiency since the timeout is repeatedly used only in times
of churn which we expect to be rare in cluster settings.

4. LSTP: PRIMITIVES
In general MVCCPs (Multi Version Concurrency Control

Protocol) [6] works as follows. Whenever an item is up-
dated, instead of overwriting it, a new version of the item
is created. Reads avoid blocking by reading older versions
of items when necessary. The protocol has to ensure that
while the data read may be stale, it is never inconsistent. We
first describe six primitive operations and then express our
protocol in terms of the primitive operations. The six primi-
tives are write, conditionalWrite, commit, abort, lookup, and
range query. Note that these are primitive operations used
by LSTP. A write by the application process does not trans-
late to a simple write primitive but rather a more compli-
cated protocol involving write and lookup primitives as de-
fined in the next section. Similar arguments are also true
for range query primitives.

A writetid(ki, v) (abbreviated as write(i) when tid is clear
from the context) when executed on a copy of i results in
the creation of a new version of i which includes the key
ki, new value v, a state s and the transaction id tid of the
transaction attempting the write. A newly created version
is in an uncommitted state and is migrated to the commit-
ted state if a committid(i) update is received and discarded
if an aborttid(i) update is received. We allow at most one
uncommitted version of an item. Sometimes it is necessary
to atomically execute a write only if a condition holds and
hence we define a primitve called the conditionalWritetid(B,
i) which is identical to the usual writetid(i) except that the
write only succeeds if some condition from a small set of
pre-defined conditions is satisfied. These conditionalWrites
are analogous to the read-modify-write primitives available
in centralized systems. Let uncommitted(i) denote the un-
committed version of item i. Similarly, let lastCommitted(i)
denote the version last (in chronological order) committed
on i.

We say a version of an item becomes live when the write
which creates the version succeeds. A version remains live
unless the corresponding aborttid(i) succeeds. This defini-
tion of liveness can be viewed as the generalization to ver-
sions of the liveness definition in [17]. Note that by this
definition a committed version in the primary copy of an
item remains live until it is purged. Therefore the live ver-
sions of an item include all the committed versions in the
primary and possibly an uncommitted version. The consis-
tent range query protocol developed in [17] guarantees that
if a range query [a, b] starts at time τ1 and successfully ends
at time τ2, all items in the range [a, b] which were live dur-
ing the entire time interval [τ1, τ2] will be retrieved and also
that no item which was not live anytime in [τ1, τ2] will be
retrieved and the other items may or may not be retrieved.
Using the consistent range query protocol in our case would

result in retrieving for each item in [a, b] at least all the
versions which were live throughout [τ1, τ2]. To avoid this,
we augment the range query primitive. In the augmented
range query, the owners of [a, b] are again contacted using
the same consistent range query protocol but the peers in-
stead of simply returning the item, perform a function called
evalVersions on the existing versions of i and return the re-
sult. Similarly, a lookup returns specific information about
the versions of a specified item rather than the entire ver-
sion history. The details of the functions evaluated by the
peers are described later. But it is important to remember
that the read operations involve active cooperation of peers
rather than simple data transfer.

The replication layer provides no guarantee about the or-
dering of concurrent updates on the different replicas of an
item. So we impose a set rules on the update primitives to
obtain an ordering property which lays the foundation for
the transaction protocols.

1. A writet(i) on an item i is accepted only if no uncom-
mitted version of the item exists. If there exists a ver-
sion already with tid t or if t == uncommitted(i).tid
t is treated as a duplicate. Otherwise writet(i) is re-
jected.

2. A user can issue a committ(i) only for those items
for which the corresponding write is known to have
succeeded. But if a user wishes to abort a write which
was rejected or has not succeeded, the user has to wait
for at least the duration of replication timeout before
first issuing abortt(i) into the system.

3. A committ(i) or an abortt(i) is accepted only if t equals
uncommitted(i). It is treated as a duplicate otherwise.

From the first and third rules, it follows that a writet(i)
can only be followed by either a committ(i) or an abortt(i) in
the history of any copy of i. Any other attempted write will
be rejected or is a duplicate. In particular for a writetid(i)
that succeeds this property holds in the primary of i and
hence by the first replication guarantee, it must also hold in
every subsequent primary of i.

The second rule together with the two replication guaran-
tees ensures that if a committ(i)/abortt(i) and writet(i) are
present in the history of a copy of i, the write always pre-
cedes the abort/commit. This is because a commit is sent
only after a write is known to have succeeded (and hence
already present in the history of all copies) and an abort is
sent after waiting for the replication timeout (and hence the
write will not be added to the history of any copy after that).
Note that commit or abort updates are never rejected. They
are either accepted or treated as a duplicate.

Lemma 2. Let a write w on an item i succeed at time τ .
Then, at time τ , the last operation in the history of every
copy of i is w.

This lemma follows directly from rules 1 and 2.
The committed versions of a copy of an item can be or-

dered by the order in which they were committed; call such
an ordering the commit ordering of the copy.

Theorem 1. At any time τ , the commit ordering of a
primary copy of i is a prefix of the commit ordering of every
secondary copy of i.

9

This theorem can be proved easily using the above lemma
and rule 3. In fact we can prove a stronger result; the commit
ordering of the primary lags behind that of any secondary
by at most one version. It follows that if reads are always
evaluated at the primary copies then if one read observes a
committed version then no subsequent read will miss that
version.

5. LSTP: CONSISTENCY AND ISOLATION

5.1 Protocol Outline
Many MVCCPs maintain consistency using timestamps.

One such MVCCP is the popular snapshot isolation(SI) which
we use as the starting point for our protocol. In central-
ized SI [5], a transaction always reads from a snapshot of
the (committed) data as of the time the transaction started,
called its start or read number. When an update transaction
is ready to commit it gets a commit number which is larger
than any existing read or commit number. An update trans-
action aborts if it is detected that any of its update conflicts
with a concurrent transaction (that has committed). When
an update transaction commits, its changes are visible to
all transactions which start with read numbers greater than
the committing transaction’s commit number. Now let us
consider how the protocol should be adapted to ensure the
same semantics in the P-Ring case. Assume that we have
a failure free coordinator (we’ll later show how this can be
integrated into the ring with fault tolerance.). A transaction
obtains the commit or read number from the coordinator.
Now, if the coordinator maintains a mapping between the
transaction id and the commit number of every committed
transaction we can ensure SI semantics. This mapping is
necessary because the commit numbers cannot be propa-
gated instantaneously to all the objects updated by a com-
mitting transaction. When a reading transaction does not
have enough information in the ring to conclude if a version
belongs to a committed transaction with commit number
less than the reading transaction’s read number, it probes
the coordinator to find out. While this solution works, the
coordinator has become a bottleneck of the system since it
is repeatedly contacted by every transaction. One straight-
forward solution is to distribute the transaction-id commit
number mapping and also the read number generation in the
ring so that the coordinator needs to be contacted only for
obtaining commit numbers. This makes the solution much
more scalable but unfortunately gives rise to a subtle race
condition. When the transaction id - commit number map-
ping was stored in the coordinator, the granting of a commit
number and updating the transaction id - commit number
mapping can be done “atomically“. That atomicity is no
longer possible because the commit number is granted by
the coordinator but the mapping is not stored in the coordi-
nator. Instead it is written into the ring by the committing
transaction and any transaction which tries to lookup this
mapping during this interval enters into a race condition
with the committing transaction.

We attack the above mentioned race condition in two dis-
tinct ways. First, we show that if a transaction is missed due
to this race condition then it will not cause any inconsisten-
cies via indirect dependencies. Then we develop a solution
that avoids the case where inconsistencies due to direct de-
pendencies can occur. We show that this solution while pro-
viding weaker isolation than snapshot isolation, still has a

number of interesting consistency properties. This solution
ensures scalability because the only global synchronization
point in the system is the commit number generator which is
contacted only by update transactions at the time of com-
mitting. The read-only transactions which form the bulk
of the workload never contact the commit number genera-
tor. Our second objective for the protocol was to ensure low
overhead when compared with no transactional semantics.
We show that the read phase reads at most three versions
per item resulting in an overhead of a factor of 3. But in
practice, as shown in our simulation section, the overhead
is much lower for read-heavy workloads. For updates we
introduce an extra lookup per update resulting in an over-
head of one lookup per update. We believe, these overhead
factors, are well within acceptable limits in return for the
consistency properties we provide.

Get Read# Range Query
1 to N

Write

Any
Write
Rejected?

Get commit#, c

write(tid, c)

commit

Abort

Pre−read phase Read Phase Write phase

Abort phase

Pre−commit phase

Yesno

1 to M

1 to M

1 to M

Commit phase

LSTP

Figure 2: Phases of a Transaction

As shown in Figure 2, LSTP is composed of a number of
non-overlapping phases. A transaction starts by obtaining
its read number by probing random peers in the ring during
a pre-read phase. Then, it enters the read phase. During
this phase for every item it wishes to read, it tries to read
the latest version with commit number not greater than its
read number. As discussed earlier, due to the distributed
nature of the transaction id - commit number mapping in
our system, there may be some uncertainty about the com-
mit number of some concurrent transactions. The reading
transaction does not block in the event of such uncertainty
and instead stores the id of such transactions locally in a set
called the U-set. The U-set is built concurrently with the
read phase and members of the U-set are always missed by
the reading transaction. Read-only transactions have only
these two phases. Update transactions enter into the write
phase after their read phase. A write is allowed to succeed
only if the read number of the writing transaction is greater
than or equal to the commit number of the transaction that
created the latest version of the item. Otherwise it enters
the abort phase and aborts all attempted writes. Transac-
tions which successfully complete their write phase, obtain
a commit number from the commit number generators in
the ring and write the commit number at a designated posi-
tion in the ring, in a pre-commit phase. Finally, an update
transaction enters its commit phase during which it propa-

10

gates its commit number to every version it created during
its write phase.

5.2 Protocol Details
Commit number generation in the ring: The com-

mit number generator has to satisfy the property that ev-
ery time it responds to a request it should return a mono-
tonically increasing number. We introduce a special key
γ whose associated value is a counter. This item behaves
just like any other item except that the only update al-
lowed on the item is an increment request. The request
is never rejected and if it makes it to the primary of the
γ key, the primary increments the counter and returns the
value to the user along with the acknowledgment. From
the first replication update consistency property it follows
that the counter in any secondary of the γ key, is incre-
mented at least as many times as the counter in the pri-
mary. Also, before returning a commit number, the counter
is incremented once in the primary, thereby guaranteeing
that commit numbers granted are strictly monotonically in-
creasing. Note that under our no-k-successive-peer failure
assumption, commit number generators are fault tolerant.
An update transaction has to obtain only one commit num-
ber which is obtained after all its writes are complete. Also,
for the commit number generators neither lost requests nor
duplicate requests impact the correctness since the granted
commit numbers must only increase monotonically and need
not be contiguous. There is no need to serialize concurrent
commit number requests provided such requests are issued
only after a transaction completes its write phase and the
granted commit number is greater than its read number.

Pre-Commit Phase: After obtaining its commit num-
ber by contacting the commit number generators mentioned
above, an update transaction with id tid writes within a
separate namespace of P-Ring, the item {tid, commit#}.
Recall that the ring can be divided into different names-
paces to store data of different types in the same ring. In
our case, we divide the ring into two namespaces; one to
store the actual data and the other to store the commit
numbers of transactions. This write need not be commit-
ted since transaction ids are unique and hence there is no
chance of contention on the item. Transactions which need
to know the commit number of a transaction with id tid,
can do so using a lookup(tid). Note that such a lookup is
not frequently needed since commit numbers are also stored
with committed versions.

Commit/Abort Phase: During its commit phase, an
update transaction sends a commit update to all the items
on which an uncommitted version created by the transaction
exists. The versions upon receiving the update are converted
to committed versions and the commit number of the trans-
action are stored along with the versions. Abort phase is also
similar except that the transaction has to wait for the repli-
cation timeout before starting it and uncommitted versions
are discarded upon receiving an abort update. Read-only
transactions have no commit or abort phase and hence are
abort free.

Generating read numbers: Unlike the commit num-
ber which is needed only by update transactions before their
commit, read numbers are needed by all transactions before
they perform any other operations. Therefore it is neces-
sary to decentralize the process by which transactions ob-
tain read numbers. In LSTP, a new transaction probes a

few random peers in the ring and uses the maximum com-
mit number known to those peers as its read number. Each
peer locally learns some commit numbers from the commit
numbers stored in the data for which the peer is the owner.
These commit numbers are either those stored with commit-
ted versions or items in the transactional namespace. This
locally learned information is continuously updated by gos-
siping with other peers and using the maximum known com-
mit number. Therefore, the only guarantee about the read
number of a transaction is that it corresponds to the com-
mit number of some transaction Tr which had completed its
pre-commit phase before this transaction starts performing
operations. In snapshot isolation, the read number of a new
transaction is greater than the commit number of all trans-
actions which committed earlier. The weaker guarantee pro-
vided to read numbers in LSTP is the price of decentralizing
the read number generation and the consistency properties
we develop has to build upon this guarantee. The closer the
read number of a transaction is to the maximum granted
commit number, the more recent is the transactions “view“
of the index.

Property 5.1. For any committed (committing) update
transaction T, commit#(T) > read#(T).

The above property holds because the read number is the
commit number of some transaction which has obtained its
commit number before T started. Also, T obtains its own
commit number after its read and write phases are over and
finally granted commit numbers are strictly monotonically
increasing.

A transaction T1 is said to directly depend on another
transaction T2 if in the dependency serialization graph there
is a WW edge or WR edge directed from T2 to T1. Similarly,
T1 directly anti-depends on T2 if there is a RW edge directed
from T2 to T1. Finally, a transaction T1 is said to depend on
a transaction T2, if in the dependency serialization graph,
there is a chain of direct dependencies directed from T2 to
T1.

Protocol 1 LSTP:Write Phase
1: W := write set of a transaction T.
2: for each item i in W do

3: T obtains tid and c by performing lookup(i).
4: tid := txn id of the last committed version of i.
5: c := commit number of txn corresponding to tid.
6: if tid is in T’s U-set or c > T’s read# then

7: T enters abort phase.
8: else

9: T sends a conditionalWrite CW to owner of i
10: CW requires that the last committed version of i remains

tid.
11: if CW is rejected then

12: T enters abort phase.
13: end if

14: end if

15: end for

Write Phase: The write phase is listed in Protocol 1.
In order to write on an item i, a transaction T with read
number r, first looks up (line 3) the last transaction Ttid

to commit on i. If Ttid has commit number greater than r
(line 6), T aborts. T also aborts if Ttid belongs to the U-set
(explained later). Otherwise T attempts a conditionalWrite.
The write is conditional to ensure that some other transac-
tion did not commit in the time interval between the lookup
by T and the write attempt by T . If the condition does not

11

hold, the write will be rejected . Finally, recall from the
basic primitives that a write will be rejected if an uncom-
mitted version of an item exists. If the conditionalWrite is
rejected due to either of the two above mentioned cases, T
aborts. To summarize, T succeeds in creating a new version
of i, only if all the existing versions of i were created by
transactions having commit number ≤ r. This observation
when combined with Property 5.1 gives rise to the following
property.

Property 5.2. Let T1 and T2 be any two committed (com-
mitting) transactions. If there is a WW edge directed from
T1 to T2 then commit#(T2) > commit#(T1).

Also note that T1 overwrites T2 only if T2 has created a
committed version of i. Since a transaction creates commit-
ted versions only after finishing its precommit phase suc-
cessfully, the next property follows.

Property 5.3. Let T1 and T2 be any two committed (com-
mitting) transactions. If there is a WW edge directed from
T1 to T2 then the pre-commit phase of T1 ended before the
write phase of T2 ended.

Protocol 2 EvalVersions
1: Definition of evalVersions:
2: Evaluated by the owner of a given item i.
3: To answer range query request by a txn with read# r.
4: answer = {lcv, plcv, u } triplet.
5: Initially, lcv = plcv = u = null
6: if commit# of last committed version of i < r then

7: lcv = latest committed version with commit# < r.
8: plcv = version immediately preceding lcv, if any ‘
9: else

10: lcv = last committed version of i.
11: plcv = version immediately preceding lcv if any
12: if uncommitted version of i exists and has read# < r then

13: u = uncommitted version of i
14: end if

15: end if

16: return {lcv, plcv, u}

Read Phase: In its read phase, a transaction T executes
a series of range queries using the augmented range query
primitive. The read number, r, of the transaction is at-
tached along with the query. The peers evaluate the function
EvalVersions (see protocol 2) using r as the parameter on the
versions of every item which falls within the query’s range.
The result set of this function is at most three versions per
item which are then returned to the querying transaction.
The transaction then uses the commit and read numbers as-
sociated with these versions and its local U-set (explained
later) to pick one version per item which is presented as the
actual result of the range query. First we describe, how the
three versions are selected, given a read number. Then we
discuss why the three versions are sometimes necessary and
always sufficient to produce a consistent result set.

The peers processing a range query use the following al-
gorithm (see Protocol 2, EvalVersions) to select the at most
three versions per item. If the last committed version of
item i has commit number ≥ r, then the latest committed
version (lcv(i)) of i with commit number ≤ r and the version
penultimate to the lcv(i) are returned. Thus in this case at
most two versions are returned (It is at most because the
penultimate version may not exist). If the last committed
version of item i has commit number < r, then again the

lcv(i) (which in this case is synonymous to the last com-
mitted version of i) and the version penultimate to it are
returned. In addition, if an uncommitted version of i exists
and has read number (stored along with the version) less
than r, that is returned as well for a total of at most three
versions.

Next, let us discuss the algorithm (see Protocol 3) used by
a user process with read number r in deciding which of the
three versions per item is appropriate. Let 〈u, lcv, plcv〉 de-
note the 3 versions where a version which does not exist is set
to null. Let Tu, Tlcv and Tplcv be the respective transactions
that created these three versions. We already know that the
commit numbers of Tlcv and Tplcv are ≤ r. From lines 8,
10 and 12 of Protocol 3, it is clear that the uncommitted
version is used only if it is confirmed (using a lookup into
the transaction space) to have a commit number ≤ r. That
is, irrespective of which of 3 versions is chosen, the chosen
version has commit number ≤ r. This fact, when combined
with Property 5.1, gives rise to the following property.

Property 5.4. Let T1 and T2 be any two update trans-
actions. If there is a WR edge from T1 to T2, then com-
mit#(T2) > commit#(T1).

Combining Property 5.2 and 5.4 we get

Property 5.5. Let T1 and T2 be any two transactions.
If T2 directly depends on T1, then commit#(T2) > com-
mit#(T1).

A simple argument based on induction extends the above
property as follows.

Property 5.6. Let T1 and T2 be any two update trans-
actions. If T2 depends on T1, then commit#(T2) > com-
mit#(T1).

Also note that an uncommitted version u of an item is
used as a result of a read, only if a lookup of Tu succeeded
,i.e., Tu has finished its pre-commit phase. Also note that
a write phase follows a read phase. These two observations
when combined with property 5.3, gives rise to the following
property.

Property 5.7. Let T1 and T2 be any two update trans-
actions. If T2 depends on T1, then T1 finished its precommit
phase successfully before T2s write phase ended.

From among the 〈u, lcv, plcv〉 triplet, the version chosen
by a reading transaction T corresponds to the version with
largest commit number less than r and not present in T ’s
U-set. The first part of the two conditions is as expected
but the second part is unusual and unique to the conditions
of our system. What is the U-set and why is it necessary?
As already mentioned, u is the chosen version only if it is
confirmed by the lookup(u.tid) that u has commit number
≤ r. Otherwise u is ignored ,i.e., T misses Tu. If u happened
to have commit number greater than r then missing Tu is
the expected behavior. But what if u has commit number ≤
T? This is possible because Tu might have been granted a
commit number less than r but was slow in writing this com-
mit number into the index. We call this the slow committer
problem because had Tu been quick enough in writing its
commit number in the transaction namespace, this problem
would never have occurred. Since T has missed Tu, the fol-
lowing two conditions are necessary to avoid inconsistency.

12

I1. T depends on no other transaction that depends on
Tu.

I2. If T reads another item on which Tu has created a
version, T misses Tu on that item as well.

The next property shows that the inconsistency repre-
sented by the absence of condition I1 can never occur.

Property 5.8. Let Tu be a slow committer wrt transac-
tion T having read number r. Then there exists no other
update transaction with commit number less than or equal
to r that depends on Tu.

Proof. For contradiction, assume that such an update
transaction, Tx, exists. Since r is the read number of T , it
has to be the commit number of some transaction Tr which
finished its pre-commit phase before T started. This implies,
every transaction with commit number less than r, finished
their write phase before T started. Hence Tx should have
finished its write phase before the pre-commit phase of Tu

ended (since Tu is a slow committer wrt T .). This contra-
dicts Property 5.7.

Protocol 3 LSTP:Read Phase
1: Actions by a transaction T to evaluate a range query [a, b].
2: U = U-set of T, empty before the first range query.
3: R is the result set for range query [a, b], initially empty.
4: T contacts peers owning [a, b] using range query primitive.
5: for each item i in [a, b] do

6: Owner of i evaluates function evalVersions on versions of i.
7: Owner responds with lcv, plcv, u triplet as defined in evalVer-

sions (protocol 2).
8: if u 6= null and txn id, u.tid, is not in U then

9: T obtains uc# using a lookup of u.tid in transactional names-
pace.

10: uc# := commit# of txn with id u.tid.
11: if u.tid is not present in transactional namespace then

12: U = U ∪ u.tid
13: else if uc# ≤ read# of T then

14: R = R ∪ u
15: continue to next item
16: end if

17: end if

18: if (txn id of lcv is not in U) then

19: R = R ∪ lcv;
20: continue to next item
21: else if plcv 6= null then

22: R = R ∪ plcv
23: end if

24: end for

Since by Property 5.8 no transaction with commit# <
r depends on Tu and also since T only depends on trans-
actions with commit numbers ≤ r, there is no chance of
T observing some other transaction which depends on Tu.
The inconsistency specified in condition I2 can still occur be-
cause even though Tu had not finished its pre-commit phase
the first time a version created by it was encountered by T ,
Tu might have finished its pre-commit phase by the time T
again encounters a version created by Tu on another item.
This is avoided by T by remembering the id of Tu in a set
of transactions called the U-set. When T encounters a com-
mitted version of some item j, created by a member of the
U-set, by condition I1, it has to be lcv(j). Therefore T uses
the version penultimate plcv(j) to it. Note that plcv is guar-
anteed to be not created by a slow committer since there is
a WW edge between Tplcv and a transaction with commit
number ≤ r (See Property 5.8). Thus T ensures both I1 and
I2.

A transaction id tid is assumed to belong to a potential
slow committer and added to the U-set of a transaction T if
all of the following conditions hold.

C1. T encounters an uncommitted version utid on an item
i for the first time during its read phase.

C2. The read number stored along with utid is less than
T ’s read number.

C3. The last committed version (if any) of i has commit
number less than T ’s read number.

C4. A lookup(tid) by T returns false.

Conditions C1 and C4 ensure the definition of a slow com-
mitter. Conditions C2 and C3 are used to reduce the number
of false positives in the U-set and thereby reduce the need for
the lookup in C4. False positives in the U-set arise because
it is not possible to distinguish between an active transac-
tion (i.e, a transaction that is still in its read or write phase)
and a slow committer (neither of which store any state in
the transactional key-space). From Property 5.1 and the
definition of a slow committer it follows that the read num-
ber of a slow committer wrt a transaction T must be less
than T ’s read number. This is used by condition C2 to re-
duce false positives. Condition C3 reduces false positives by
using the fact that the write protocol ensures that within
a commit ordering the commit numbers increase monoton-
ically. It can be shown that if the U-set of a transaction
T is built according to rules C1 to C4 then if T reads the
same part of the index more than once, the result set will
be identical. Therefore LSTP can support repeating reads
without access to a local cache.

Property 5.9 (Property of cycles-1). Let G be the
dependency graph of a system using LSTP, then G cannot
have a cycle composed entirely of WW and WR edges.

The proof is a straight forward application of Property
5.6.

Property 5.10 (Property of cycles-2). Let G be the
dependency serialization graph of LSTP. Then there exists
no cycle in G with only one RW edge.

Proof Outline. Let T1T2...TNT1 be a cycle in G. Let
TNT1 be the single RW edge in the cycle. The path T1T2..TN

is made entirely of WW and WR edges and hence TN .read#
≥ T1.commit#. Let i be an item which caused the RW edge
between TN and T1. Then T1 must be in the U-set of TN

(otherwise TN would not have missed the write by T1 and
hence there would be no RW edge). But then the edge T1
to T2 cannot exist (by Property 5.8) unless the cycle is of
the form T1TNT1. But this implies there is a WW or WR
edge between a transaction in TN ’s U-set and TN which is
not possible by the specification of the protocol.

The above property is also shared by snapshot isolation
(SI) which hints at a close relation between LSTP and snap-
shot isolation. But in SI, any cycle in the dependency seri-
alization graph must not only have at least two RW edges
but two adjacent RW edges [11]. The adjacency condition
is very significant only in some special cases. For exam-
ple, if in an application adjacent RW edges can never occur,
then SI guarantees serializability but LSTP doesn’t. There-
fore LSTP provides transactions with weaker but similar

13

notions of isolation as does snapshot isolation. The wide-
spread use of SI in read heavy environments (for example,
snapshot isolation is used in ORACLE and recent versions
of SQL server) leads us to hypothesize that LSTP will also
be useful in many large scale read heavy environments.

Next we describe the formal consistency properties of LSTP.
A transaction T is said to be provided with basic (aka up-
date or external) consistency if the values read by T are the
result of a serial execution of some subset of committed up-
date transactions and each update transaction in the serial
transaction execution executes the same steps as it did in the
concurrent execution [27]. A concrete example for a prac-
tical use of basic consistency is the broadcast environment
described in [23].

Theorem 2. : There are no dependency misses in LSTP

Theorem 3. : LSTP provides transactions with basic con-
sistency when update transactions are serializable.

The two properties of cycles are sufficient conditions for
the above two theorems to hold [1].

Informally Theorem 3 implies if the updates are well be-
haved, the read-only transactions are guaranteed to be con-
sistent. This is precisely the characteristic of read heavy en-
vironments since concurrent, contending updates are rare.
Indexes which are updated in bulk is an example workload
which exhibits this kind of characteristic. Thus LSTP is
ideal for read-heavy environments.

Purging of Old Versions: So far in the discussion, we
have ignored the purging of old versions. The commonly
used strategies for purging old versions using either the age
of the version or bounding the maximum number of versions
retained per item are also applicable in our setting. But a
couple of points are worth noting. Irrespective of the strat-
egy followed, it is necessary to retain at least the last two
committed versions of an item due to the slow committer
problem. If the workload consists of long running read-only
transactions and the abort free nature of read only transac-
tions is desired, then retaining old versions for a long time
is inevitable. Version management in P2P systems is an in-
teresting problem in its own right and has applications in
other domains such as collaborative document editing.

6. PRELIMINARY EVALUATION
We implemented LSTP in a simple round based C++

simulator and obtained some empirical results. These re-
sults are very preliminary in nature due to the simplicity of
the simulation environment and limited scope of the exper-
iments. We are currently working on a comprehensive and
realistic implementation. Our goal in this preliminary evalu-
ation is to obtain some insight about the overhead imposed
by LSTP when compared to simply executing the queries
and updates as unrelated singletons. The size of the index
is 100000 data items distributed over 10000 peers. A replica-
tion factor of 3 is used. We experimented with three different
workloads and two different query distributions. The first
query distribution distributes queries and updates uniformly
in the dataspace while the second distribution distributes
queries and updates normally with mean 50000 (center of
the data space) and standard deviation of 10000 (10% of
the data space). In the first workload readonly transactions
execute 10 range queries (of width 100) each while update

transactions execute 10 updates each. The second workload
is twice as heavy as the first wokload while the third work-
load is thrice as heavy.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

Message Overhead Vs % Update txns

Workload-I
Workload-II

Workload-III

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

Message Overhead Vs % Update txns

Workload-I
Workload-II

Workload-III

(a) Uniform Queries (b) Normal Queries

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

Time Overhead Vs % Update txns

Workload-I
Workload-II

Workload-III

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

Time Overhead Vs % Update txns

Workload-I
Workload-II

Workload-III

(c) Uniform Queries (d) Normal Queries

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

% Commit Rate Vs % Update Load

10:1
5:1
1:1 10

 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100

% Commit Rate Vs % Update Load

10:1
5:1
1:1

(e) Uniform Queries (f) Normal Queries

Figure 3: Simulation Results

In a purely read only environment the overhead imposed
by LSTP is 0. Hence here we examine the over-head as the
percentage of update transactions in the system increases.
Figure 3(a) and (b) show the percentage overhead of LSTP
in terms of number of messages against the percentage mix
between read-only transactions and update transactions. Fig-
ures 3(c) and (d) show the overhead in terms of time which
is different from that of messages because messages are of-
ten sent in parallel. The graphs show that the overhead
depends largely on the proportion of update transactions in
the system and to a much lesser extent on the load per trans-
action. The overhead in both time and number of messages
show similar behavior but the overhead is lower in terms
of time. In the uniform workloads the overhead increases
linearly while the behavior is more irregular for the skewed
workloads. In no case does the overhead rise above 30%
thereby validating our claim that LSTP is a low overhead
protocol.

Figures 3 (e) and (f) show the percentage of commit rate
when the amount of contention in the system increases. We
use the total number of items updated by the workload as a

14

measure of the update load. The commit rate declines heav-
ily in the worst of all cases: when the workload is skewed,
update transactions to read-only transactions ratio is 1:1
and the number of items updated in total is equal to the
size of the index. But we note that this is an extreme case
wherein the system is under extremely high load and con-
tention. Under more reasonable parameters such as when
workload updates 20% of the index, the commit rate is at
acceptable values. The conclusion is that LSTP provides
acceptable commit rates for read-heavy environments but is
unsuitable for heavy contention, high update-load environ-
ments.

A few heuristics are possible to reduce the rate of aborts
among update transactions. For example, when a transac-
tion T crashes in the middle of a commit phase some of
its written items are in the uncommitted state which pre-
vents write attempts by another transaction T1 on the same
items being rejected. Instead of moving on to its abort phase
T1 can use the lookup(tid) and check if T completed its
precommit phase. If the lookup returns a positive result,
then the transaction can commit by proxy by sending a
commit(tid) even though the user process of tid is differ-
ent. But given that the protocol is fundamentally biased
towards read heavy environments we do not consider this
issue any further.

7. CONCLUSION
We argued that the use of structured P2P indexes should

be adopted in cluster computing scenarios. We identified
the lack of consistency guarantees to be one of the major
stumbling block in such an adoption and hence studied the
problem of providing transactional semantics to P-Ring a
P2P system that efficiently answers range queries. We devel-
oped LSTP a scalable transactional protocol that guarantees
no missed dependencies and provides read-only transactions
with basic consistency when update transactions are serial-
izable. We believe that the design and preliminary imple-
mentation of LSTP in this paper acts as a proof of concept
that notions of consistency can indeed be added to struc-
tured P2P systems in cluster environments.

8. REFERENCES
[1] A. Adya. Weak Isolation: A generalized theory and

optimistic implementations for distributed
transactions. PhD thesis, Massachusetts Institute of
Technology, March 1999.

[2] Amazon simple storage service. http:
//www.amazon.com/gp/browse.html?node=16427261.

[3] L. Barraso, J. Dean, and U.Hölzle. Web search for a
planet: The google cluster architecture. IEEE Micro,
23:22–28, 2003.

[4] M. Bawa, A. Gionis, H. Garcia-Molina, and
R. Motwani. The price of validity in dynamic
networks. In SIGMOD, 2004.

[5] H. Berenson, H. Bernstein, J. Gray, J. Melton,
E. O.Neil, and P.O.Neil. A critique of the ansi sql
isolation levels. In SIGMOD, 1994.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems.
Addision-Wessley Publishing Company, 1987.

[7] A. Bosworth. Database issues for the 21st century. In
SIGMOD, 2005.

[8] A. Chan and R. Gray. Implementing distributed
read-only transactions. IEEE transactions on Software
Engineering, 11:205–212, 1985.

[9] A. Crainiceanu, P. Linga, J. Gehrke, and
J. Shanmugasundaram. P-ring: An efficient and
robust p2p range index structure. In SIGMOD, 2007.

[10] F. Dabek. Cooperative File System. PhD thesis,
Massachusetts Institute of Technology, September
2001.

[11] A. Fekete, D. Liarokopis, E. O’Neil, P. O’Neil, and
D. Shasha. Making snapshot isolation serializable.
ACM transactions on Database Systems, 30:492–528,
2005.

[12] B. Gedik and L. Liu. Peercq: A decentralized and
self-configuring peer-to-peer information monitoring
system. In ICDCS, 2003.

[13] Google alerts. http://www.google.com/alerts.

[14] A. Gupta, O. Sahin, D. Agrawal, and A. E. Abbadi.
Meghdoot: Content-based publish/subscribe over p2p
networks. In Middleware, 2004.

[15] R. Huebsch, B. Chun, J. Hellerstein, B. Loo,
P. Maniatis, T. Roscoe, S. Shenker, I. Stoica, and
A. Yumerefendi. The architecture of pier: an
internet-scale query processor. In CIDR, 2005.

[16] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. OceanStore: An
architecture for global-scale persistent storage. In
ASPLOS, 2000.

[17] P. Linga, A. Crainiceanu, J. Gehrke, and
J. Shanmugasundaram. Guaranteeing correctness and
availability in p2p range indices. In SIGMOD, 2005.

[18] G. Lomet. Replicated indexes for distributed data. In
PDIS, 1996.

[19] N. Lynch, D. Malkhi, and D. Ratajczak. Atomic data
access in distributed hash tables. In IPTPS, 2002.

[20] D. Narayanan, A. Donnelly, R. Mortier, and
A. Rowstron. Delay aware querying with seaweed. In
VLDB, 2006.

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network.
In SIGCOMM, 2001.

[22] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling churn in a dht. In USENIX, 2004.

[23] J. Shanmugasundaram, A. Nithrakashyap,
R.Sivasankaran, and K. Ramamritham. Efficient
concurrency control for broadcast environments. In
SIGMOD, 1999.

[24] M. Srivatsa and L. Liu. Vulnerabilities and security
threats in structured overlay networks: A quantitative
analysis. In ACSAC, 2004.

[25] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In
SIGCOMM, 2001.

[26] C. Türker, K. Haller, C. Schuler, and H. Schek. How
can we support grid transactions? towards
peer-to-peer transaction processing. In CIDR, 2005.

[27] W. E. Weihl. Distributed version management for
read-only actions. IEEE transactions on Software
Engineering, SE-13:55–64, 1987.

15

